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DEVELOPMENT OF A NOVEL INFRARED CAMERA FOR 
GAS EXCHANGE FROM BUBBLE-TO-EMULSION PHASE IN 

GAS-SOLID FLUIDIZED BEDS 

Nhi Dang*, Tom Kolkman , Fausto Gallucci and Martin van Sint Annaland 
Eindhoven University of Technology; Dept. Chemical Engineering and Chemistry 

PO Box 513, 5600 MB Eindhoven, The Netherlands 
E*: t.y.n.dang@tue.nl 

ABSTRACT  
Gas exchange from bubble-to-emulsion phase has been measured by the 
development of a novel infrared camera combined with a visual high speed 
camera and the Digital Image Analysis, non-invasively. Experimental findings 
indicate that the concentration inside the bubble is non-uniform and being diluted 
at the bottom and in the centre of the bubbles. The gas exchange coefficient is 

determined from the single phase model and dominated by the convective flow. 

Keywords: Bubble-to-emulsion phase, Infrared camera, Digital Image Analysis, 

Gas exchange rate. 

INTRODUCTION  
Gas exchange between the gas-solids phase occurs via the combined effects of 
gas diffusion, coherent gas flow and solids motion carrying adsorbed gas atoms 
(1-3). Experiments of bubble-to-emulsion phase gas exchange generally used 
invasive technique by injecting bubbles containing a tracer gas into incipiently 
fluidized bed and the concentration of the tracer gas was measured either in the 
emulsion phase or at the outlet of the bed (4-7). The invasive probes disturb the 
flow path of the bed operation, while the injected bubbles differs significantly from 
generated bubbles in terms of size, density and dynamics. Recent developments 
are based on the imaging techniques like X-ray (8), MRI (9) which have allowed 
non-intrusive and fast measurements of flow behaviours. Pavlin et al., 2007 [10] 
applied MRI technique to measure the mass transfer from bubble to emulsion 
phase in gas-solids fluidized bed using laser-polarized xenon (129Xe). However, 
the MRI technique is limited by an extremely high investment cost and the 
required particles containing MR-sensitive nuclei.  

To the best of the authors’ knowledge, the gas exchange from bubble-to-
emulsion fluidized bed has never been investigated visually due to the opaque 
systems and the transparency of tracer gases (like CO2, He). It is thus the gas 
streamlines the concentration profile as well as the (back) mixing flow may have 
not been well interpreted. All models’ descriptions in literature (1, 11) are based 
on the uniform concentration profile, constant bubble size and bubble rise 
velocity assumptions. However, Patil et al., (6) applied CFD simulation and stated 
that the concentration inside the bubble is non-uniform that is lower in the centre 
and at the bottom part of the bubbles. To precisely quantify the mass exchange 
rate in the fluidized bed system; the transportation mechanism, the gas flow 
pattern as well as the concentration distribution inside the bubble are of great 
importance. 
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This study develops a rapid novel experimental technique using Infrared Camera 
with a proper optical filter centred on IR absorbing wavelength of a tracer gas, to 
measure the gas-solids interchange in a thin fluidized bed, non-invasively. In the 
present study, the characterization of the IR camera technique has been 
addressed, by designing a dedicated experimental setup for CO2 concentration 
measurement. It has been started by the calibration procedure performed in the 
gas phase. Subsequently, the technique is extended into gas-solids fluidized 
beds for gas exchange rate from bubble-to-emulsion phase. The tracer gas 
concentration profiles inside the bubbles, the influence of bubble diameter as well 
as the particle size on the gas exchange coefficient have fully been investigated. 

QUANTITATIVE ANALYSIS 

The stretching vibration of CO2 is asymmetric and produces a dipole moment, 
which oscillates with the vibrational frequency and is active in the infrared. This 
results in absorption at 4.26 μm (2350 cm-1). Additionally, the bending motion 
also gives a dipole moment, corresponding to an absorption band at 15 μm 
(667cm-1) ([12]). In this work, a narrowband optical filter for CO2 has been used in 
front of the IR camera detector that allows CO2 to be filtered at 4.26 μm 
wavelength.  
The signal generated by the camera when a sapphire column flushed with 
nitrogen is placed in between the IR source and the camera, is indicated with 
DL0. When CO2 is fed into the column, it absorbs part of the radiation and the 
remaining signal transmitted to the camera is denoted with DL. From these two 
signals the transmittance and absorbance can be defined as: 

