
A Feasible Lagrangian Approach

with Application to the

Generalized Assignment Problem

by

Shahroz Saleem Punjwani

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Management Sciences

Waterloo, Ontario, Canada, 2019

c© Shahroz Saleem Punjwani 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/185636979?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of

the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

Lagrangian relaxation is a widely used decomposition approach to solve difficult

optimization problems that exhibit special structure. It provides a lower bound on

the optimal objective of a minimization problem. On the other hand, an upper

bound and quality feasible solutions may be obtained by perturbing solutions of the

subproblem. In this thesis, we enhance the Lagrangian approach by using information

at the subproblem to push for feasibility to the original problem. We exploit the idea

that if the solution for the subproblem is pushed towards feasibility to the original

problem, it may lead to improved lower bounds as well as good feasible solutions.

Our proposed strategy is to solve the subproblem repeatedly at each iteration of the

Lagrangian procedure and strengthen it with valid inequalities. As cuts are added to

the subproblem, it inevitably becomes harder to solve. We propose to solve it under

a time limit and adjust the Lagrangian bound accordingly. Two variants of the

approach are explored that we call a Modified Lagrangian approach and a Feasible

Lagrangian approach.

We use the Generalized Assignment Problem for testing. We develop two method-

ologies based on minimal covering inequalities. The first solves the subproblem re-

peatedly for a given number of iterations and generates minimal cover inequalities

that are either discarded or passed on to subsequent Lagrangian iterations. The

second starts with initial multipliers and repeatedly solves the subproblem until a

feasible solution is attained. At that point, the regular Lagrangian approach is used

to find a lower bound. We test on GAP instances from the literature and com-

pare the lower bound to the Lagrangian bound and the feasible solution to the best

known solution in the literature. The results demonstrate that the proposed feasi-

ble Lagrangian approach leads to improved lower bounds and good quality feasible

solutions.
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Chapter 1

Introduction

Optimization problems are broadly categorized as ”easy” problems, which can be

solved efficiently and ”hard” problems, which require exponential time in the worst

case. Most of the problems fall into the latter category. In 1970s, there was a

breakthrough in solving the hard combinatorial problems when it was observed that

some of these were actually easy problems, complicated by a relatively small set of

constraints. It was proposed that dualizing these complicating constraints produces a

Lagrangian subproblem, which is easier to solve and provides a bound on the optimal

value of the original problem. This is known as Lagrangian Relaxation (LR) (Held

and Karp, 1970). It was also noted that for many problems, LR provided better

bounds than the linear relaxation. Hence, this meant that LR could now be used to

provide better bounds in branch and bound approaches. Although this was the most

obvious use of LR, over the time it has been applied in many heuristic approaches

to find good feasible solutions by perturbing the solution of the subproblem.

In this thesis, our goal is to exploit Lagrangian relaxation in an approach that

combines both the strengths of LR, i.e., providing tighter bounds on the original
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problem and good feasible solutions. Hence in general, the proposed approach is

motivated by the idea that if the solution for the Lagrangian subproblem (SP) can

be pushed towards feasibility for the original problem, it can result in improved LR

bounds as well as quality feasible solutions. The strategy we propose here is to push

SP solution towards feasibility by adding valid cuts based on SP solutions to further

push solutions closer to feasibility for the original problem. By incorporating this

idea into the Lagrangian methodology, we hope to find improved bounds and obtain

good feasible solutions.

To test this approach, we select the Generalized Assignment Problem (GAP),

which is known to be NP-hard. It has a readily apparent structure for the application

of LR. The problem has been widely studied in the literature because of its several

real-life applications e.g. transportation and routing, production and planning, and

location problems, and many exact and heuristic methodologies have been proposed

to solve it. To test our approach we develop two methodologies for the GAP with

the objectives of improving bounds and obtaining good feasible solutions. In these

methods, we use minimal cover inequalities to push SP solutions towards feasibility

for the GAP. For the first approach, we test two variants, with accumulation and

without accumulation of minimal cover inequalities. In the first variant, the cover

inequalities are allowed to accumulate from one LR iteration to the next. In the

second variant, the inequalities are not carried forward to the following iteration.

