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APPLICATIONS 

Jian Yu, Xi Zeng, Junrong Yue, Jingming Wang,  
Hongmei Guo, Shuang Geng, Guangwen Xu* 

State Key Laboratory of Multi-phase Complex Systems, 
Institute of Process Engineering,  

Chinese Academy of Sciences, Beijing 100190, China 

T: 86-10-82544905; F: 86-10-82544886; gwxu@home.ipe.ac.cn 

ABSTRACT 

Micro Fluidized Bed Reaction Analyzer (MFBRA), which was developed by 
IPE, CAS, employing micro fluidized bed as reactor to strength mass and heat 
transfer, realized the plug flow of gas and mixing flow of solid in the reactor. 
Typical applications (reaction character), including combustion of carbon, capture 
of CO2 with Ca(OH)2, pyrolysis of biomass and combustion of graphite were 
illustrated in this study to justify the technique advancement of MFBRA. 

INTRODUCTION 

Gas solid reactions widely existed in the fields of chemical engineering, 
chemistry, environmental science, material and fuels conversion. The accurate 
and reliable reaction kinetics are very important to understand the chemical 
reactions and develop reactors. Instruments for reaction kinetics researches 
could separate to isothermal and non-isothermal conditions based on the heating 
rate of sample. Thermogravimetric analyzer (TGA) typifies the non-isothermal 
analysis tool and approach widely used for gas-solid reactions [1]. For 
establishing a kind of isothermal reaction analysis instrument and approach that 
can be applied to various highly exothermic quick and complex reactions, micro 
fluidized bed (MFB) in diameter and particle bed height of about 20 mm has been 
used to develop the so-called micro fluidized bed reaction analyzer (MFBRA)[2-
4], as shown in the figure 1(b), in Institute of Process Engineering (IPE), Chinese 
Academy of Sciences (CAS), China. By enabling the on-line pulse feeding of 
milligrams of fine reactant and its subsequent quick mixing and heating of the 
reactant powder by interacting with bed material particles at a preset 
temperature, it has been proven that the MFBRA provides readily an isothermal, 
differential and diffusion-minimized reaction analysis tool. It is also highly suitable 
for analyzing the gas-solid reactions in special circumstances such as steam, 
while this analysis is difficult for TGA. 

This paper is devoted to summarize the successful applications of the MFBRA 
to some typical gas-solid reactions including pyrolysis of coal and biomass, 
combustion of graphite, CO2 capture by Ca(OH)2, steam gasification of char, 
decomposition of CaCO3, reduction of CuO and iron oxides and so on. These 
applications demonstrated that the MFBRA not only provides an efficient tool and 
approach to determine the isothermal kinetics of gas-solid reactions that is closer 
to the intrinsic kinetics, but also allows a deep insight of the involved reaction 
mechanism by online monitoring the formed gas product via a differential 
isothermal method. 



Principle and Operation of Instrument   

The MFBRA, as shown in figure 1, consisted of a solid sample jet-transfer 
device, a two stage micro fluidized bed reactor of 20 mm in diameter and an 
online MS with capillary sampling. The bed material was quartz sand of 0.2-0.25 
mm size, and a software system controlled the actions of the MFBRA and 
monitored the formed gas composition change.  

The experimental procedure was as follows. Three grams of bed material 
(quartz sand) were loaded into bottom gas distributor of the reactor.  Under 
fluidization by a gas stream with a definite composition and flow rate, the quartz 
glass reactor was heated to form the desired bed temperatures below 1100 °C. 
The reaction was initiated by injecting 10-50 mg particle sample into the inside of 
the fluidized quartz sand particles. The reaction occurred simultaneously. 
Therefore, any gas-solid reactions could be tested in MFBRA under selected 
conditions. And the intrinsic conditions could also be easily realized for thinning 
gas film around solid under high gas velocity and collision of fine particles.  
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Fig.1. Schematic (a) and Photographs (b) of MFBRA 

Typical Applications 

Direct reaction of CO2 and Ca(OH)2 

Reaction of CO2 with Ca(OH)2 provides an effective and inexpensive capture 
for CO2, which cause lot of studies on the reaction in recent years[5-7]. However, 
because Ca(OH)2 is easy to decompose into CaO, it is difficult to measure the 
direct reaction of CO2 with Ca(OH)2 in the traditional reaction characterization 
devices, such as TG and DSC.   

The resulting gas release characteristics at 610 °C are shown in Fig. 2. The 
initial quick decrease of CO2 concentration represented the surface reaction of 
CO2 with Ca(OH)2, and the successive slow rebound of the CO2 concentration 
suggested that the reaction was gradually blocked by the internal gas diffusion.  
Thus, the chemically controlled reaction was only at the stage with low 
conversion.  Another interesting finding was that the steam release started later 
than the CO2 quick adsorption, implicating that an intermediate compound was 
formed in the reaction process, and the reaction of CO2 with Ca(OH)2 did not 
form CaCO3 and H2O directly.   

