
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the pennission of the Author.

DESIGN OF A MONITOR FOR THE

DEBUGGING AND DEVELOPMENT OF

MULTIPROCESSING PROCESS CONTROL SYSTEMS

A thesis presented

m partial fulfilment of the requirements

for the degree of

Master of Technology in Computing Technology

at

Massey University

GILLIAN DOBBIE

February 1987

ACKNOWLEDGEMENTS

There are a number of people I wish to thank for the parts

they have played, either directly or indirectly, in the

production of this thesis.

I would like to sincerely thank my supervisors, Dr. Tim

Hesketh and Dr. Bob Chaplin. Tim developed the RTS process

control system and hence provided the incentive for the

production of this thesis. Bob guided me through the masterate,

offering much welcome criticism where necessary, throughout

all the stages of the work reported in this thesis.

I am also extremely grateful to the other members of the

Production Technology Department and to members of the

Computer Science Department. They showed interest, gave

support and listened. My particular thanks goes to Paul Lyons

whose constructive criticism was invaluable in shaping this

thesis.

Finally I would like to take this opportunity to thank my

family and friends whose encouragement and support

throughout my years at Massey University provided much

incentive towards the completion of this thesis.

CONTENTS

ACKNOWLEDGEMENTSii

CONTENTS .. iii

LIST OF FIGURES vii

ABSTRACT .. viii

1. INTRODUCTION 1

1.1 Process Controllers 1

1.2 RTS 3
1.2.1 User Interface Function 4
1.2.2 Process Interface Function 4
1.2.3 Control Interface Function 4

1.3 Variables in Process Control 7

1 .4 Real-Time Programming 8

1.5 Multiprocessing vs. Multiprogramming 9

1.6 Objectives of this Project 11

2. CURRENT RESEARCH 12

2.1 Testing Multiproces·sor Products 12

2.2 Summary of Multiprocessor Test Systems 14
2.2.1 Modular Multiprocessor System Design 14
2.2.2 Concert 16
2.2.3 The Cm* Testbed 1 7
2.2.4 Rochester's Intelligent Gateway
2.2.5 The µ *Multimicroprocessor

2.3 Simulation vs. Emulation vs. Monitor

2.4 Multiprocessor Control Systems

2.5 Advantages of Multiprocessing

19
21

23

27

30

111

2.6 Summary of Multiprocessing Process Control
Systems 31
2.6.1 NARCIS Project 31
2.6.2 A Distributed Computer Control System 3 3
2.6.3 A Hydrological Monitoring System 37
2.6.4 Modular Multiple Multiprocessor

System for Control Applications 40
2.6.5 MODUMAT 800 45
2.6.6 Microcomputer Systems for Chemical

Process Control 4 9
2. 6. 7 Distributed Hierarchical Computer

System 51

3. DESIGN CONSIDERATIONS 56

3 .1 Partitioning of Functions 5 6

3 .2 Interconnection Topologies 57

3.3 The Bus 58

3 .4 The Structure of the Processors 60

3 .5 Bus Protocol 60

3. 6 The Coupling of the Processors 6 2

3. 7 Information Contained in the Frames 6 3

3.8 Systems which can be Monitored 63

3.9 RTS 64

4. DESIGN SPECIFICATIONS 71

4.1 Monitor Requirements
4.1.1 Initial Assumptions
4.1.2 Requirements

4.2 Possible Scenarios Using the Monitor

4.3 Priorities of Requirements
4.3.1 Key
4.3 .2 Make Life Easier
4.3 .3 Nice to Have

72
73
73

75

77
78
78
78

IV

V

4.4 The Implementation of the Monitor
Requirements 78
4.4.1 Synchronised Start and Stop 80
4.4.2 Breakpoints 80
4.4.3 Interrupt Mechanism 81
4.4.4 View Values of Variables 81
4.4.5 View Data at I/O Ports 82
4.4.6 Record Timing Data 82
4.4. 7 Statistics 8 3
4.4.8 Buffering of Log Data 83
4.4.9 Activity State of the Processor 8 3
4.4.10 Monitor as Process-to-be-Controlled 8 3

