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ABSTRACT 

The jiggle bed reactor (JBR) is a state-of-the-art batch fluidized micro reactor 
designed and developed to test catalysts for endothermic reactions. This paper 
illustrates the function and operation of the JBR, including its fluidization 
dynamics and heat transfer parameters. This paper then reviews the specific 
performance of the JBR reactor for catalytic gasification of a model compound 
and raw pyrolysis bio-oils. 

INTRODUCTION 

Many of the commercial reactors that perform reactions with a solid catalyst use 
fluidized beds. The laboratory reactors that are currently used for catalyst testing 
(5,6) suffer from two major limitations: 

• To fluidize the particles in a small reactor and still achieve the same gas 
residence time as with commercial reactors, the gas is recirculated with 
an impeller.  This requires a mechanical seal that cannot perform well at 
high temperatures and pressures. 

• Many industrially important catalytic reactions are endothermic.  In current 
testing reactors, heat is provided by heat transfer from the wall of the gas 
recirculation loop.  Because of the low wall to gas heat transfer 
coefficient, the wall temperature is much higher than the temperature of 
the catalyst bed, resulting in parasitic thermal cracking reactions near the 
wall region. 

The objective of development of the jiggle bed reactor was to allow for catalyst 
testing in a reactor with no mechanical seal and with a wall temperature that 
would be within a few degrees of the catalyst temperature. 

 

THE JIGGLE BED REACTOR SETUP 

The main structure of the jiggle bed reactor is shown in Figure 1. The JBR is a 
micro reactor to test catalysts and investigate the effect of operating conditions, 
for gas-solid, endothermic, catalytic reactions. This reactor is designed to 
overcome the limitations of the conventional test reactors, which were reviewed in 
the previous section. The first innovation is that, in the JBR, fluidization is 
achieved by moving the reactor up and down with the appropriate amplitude and 
frequency, instead of forcing a gas through the bed. The second innovation is that 
heating is provided by induction, using small metal pins within the catalyst bed. 



Induction heating allows for excellent temperature, with a fast response to 
changes in temperature at endothermic reactions.  

Since induction heating is used, the reaction chamber is made of a non-
conductive material to prevent shielding of the magnetic field. In addition, it is 
necessary to ensure that it can withstand temperatures as high as 900 °C. 
Moreover, the material must be non-porous and strong enough to sustain the 
vibrating conditions. Therefore, a non-porous ceramic crucible made of 99.8% 
alumina is utilized. The crucible has an I.D. of 2.54 cm and a height of 7.3 cm. 
The heating element of the JBR is an assembly of eight Inconel wires with a 
0.32 cm diameter and a 7.0 cm length, which are circularly placed inside the 
ceramic crucible with equal distance from wall and center of the crucible. When a 
high frequency current is applied through the copper coil (item 11 in Figure 1), the 
associated magnetic field induces a current through the Inconel wires. Due to the 
high frequency of the magnetic field, the energy of the induced currents is lost 
rapidly in the form of heat which is uniformly transferred from the surface of the 
wires into the bed of catalyst particles. 

 

Figure 1. Diagram of the jiggle reactor: 1. on/off feed valves 2. Inlet of carrier gas 
3. Thermocouple 4. Inlet of feed and carrier gas 5. Ceramic crucible with 

insulation 6. Insulation disk 7. Insulation disk 8. Linear pneumatic actuator 9. 
Outlet gas valve 10. Stainless steel support rods 11. Copper coil 12. Copper disk 

13. Aluminum disk mounted on the actuator 14. Stainless steel scalloped disk. 



The endothermic reactions take place batch-wise in the JBR. Before injecting the 
feed, inert gas flushes any air from the reactor. Reactor agitation is initiated at the 
frequency and amplitude that guarantee effective mixing of the solid particles 
throughout the entire volume, and heating is applied to achieve the desired 
reaction temperature. The feed is then introduced in the reactor through an air 
lock. During the reaction, induction heating maintains a constant reaction 
temperature throughout the catalyst bed. At the end of each run, the lower inlet 
valve and the outlet valve are opened (valves 1 and 9 in Figure 1), and inert gas 
flows through valve 1 to flush the reaction products into a gas sampling bag.  
In order to generate an effective gas solid contact within the reactor, it is 
essential to carefully select the amplitude and frequency of the vertical movement 
of the pneumatic actuator that moves the reactor up and down. When the catalyst 
bed expands over the entire length of the crucible, the majority of the gas in the 
upper part of the crucible is displaced downward. When the bed contracts 
downward, the gas in the lower regions of the crucible is displaced upward. Thus, 
the alternating expansion/contraction of the catalyst bed induces intense axial 
and radial mixing of the gas and solid phases. With the right amplitude and 
frequency, the catalyst particles are fluidized and well mixed by this motion, with 
the catalyst bed expanding and contracting in rapid succession, as shown by 
Figure 2. Frequency of the vertical movement was varied between 3 and 6 Hz 
and its amplitude was varied between 6 and 9 cm. This alternating movement of 
the particles through the reactor ensures effective contact between the gas and 
the solid catalyst.  

