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Beijing, 102249, China; 
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ABSTRACT  

In this study, a cold-model fluidized bed exchanger with similar geometry and 
heat exchange mechanism as industrial resid FCC catalyst coolers was studied 
systematically to find optimized operating conditions and geometrical structure. A 
heat transfer intensification method with promoted solids mixing by utilizing an 
internally circulating fluidized bed was proposed and tested. Higher heat transfer 
coefficients were obtained and better performances were partially validated. 

INTRODUCTION  

In a modern petroleum refinery, a catalyst cooler is an indispensable device in a 
fluid catalytic cracking unit processing heavy resid feedstock (i.e. RFCC unit). (1-
2) Due to higher coke yield, superfluous heat is released during catalyst 
regeneration exceeding the requirement for unit heat balance. The function of a 
catalyst cooler is to remove the superfluous heat by contacting high-temperature 
catalyst particles with heat transfer tubes with flowing liquid water in a fluidized 
bed to produce valuable steam.  

Due to higher reliability and better operating flexibility, fluidized bed heat 
exchangers placed outside the regenerator named as external catalyst coolers 
are usually preferred choices for RFCC unit designs in recent decades. In most 
external catalyst coolers, heat exchange happens between vertical tube bundles 
and fluidized FCC particles.  In China’s most RFCC catalyst coolers, heat tube is 
designed as an independent heat exchange unit which can be switched off   
when leakage failures happen due to various damages. This is to prolong the unit 
turnover period by reducing the shut-down frequency of the entire unit. 

In essence, a FCC external catalyst cooler is a fluidized bed with multiple vertical 
tube internals. Heat exchange properties are closely related to the bed 
hydrodynamics. However, problems such as low heat transfer capacity, unstable 
catalyst circulation and tube damages were frequently reported in industrial 
catalyst coolers. (3-5) When these incidents happen, unit throughput has to be 
reduced due to the cooling bottleneck. Sometimes, the entire unit has to be shut 
down, resulting in serious economic loss. This demonstrates that optimized 
catalyst cooler design based on deep understanding of the heat transfer 
properties and its related hydrodynamics is still not reached currently.  

In this study, a cold-model fluidized bed exchanger with similar geometry and 
heat exchange mechanism as industrial FCC catalyst coolers was built to study 
its heat transfer properties. A new method to increase its bed-to-wall heat 
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transfer coefficient was proposed and partly validated experimentally. The 
obtained understandings are also helpful in optimizing the design and operation 
of current industrial FCC catalyst coolers. 

EXPERIMENTAL SETUP 
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Figure 1 Schematic diagram of the experimental unit 

     
(a) catalyst cooler                      (b) finned heat tubes 

Figure 2 Pictures of the catalyst cooler and finned heat tubes 

In order to simulate an industrial FCC catalyst cooler, a large-scale cold model as 
shown as in Figure 1 was established. The heart of this unit is a cylindrical 
fluidized bed of I. D. 0.5 m and height 3 m. Its transparent plexiglas wall made 
visual observation of the inner flow behavior possible. Compressed air from a 
Roots blower was fluidizing gas and FCC equilibrium catalyst of mean diameter 

69.4 µm and particle density 1500 kg/m3 was the fluidized particles. A cyclone 
installed above the bed captured the entrained particles in the outflow gas and 
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return them through its dipleg to the dense bed to maintain a constant particle 
inventory.  

Nine vertical steel finned heat tubes of height 1.2 m, similar geometry as in 
industrial units as shown in Figure 2, were used in this study. The outer diameter 
of the heat tube was 76 mm. Ten fins of width 10 mm and thickness 2 mm were 
welded around each tube. There were two finned sections of height  0.5 m on the 
top and bottom of each heat tube. There was one tube set in the bed center and 
eight tubes around a concentric circle of diameter 334 mm. Similar hydraulic 
diameter was maintained in the designs of the experimental unit and industrial 
catalyst coolers.  In most experimental runs, the static bed height was 1.45 m to 
guarantee all heat tubes buried in the dense bed.  Superficial gas velocity ranged 
from 0.05 m/s to 0.65 m/s, including a bubbling and a turbulent flow regimes.  

