
PROFINET Real-Time Protection Layer:
Performance Analysis of Cryptographic and

Protocol Processing Overhead
Thomas Müller, Hans Dermot Doran

Institute of Embedded Systems (InES)
Zurich University of Applied Sciences, Winterthur, Switzerland

Email: {mulh, donn}@zhaw.ch

Abstract—Recent times have seen an increasing demand for
access to process-data from the field level through to the
Internet. This vertical integration of industrial control systems
into the IT infrastructure exhibits major drawbacks in the
context of security. Such systems now suffer exposure to cyber
security attacks well-known from the IT environment. Success-
ful attacks on industrial control systems can lead to down-
times, malfunction of production machinery, cause financial
damage and may present a hazard for human life and health.
Current automation communication systems generally lack a
comprehensive security concept. PROFINET is a widespread
Industrial Ethernet standard, fulfilling general communication
requirements on automation systems as well as explicit real-time
requirements. We elaborate the challenges of protecting the real-
time component of PROFINET. We specify the requirements
and a concept for ensuring integrity and authenticity using a
keyed-hash message authentication code (HMAC) in combination
with the cryptographic hash algorithm SHA-3. With a proof of
concept implementation of a PROFINET RT protection layer,
the performance overhead for generation and transmission of
this HMAC and other required data fields, e.g. to prevent replay
attacks, could be analyzed. Based on these data the limitations
of security technology on real-time systems were explored as was
the optimization potential of hardware acceleration.

I. INTRODUCTION

Ethernet-based communication plays an increasingly impor-
tant role in the field of industrial control systems. Industrial
Ethernet standards as PROFINET enable the integration of IT
network technologies as cloud connection or web servers di-
rectly on fieldbus level. Product machinery applying such stan-
dards are attached to a company’s local area network (LAN)
and therefore, potentially, accessible from the Internet. While
in standard IT environment authentication schemes, end-to-
end encryption, firewalls and intrusion detection systems are
state of the art and ensure a certain level in security, in most
of the productive automation systems such countermeasures
are more or less completely inexistent even though almost all
known cyber attacks can be performed towards them. Indeed,
components of an industrial control system nowadays are not
able to verify the origin of a received message nor exclude the
possibility that it was manipulated by a malicious intermediary.
Since automation communication systems often control the
operation of critical infrastructure as, e.g. nuclear power or

water treatment plants [1], the lack of security solutions can
no longer be ignored.

For this reason, a PROFINET security guideline was pub-
lished [2] in which PROFINET specific requirements are
linked to requirements on appropriate security solutions. So-
lutions proposed are on a higher abstraction level, i.e. instead
of adaptions on protocol level, measures as physical network
segmentation as well as management processes for training
and awareness-raising of employees are described. Focusing
on protocol security, the performance of different components
of an IT security layer for PROFINET as symmetric and
asymmetric encryption and block cipher- as well as hash-based
message authentication mechanisms was investigated in [3]. In
a related publication, the performance of different message
authentication code techniques was analyzed more detailed
and compared to theoretical estimations [4]. Within the scope
of the same research project, considerations on the application
of public key infrastructures (PKI) for automation systems [5]
as well as on the establishment and storage of cryptographic
key material [6] were made. Including a prior threat analysis,
all the results of these publications are collected in a final
report [7].

The novelty of our approach lies in the evaluation of
suitability for protection of PROFINET traffic under strict real-
time requirements with cycle times lower than 1 ms that are
customary for high-performance application as for instance
motion control. We therefore designed and implemented a
proof of concept of a PROFINET real-time (RT) protection
layer based on the keyed-hash message authentication code
scheme HMAC applying the latest member of the Secure Hash
Algorithm (SHA) family SHA-3 on a system on chip platform
including programmable logic blocks (FPGA) and a resource
constraint processing system. Based on this implementation, a
thorough performance analysis was carried out and potential
optimizations towards the use of custom hardware acceleration
were elaborated to match strict timing requirements.

Section II starts with a short theoretical background on
PROFINET before the main body of this work is described,
which are: The specification of the requirements of a network
security solution for PROFINET in consideration of existing

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZHAW digitalcollection

https://core.ac.uk/display/185637563?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

requirements on industrial control system networks; a concept
of a protection layer for PROFINET real-time communica-
tion including the description of the required cryptographic
elements as well as the corresponding fundamentals; and
details on the implementation of the proof of concept on a
relevant platform. In Section III we then present the results
of the performance analysis and elaborate potential future
optimizations. Section IV depicts further work planned in this
area and summarizes the results.