(a)  (b)



 

Fig.2. Release characteristics of gas components 

Reaction kinetics was calculated from the variation of CO2 concentration 
according to shrinking core model.  Figure 3 shows that the reaction rate quickly 
increased at the beginning to denote the heating period for Ca(OH)2 particles. 
Then, the rate decreased with the progress of the reaction. The reaction rate and 
conversion both increased with elevating the temperature at the test values.  The 
conversion x was calculated from the absorbed CO2 according to the reaction 
between Ca(OH)2 and CO2.  One can see that the curves had good linearity in 
x=0.02 to x=0.1 to the determination of the reaction rate constant k(T). Further 
from the Arrhenius equation it resulted in the activation energy of about 40 kJ/mol 
for the reaction of CO2 with Ca(OH)2, which is much lower than the literature-
reported value for the CO2 capture by CaO[8,9]. The new results in this 
experiment exhibit the micro fluidized bed reaction analysis could be applied in 
direct reaction test of unstable materials.  

 

Fig. 3. Correlation of  data on shrinking core model 

Pyrolysis of Beer Lees 

Biomass pyrolysis is essentially important to the utilization of biomass 
energy. By far, TG method has been generally used to characterize the biomass 
pyrolysis process and deduce its reaction kinetics. Nonetheless, testing biomass 
in TG suffers a serious drawback resulting from the instability of the fuel and 
seriously the interfacial gas diffusion inhibition [10] . 

Application of the MFBR to biomass pyrolysis demonstrated that the reactor 
led the pyrolysis to have higher gas yield and less remaining carbon than the test 



in TG, and at 1173 K the reaction finished in 10 seconds.  The time span to 
release an individual gas component appeared longest for H2, shortest for CO2 
and equivalent for CH4 and CO in between (Fig. 4). These results indicate that 
the reaction temperature significantly affected the formation of pyrolysis gaseous 
products, especially for hydrogen, because of the severe tar secondary thermal 
cracking reaction at high temperature.  

 

Fig. 4. Pyrolysis gas releasing characteristics in MFBRA 

Reaction kinetics was investigated with respect to the formation of individual 
gas component and pyrolysis gas mixture. All the correlation curves in Fig. 5 
have good linearity above 0.97, and the resulting apparent activation energy E 
fell into a range of 10-30 kJ/mol. The activation energy represents the difficulty 
for forming the gas component. For H2 it has the largest activation energy and 
this justifies that it was more difficult to generate H2 in pyrolysis. In comparison, 
the formation of CO2 is obviously easier for it has the lowest activation energy.   

 

Fig. 5. Linear fitting of ln(k(T)) and 1/T and corresponding E  

Combustion of Graphite 

The measured conversions versus time in MFBRA at different preset 
temperatures are illustrated in Fig. 6. The reaction finishing time decreased from 
500 s to about 20 seconds responding to the elevation of temperature from 700 
to 850 °C. When the temperature was over 950 °C the reaction ended in 6 
seconds, which represents the fast reaction of graphite combustion. 



 

Fig. 6. Conversion α versus time t at different temperatures  

Figure 7 shows that the correlation of ln(dα/dt) versus 1/T according to iso-
conversional method under isothermal conditions, where the conversion α was 
taken as a parameter. This enabled the determination of the activation energy for 
each of the plotted conversion from the slope of the linear correlation curve. The 
resulting data were tabulated in Fig. 8 via digital values. Obviously, the activation 
energy was lower when the conversion was below 0.2, but in α=0.2-0.9 the 
acquired activation energies are almost the same. The former reveals again that 
during the first period of reaction in MFBRA the reaction was subject to reactant 
heating so that the data in this period cannot be used for kinetic analysis. 
Averaging the activation energies for α=0.2-0.9, which varied in 154-179 kJ/mol, 
led to an average of 165.3 kJ/mol that represents essentially the activation 
energy of the tested graphite combustion.   

 

Fig. 7. Correlation of ln(dα/dt) and 1/T and corresponding E 

Reduction of CuO with CO 

Reaction of CuO in CO was tested with TG and the MFBRA to compare their 
realized reaction rates at a given reaction temperature. The MFBRA measured 
the formed CO2 in its effluent gas, while TG monitored the sample weight 
change.  Figure 8 shows the realized conversion as a function of reaction time.  
The TG tests were carried out for different sample amounts (5 to 40 mg), 
demonstrating that increasing the sample mass decreased the reaction rate (see 
the slop of each curve, or the rate data of 0.04 to 0.005 1/s). This reveals that the 



reaction with TG suffered greatly from the diffusion of CO into the CuO sample 
held in the TG cell. The test in the MFBRA used 40 mg of sample, the largest 
mass amount used in the TG tests, but the realized reaction rate (0.044 1/s) was 
even higher than that from testing 5 mg sample in TG (i.e., curve e against curve 
a). This suggests that the influence of external diffusion was much smaller in the 
MFBRA than in TG, as a result of using a fluidized bed reactor in the MFBRA. 
This corroborates the advantage of the MFBRA in suppressing the external 
diffusion, a significant limitation for TG.   