 
Figure 3 Schematic diagram for determination of the heat transfer coefficient 

In this study, the most important measurement parameter was the bed-to-wall 
heat transfer coefficient. A similar heat transfer mechanism as in industrial 
catalyst coolers was employed to measure the bed-to-wall heat transfer 
coefficient as shown in Figure 3. Hot water from a constant-temperature trough, 
usually in the range of 70~90 oC, was pumped into the heat tubes of the catalyst 
cooler. After contacting with cold particles in the fluidized bed, water flowing out 
of the heat tubes was cooled down and then flowed into the trough to recover its 
lost heat. With water inlet and outlet temperatures (Tin, Tout), average tube wall 

temperature (
w

T ) and bed temperature (
b

T ) known, the bed-to-wall heat transfer 

coefficient h can be calculated by the following heat balance equation: 

( ) ( )in out w w bCm T T hA T T− = −                                      (1) 

Here, C is the specific heat of water, m is the water mass flow rate and Aw is the 
heat transfer area. Here, only tube outer surface was counted without including  
fin surfaces. According to previous studies, (6-7) the measured heat transfer 
coefficient includes the contributions of gas and solids convections. This is similar 
as in industrial catalyst cooler where the operating temperature is usually below 
650 oC and heat transfer by radiation is negligible. However, heat transfer 
directions in this study and industrial catalyst coolers are opposite. In this study, 
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heat is transferred from hot water in the tube to outside cold particles. In 
industrial catalyst coolers, heat is transferred from hot fluidized particles to low 
temperature water flowing in the tubes.  

Three types of catalyst cooler were used in this study, whose lateral 
arrangements of the heat tubes are shown in Figure 4. The first one was a similar 
design as most industrial dense-bed catalyst cooler where only an annular pipe 
gas distributor was used below heat tubes. We call this one the base catalyst 
cooler (BCC) in this study. There were 36 holes of diameter 10 mm in this pipe 
distributor, corresponding to an open area ratio of 1.5%.  

       

partition
plates  

(a) BCC                                             (b) ACC-1                                               (c) ACC-2 

Figure 4 Heat tube arrangements in the three types of catalyst cooler 
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Figure 5 Gas distributors in annular catalyst coolers 

In order to test our idea to intensify heat transfer in FCC catalyst coolers, the 
annular pipe gas distributor was revamped as in Figure 5. There were a central 
perforated plate distributor and an above annular pipe distributor. The idea of this 
design is to provide non-uniform gas distribution to promote inner solids 
circulation. At a constant gas flow rate, the bed-to-wall heat transfer coefficient is 
expected to increase due to stronger solids mixing. Moreover, the adjustable 
range of its cooling capacity can be increased by changing the gas flowrate ratio 
through the two gas distributors. Thus, more operating flexibility is provided. The 
diameter of the central plate distributor was 320 mm. More gas flowed through it. 
Less gas flows through the annular pipe distributor. Its function was mainly to 
aerate the down-flowing solids.  This is the annular catalyst cooler (ACC) we 
proposed to intensify bed-to-wall heat transfer. As seen in Figures 4(b) and 4(c), 
the central heat tube was removed in the ACC to avoid interfere on solids flow. 
Later, in order to further promote solids circulation, vertical partitions plates were 
installed to make the annular heat tubes a close circle as shown in Figure 4(c). In 
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this study, the two types of catalyst cooler were named as ACC-1 and ACC-2, 
respectively. 

RESULTS AND DISCUSSION 
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Figure 6 Effect of static bed height on bed-to-wall heat transfer coefficient of BCC 

Figure 6 depicts the measured bed-to-wall heat transfer coefficients under 
different superficial gas velocities and static bed heights (denoted as H0). When 
heat tubes are buried in the dense bed, h first increases and then decreases with 
increasing gas velocity, peaking at u0 =0.4 m/s. If the cross section area occupied 
by the heat tubes is subtracted, the actual transitional gas velocity is 
approximately equal to the onset turbulent fluidization velocity computed by the 
correlation of Cai et al. (8). The trend and value range are generally agreeable 
with other studies, (9-10) demonstrating the reliability of the measurement in this 
study. Moreover, as static bed height decreases, h decreases constantly. 
However, under all static bed heights, the change of h follows a same trend with 
gas velocity, demonstrating the dominant influencing role of the dense bed. 
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Figure 7 Effect of radial position on bed-to-wall heat transfer coefficient in BCC 