II. METHODOLOGY

A. PROFINET

The Industrial Ethernet standard PROFINET1 defines real-
time communication between decentralized peripherals within
the PROFINET IO perception. Devices in a PROFINET IO
network are divided into three classes: IO-Supervisor repre-
sents the engineering stations for projection, configuration and
monitoring, IO-Controllers perform as communication masters
and are responsible for establishing application relations (AR)
and communication relations (CR) to an IO-Device. An IO-
Device is generally a sensor or an actuator [8, p. 34]. An
AR represents a virtual channel for grouping multiple CR
between two components. There are three different types of
CR, the Record Data CR, a non real-time (NRT) communi-
cation channel for transmission of parametrization data, the
cyclic real-time (RT) IO Data CR as well as the acyclic RT
Alarm CR [8, p. 42]. NRT Communication combines the RPC
(Remote Procedure Call) protocol for start-up commission-
ing residing in the application layer relying on UDP/IP for
transportation with utility protocols directly built upon the
data link layer as, e.g. the Discovery and basic Configuration
Protocol (DCP) (see right column in Table I). The cyclic
RT communication is again divided into three classes: RT-
Class 1 (RTC1) for cycle times between 5-10 ms, RT-Class 2
(RTC2) for typical cycles times of around 1 ms, which requires
special switch hardware and RT-Class 3 (RTC3), suitable for
high-performance isochronous real-time (IRT) motion-control
applications with configurable cycle times down to the lowest
possible resolution unit of 31.25 µs. The latter also requires
special switches as well as a prior topology planning [9, pp.
48-49]. The acyclic RT communication is realized with the
RTA protocol, used for transmission of alarms (left column in
Table I).

The Ethernet payload of a PROFINET real-time frame (RTA
and RTC1-3) is composed of a FrameID (2 bytes) to identify
the telegram type, the actual RT payload (padded to minimal
length of 36 bytes in case the Ethernet frame contains a
VLAN tag, otherwise at least 40 bytes of length), a 16-bit
cycle counter representing the relative transmission period in
multiples of 31.25 µs and the data and transfer status fields (1
byte each, compare to Table II).

1PROFINET (acronym for Process Field Network): Industrial Ethernet stan-
dard (IEC 61158 and IEC 61784) maintained by PROFIBUS & PROFINET
International (PI) with its headquarter in Karlsruhe, Germany.

OSI Layer Real-Time (RT) Non-Real-Time (NRT)
7a PROFINET IO Services
7b Application RPC
6 Presentation
5 Session PROFINET RT
4 Transport Protection Layer UDP
3 Network IP
2 Data Link RTC1-3 / RTA DCP / ...
1 Physical 100BASE-TX / 100BASE-FX

TABLE I
PROFINET PROTOCOLS DIVIDED BY REAL-TIME (RT) AND NON

REAL-TIME (NRT): SINCE RT PROTOCOLS DIRECTLY BUILD UPON THE
DATA LINK LAYER (2), PROTECTION MECHANISMS CAN BE PLACED

ANYWHERE BETWEEN THE APPLICATION LAYER AND THE DATA LINK
LAYER.

Length 2 0-1440 2 1 1
[Bytes]

Field FrameID Payload Cycle Data Transfer
Name Data Counter Status Status

TABLE II
PROFINET RT FRAME STRUCTURE [8, PP. 100-101][9, PP. 62-66].

B. Requirements Specification

Altough no specific security mechanisms are standardized
for PROFINET yet, there exists a PROFINET security guide-
line [2], in which general requirements on security solutions,
that shall not be violated after integration into a PROFINET
or general a automation systems, are described. These are in
short

1) no impact on the ability to meet real-time requirements;
2) straightforward and cost-efficient integration; and
3) robustness against temporary high communication load

and unexpected input.
Highest priority is allocated to the availability of industrial

control systems, but also ensuring device replacement shall
be possible regardless on whether security functionality is
implemented or not. Extremely important is the interoperabil-
ity between legacy and security-aware devices. In addition,
it must always be kept in mind that automation systems are
generally operated in non-stop mode, i.e. periodic shutdowns
for necessary security updates as they are common in the
office IT environment are both unlikely and undesirable. This
in turn stipulates extensive testing of implemented security
mechanisms before the integration of such security-enhanced
devices into an automation network. As it is to be expected that
security weaknesses remain unpatched over longer periods.

a) Security Objectives: With respect to the general re-
quirements mentioned above, the basic security objectives can
be elaborated according their deployment on PROFINET:
• Device authentication: As a first step in the key nego-

tiation procedure, both endpoints mutually authenticate
themselves to each other to ensure a shared secret will
be negotiated with a trusted communication partner.

• Message authentication: Using the negotiated key, a mes-
sage needs to be cryptographically enriched in a way
that a receiver can be sure the message originates from

a known and trusted sender. This prevents the processing
of a malicious packet sent by an attacker.

• Integrity: Besides authentication, a receiver needs to be
able to detect manipulation of messages, i.e. tampering
by a man-in-the-middle.