The reactor was operated in batch mode and the reported gas residence time 
was the time interval between the feedstock injection and the flushing out of the 
product gases. In a separate study (1), the reactor was tested for the reforming of 
acetic acid and provided results similar to the results obtained in a continuous, 
pilot plant fluidized bed. 

 

Figure 2. Sequences of mixing of catalyst particles in the jiggle bed reactor: (a) 
bed expansion during downward actuator retraction (b) bed contraction during 
upward actuator extension.  



STUDY OF FLUIDIZATION DYNAMICS IN JBR 
 
A visual set-up with a transparent crucible, shown in Figure 3, was originally 
developed to investigate the fluidization of the catalyst particles. The quality of 
the distribution of catalyst particles over the entire length of the crucible was 
studied as a function of the amplitude and frequency of the pneumatic actuator, 
for various amounts of bed particles of various size distributions. Sand particles 
with size distributions of 75-149 µm, 149-212 µm, and 212-355 µm were loaded 
in a transparent crucible with dimensions similar to those of the ceramic crucible, 
to form a bed of particles. The bed mass ranged from 5 to 20 g. The pressure of 
the air driving the actuator was varied from 138 to 690 kPa to achieve an actuator 
frequency ranging from 3 to 6Hz.  Level switches were used to vary the 
amplitude of the crucible motion from 64 to 89 mm. 

 

Figure 3. Visual set-up to investigate mixing of sand particles in a transparent 
crucible 

In order to develop to determine when a uniform distribution and effective 
fluidization of the sand particles is achieved, a high speed video camera (210 
frames per second) was used to capture the movement of the solids within the 
transparent crucible, and computerized image processing helped analyze the 
recorded videos. For each operating condition, about 14 seconds of the related 
video was converted to 3000 images in JPEG format. The images were 
converted to gray images that were digitized so that each pixel had a color value 
between 1 (for black pixels) and 256 (for white pixels). Then, the coefficient of 
variation of the pixel gray values was obtained in the space coordinates within 
the crucible volume: 
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where yi,j is the color value of a pixel in picture � at time �, Ni is the number of 
pixels in picture i, � is the standard deviation of color values, and � is the average 
of color values.  

A signal processing program, using the Fourier transform, provided the power 
spectrum that illustrated the variation with time of 	�������, for different amplitudes 
and frequencies. The power for the dominant frequency characterizes the 
fluidization intensity: a higher power indicates a more regular fluidization. 

Investigating the effect of the size distribution and mass of the catalyst particles 
showed that these parameters can be adjusted to optimize the fluidization quality. 
For example, Figure 4 shows that the bed mass had a significant impact on the 
fluidization dynamics. The power of the ������� signal at its dominant frequency 

changed dramatically with the bed mass. This variation was non monotonic, with 
the highest power being achieved for the intermediate bed mass of 10 g, for all 
particle size distributions. The size distribution of the bed particles also had a 
significant impact on the fluidization dynamics, as shown in Figure 5. The power 
of the ������� signal at its dominant frequency varied with the size distribution of 

the bed particles. The highest power was obtained for the intermediate particle 
size distributions of 149 – 212 µm. Therefore, it was concluded that it was best to 
use a bed of 10 g with a 149 – 212 µm particle size distribution.  

 

Figure 4. Effect of mass of the particles on dominant frequency power of the 
particle mixing; sand particles with size of (a) 212-355 µm, (b) 149-212 µm and 

(c) 75-149 µm 



 

Figure 5. Effect of size distribution of the sand particles on dominant frequency 
power of the particle mixing; mass of sand particles: (a) 5 g, (b) 10 g and (c) 20 g 

STUDY OF HEAT TRANSFER IN THE JBR 
 
Heat transfer parameters in the jiggle bed reactor (JBR) were estimated through 
heat balance equations for cooling and heating the reactor. When the power 
supply is switched off, the temperature of the catalyst bed drops quickly due to 
heat losses from the reactor: 

 ��� ,� !"#!$ = −ℎ'(')*� − *∞+         (2) 

where ms is the mass of bed solids, CP,s is the specific heat capacity of the solids, 
Ts is the bed temperature, h0 is the heat loss coefficient, A0 is the heat loss 
surface area and T∞ is the outside temperature.  