0DL

DL
T           (1) 

0

ln
DL

DL
A           (2) 

The absorbance is in theory linear to the CO2 concentration according to Lambert 
Beer’s law: 

aClCA           (3) 

Where C = concentration [mol.l-1],  = target length [cm], ε: molar absorbance 

[mol-1.cm-2] and a is a function of l and  . 
However, the linear relationship between absorbance and concentration is not 
always obeyed especially at high concentrations, but also because of the 
presence of instrument effects such as the lack of proportionality between the 
camera signal and the incident radiation intensity and a wavelength range over 
which the camera integrated instead of a single wavelength. Following Buijs et al. 
(14), we propose a power law series to take the effects of concentration, 
instrument effects, as well as surrounding effects into account in a lumped 
fashion: 

n
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EXPERIMENTAL SETUP 

The experimental setup is schematically depicted in Fig.1. An anodized 
aluminum slab (0.15x0.30x0.02 m) has been used as an IR source. A pseudo-2D 
sapphire column (0.04x0.2x0.005 m) was installed in front of the IR source. The 



2D column allows IR measurements (sapphire being almost transparent to the 
relevant IR signals). Wall absorbance and reflection were minimized by using a 
sapphire glass with small thickness (3 mm) and polished surfaces. A porous 
metal plate with an average pore size of 10 µm and 3 mm thick was used as the 
gas distributor at the bottom. A nozzle (4 mm inner diameter) was used in the 
centre of the distributor for CO2 injection. A high speed IR camera FLIR of 512 x 
640 px allowing a maximum full frame rate of 100 frames/s was used to detect 
transmitted IR radiation. An optical CO2 filter with a narrow band pass (4.26 ± 
0.03 µm) has been used with the camera for CO2 detection. The camera was 
positioned at a proper distance and orientation to be able to capture the 
interested area of the target column and to avoid camera self-reflection, causing 
the narcissus effect. The wavelength operation of the IR camera allows CO2 to be 
detected at 4.26 ± 0.03µm.  

To inject CO2, a piston with adjustable volume has been used that allows fast 
injection of a measured amount of CO2 via a nozzle (d = 4 mm) into the bed. 
Nitrogen is used as diluting agent in single phase and as fluidizing gas in two 
phase measurements. For gas-solids measurements the column is filled with 
glass beads as bed material (dparticle = 400 ÷ 600 µm, ρ = 2525 kg/m3), 
continuously fluidized by N2 at minimum fluidization gas velocity. The minimum 
fluidization gas velocity of 0.206 m/s was measured by the pressure drop method 
(13). The fluidizing gas is initially dried by adsorbing any possible traces of H2O 
on SiO2. CO2 is filled in a piston at a certain pre-pressure via a three-way valve 
(V2 in Fig.1). For fast bubble injection CO2 inside the piston is compressed by air 
at high pressure (6 bar) and subsequently released into the column through a 
solenoid valve (Vs), opened in 0.01s. The amount of CO2 injected is determined 
by the different pressure before and after injection and the volume of CO2 filled to 
the pistol. The injection velocity depends on the amount of tracer gas and the 
injection time. 

 

Figure 1: Experimental setup 
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Calibration procedure 

The calibration procedure is carried out by feeding a series of CO2/N2 gas 
mixtures to the sapphire column and recording IR images. Due to the very narrow 
bandwidth of the filter inside the camera, only CO2 is detected.  The 
concentration of CO2 is varied from 0 to 100 % volume at ambient conditions (0 
to 0.042 mol/l). Fig. 2 (a) shows the measured average absorbance (averaged 
over all pixel since the absorbance was quite uniform) as a function of the CO2 
concentration inside the column. The graph shows that at low CO2 concentrations 
(0 to 0.01 mol/l), the correlation is approximately linear as described by the 
Lambert Beer eqn. (Eqn. 4); but non-linear correlation is obtained at higher 
concentrations. For the studied range of concentrations, a third order correlation 
well describes the experimental data (Eqn.5).  