• Confidentiality: To mitigate information disclosure, mes-
sages would need to be fully encrypted. This is not only
very time consuming but also may not be of highest
priority since in most use cases the transmitted data may
not be confidential.
b) Implementation Principles: Almost all existing secu-

rity solutions are designed and implemented for the use in
standard office IT environment and therefore quite certainly
not suitable for the usage in operation technology (OT)
networks without adaption [10]. Nevertheless, solutions to
protect PROFINET communication should build upon well-
established and widespread standards. Which allows benefit
from long-term experience and proven implementations to be
drawn. Also notable is a broad acceptance by the community
if a solution relying on familiar standards can be announced.

c) Integration Principles: As soon as a security solution
for PROFINET is standardized, device and stack vendors
will integrate the defined functionality into their products.
To reduce the risk of erroneous implementations and security
weaknesses, the process of adoption to the security standard
should be clearly defined and as easy as possible. Also,
incompatibility between different vendors shall be prevented
by ensuring that the number of alternative realizations is
minimal. It is in the very nature of network applications, that,
considering the OSI2 reference model, the level of complexity
of individual parts increases the higher the layer they rely on.
Although an introduced layer for the protection of PROFINET
communication theoretically could be placed on any layer be-
tween the data link layer and the application layer (see Table I),
choosing lower layers allows integration into less complex
structures. The ITU-T X.800 [12] recommendation on security
architectures within the OSI model proposes the placement
of both message authentication and integrity services in the
network or transport layer. In regard to possible extensions
of the protection layer for also supporting protection of NRT
communication, this recommendation should be taken into
account.

C. Concept

1) Message Authentication and Integrity: A keyed-hash
message authentication code (HMAC) is a specific construc-
tion for calculating a message authentication code (MAC,
further referred to as integrity check value, abbreviated to ICV)
involving a cryptographic hash function in combination with a
shared secret key. It is used to simultaneously verify both the
data integrity and the authenticity of a message. HMAC was
designed to be combined with any cryptographic hash function
(see corresponding RFC2104 [13]). A previously negotiated

2Open Systems Interconnection model: The conceptual partition of network
systems into seven layers, developed by the International Organization for
Standardization (ISO)[11]

shared secret key first has to be derived to fit into one block
length (the basic cryptographically relevant unit, depending
on the underlying hash function), i.e. it has to be padded
by appending zeros up to the block length if it is shorter or
otherwise hashed once (using the same hash function as the
combined one) if its is larger than the block length (Eq. 1).

K ′ =

pad(K, 0) if len(K) < B
K if len(K) = B
H(K) if len(K) > B

(1)

The HMAC algorithm is composed of an inner and an
outer hash function execution (see Eq. 2). The inner hash is
calculated on the message appended to the derived key that
is XORed with the inner padding block (ipad, 0x36 repeated
for block length B). The output of the inner hash is then
again appended to the key K ′, this time XORed to the outer
padding block (opad, 0x5C repeated fro block length)[14, pp.
88-91].As long as the shared secret key remains valid, the
key derivation and padding with the two blocks has only to
be performed for the first initial iteration. This can lower the
execution time significantly, especially if the shared key is
longer then the block length B of the hash function. For long
messages, HMAC should execute in approximately the same
time as the embedded hash function[14, p. 91].

HMAC(K ′,m) = H[(K ′⊕opad)||H[(K ′⊕ ipad)||m]] (2)

To minimize the transmission time overhead and therefore
the impact on strict real-time requirements, an ICV appended
to the message shall not be longer than needed to fulfill a
sufficient level of security. According to the RFC 2104, the
generated output can be truncated down to half of the output
size of the hash function but not less than 80 bits, to still have
a robust protection against brute-force attacks for evaluating
the key[13].

Common consensus of the relevant PROFINET working
group considers SHA-3, the latest member of the Secure Hash
Algorithm family (standardized in the FIPS3 publication 202
by NIST4[15]) as the optimal candidate for the use with
HMAC. Originally announced under the name Keccak, this al-
gorithm is based on a completely different structure, compared
to its predecessors and a majority of other cryptographic hash
functions, namely the sponge construction (see Fig. 1). This
construction applies 24 rounds of fixed length permutations f
on the state vectors S0 − Sn of length b = 1600 bits. The
state vectors are divided into the capacity c (in case of SHA-3
corresponding to double the size of the digest output), and the
rate r. The rate defines the input block length, what means
the message will be padded up to a multiple of r bits, splitted
up into blocks of length r (P0 − Pn−1 in Fig. 1) and XORed
to the rate segment of the corresponding state. This process is
denoted by absorbing and is followed by the squeezing, i.e. the