5. DETAILS OF THE IMPLEMENTATION 85

5 .1 Hardware of the Target System 8 6
5.1.1 The Board for RTS 86
5 .1.2 The Relationship of the Monitor to the

Target System 8 6

5.2 Language 87

5 .3 Design of the Communication Handler/Monitor
Interface 87

5.4 The Information in the Frames for RTS 92

5 .5 Data Structures Involved 93
5.5.1 Information about Messages 93
5.5.2 Information about Variables to be

Logged 96

5.6 Menus 96

6. CONCLUSIONS AND FUTURE DEVELOPMENTS 99

6.1 Conclusions 99

6.2 Future Developments I 00
6.2.1 Complete the Monitor I 00
6.2.2 Man/Machine Interface I 00
6.2.3 Implement RTS as a Multiprocessing

System 100
6.2.4 Performance Criteria IO I
6.2.5 Implement RT_S with Different

Partitioning IO I
6.2.6 Implement another Process Control

System using the Monitor IO I
6.2.7 Exhaustive Testing I 02

BIBLIOGRAPHY 103

APPENDIX .. 111

Al Program Descriptions

A2 Structure Diagrams

A3 Program Listings

I I I

119

127

VI

List of Figures

1 General Architecture of a Minicomputer Process
Control System 28

2 An Architecture of a Multimicroprocessor Process
Control System 29

3 The Structure of the Modular Multiple
Microprocessor System 40

4 Interconnection Topologies 5 8

5 Communication Between Processors 6 6

6 Structure of the Monitor Processor and its Interface
with the Target System 8 8

7 Communications Handler/Monitor Interface 91

8

9

10

11

12

Al

A2

A3

A4

A5

Table Used to Store Information about Messages
be Logged

How the Messages are Stored when Logged

Structure of Table for Message Template

Structure where the Information about Variables
be Logged and their Values is Stored

The Relationship between the Menus

The Relationship of the Monitor Procedures

Main Processing Once Monitor has Started

Action After Breakpoint has Occurred

Monitor as Process-to-be-Controlled

The Relationship between the Test Procedures

to
94

95

95

to
96

97

112

116

116

116

117

Vll

ABSTRACT

This thesis describes the design of a general purpose tool for

debugging and developing multimicroprocessor process control

systems. With the decreasing price of computers,

multimicroprocessors are increasingly being used for process

control. However, the lack of published information on

multiprocessing systems and distributed systems has meant

that methodologies and tools for debugging and developing

such systems have been slow to develop. The monitor designed

here is system independent, a considerable advantage over

other such tools that are currently available.

Vlll

Chapter 1

Introduction

This thesis is divided into five chapters. This first chapter is the

introduction, giving the background of the work to be done.

Chapter Two considers tools for debugging multiprocessing

systems and looks at existing multiprocessing process control

systems.

Chapter Three outlines multiprocessing considerations and

decisions which were encountered in the design of the monitor.

Chapter Four outlines the monitor requirements and design

specifications, g1vmg a scenario of activities for which the

monitor may be used.

Chapter Five descibes the implementation of the monitor. It

outlines the hardware and software used and how they fit

together.

Finally, Chapter Six contains the conclusions and a proposal for

furthur research which has stemmed from this thesis.

1.1 Process Contro11ers

Digital industrial controllers, with control functions realised in

software are now common place. They must meet stringent

reliability and availability specifications. This has led to the

design of real-time systems with software designed with the

requirements of reliability, safety and management in mind.

1

However a control system encompasses much more than the

process control functions themselves. Indeed it can be argued

that the following support functions:

- process interface,

- user interface,

- alarm monitoring,

- data logging,

- start-up and shut-down,

- sequence control

are as important as the controller. Certainly they are

inordinate consumers of computing resources.