A= a1C+a2C
2+a3C

3                          (5) 
where a1, a2 and a3 are three fit parameters (a1 = 39.54 [l/mol], a2 = -1087 
[l2/mol2], a3 = 11805 [l3/mol3], R2= 0.9972). 
 

   
Figure 2: Integrated absorbance (a) and standard deviation of absorbance (b) as 
a function of tracer gas  
In Fig.2 (b), the standard deviation of integrated absorbance is plotted as a 
function of CO2 concentration. It shows that the fluctuation of absorbance is 
increased with the increased concentration. However, the value is not too low 
(the highest value of the standard deviation is about 0.0008) which again 
illustrates the uniform absorbance.  

Coupled Infrared camera and Digital Image Analysis 

The extension of the IR transmission technique to gas-solid flows would make it 
possible to measure non-invasively concentration profiles inside bubbles rising in 
gas-solid fluidized beds, giving important information on the bubble-to-emulsion 
gas exchange rate to be compared with literature findings. 
The main difficulty in extending the technique to bubbling fluidized beds is 
represented by the presence of particles which partly reflect and scatter the IR 
radiation. These result in the lower signals in the particle positions. Moreover, as 
bubbles rise in the bed, particles are raining from the roof of the bubbles into the 
bubble it-self. As the IR technique is only able to detect changes in the camera 
signal, the presence of particles in the bubbles would lead to erroneous 
concentration profiles, when not properly corrected for. To avoid this, a visual 
high speed camera (VIS-2016 x 2016 px @1600Hz from Lavision) is coupled with 
the IR camera via a pulse generator that sends a trigger to both IR and VIS 
cameras, for taking coupled IR/VIS images simultaneously. Subsequently, Digital 



Image Analysis (DIA) is applied to remove particles inside bubbles before 
correlating the IR signal to the CO2 concentration. The DIA script (by applying 
MATLAB processing tool box) starts by importing both the VIS and IR images. 
Due to the slightly different angles of both cameras relative to the column, the 
VIS image is firstly aligned to the same direction of the IR image. Fig.3 shows all 
steps of the coupling VIS-IR-DIA with the VIS image in Fig.3 (a). The positions of 
particles inside the bubble and in the emulsion phase can easily be detected from 
the visual images based on the particle pixel intensity and translated into the 
binary image (black and white) in which the white colour presents the particles 
and the black colour for the gas phase (Fig.3 (b)). Subsequently, the particle 
detection image is overlapped with the IR image (Fig.3(c)) to identify the particles 
in the IR image  The pixel intensity in the IR image, at the positions where 
particles are present, are replaced by zero intensity. The IR image after removal 
of the particles (Fig.3 (d)) contains only gas phase which is used to compute the 
concentration profile, by applying the calibration curve developed in section 4.1. 
Fig.3 (e) and (f) present the absorbance and concentration profile inside the 
bubble.  

The next step in the DIA technique is to average the concentration inside the 
whole bubble as well as to determine the equivalent bubble diameter. The 
snapshots of concentration profiles (Fig.3e) show some dark “spots” caused by 
the presence of some particles inside the bubble, which will not be taken into 
account when determining the averaged concentration.  

The IR image after removal of particles contains only bubble phase with high 
signal intensity. The total area of bubble Ab is easily calculated by counting the 
number of pixels with a high signal intensity. The equivalent bubble diameter is 
subsequently determined by Eqn. (6): 


b

b

A
d

4
         (6) 

 

Figure 3: Coupled IR-VIS-DIA procedures: VIS image(a), Particle detection(b), IR 
image (c), particle removal (d), Absorbance (e) and concentration profile (d) 