3Federal Information Processing Standards
4National Institute of Standards and Technology

extraction of the digest out of the rate portion of state Sn (and
subsequent if chosen digest size n > r, this is not the case for
standardized SHA-3 versions and therefore faded in Fig. 1).
SHA-3 is standardized for the four digest sizes 224, 256, 384
and 512 bits. Again to reduce the impact on performance, the
224 bit version shall be chosen. This then results in a HMAC
algorithm with 1152 bits (144 Bytes) input block size and 224
bit digest size, truncated to 112 bit (14 Bytes) ICV that will be
transmitted additionally to each frame. As already stated, even
if the processing time of the HMAC can be minimized, the first
initialization takes longer than all subsequent iterations using
the same key. Therefore, to not interrupt the cyclic real-time
communication, a fresh key has to be negotiated on a separate
channel before the current key gets worn-out and the HMAC
module has to be initialized with this new key prior the first use
of it. To signalize to the receiver of a message, which key (and
other associated data referred to by context here) was used
for protection of the current frame, a specific identifier field
is needed. Although in our working assumption we presume
both communication endpoints to have already agreed on a
shared secret key for a specific session without focusing on
how, i.e. over what channel and how often, this negotiation
was performed, we define the length of this additional field—
the context identifier—to at least one byte. Considering the
block length of the HMAC-SHA-3-224 algorithm, negotiation
on session keys with length less than or equal to 144 bytes
can omit the additional hash execution during initialization.
The strength of hash functions depends on which property
one wants to be broken [14, pp. 82-83]:

• Preimage resistance: Given a hash h, the effort required
to find a message x such that H(x) = h is proportional
to 2n.

• Second preimage resistance: Given a message x, the
effort required to find a message y 6= x such that
H(x) = H(y) is proportional to 2n.

• Collision resistance: The effort to find an arbitrary pair of
messages (x, y) such that H(x) = H(y) is proportional
to 2n/2 (this is referred to by the birthday paradox).

Since in the proposed protection scheme the message is
transmitted in clear-text along with the digest, the only prac-
tical attack would be on the second preimage resistance, i.e.
find a message of meaningful content (respecting the frame
structure in Table II) other than the original but producing
the same truncated ICV. Finding such a preimage would
expectedly require about 2112 HMAC calculations, what would
take several billion years on a single desktop machine.

2) Replay Protection: Through the integration of message
authenticity and integrity services, it can be ensured that only
trusted endpoints can send messages to a device that will
be processed and also that they were not altered en route.
Nevertheless, an attacker intercepting messages containing an
ICV could store them and transmit them again later, i.e.
perform a so-called replay attack. This means, without addi-
tional measures, an attacker can force a device to maliciously
alter its behavior because the frame passes the verification

f
0

0

r

c

f f f

padding truncate

S0 S1 Sn

P0 P1 Pn1 Z0 Z1

message digest

absorbing squeezing

Fig. 1. SHA-3 (Keccak) sponge construction.

even if it was already sent long time ago. Such replay
attacks can easily be mitigated by introducing a sequence
counter that is incremented for each frame. Consequently,
to completely prevent the possibility of replayed messages,
the current session key has to be refreshed after an overflow
of this sequence counter. This fact disqualifies the existing
PROFINET Cycle Counter as standalone representative for a
anti-replay sequence counter, since it consists of only 16 bits
representing the transmission times in multiples of 31.25 µs
and therefore overflows after approximately 2 s. It is infeasible
to perform a complete key negotiation each 2 s, even within a
seperate channel, without ever disturbing the normal operation.
Therefore, another additional field has to be introduced that
can be incremented on each overflow of the PROFINET Cycle
Counter. Specifying a minimal length of 2 bytes for this
counter extension, the period for key renewal can be enlarged
to about 1 1/2 days, what we consider as enough time to
schedule the establishment of new key material. One could
state, that an even longer key could be chosen such that the
key never has to be renewed within the complete operation
period of a system or at least within a maintenance cycle. The
longer a key is in use, the more data was protected using this
key and therefore could be available to an attacker for deeper
analysis that probably could reveal the key sooner or later.
For this reason, the NIST has setup a recommendation for so
called cryptoperiods of keys, i.e. how long the same key can be
used before it wears out and therefore shall be refreshed. For
symmetric authentication keys, this period is recommended
to be shorter than 2 years (compare to Section 5.3.6 in [16]).
With respect to this definition, there is no need to take a length
of more than 4 bytes for the extended counter into account.
Focussing on a minimal performance impact, 2 bytes of length
are assumed for further considerations.

3) RT Protection Layer: The PROFINET RT protection
layer applies the elaborated fields for counter extension, iden-
tification of the used context and the actual integrity check
value—17 bytes in total—to an unprotected frame (Alg. 1).
Generally, the steps that needs to be performed for protection
of a frame are: (1) increment the extended counter on overflow
of the PROFINET Cycle Counter, (2) get the latest negotiated
context containing the currently valid key, (3) compare the
current context identifier with the stored one to determine if

the HMAC needs to be initialized with a new key, (4) calculate
the ICV with HMAC on the RT payload, extended counter and
context identifier, (5) truncate the ICV, (6) update the stored
context identifier for being able to reinitialize the HMAC as
long as the key remains valid, and (7) assemble the protected
frame by adding the generated fields.