The traditional approach to servicing the above functions has

been to use a bigger and faster monoprocessor computer, but

with the advent of low cost powerful microcomputers the

multiprocessor solution can be economically explored. Many

different machine architectures and software packages

[3,8,24,25,26,30,39,42,47] have been proposed. The

difficulties of deciding which structures are optimal or even

suitable for a given control system are not only caused by

implementation costs but also by the lack of suitable tools

for fault tracing and performance assessment in

multiprocessor systems.

RTS, a small digital controller will be used to illustrate the

associated problems, and later to assist in the design and

testing of a multiprocessor.

2

1.2 RTS

RTS (real-time system) 1s a real-time process control system

which was designed and the program written by Dr. T. Hesketh

[19]. It has been used in a number of practical applications

including controlling the atmosphere m the climate rooms at

the DSIR and the drum temperature at a wool scourer. The

program runs on a single Z80 processor and is written mainly

in PL/I with some routines in Z80 assembly language. It has

been written so that it is relatively easy to alter.

RTS is a general purpose process controller which may be set

up m a specialised configuration when it is to control a specific

situation. It assumes multi-independent single variable loops.

These are loops where a given manipulated variable affects

only its own controlled variable and there is no interaction

between the loops. RTS implements three of the five functions

mentioned above:

- user interface function,

- process interface function,

- control interface function.

The other functions were not incorporated because they would

overload the processor. An 8-bit microprocessor has a limited

capability and so priorities must be given to the activities

which are considered for implementation. The control function

has the highest priority and the data logging the least.

3

Start-up and shut-down actions do not occur automatically in

RTS. The sequences can be carried out manually by the

operator. This is possible in this situation as the operator usrng

the system would be skilled. This gives the operator more

flexibility in the operation of the process.

1.2.1 User Interface Function

The user interface function has been minimised to reduce

processor loading. This function in RTS includes:

- menu display,

- process, state and set-up displays,

- user responses,

- plotting and printing.

1.2.2 Process Interface Function

The process interface function includes:

- AID and D/A operations,

- filtering operations,

- alarm monitoring.

1.2.3 Control Interface Function

The control interface function incorporates the following five

sections:

- measurement of the process behaviour,

- determination of the model,

- design of the controller,

- subsequent definition of feedback gams by the controller,

4

- use of feedback gains to obtain a control signal.

Measurement of the Process Behaviour

In this phase, system-specific information must be gathered.

This information comprises:

- sampling and control time intervals,

- the signals and their interconnections (loops).

There are three different time intervals:

- the interrupt time interval (usually in the order of milli­

seconds),

- measurement sample rate, set by the user,

- actuation sample rate, also set by the user.

A signal in RTS is a data structure for the definition of

external variables i.e. set-point, measurement, actuation.

Loops are hierarchically superior data structures which are

incorporated in the system to associate signals in groups.

Determination of the Model

The system identification involves a recursive procedure

whereby the data which becomes available at the beginning of

each sampling interval are used to improve the previous

estimate of the system model. The technique of extended least

squares [2] is used to determine the model and a Kalman Filter

[23] is used to obtain parameter estimates also recursively.

5

The plant can be operated at user-selected operating points

and have pseudo-random disturbances created by RTS. The

subsequent measurements are used in the system

identification to estimate model parameters.

Design of Controller

In RTS there are a number of different controller design

methods used. They are designed for both on- and off-line

operation and include the following controller designs:

- optimal controller,

- self-tuning controller,

- user defined controller,

- three term controller.

The design of an optimal controller uses the Ricatti Equation

[27]. To determine the gains of the system it is necessary to

iteratively solve an initial value problem for a Ricatti

Equation.

The self-tuning controller works well but as it operates on­

line, it can begin to model the noise if the system remains in

this mode once the system has settled.

The user defined controller allows the user to define and

design a controller.

It is necessary to consider the categories of variables which

exist.

6

1.3 Variables in Process Control

There are four important categories of variables related to

process control [41]:

- manipulated variables,

- disturbances,

- controlled variables,

- intermediates.