During heating up of the catalyst bed within the JBR, the metal wires are heated 
by induction and heat is transferred from the wires to the bed, with a power P. 
Heat is lost through the reactor wall, as during cooling: 

	��� ,� !"#!$ = , − ℎ'(')*� − *∞+        (3) 

The temperature difference between the metal wires and the bed was determined 
by means of label temperature indicators (from Omega) applied to the metal 
wires. The temperature difference between wire and bed ranged from 2 to 6 °C 
when the induction heating power outlet varied between 10 and 20 %. The heat 
transfer coefficients and power consumption are presented in Table 1 for various  



power levels. The heat transfer coefficient obtained at the higher power level of 
20 % was more realistic and was more relevant to this study, since it provided a 
steady state temperature of around 800 °C, a typical temperature desirable for 
gasification reactions. According to the correlation from Molerus et al. (4) for heat 
transfer between a tube and a regular, gas-fluidized bed, the heat transfer 
coefficient obtained at a power level of 20% would correspond to a ratio of 
fluidization velocity to minimum fluidization velocity of about 30, which is typical of 
a well-bubbling fluidized bed. This confirms the excellent quality of the fluidization 
achieved within the JBR.  

Table 1. Consumed power, heat loss heat transfer coefficient and heat transfer 
coefficient between wires and bed; air pressure 207 kPa, sand particles 10 g 

Power level (%) ℎ- 	 .�/. °�� ,	).+ ℎ1 	 .�/. °�� 
10 0.265 1.671 45 
12 0.257 2.462 80 
15 0.270 4.063 220 
20 0.269 6.058 493 

 

VALIDATION OF THE JBR FOR CATALYTIC GASIFICATION  
 
In order to obtain reliable and reproducible data, the functionality of the jiggle bed 
reactor was first investigated by carrying out catalytic steam reforming of acetic 
acid, which is a bio-oil model compound. Tests were conducted at different 
operating conditions and the results were also compared with literature data 
obtained from conventional test reactors.    

In order to conduct a test with the desired molar steam to carbon ratio, a solution 
of acetic acid in de-ionized water was prepared. Then, precise samples of 4µl 
were injected into the reactor by means of capillary tubes. Catalytic gasification 
was conducted at 700 °C, using a commercial, nickel based, steam reforming 
catalyst (X), with a particle size ranging from 220 to 350 µm. After collecting 
produced gases in sampling bags, each sample was analyzed with a Varian 
CP4900 micro GC.  

As presented in Table 2, the results of the acetic acid steam reforming 
experiments conducted in the jiggle bed reactor were comparable to literature 
data obtained under similar operating conditions, with a much larger, 
conventional gas fluidized bed.  

  



Table 2. Comparison between data from catalytic steam reforming of acetic acid 
in JBR with data in literature. Temperature = 700 °C. 

Molar steam to carbon ratio = 6 Molar steam to carbon ratio = 3 

 Catalysts tested by 
Medrano et al. (3) 

This 
study 

Catalysts tested by 
Vagia and Lemonidou 

(2) 

This 
study 

Catalyst Ni/Al,Ca0.5 Ni/Al,Mg0.2 X 5%Ni 10%Ni-
1 

10%Ni-
2 X 

H2 0.84 0.87 0.84 0.88 0.83 0.87 0.78 
CO 0.18 0.14 0.17 0.27 0.30 0.31 0.27 
CO2 0.71 0.85 0.79 0.73 0.67 0.69 0.65 
CH4 0.00 0.00 0.04 0.00 0.03 0.00 0.06 

C2H4+C2H6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Conversion 0.90 0.99 1.00 1.00 1.00 1.00 1.00 
 

CATALYTIC GASIFICATION OF BIO-OILS IN THE JIGGLE BED REACTOR 
 
Catalytic gasification was then performed with the same catalyst (X) using two 
bio-oils:  a hardwood bio-oil (DMB) with a general formula of CH2.624O1.121N0.007 

and a 28 wt% water content, from Dynamotive, and a birchwood bio-oil produced 
at ICFAR (BWB) with a general formula of CH2.071O0.920N0.005 and 50 wt% water. 

Figure 6 shows that the yields of hydrogen and CO increased with increasing 
temperature and catalyst mass, while the production of hydrocarbons declined 
drastically. Figure 7, which compares the molar H2/CO ratios obtained from 
catalytic gasification of the DMB and the BWB bio-oils, shows that larger values 
of the molar H2/CO ratio were achieved with the BWB. Since the BWB bio-oil had 
a larger water content, the presence of additional steam promotes the water-gas 
shift reaction with the gasification reactor, and may eliminate the need for a 
separate a water gas shift reactor downstream.  

CONCLUSIONS 
 
The jiggle bed reactor is a novel and effective batch micro reactor for the 
effective testing of different catalysts for endothermic reactions at low cost and 
minimum time, while precisely simulating the fluidization dynamics and heat 
transfer conditions typical of industrial fluidized bed reactors. This reactor can be 
used also to investigate a variety of endothermic reactions with diverse 
feedstocks. 



 

Figure 6. Yield of product gases from catalytic cracking of the DMB and the BWB 
versus temperature. Residence time= 30s; left hand side bars: mass of the 

catalyst X= 0.5 g; right hand side bars: mass of the catalyst X= 1 g.  

 

Figure 7. Yield of molar H2/CO ratio from catalytic cracking of the DMB and the 
BWB; residence time= 30 s. Mass of the catalyst X= 0.5g (continuous lines) and 

1g (dashed lines) 
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