 

Fig. 8  Reduction rate and conversion of CuO in CO measured in both TG 
and MFBRA. 

Conclusions  

 Using MFBRA provided an effective approach to measure gas-solid reactions 
and determine their reaction kinetics. Some interesting conclusion could be 
obtained as follows. 

Direct reaction of Ca(OH)2 with CO2 in MFBRA justify that the MFBRA 
possess in-situ reaction characteristics. It could also be suitable for the similar 
reactions, such as the reaction of CaCO3 and SO2. 

It was shown that the pyrolysis of beer lees in the MFBRA finished in about 
10 seconds at 800 °C with activation energy of 11-28 kJ/mol, which is much less 
than that in fixed or fluidized bed reactor. These demonstrate that the MFBRA 
enabled the fast reactions like pyrolysis for investigating the reaction 
characteristics and estimating the kinetics. 

Under minimized diffusion inhibition, the kinetics graphite combustion in the 
MFBRA is almost same as literature report value of 165.0 kJ/mol. The accurate 
activation energy clarified in fact that the MFBRA possess isothermal differential 
reaction characteristics and is effectively applicable to fast (catalytic) combustion 
reaction.   

Comparison test of CuO reduction in CO using TGA and MFBRA, the 
difference of reaction rate shows the lower gas diffusional inhibition of reaction in 
MFBRA than that in TG.  



Above mentioned characteristics possessed in MFBRA were mainly resulted 
in minimizes the gas diffusion inhibition, realizing quick heating and strengthening 
mass and heat transfer performance by using micro fluidized bed reactor. 

Acknowledgements 

The work was financially supported by Natural Science Foundation of China 
(21106156,21006110,21006114), National High-Tech Research and 
Development Program (863 program, No. 2010AA065004) and the National 
Instrumentation Grant  (2011YQ120039).  

References 

[1] M. F. Irfan, M. R. Usman. Coal gasification in CO2 atmosphere and its kinetics 
since 1948: A brief review [J], Energy, 2011, 36(1): 12-40. 
[2] B. Potic, S. R. A. Kerstn, M. Ye, M. A. van der Hoef, J. A. M. Kuipers, W. P. M. 
van Swaaij, Fluidization with hot compressed water in micro-reactors [J], 
Chemical Engineering Science, 2005, 60: 5982-5990. 
[3] Q. J. Guo, Y. Q. Xu, X. H. Yue, Fluidization characteristics in micro fluidized 
beds of various diameter [J], Chemical Engineering Technology, 2009, 32(12): 
1992-1999. 
[4] X. H. Liu, G. X. Xu, S. Q. Gao, Micro fluidized beds: wall effect and operability 
[J], Chemical Engineering Journal, 2008, 137: 302-307. 
[5] V. Nikulshina, D. Hirsch, M. Mazzotti, A. Steinfeld, CO2 capture from air and 
co-production of H2 via the Ca(OH)2–CaCO3 cycle using concentrated solar 
power–Thermodynamic analysis [J], Energy, 2006, 31: 1379-1389. 
[6] M. Kotyczka-Moranska , G.Tomaszewicz, G. Labojko, Comparison of different 
methods for enhancing capture by Cao-based sorbents: Review [J], Physico- 
chemical Problems of Mineral Processing, 2012, 48(1): 77-90.  
[7] S. Y. Lin, M. Harada, Y. Suzuki, et al., Comparison of pyrolysis products 
between coal, coal/CaO, and coal/Ca(OH)2 materials [J], Energy & Fuels, 
2003,17(3): 602-607. 
[8] W. G. Oakeson� I. B. Cutler, Effect of CO2 pressure on the reaction with CaO 
[J], J. Am. Ceram. Soc. 1979, 62: 556-558. 
[9] P. Sun, J. R. Grace, C. J. Lim et al, A discrete-pore-size-distribution-based 
gas–solid model and its application to the CaO + CO2 reaction [J], Chemcial 
Engineering Science, 2008, 63: 57-70. 
[10] A. Gómez-Barea, P. Ollero, R. Arjona, Reaction-diffusion model of 
TGA gasification experiments for estimating diffusional effects [J], Fuel, 
2005, 84, 1695-1704. 
 

 


	Engineering Conferences International
	ECI Digital Archives
	2013

	Micro Fluidized Bed Reaction Analysis and its Applications
	Jian Yu
	Xi Zeng
	Junrong Yue
	Jingming Wang
	Hongmei Guo
	See next page for additional authors
	Recommended Citation
	Authors


	Microsoft Word - 2013-Fluidization_XIII-abs272 _Revision).docx