Algorithm 1 PROFINET RT Protection Layer: Protect Frame
1: procedure PROTECT FRAME(frame)
2: if PROFINET Cycle Counter overflowed then
3: ctr ← ctr + 1 ⇒ update extended counter
4: end if
5: ctxcurrent ← getLatestContext()
6: idcurrent ← getID(ctxcurrent) ⇒ get latest context id
7: buf ← extractRTPayload(frame)||ctr||idcurrent

8: if idcurrent 6= idlast then ⇒ Initialize HMAC
9: key ← getKey(ctxcurrent) ⇒ get new key

10: icv ← HMAC(key, buf)
11: else ⇒ Reinitialize HMAC
12: icv ← HMAC(buf) ⇒ key already stored
13: end if
14: icvtrunc ← truncateICV (icv) ⇒ truncate ICV
15: frameprotected ← (frame||ctr||idcurrent||icvtrunc)
16: idlast ← idcurrent ⇒ update stored context id
17: return frameprotected
18: end procedure

Algorithm 2 PROFINET RT Protection Layer: Verify
1: procedure VERIFY(frameprotected)
2: buf ← extractRTPayload(frameprotected)
3: ctrrecvd ← extractCounter(frameprotected)
4: if ctrrecvd ≤ ctrstored then ⇒ verify the counter
5: return Fail ⇒ replay attack detected
6: else
7: ctrstored ← ctrrecvd ⇒ update stored counter
8: end if
9: idrcvd ← extractContextID(frameprotected)

10: ctxrcvd ← getContext(idrcvd)
11: if ctxrcvd not exists then ⇒ verify context id
12: return Fail ⇒ context not exists (anymore)
13: end if
14: icvrcvd ← extractICV (frameprotected)
15: if idrcvd 6= idlast then ⇒ Initialize HMAC
16: key ← getKey(ctxrcvd) ⇒ get new key
17: icvcalc ← HMAC(key, buf)
18: else ⇒ Reinitialize HMAC
19: icvcalc ← HMAC(buf) ⇒ key already stored
20: end if
21: icvcalc ← truncateICV (icvcalc) ⇒ truncate ICV
22: if icvcalc 6= icvrcvd then ⇒ verify ICV
23: return Fail ⇒ ICV comparison mismatch
24: end if
25: idlast ← idrcvd ⇒ update stored context id
26: return Success
27: end procedure

The protection layer also is responsible for the verification
of the authenticity and integrity of a received frame (Alg. 2).
Besides the obvious comparison of the calculated ICV over
the received payload and the ICV attached to the protected
frame (Line 22-24, Alg. 2), the verification procedure also
has to make sure that the sequence counter (PROFINET Cycle

Prototype Platform

Processing System (CPU)

IO-Controller
IO-Device

(With Security
Extension)

Programmable Logic

PROFINET RT
Protection Layer

RT
Bulk

Switching UnitNRT NRT

RT Protected RT

Fig. 2. Prototype architecture of PROFINET protection layer embedded in
processing system of FPGA platform with switching unit and frame bulk
optimized for PROFINET communication.

Counter and extended counter) has incremented since the last
received frame (Line 4-8, Alg. 2) and that the context used
for protection exists, i.e. was not revoked in the meantime
(Line 11-13, Alg. 2). In a first iteration we assume that
the PROFINET RT protection layer can be configured with
device internal configuration data and therefore is aware of
the structure of the RT payload (to extract specific fields).

D. Implementation

The experimental framework must overcome the lack of
specification of a key establishment process and with it the un-
availability of security-aware IO-Controllers. This we achieve
using an inline unit (Fig. 2) that is capable of transparently
maintaining a secure communication relationship between
a security-unaware IO-Controller and a security-aware IO-
Device. That is, for instance, RT frames from the IO-Controller
are converted to secured RT frames and forwarded to the IO-
Device, and vice-versa. In a first iteration, only the RT frames
are protected, in a second the proposed handshake protocol can
be implemented on this inline unit and so the lack of suitable
IO-Controllers can be compensated for. For the inline unit a
transparent switch architecture based on an industry proven
PROFINET IRT three port switch [17] was modified to allow
the inline unit to receive unprotected PROFINET RT frames
and add the protection on the fly. For the implementation,
a Xilinx development board with a Zynq-7000 system-on-
chip consisting of an ARM Cortex-A9 dual-core processing
system and FPGA fabric was chosen. The three port switch
was instantiated in FPGA fabric. This switch integrates a fast-
forwarding unit and intelligent dynamic filtering based on
information in the PROFINET frame (MAC address, FrameID,
etc.). The prototypal implementation of the PROFINET RT
protection layer resides initially in the processing system
(ARM Cortex-A9) of the Zynq SoC platform - later in the
FPGA fabric. Ingressing RT frames from the IO-Controller or
IO-Device are filtered and forwarded to a frame buffer, the
reception of a frame in the buffer triggers application of the
previously described algorithms on that frame. Non-real-time

traffic is forwarded unmodified from the IO-Controller to the
IO-Device or vice-versa. The defining characteristic of this
PROFINET protection layer is that it can be integrated in an
IO-Device with minimum modification.