Gas exchange from bubble-to-emulsion phase in gas-solids fluidized bed 



Fig.4 shows snapshots of the tracer gas concentration profiles inside the bubble 
at different moments in time after injection of a CO2 bubble into the fluidized bed 
at minimum fluidization conditions with N2 as background fluidizing agent. At t= 
0.01s, a certain amount of tracer gas is released into the fluidized bed with a 
nozzle velocity of 17 m.s-1, creating a single bubble with high CO2 concentration.   
with flat shape at the bottom, due to the effect of the gas distributor.  
During the injection, N2 background fluidization gas enters the bubble and dilutes 
the CO2 inside the bubble. The bubble is subsequently growing and rising 
through the bed, while exchanging gas with the emulsion phase. The 
concentration field of tracer gas inside the bubble shown in Fig.4 indicates that 
the mass transport of gas is dominated by convection of fluidization gas rather 
than diffusion, as expected for the used particle type and size. It is clear that the 
tracer gas concentration inside the bubble is non-uniform, which is lower in the 
lower part and in the centre of the bubble. It indicates that the CO2 in the centre 
part of the bubble is quickly exchanged with the gas from the emulsion phase, 
but significant amount of CO2 is remained in the centre of the vortices at the left 
and right sides of the bubble. This finding is in good agreement with CFD 
simulations performed by Patil et al. (6).  

 
Figure 4: Concentration profile of a single bubble while rising along the bed 

Bubble-to-emulsion phase mass transfer coefficient 

The averaged CO2 concentration inside the bubble and the equivalent bubble 
diameter as function of time are shown in Fig. 5 (a) and (b), respectively. As 
explained above, the concentration inside the bubble decreases in time, due to 
the mass exchange with gas in the emulsion phase. At the same time, the bubble 
is rising and growing, reaching its maximum size of about 42 mm after about 0.07 
s after injection. As can be seen, the concentration curve against time reaches a 
plateau within 0.13 seconds, indicating that the mass exchange rates decreases 
after this time. The results indicate that the gas exchange is due to a combination 



of effects where first convection takes place and afterwards the diffusion from the 
vortices to the emulsion. 
The bubble-to-emulsion phase mass transfer can be described with a convection 
term and a diffusion term. The convection term describes the flow pattern of the 
fluidization gas from the emulsion phase inside the bubble which is dominant for 
the first part of our experiments. The molecular diffusion of CO2 from the bubble 
phase (especially from the vortices) to the dense phase also influences the mass 
transfer process as discussed by Kunii and Levenspiel (2).   

 
Figure 5: Averaged concentration (a) and equivalent bubble diameter (b) in time. 
From the experimental results, the gas exchange rate from bubble to emulsion 
phase can be estimated by analysing the tracer concentration inside the bubble 
and solving the mass balance equation for the tracer gas. Assuming that a 

bubble with initial volume Vb,i and with concentration iCOC ,2
 are generated at the 

nozzle into a fluidized bed at minimum fluidization conditions with N2 as fluidizing 
agent, so that the CO2 concentration in the emulsion phase remains negligible, 
the mass balance for the tracer gas reads: 
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with initial conditions: 
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Integrating Eqn. (7) yields 
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Because a pseudo-2D bed is used in this work, Eqn. (10) can be written as  
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From the experiments the averaged CO2 concentration in the bubble 
2 ,CO bC and 

the equivalent bubble diameter Db (Fig.5 a and b) have been determined and 

fitted as a function of time. By subsequently plotting 
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function of time the mass transfer coefficient Kbe in Eqn. (9) can be calculated 
from the slope of the curve which yields to the Kbe of 12.29 s-1.  

CONCLUSIONS 

A novel optical technique, using a IR and VIS high speed cameras, has been 
developed to measure CO2 concentrations in gas and gas-solid flows. The new 
technique is non-invasive and allows a whole-field virtually instantaneous 
measurement of the CO2 concentration with high temporal and spatial resolution. 
The technique has been calibrated in single phase systems and the calibration 
has been verified with different calibration mixtures, resulting in relative errors 
lower than 0.5%.  The application of the technique has been subsequently 
extended to gas-solid bubbling fluidized beds to determine the CO2 concentration 
inside the bubbles.  A single bubble of CO2 has been injected into a fluidized bed 
at minimum fluidization conditions with N2 as fluidizing agent. In contrast to the 
assumptions often used in theory and semi-empirical correlations, experiments 
have shown that the concentration inside the bubble is not uniform and the mass 
exchange is firstly controlled by convection and afterwards controlled by diffusion 
between the vortices at the right and left side of the bubble and the emulsion 
phase. A new model for bubble-to-emulsion phase mass transfer is thus required 
and the developed technique can be used to perform more detailed experiments. 
Moreover, the new technique allows ultra-fast and precise measurements that 
can be applied for studying gas mixing and mass exchange in fluidized beds 
operated in both bubbling and turbulent regimes.  
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