We keep adding the minimal cover inequalities to SP until either SP solution is

feasible for the GAP, or a certain number of cover inequalities generation iterations,

k, has been completed. As SP becomes more difficult to solve because of the cover

inequalities, we impose a time limit, tLim, on the solution of SP. In the second

methodology we initialize the values of the Lagrangian multipliers with the optimal

dual solution of the relaxed constraints obtained by solving the linear programming
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relaxation of the GAP. We then keep adding the minimal cover inequalities to SP

until a feasible solution to the GAP is obtained. Then SP, with all the minimal cover

inequalities added up till now, and MP are solved iteratively in a regular Lagrangian

fashion to obtain the optimal Lagrangian bound. In this approach, SP is solved to

optimality without any limit on the solution time. The results from testing these

methodologies on benchmark GAP data sets demonstrate that adding minimal cover

inequalities in SP leads to improved bounds and quality feasible solutions.

The remainder of the thesis is organized as follows. In Chapter 2, we introduce

the GAP and review the literature on the real-life applications of GAP in different

domains. In this chapter we also discuss the Lagrangian relaxation methodology and

review the literature on the application of Lagrangian relaxation in the exact and

heuristics approaches for solving the GAP. In Chapter 3, we present the mathematical

formulation for the GAP and its two different Lagrangian relaxations. In Chapter

4, a detailed description of our methodologies is presented. The results from the

numerical testing of these methods and their analysis are presented in Chapter 5.
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Chapter 2

Background and Literature Review

In this chapter, we explain the Lagrangian relaxation (LR) approach and review

similar decomposition approaches. We then introduce the Generalized Assignment

Problem (GAP), present its mathematical formulation and discuss some practical

applications of the GAP. Lastly, we review the literature on the application of LR in

developing exact and heuristic solution methodologies for GAP.

2.1 Lagrangian Relaxation

The Lagrangian approach was introduced by Held and Karp (1970), who used it

based on minimum spanning trees to devise an algorithm for the traveling salesman

problem. Since then Lagrangian relaxation has been used to tackle some of the most

challenging combinatorial optimization problems (Fisher, 2004). It has been observed

that many of the difficult integer problems can be reduced to easier problems if a

relatively small set of complicating constraints is removed. Hence, LR exploits this

fact by removing the complicating side constraints and introducing them in the cost
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function with corresponding penalty. To illustrate the LR approach, consider the

optimization problem:

[P ] : min cTx

s.t. Ax ≥ b

Bx ≥ d

x ≥ 0

xj integer ∀j ∈ J

Let us assume that Ax ≥ b are the complicating constraints. By relaxing them

in a Lagrangian fashion with a set of Lagrangian multipliers λ ≥ 0, we get the

subproblem (SP):

SP (λ) : min cTx+ λT (b− Ax)

s.t. Bx ≥ d

x ≥ 0

xj integer ∀j ∈ J

SP(λ) provides a lower bound on the objective value of the original minimization

problem, zSP (λ), for a given set of Lagrangian multipliers λ:

zSP (λ) ≤ z∗

To find the best possible lower bound overall, the following Lagrangian dual

problem is solved:

[LD] : max
λ≥0

zSP (λ)
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which can be formulated as a linear program, known as the Master problem:

[MP ] : max θ

s.t θ ≤ cxt + λt(b− Axt) ∀t ∈ H

λ ≥ 0

where H is the index set of feasible solutions to:

{x : Bx ≥ d, x ≥ 0, xj integer, ∀j ∈ J}

which is assumed to be bounded. The Lagrangian master problem can be solved

using the cutting plane or the subgradient method (Fisher, 1985).

2.2 Benders and Cross Decomposition

Benders decomposition is an exact approach to solve the mixed integer programming

problems (MIP) proposed by Benders in 1962. Similar to Lagrangian relaxation

which is based on the idea of complicating constraints, Benders decomposition is

based on the notion of complicating variables. These are the variables which if

fixed, render the remaining problem a linear program, parameterized by the value of

complicating variables. The first-stage master problem is solved for the complicating

variables, and the values of the remaining variables are determined by a second-stage

subproblem given the values of the first-stage variables. If the subproblem determines

that the proposed first-stage decisions are infeasible, then one or more constraints

are generated and added to the master problem, which then is solved again.