III. RESULTS AND DISCUSSION

A. Performance Analysis

1) SHA-3: First, a software implementation of the 224-
bit version of the SHA-3 alogrithm, implemented and unit
tested on a host machine (intel Core i7 CPU), was analyzed
respecting the influence of compiler optimizations on the per-
formance. For this reason, the source code was compiled using
different optimization options (for detailed description see the
documentation for the GNU C Compiler (GCC) collection,
version 6.3.0 [18]):
-O0 Default setting for reduced compilation time.
-O1 Enables optimization flags for reduced code size and

execution time that do not have a great impact on the
compilation time.

-O2 More optimizations that increase performance as well
as compilation time. In addition to all options of -O1,
specific options for algorithm reordering are used.

-O3 All options from lower optimization levels are inherited
and additional flags, e.g. for function inlining, are used
for even higher performance.

In addition to the flags already included within the men-
tioned optimization levels, loop unrolling can be enabled
during compile time with the flags -funroll-loops and -funroll-
all-loops. Fig. 3 shows the execution time of the SHA-3
algorithm under usage of the different optimization options
during compile time for input sizes between 1 and 1500 bytes
(all time measurements are averaged over 1000 iterations). The
speedup between -O1 and -O2 is not large and also the size
of the compiled binaries remains the same. Usage of level
3 optimization (-O3) is up to 10 times faster compared to
the default. Using such compiler optimizations in the context
of cryptography is not without risk. Even if the code is unit
tested under optimized conditions, specially flags for function
inlining and loop unrolling can expose the application to side-
channel attacks, i.e. execution time probably differs depending
on the input, which could help an attacker with access to a
device to reveal the key (a detailed analysis on side-channel
attacks for Keccak in combination with a message authentica-
tion scheme was done in [19]). Nevertheless, focusing on the
best performance results, we decided on optimization level -
O3 and loop unrolling for the compilation of software running
on the target platform.

Even with these optimization options enabled, the perfor-
mance of the SHA-3 algorithm on the target platform (ARM
Cortex-A9 dual core CPU, 866 MHz) is around 40 times
slower than on the intel machine (Fig. 4).

2) HMAC: The HMAC algorithm was implemented specifi-
cally for support of reinitialization if the same key is used as in
a previous iteration. To get a feeling on how much time can be
saved with reinitialization, the performance of a reinitialization

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

11
52

12
80

14
08

message size [bytes]

0

20

40

60

80

100

120

ti
m

e
 [
µ

s
]

SHA-3 Performance Measurements Intel Core i7

GNU C Compiler Optimization

O0

O1

O2

O3

O3 + loop unrolling

Fig. 3. Performance measurements of the SHA-3-224 implementation running
on an Intel Core i7 platform compiled with different optimization flags.

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

11
52

12
80

14
08

message size [bytes]

0

50

100

150

200

250

300

350

400

450

500

ti
m

e
 [
µ

s
]

SHA-3 Performance Measurements ARM Cortex A9

GNU C Compiler Optimization: O3 + loop unrolling

Fig. 4. Performance measurements of the SHA-3-224 implementation running
on the prototyping platform with an ARM Cortex-A9 CPU.

execution is compared to an initial execution of the HMAC
once with a key of length < 144 Bytes (the block length of
the underlying SHA-3-224), once with a longer key resulting
in an additional hash execution, in Fig. 5. It can be seen that
the performance of a reinitialized HMAC can be performed in
less than 50% of the time for an initalization with a long key.
The step function behavior can be explained by the padding
up to a multiple of the block length of the underlying hash
function.

3) RT Protection Layer: The PROFINET RT protection
layer, implemented as described in Section II-C3, was ana-
lyzed respecting its performance in comparison to the pure
execution of SHA-3 as well as HMAC (Fig. 6). As expected,
for message sizes of length (n · r) with n ε (1 : ∞), the
performance is the same as for pure SHA-3 execution. The

14
4

28
8

43
2

57
6

72
0

86
4

10
08

11
52

12
96

14
40

message size [bytes]

0

100

200

300

400

500

600

700
ti
m

e
 [
µ

s
]

HMAC-SHA-3 Performance Measurements ARM Cortex A9

Initialization vs. Reinitialization

Init (key size: 244 bytes)

Init (key size: 144 bytes)

Reinit

Fig. 5. Performance measurements of the HMAC-SHA-3 implementation:
Execution time for first initialization with different key sizes is compared to
a reinitialization using the same key again.