Figure 7 shows the effect of radial positions on h. Due to limits of experimental 
designs, the h of the central heat tube could not be measured directly. The 
measured hs shown in Figure 7 are actually the averaged value of two heat tubes. 
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As seen in Figure 7, the h of the central heat tube is clearly higher than that of 
the side tube. Despite of lower solids fractions, higher solids renewal frequency 
on the surfaces of the central tube plays a dominant role in its higher hs. 
Moreover, this demonstrates that weaker wall effect is favorable to good heat 
transfer performance.  
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(a) ACC-1                                                                  (b) ACC-2 

Figure 8 Bed-to-wall heat transfer coefficients of ACC-1 and ACC-2 

Figure 8 shows the performance of the annular catalyst coolers in this study. It is 
noted that u2 in Figure 8 is defined as the gas volume flow rate of the pipe 
distributor divided by the whole column cross-sectional area. Generally, ACC’s 
intensification effect can be observed in most operating conditions as seen the 
higher hs for both ACC-1 and ACC-2. Generally, as gas flow rate from the pipe 
distributor increases, hs of both ACC-1 and ACC-2 increase under all superficial 
gas velocities. When u2 is very low, there are some cases that ACC’s hs are 
lower than the corresponding hs in BCC. Very likely, bad fluidization states exist 
near the column wall under these operating conditions, resulting in the poor heat 
transfer performance. When u2 exceeds 0.042 m/s, it seems from Figure 8(a) that 
a double peak trend exists in the h vs. u0 curves. The highest hs appear at u0 
=0.2 m/s, far smaller than in BCC. However, there is no double-peak trend in all h 

vs. u0 curves of ACC-2. The transitional gas velocity of ACC-2 appears at u0 =0.3 
m/s, also smaller than in BCC. 
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Figure 9 Comparison of the highest hs in the three types of catalyst cooler 
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Figure 9 compares the best heat transfer performance of the three types of 
catalyst cooler, which enables the intensification effect of the annular catalyst 
coolers more clearly observed. For the maximum hs, ACC-1 and ACC-2 are 
11.3% and 4.7% higher than BCC, respectively. Otherwise, the smaller 
transitional gas velocities in ACC-1 and ACC-2 also indicate smaller fluidizing gas 
usage and potential energy saving in industrial units. 

In an objective analysis, except for the intensification effect, the improved heat 
transfer performance in ACC coolers may also originate from their improved gas 
distribution. After all, the single pipe distributor in BCC can not realize same gas 
distribution in ACCs. Moreover, it is a little unexpected that the performance of 
ACC-2 is inferior to ACC-1. In view of the wall effect shown in Figure 7, this may 
be due to the stronger wall effect in ACC-2. It can thus be expected that the 
hydraulic diameter and fin arrangement should be further optimized to achieve 
better heat transfer performance in industrial catalyst cooler designs.  

CONCLUSIONS 

After above-mentioned experimental studies, at least the following conclusions 
can be drawn: 

(1) The intensification heat transfer effects of the annular catalyst cooler is partilly 
validated. Higher bed-to-wall heat transfer coefficient, smaller fluidizing gas 
usage and higher adjustable flexibility are realizable in annular catalyst coolers. 

(2) To achieve good heat transfer performance in FCC catalyst coolers, uniform 
gas distribution, limited wall effect, good fluidization state are neccessary. 
Cautions should be taken with regard to the selection of appropriate hydraulic 
diameter and fin arrangements.  

(3) An optimized gas velocity range of 0.3~0.5 m/s is recommended for regular 
dense-bed FCC catalyst cooler design.  

 NOTATION 

Aw heat transfer area m2 

C specific heat of water J/kg 

h bed-to-wall heat transfer coefficient w/(m2.K) 

H0 static bed height m 

m water mass flow rate kg/s 

Tb bed temperature oC 

Tin water inlet temperature oC 
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Tout water outlet temperature oC 

Tw wall temperature of heat tube oC 

u0 superficial gas velocity m/s 

u2 

gas volume flowrate from the pipe 

distributor of the ACC coolers divided by 

the bed cross-sectional area 

m/s 
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