As opposed to Lagrangian relaxation which is a dual decomposition method where

the complicating constraints are dualized and the Lagrangian multipliers are obtained
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from the dual master problem, Benders decomposition is a primal decomposition

method because the primal or Benders subproblem restricts the original problem by

fixing the values of some primal variables. Hence both approaches exploit either

the primal or the dual substructure of the problem. But there are many problems

which may have both easy to solve primal and dual subproblems. For example, the

capacitated facility location problem reduces to the transportation problem when

the binary location variables are fixed or to continuous knapsack problems for each

facility when the assignment constraints are relaxed. Based on this idea, Van Roy

(1983) proposes the cross-decomposition approach i.e. to use both subproblems in

one single decomposition procedure. This approach starts with Lagrangian subprob-

lem and an initial set of Lagrangian multipliers. But based on the results of the

convergence tests on the subproblem(s) solutions, the algorithm later switches be-

tween Benders decomposition and Lagrangian relaxation. In his other paper, Van

Roy (1986) applies the cross decomposition approach to solve the capacitated facility

location problem. Ogbe and Li (2016) propose an exact solution approach to improve

the solution of scenario based two-stage stochastic MIPs using the cross decompo-

sition method by combining the Benders Decomposition (BD) and Dantzig/Wolfe

decomposition (DWD). Their method switches between DWD iterations and BD it-

erations, where DWD restricted master problems and BD primal problems produce

a sequence of upper bounds and BD relaxed master problems yield a sequence of

lower bounds.

In the next section, we discuss the Generalized Assignment Problem (GAP),

present its mathematical formulation and review the real-life applications of the

GAP discussed in the literature.
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2.3 Generalized Assignment Problem (GAP)

The Generalized Assignment Problem (GAP) is a well-known problem in operations

research. The goal is to minimize (maximize) the cost (profit) of assigning n items

to m knapsacks while ensuring that every item is assigned to exactly one knapsack

and that the capacity of each knapsack is not violated. In the literature, the GAP

has also been discussed using the scheduling terminology i.e. jobs, machines, and

processing times. The GAP formulation is as follows:

[GAP ] min
m∑
i=1

n∑
j=1

cijxij (2.1)

s.t
n∑
j=1

wijxij ≤ bi ∀i ∈ I (2.2)

m∑
i=1

xij = 1 ∀j ∈ J (2.3)

xij ∈ {0, 1} (2.4)

where cij is the cost of assigning item j to knapsack i and wij is the capacity of

knapsack i consumed by item j. xij is a binary decision variable that takes value 1

if item j is assigned to knapsack i, or 0 otherwise. Constraints (2.2) ensure that the

capacity bi of each knapsack i is not violated and constraints (2.3) ensure that each

item j is assigned to exactly one knapsack i. The classical assignment problem with

one-to-one assignment of items to the knapsacks can be solved in polynomial time,

however GAP is an NP-hard problem (Sahni and Gonzalez, 1976).
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2.4 Applications of GAP

Several real-life applications of the GAP have been discussed in the literature. The

GAP has been widely applied to scheduling problems such as employee scheduling,

machine scheduling, workforce planning, etc. Within this domain, another extension

of GAP is the Load Balancing Problem (Harvey et al. 2006). This problem can

have different types of objective functions such as minimization of makespan, or the

average flow-time, or the maximization of fairness in job assignment.

In the transportation and routing applications, the GAP appears as a sub-

problem in the well-known Vehicle Routing Problem. Fisher and Jaikumar (1981)

have proposed a generalized assignment approach for the solution of the VRP. Foulds

and Wilson (1997) propose heuristic algorithms for a variation of the GAP arising

in the New Zealand dairy industry: the Covering Assignment Problem (CAP). The

CAP aims to minimize transportation cost from farms (suppliers) to factories (cus-

tomers), such that each farm is assigned to exactly one factory and the demand of

each factory must be satisfied.

Bressoud et al. (2003) discuss the application of the GAP in telecommunication

for the optimal configuration for Border Gateway Protocol (BGP) which are crucial

in controlling transit traffic flows from customers and providers. Barbas and Marin

(2004) introduce another telecommunication application as an extension of the GAP,

that is the maximal covering code multiplexing access telecommunication networks

with power and flow capacity constraints.

There are many applications of the GAP in production planning as well. Dobson

and Nambimadom (2001) divide the NP-Hard Batch Loading and Scheduling Prob-

lem into two nested problems: batch-loading (BLP) and batch-scheduling. Authors

show that BLP, which assigns jobs to the batches given a sequence, is a special case
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of the GAP. A vast application area of the GAP arises in Group Technology where

efficient partitioning of manufacturing parts into families, namely the Group Forma-

tion Problem (GFP), plays a crucial role in the overall system performance. Shtub

(1989) has shown that the GFP and its extension, the Generalized Group Formation

Problem (GGFP), are equivalent to the GAP.