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

11
52

12
80

14
08

message size [bytes]

0

50

100

150

200

250

300

350

400

450

500

ti
m

e
 [
µ

s
]

PROFINET RT Protection Layer Performance Comparison

ARM Cortex A9

PROFINET RT Protection Layer

HMAC-SHA-3

SHA-3

Fig. 6. Comparison of performance of the complete PROFINET RT protection
layer to its subcomponents HMAC-SHA-3 and pure SHA-3.

plot of the protection layer performance is shifted 14 bytes
with respect to the x-axis. This is caused by the Ethernet
frame header (2 times MAC address and the EtherType), which
is included in the length specification of the input message.
Since we are interested in the suitability for high performance
motion-control applications with typical payload sizes of 8
to 256 bytes and cycle times of 250 µs, 125 µs of it reserved
for RT communication [17], we analyzed this part of the plot
more precisely in Fig. 7. We can see that not even one single
frame with a payload ≥ 144 bytes can be processed completely
within the reserved RT bandwidth of a such a system with a
minimal configured cycle time. If we assume a symmetrical
setup, where an IO-Device transmits and receives one frame
within a cycle, this would require the execution time of the

12
8

25
6

message size [bytes]

40

60

80

100

120

140

160

180

ti
m

e
 [
µ

s
]

PROFINET RT Protection Layer Performance Comparison

ARM Cortex A9

PROFINET RT Protection Layer

HMAC-SHA-3

SHA-3

X: 201

Y: 123.8

X: 195

Y: 126.8

Fig. 7. The 3 µs processing overhead of the PROFINET RT protection layer
is mainly caused by memory manipulation, the generation of additional fields
and padding.

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

11
52

12
80

14
08

message size [bytes]

0

10

20

30

40

50

60

70

ti
m

e
 [
µ

s
]

SHA-3 HW Acceleration Performance Estimation

Clock: 50 MHz

Clock: 100 MHz

Clock: 150 MHz

Fig. 8. Estimation of SHA-3 hardware acceleration performance: Depending
on the clock speed, the SHA-3 performance can be estimated from the
captured number of clock cycles needed in simulation.

protection layer to be less than half of the RT bandwidth,
i.e. 62.5 µs. This statement assumes that execution times of
the protection procedure (Alg. 1) and the verification (Alg. 2)
are equal. Since the overhead for frame processing is just
3 µs (see Fig. 7), we rate this assumption as sufficient. This
small overhead also lowers the priority for finding suitable
optimizations on the processing (i.e. the generation of needed
fields etc.), since most of the execution time is spent in
cryptographic components of the protection layer.

B. Optimization Potential

The performance results of the software solution indicates
that further optimization, especially on the cryptographic al-

gorithms, is necessary to meet the strict timing requirements
of high performance real-time automation systems. The most
promising approach is outsourcing of cryptographic processing
into the hardware, i.e. the programmable logic blocks. To
estimate the potential speed up, we developed the SHA-3-224
algorithm in hardware description language and captured the
number of clock cycles needed for processing of various length
messages out of the testbench simulation. By multiplying
this data with a suitable clock speed, we get a measure on
the achievable execution times within a dedicated hardware
core. Typical clock speeds of low cost FPGA platforms vary
between 50-150 MHz, which we used to assess the comparison
between the two implementations (Fig. 8). Depending on the
clock speed, we achieve a speedup factor of 8 to 25. This
would be sufficient to meet the timing requirements of systems
with a minimum cycle time configuration of 250 µs.

IV. CONCLUSION AND FURTHER WORK

In this publication the prototypal implementation of a
PROFINET RT protection layer ensuring authenticity and in-
tegrity of real-time communication was presented. The chosen
architecture of a transparent switch allows protection of frames
on-the-fly. This device served as a platform for analyzing the
performance with respect to very low cycle times of 250 µs. It
could be shown that a protection layer purely software-based
does not provide sufficient performance for the adoption into
such systems, even under usage of a high optimization level
during compile time. Nonetheless, the potential of compiler
optimizations might not be fully exploited and this could be
an interesting topic worth further investigation. To evaluate
how much time is actually available for encryption, the CPU
utilization when running a PROFINET stack combined with
the protection layer must be studied by profiled on a per-
device basis. We could show a potential performance increase
of about factor 8 to 25 through the use of cryptographic
hardware acceleration. This estimation can be compared to
actual measurement results after successful integration of a
PROFINET protection layer in an IO-Device. Further planned
work includes the outsourcing of the complete HMAC com-
ponent into programmable logic. The development of the
transparent security switch will be continued, since besides
for performance analysis, it can also serve as a verification
and testing platform for device and stack vendors adopting
their products to a future PROFINET security standard. This
enables them to start the development process without being
dependent on the progress of PROFINET master stack imple-
mentations.

ACKNOWLEDGMENT

The present study is a contribution to the PROFIBUS &
PROFINET International working group CB/PG10 PN Secu-
rity, founded to work out a security standard for PROFINET.