The values of manipulated variables can be adjusted by the

control system. Examples include input raw material flow

rate, steam pressure etc.

Variables whose values affect the operation of the process but

are not subject to adjustment via the control system are

known as disturbances (e.g. composition of raw material,

ambient air temperature etc.)

Control variables are those whose values measure the

performance of the plant, and as such are those which the

control system must keep at some set-point (e.g. production

rate, production quality etc.)

The intermediate variables appear at some intermediate stage

in the process and can not normally be measured.

The general control problem is to adjust the manipulated

variables so as to maintain the controlled variables at their

set-point in the face of disturbances. The set-point is the

value at which the user wants the control variables to operate.

7

The intermediates may be used advantageously, if they can be

measured, in determining what control action should be taken.

One major problem with process plants is the difficulty in

deriving a mathematical model of the process from its

characteristics. The characteristics depend firstly on the level

of the plant operation (the plant often cannot be descibed using

a linear model) and secondly, even under constant operating

conditions the plant's characteristics change with time. The

abilities of a computer make it attractive in this situation

where it can collect large quantities of data, analyse it and

make logical decisions based on the results.

1.4 Real-Time Programming

The term "real-time" has been described as "any information

processing activity or system which has to respond to

externally generated input stimuli with a finite and

specifiable delay" [33].

For real-time process control systems the delay must not only

be specifiable, it must also be constant as the theory of the

identification and controller design is based on the assumption

of regular measurement and actuation.

Software for real-time process control systems must respond

to "clock tick" interrupts, user requests and changes in the

process, so there are time critical components. The software

must interact with the dynamic properties of the industrial

system and must react to stochastically occurring events.

8

There are two different types of events:

1. events which must be serviced whenever a time interval

boundary is reached,

2. events which are serviced as and when required.

With both types of event, the control software must react

within a certain time and parallel tasks must also be

synchronised within the software system.

1.5 Multiprocessing vs Multiprogramming

To alleviate the problems in RTS and indeed any other

processor bound process control systems, it is possible to

implement the system as either a multiprogramming system or

a multiprocessing system.

A multiprogramming system appears to execute many tasks at

the same time. However there is always only ever one set of

instructions being executed at a particular time. A

multiprogramming system time-slices, devoting a set amount

of time to all the processes that are currently being run. In the

case of RTS, the use of multiprogramming would not increase

the speed of operation. R TS cannot have other functions added

as it is presently processor bound (section 1.2).

9

Multiprogramming provides no relief from this situation as the

implementation of multiprogramming would take up more

processing power, and hence make RTS slower. In real-time

process control systems, the interrupts must be serviced

immediately. Interrupt systems like this would complicate a

multiprogramming operating system and the software would be

difficu It to write.

The definition of multiprocessing differs from paper to paper.

In many books only tightly coupled systems (section 3.6) are

considered multiprocessing systems. In this thesis, a broader

interpretation will be used, in which a multiprocessing system

consists of both tightly and loosely coupled systems. A

multiprocessing system consists of two or more processors

linked together to perform one function. It was thought that

RTS would run more efficiently as a multiprocessing system

as it is presently processor bound, and there is a lot of code

that could be executed in parallel, hence saving time. RTS can

be divided into four functional subunits which could be

executing at the same time. They are:

- the user interface function,

- the processor interface function,

- the control interface function where this could be

implemented as an identification function and a control

function.

iO

1.6 Objectives of th is Project

As mentioned previously (section 1.1), the advent of

microprocessors has generated interest in alternative,

multiprocessor-based methods of providing process control

functions. The main objective of this project has been to

design a monitor (a tool for debugging systems) for use in the

development of such multiprocessor-based systems. This

monitor was developed for the conversion of RTS from a single

processor to a multiprocessor system. Every effort has been

made to keep the monitor as general as possible. To this end,

as few assumptions as possible about the nature of the

multiprocessing system have been made. Any design decision

that was made was considered from a general view-point and

if a decision could not be reached then the logic and the

structure of RTS was taken into account in reaching the

decision.

11