For location problems, Ross and Soland (1977) have shown that a set of public

and private facility location problems such as the p-Median Problem, Capacitated

p-Median Problem, Uncapacitated Facility Location Problem, Capacitated Facility

Location Problem and Facility Location Problem with a choice of facility type can

be modeled as a GAP. As an extension of the paper by Ross and Soland (1977),

Klastorin (1979) has noted how the Maximal Covering Location Problem can also

be formulated as GAP.

There are many other interesting works on the applications of GAP in other do-

mains. Nowakovski et al. (1999) formulated the problem of scheduling the tasks

during a half year mission phase of the international spatial telescope ROSAT as a

GAP. The problem being the assignment of objects to be observed to time intervals

(slots) with the objective of maximizing the observation time for all objects. Gavish

and Pirkul (1986) have addressed the problem of partitioning of the central database

in a distributed computer system such that the total communication cost is mini-

mized and the processing, storage and communication capacities of the processors

are not violated. This problem arises in the banking networks (Boffey, 1989) and is

formulated as a special case of the GAP.

Some recent applications of GAP include the work by Luo et al. (2015), that

presents distributed algorithms for multi-robot task assignment. As each robot has

a limited battery life, the tasks have to be completed within given deadlines, giving

an upper limit on the amount of time available to perform the tasks. They formulate
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this problem as a special case of GAP with additional task deadline constraints.

Shi and Hong (2011) formulate a multi-level GAP (MGAP) for virtual machine

(VM) placement in a data center. Maintaining such large-scale infrastructures for

data centers consumes an enormous amount of energy and imposes a large carbon

footprint on the environment. Hence for their problem, MGAP seeks to maximize the

profit under the service level agreement and power budget constraints. The MGAP

extends GAP by allowing the agents to perform tasks at different efficiency levels.

Cohen et al. (2015) present an application of GAP to Network Function Vir-

tualization (NFV) location problem in computer networking. They are the first to

address this problem of locating network functions to servers such that the overall

network cost is minimized, while adhering to the allocation size of the servers. They

formulate this problem as a combination of GAP and facility location problem.

2.5 Lagrangian Relaxation and GAP

As the GAP was shown to be NP-Hard, there is no polynomial time algorithm which

finds a feasible solution to an arbitrary instance of the GAP. The exact solution

approaches in the literature only deal with small-sized instances. To overcome the

limitations of exact methods a lot of work has been done in devising several heuristic

and metaheuristic approaches. The benefits of heuristics are twofold; they can be

used as stand-alone algorithms to obtain good solutions within reasonable time and

they can also be used to obtain upper bounds in exact solution methods such as the

branch-and-bound procedure. One such approach that has been widely used in exact

and heuristics methods for the GAP is Lagrangian Relaxation. Following sections

review the existing work on the application of Lagrangian relaxation in both exact

and heuristic methodologies for the GAP.
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Exact Algorithms

Guignard and Rosenwein (1989) propose an enhanced Lagrangian dual ascent pro-

cedure for GAP that solves a Lagrangian dual at each enumeration node. They

obtain the subproblem by relaxing the assignment constraints. In case of violation

of assignment constraints at any enumeration node, a surrogate constraint is added

to the subproblem to strengthen the Lagrangian bound.

Nauss (2003) considers a minimization version of the GAP and devises a branch

and bound algorithm to solve it. To increase the lower bounds he uses linear pro-

gramming cuts, Lagrangian relaxation, penalties, feasibility based tests, and logical

feasibility tests. Nauss has tried to decrease the upper bound by means of feasible

solution generators such as tabu-search and Lagrangian heuristic to obtain an initial

feasible solution and complete enumeration to improve the current solution.

Haddadi and Ouzia (2004) consider a maximization case of the GAP and employ

a breadth-first search strategy in their branch and bound algorithm. In the upper

bounding procedure, a Lagrangian relaxation is obtained by dualizing the semi as-

signment constraints at each node of the decision tree. The relaxed problem then

separates into m independent knapsack problems and a standard subgradient method

is used to solve for the Lagrangian multipliers. As a lower bounding procedure, Had-

dadi and Ouzia transform the solution of the Lagrangian relaxation into a feasible

assignment.

Pessoa et al. (2010) propose two exact algorithms for GQAP (generalized quadratic

assignment problem), where the cost function is quadratic. The heuristics combine

a previously proposed branch-and-bound scheme with a new Lagrangian relaxation

procedure over a known RLT (Reformulation-Linearization Technique) formulation.

They also apply transformational lower bounding techniques to improve the perfor-
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mance of the new procedure.

Lagrangian Relaxation Based Heuristics

Lorena and Narciso (1999) propose Lagrangian/surrogate relaxation to the GAP.