REFERENCES

[1] “Das Honeynet-Experiment: Hackerangriffe auf virtuelles
Wasserkraftwerk belegen Gefahren für Industrie 4.0,” https://www.tuev-
sued.de/management-systeme/newsletter/2015/4/das-honeynet-
experiment-hackerangriffe-auf-virtuelles-wasserkraftwerk-belegen-
gefahren-fuer-industrie-4.0, accessed: 2018-05-06.

[2] “PROFINET Security Guideline,” Profibus Nutzerorganisation (PNO)
e.V., Karlsruhe, Tech. Rep., Nov. 2013. [Online]. Available:
https://www.profibus.com/download/profinet-security-guideline/

[3] M. Runde, C. Tebbe, and K. H. Niemann, “Performance Evaluation of
an IT security Layer in Real-Time Communication,” in 2013 IEEE 18th
Conference on Emerging Technologies Factory Automation (ETFA), Sept
2013.

[4] B. Czybik, S. Hausmann, S. Heiss, and J. Jasperneite, “Performance
Evaluation of MAC Algorithms for Real-Time Ethernet Communication
Systems,” in 2013 11th IEEE International Conference on Industrial
Informatics (INDIN), July 2013.

[5] S. Hausmann and S. Heiss, “Usage of Public Key Infrastructures in
Automation Networks,” in Proceedings of 2012 IEEE 17th Interna-
tional Conference on Emerging Technologies Factory Automation (ETFA
2012), Sept 2012.

[6] M. Runde, C. Tebbe, K. H. Niemann, and J. Toemmler, “Automated
Decentralized IT Security Supervision in Automation Networks,” in
IEEE 10th International Conference on Industrial Informatics, July
2012, pp. 1234–1239.

[7] M. Runde, S. Hausmann, C. Tebbe, B. Czybik, K.-H. Niemann,
S. Heiss, and J. Jasperneite, “SEC PRO : sichere Produktion
mit verteilten Automatisierungssystemen,” Fakultät I - Elektro- und
Informationstechnik, Tech. Rep., 2014. [Online]. Available: http://nbn-
resolving.de/urn/resolver.pl?urn:nbn:de:bsz:960-opus4-4995

[8] M. Popp and K. Weber, Der Schnelleinstieg in PROFINET. PROFIBUS
Nutzerorganisation, 2004.

[9] R. Pigan and M. Metter, Automatisieren mit PROFINET: Industrielle
Kommunikation auf Basis von Industrial Ethernet, 2nd ed. Publicis
Corporate Publishing, Erlangen, 2008.

[10] T. Müller, A. Walz, M. Kiefer, H. D. Doran, and A. Sikora, “Challenges
and Prospects of Communication Security in Real-Time Ethernet Au-
tomation Systems,” forthcoming 2018 IEEE International Workshop on
Factory Communication Systems Proceedings, June 2018.

[11] “ITU-T X.200 (07/1994) Information Technology Open Systems
Interconnection Basic Reference Model: The Basic Model,”
International Telecommunication Union, Geneva, CH, Recommendation,
Jul. 1994. [Online]. Available: https://www.itu.int/rec/T-REC-X.200-
199407-I

[12] “ITU-T X.800 (03/1991) Security Architecture for Open
Systems Interconnection for CCITT Applications,” International
Telecommunication Union, Geneva, CH, Recommendation, Mar. 1991.
[Online]. Available: http://www.itu.int/rec/T-REC-X.800-199103-I/e

[13] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-Hashing for
Message Authentication,” RFC 2104, Feb. 1997.

[14] W. Stallings, Network Security Essentials: Applications and Standards,
5th ed., ser. Always learning. Pearson, 2013.

[15] “SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions,” National Institute of Standards and Technology / Federal In-
formation Processing Standards, Gaithersburg, Maryland, Standard, Aug.
2015. [Online]. Available: http://dx.doi.org/10.6028/NIST.FIPS.202

[16] E. B. Barker, W. Barker, W. Burr, T. Polk, M. Smid, and L. Zieglar, “SP
800-57. Recommendation for Key Management, Part 1: General (Rev.
4),” Gaithersburg, MD, United States, Special Publication, Jan. 2016.

[17] D. Gunzinger, C. Kuenzle, A. Schwarz, H. D. Doran, and K. Weber,
“Optimising PROFINET IRT for Fast Cycle Times: A Proof of Con-
cept,” in 2010 IEEE International Workshop on Factory Communication
Systems Proceedings, May 2010, pp. 35–42.

[18] R. M. Stallman and G. DeveloperCommunity, Using The Gnu
Compiler Collection: For GCC Version 6.3.0. Boston, MA:
GNU Press, Free Software Foundation, 2016. [Online]. Available:
https://gcc.gnu.org/onlinedocs/gcc-6.3.0/gcc.pdf

[19] M. Taha and P. Schaumont, “Side-Channel Analysis of MAC-Keccak,”
in 2013 IEEE International Symposium on Hardware-Oriented Security
and Trust (HOST), June 2013, pp. 125–130.