They derive three relaxations by relaxing the assignment, capacity and variable split-

ting constraints respectively. First, a set of constraints is relaxed in a surrogate way

and then the Lagrangian relaxation of the surrogate constraint is obtained. They

show that Lagrangian/surrogate can give improved local bounds at the application

of a subgradient method, resulting in less computational times. The relaxation mul-

tipliers are used with constructive heuristics to find good feasible solutions.

Haddadi (1999) proposes a Lagrangian relaxation decomposition based heuristic

in which a substitution of variables is performed and the constraints defining the

substituted variables are dualized using Lagrangian relaxation. The problem de-

composes into a set of knapsack problems and a transportation problem, which can

be solved in polynomial time. The author has followed a modified version of the

heuristic by Mazzola (1989).

Haddadi and Ouzia (2001) propose another Lagrangian heuristic which finds and

improves feasible GAP solutions. They dualize the capacity constraints and use the

subgradient optimization procedure. At each iteration of the Lagrangian heuristic,

the heuristic approach by Martello and Toth (1981) is used to find the initial as-

signment. Then iterative feasibility and solution improvement heuristics by Mazzola

(1989) and a three-way interchange procedure is used to obtain a feasible improved

solution.

Jeet and Kutanoglu (2007) propose a Lagrangian relaxation based problem space

search heuristics where they combine both iterative search capability of the subgra-

13



dient optimization and problem space search scheme by perturbation. They dualize

capacity constraints and use the subgradient optimization procedure. To find feasible

solutions they propose three feasibility restoration heuristics and use Problem Space

Search (PSS) metaheuristic technique to increase the chance of obtaining feasible

solutions from their heuristics.

Litvinchev et. al. (2010) propose a procedure to tighten the Lagrangian bounds

based on the search for a tighter estimation of the penalty term arising in the La-

grangian problem. The new bounds are illustrated by a small example and studied

numerically for a class of the generalized assignment problems which can be charac-

terized as a many-to-many assignment.

Mazzola and Neebe (2012) consider a generalization of the GAP over discrete

time periods encompassed within a finite planning horizon. The resulting model,

MultiGAP is solved using Lagrangian relaxation based heuristic as well as a branch

and bound algorithm.

Litvinchev et.al (2017) propose modified Lagrangian bounds for the GAP. The

approach is based on a double decomposable structure of the formulation. A family of

greedy heuristics is considered to get Lagrangian based feasible solutions. Numerical

results for problem instances with the number of agents close to the number of tasks

are provided.

Our main contribution is to propose an improved Lagrangian approach that makes

use of the information from the subproblem solutions to generate valid cuts. These

cuts are added back to the subproblem to strengthen it and to push its solutions

towards feasibility to the original problem. This leads to feasible solutions for the

original problem as well as improved bounds due to more information being added

to the subproblem.
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Chapter 3

Lagrangian Relaxations for GAP

In this section, we derive the two possible Lagrangian relaxations and their respective

master problems for the GAP. Revisiting the GAP formulation presented in section

2.2:

[GAP ] min
m∑
i=1

n∑
j=1

cijxij (3.1)

s.t
n∑
j=1

wijxij ≤ bi ∀i ∈ I (3.2)

m∑
i=1

xij = 1 ∀j ∈ J (3.3)

xij ∈ {0, 1} (3.4)

Based on the formulation above, the first LR is obtained by relaxing the capacity

constraints (3.2), while the second is obtained by relaxing the assignment constraints

(3.3). In the following sections, we present Lagrangian relaxations for both relax-

ations and derive their respective subproblems and master problems.
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3.1 Relaxing the Capacity Constraints

By relaxing the capacity constraints with Lagrangian multipliers λi ≥ 0, i ∈ I, we

get the following Lagrangian subproblem:

[SP ] : min
m∑
i=1

n∑
j=1

(cij + λiwij)xij −
m∑
i=1

λibi

s.t
m∑
i=1

xij = 1 ∀j ∈ J

xij ∈ {0, 1}

which can be written as:

[SP ] : zSP = min
m∑
i=1

n∑
j=1

(cij + λiwij)xij

s.t
m∑
i=1

xij = 1 ∀j ∈ J

xij ∈ {0, 1}

Note that the SP is further decomposable by items j ∈ J , leading to n subprob-

lems:

[SPj] : vj = min
m∑
i=1

(cij + λiwij)xij

s.t
m∑
i=1

xij = 1

xij ∈ {0, 1}
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This problem can be easily solved by determining the knapsack i with min(cij +

λiwij) for each item j and setting the corresponding xij=1. Remaining xij are set to

zero. The corresponding Lagrangian master problem is:

[MP ] : zMP = max
n∑
j=1

θj −
m∑
i=1

λibi

s.t θj ≤
m∑
i=1

(cij + λiwij)x
h
ij ∀h ∈ Hj, j ∈ J

λi ≥ 0, i ∈ I

where xhij,∀h ∈ H are feasible solutions to [SPj]

SP and MP are solved iteratively using the cutting plane method to obtain a

Lagrangian bound, LB, on the optimal value of the original problem. SP is solved

with the set of Lagrangian multipliers λ as parameters, obtained from MP. The value

of the solution of SP, (
n∑
j=1

vj −
m∑
i=1

λibi), gives a lower bound, lb, on the Lagrangian

bound, LR∗. Cuts based on SP solution are added to MP, to obtain improved

multipliers. The solution of MP provides an upper bound, ub, on the value of LR∗.

The solution of SP and MP continue until lb and ub converge to a desired tolerance.

The value LR∗ at which both bounds converge is the Lagrangian lower bound on z∗,

the optimal solution for the GAP:

LR∗ ≤ z∗

We note that the Lagrangian multipliers can also be updated using the well-known

subgradient optimization method (Fisher 1985).
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3.2 Relaxing the Assignment Constraints

The second relaxation can be obtained by relaxing the assignment constraints with

Lagrangian multipliers uj, j ∈ J . We get the following Lagrangian subproblem:

[SP2] : min
m∑
i=1

n∑
j=1

(cij + uj)xij −
n∑
j=1

uj

s.t
n∑
j=1

wijxij ≤ bi ∀i ∈ I

xij ∈ {0, 1}

which reduces to m binary knapsack problems:

[SPi] : vi = min
n∑
j=1

(cij + uj)xij

s.t
n∑
j=1

wijxij ≤ bi

xij ∈ {0, 1}

The Lagrangian bound in this case is
∑m

i=1 vi −
∑n

j=1 uj. The best bound is the

solution of the Lagrangian master problem:

[MP2] : max
m∑
i=1

θi −
n∑
j=1

uj

s.t θi −
n∑
j=1

xhijuj ≤
n∑
j=1

cijx
h
ij ∀h ∈ Hi, i ∈ I

uj ≥ 0 ∀j ∈ J

where Hi are the index sets of feasible solutions to [SPi].
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Chapter 4

Improved Lagrangian Approach

In this chapter, we present a general framework for the improved Lagrangian ap-

proach. We then apply it to the GAP and present the two different methodologies

we devise.

4.1 General Framework

Consider the general MIP from Chapter 2:

[P ] : min cTx

s.t. Ax ≥ b

Bx ≥ d

x ≥ 0

xj integer ∀j ∈ J
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and the corresponding Lagrangian subproblem (SP ):

[SP (λ)] : min (cT − λTA)x

s.t. Bx ≥ d

x ≥ 0, xj integer ∀j ∈ J

The main idea behind the improved approach is to use information based on sub-

problem solutions to generate valid cuts that are added back to the subproblem.

This is based on checking their feasibility with respect to the relaxed constraints.

One potential drawback of this approach is that adding cuts to SP may make

it more difficult to solve to optimality. To counter this drawback, we propose few

modifications. Instead of solving SP to optimality, as in the standard Lagrangian

approach, a time limit on SP solution is imposed. To maintain the validity of the

Lagrangian lower bound, a lower bound on the solution of SP is used instead of the

optimal value. For example in Gurobi, the MIPGap is used to obtain a lower bound.

If SP value obtained with a solution time limit is 100, with MIPGap of 5% from

Gurobi, then 100(1− 0.05) = 95 is used as a lower bound. Hence, these adjusted SP

values at each cutting plane iteration can be used to update lb. This also implies

that lb and ub may never converge as SP is not being solved to optimality. Therefore,

the procedure is terminated when the Lagrangian multipliers become stagnant over

a certain number of cutting plane iterations, indicating no change in the SP solution

cuts being added to MP. The value of lb at termination is a valid lower bound. We

only employ this stopping criterion and LB estimate when a time limit is imposed

on the solution of SP, and hence may not be solved to optimality.
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4.2 Application to the GAP

We apply the general approach discussed above to develop two methodologies for

the GAP. In our case we work with the first form of LR of the GAP, presented in

Section 3.2, which is obtained by dualizing the capacity constraints (3.2) with the

Lagrangian multipliers λi,≥ 0, i ∈ I. We get the following SP:

[SP ] : min
m∑
i=1

n∑
j=1

(cij + λiwij)xij

s.t
m∑
i=1

xij = 1 ∀j ∈ J

xij ∈ {0, 1}

For our methodologies, we do not decompose SP further into j subproblems as

shown in Section 3.2 as the addition of valid cuts does not allow decomposability.

The corresponding Lagrangian master problem is:

[MP ] : zMP = max θ −
m∑
i=1

λibi

s.t θ ≤
m∑
i=1

(cij + λiwij)x
h
ij ∀h ∈ H

λi ≥ 0, i ∈ I

where H is the index set of feasible solutions to SP .

Solutions from the subproblem are checked for feasibility with respect to the

capacity constraints. If the capacity of any knapsack is violated, that SP solution is

infeasible for the GAP. To eliminate this infeasible solution and to push future SP

solutions towards feasibility for GAP, several schemes of generating valid cuts can
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be used. One such scheme of generating cuts is based on minimal cover inequalities

that we have employed in our methodology. An illustration and general procedure

for generating the minimal cover inequalities is presented in the following section.

4.2.1 Minimal Cover Inequalities

The cuts we add to SP are minimal cover inequalities. Following is an illustration of

a minimal cover inequality generated for a particular knapsack. Let us assume that

in SP solution, the following items have been allocated to a knapsack with capacity

b1 = 50:

Item Weight

1 10
2 15
3 20
4 30
5 40
6 50

It is evident that since the total weight is 165, this solution is not feasible for the

GAP because the capacity is violated. If we were to maximize the number of items

in the knapsack then at most three items can fit in the knapsack. Thus the minimal

cover inequality for this knapsack is:

x11 + x12 + x13 + x14 + x15 + x16 ≤ 3

This type of inequality ensures that from a set of items, Si, assigned to knapsack

i, the total number of items in the knapsack cannot exceed the maximum number

that it can contain. The general idea to generate minimal cover inequalities is to
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sort the items in order of increasing weight and count how many would fit in the

knapsack. The following algorithm summarizes the procedure.

Algorithm 1 Minimal Cover Inequalities Generation Procedure

Notation:
Si: set of items j assigned to knapsack i in SP solution, sorted in increasing order
of weight wij
bi: capacity of knapsack i

initialize count = 0
for item j ∈ Si do

while wij < bi do
count = count+ 1
bi = bi − wij

end while
Add inequality (

∑
j∈Si

xij ≤ count) to SP

end for
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4.3 Proposed Lagrangian approaches

Based on the improved Lagrangian approach discussed in section 4.1, we develop two

approaches for the GAP: Modified Lagrangian and Feasible Lagrangian approach.

Modified Lagrangian approach has two variants: with accumulation of minimal cover

inequalities and with restart.

4.3.1 Modified Lagrangian approach

This method begins with the standard Lagrangian procedure. Once the upper bound

obtained from MP, ub, is within 10% of the lower bound obtained from SP, lb, the SP

solution is checked for feasibility to GAP. In the case of infeasibility, minimal cover

inequalities are generated and added to SP. SP is then solved again with the newly

added cuts. To solve SP quickly, a time limit, tLim, is imposed. The generation of

cover inequalities and the solution of subproblems continues until a feasible solution

is found or a certain number of these iterations, k, is achieved. As SP is not solved

to optimality, the lower bound is adjusted based on the optimality gap.

Once the iterative solution of SP concludes, cut based on the last SP solution

is added to MP. This completes one iteration of the cutting plane method. The

complete procedure is stopped when the Lagrangian multipliers, λ, stay stagnant

over a certain number of cutting plane iterations.

We test two variants of this approach:

1. Modified Lagrangian approach with cut accumulation: Minimal cover inequali-

ties added in SP are carried forward from one cutting plane iteration to another,

i.e., cuts keep accumulating in SP throughout the algorithm.
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2. Modified Lagrangian approach with restart: Minimal cover inequalities are

discarded when moving from one cutting plane iteration to the next, i.e., when

the next SP is solved with updated λ values, it does not contain any inequalities

from the previous iterations.

Modified Lagrangian approach with cut accumulation

The algorithm steps of each approach are presented next.

1. Step 1: Start with the standard Lagrangian approach, iterating between MP

and SP until the ub is within 10% of lb.

2. Step 2: Solve SP and check if its solution is feasible to the GAP.

3. Step 3: If SP solution is not feasible then generate minimal cover inequalities.

4. Step 4: Solve SP with time limit tLim.

5. Step 5: Use the objective value of SP, adjusted with the optimality gap, to

update the lower bound, lb.

6. Step 6: Keep solving SP and adding minimal cover inequalities until a feasible

solution is reached or a given number of iterations, k, is performed.

7. Step 7: Add a cut to MP based on the last solution obtained from SP, and

solve MP to get ub and new Lagrangian multipliers λ.

8. Step 8: Terminate if (ub−lb)/ub < ε or when the Lagrangian multiplier values

become stagnant over a certain number of iterations (5 in our case).

9. Step 9: Otherwise, use the new values of λ and repeat Step 2-8, using SP

with all the minimal cover inequalities added in the previous iterations.
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Modified Lagrangian approach with restart

In this version all the algorithm steps from (1)-(7) are the same except that at Step

8, when SP is solved again with new Lagrangian multiplier values λ, all the minimal

cover inequalities added in SP are discarded, i.e, in the new iteration, SP does not

contain any minimal cover inequalities from the previous iterations.
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Figure 4.1: Modified Lagrangian approach
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4.3.2 Feasible Lagrangian approach

In the Feasible Lagrangian approach, the minimal cover inequalities are added to SP

until a feasible solution to GAP is obtained. Then the SP with all the added minimal

cover inequalities is used in the cutting plane method to generate improved bounds.

This approach differs from Modified Lagrangian approach, as instead of strengthening

the subproblem with valid cuts at every Lagrangian iteration, a strengthened SP is

obtained first and then the regular Lagrangian procedure is performed.

The initial Lagrangian multipliers are set to the optimal dual variables of the

relaxed constraints in the linear programming (LP) relaxation of GAP. We exploit

the fact that relaxing the capacity constraints leads to a subproblem with integrality

property. Therefore, first the LP relaxation of GAP is solved to initialize the La-

grangian multipliers. Also, in the cutting plane method, SP is solved to optimality

without any time limit.

The steps of the algorithm are:

Step 1: Solve LP relaxation of GAP:

[GAP ] min
m∑
i=1

n∑
j=1

cijxij (4.1)

s.t
n∑
j=1

wijxij ≤ bi ∀i ∈ I (4.2)

m∑
i=1

xij = 1 ∀j ∈ J (4.3)

0 ≤ xij ≤ 1 (4.4)

Step 2: Set the Lagrangian multipliers, λi, to the optimal dual values, µi, of

the capacity constraints (4.2).
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Step 3: Solve SP and check the solution for violation of capacity constraints.

Step 4: If not feasible, add minimal cover inequalities until a feasible solution

is found.

Step 5: Add a cut to MP based on the feasible SP solution.

Step 6: Start regular Lagrangian procedure, iterating between SP and MP.

Figure 4.2: Feasible Lagrangian approach
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Chapter 5

Computational Results

In this chapter, the proposed methodologies are tested on benchmark instances.

First, we describe the test instances used in the experiments. Second, we present

and analyze results. Finally, we compare the results and derive insights.

5.1 Data

The data used for testing is generated based on a scheme presented by Martello and

Toth (1981). The scheme defines four different methods of generating data, type A

to D, varying in terms of difficulty. In addition, we also use the instances, type E,

presented by Yagiura et al.(2006). The generation scheme is as follows.

• Type A: wij are integers from U(5, 25), cij are integers from U(10, 50), and

bi = 0.6(n/m)15 + 0.4 max
i∈I

∑
j∈J, Ij=i

wij, where Ij = min {i|cij ≤ ckj ∀ k ∈ I}.

• Type B: wij and cij are the same as Type A and bi is set to 70% of the value

given in Type A.
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• Type C: wij and cij are the same as Type A and bi = 0.8
∑

j∈J wij/m.

• Type D: wij are integers from U(1, 100), cij = 111 − wij + e1, where e1 are

integers from U(−10, 10), and bi = 0.8
∑

j∈J wij/m.

• Type E: wij = 1−10lne2, where e2 are numbers from U(0, 1], cij = 1000/wij−

10e3, where e3 are numbers from U(0, 1), and bi = 0.8
∑

j∈J wij/m

These types are ordered based on the level of difficulty. In type D and E, cij and wij

are inversely correlated, which makes them harder to solve compared to the other

three types. To better asses the effectiveness of our methodologies, we test them on

the more difficult types C, D, and E.

Our data is divided into small and medium size based on the number of knap-

sacks, m, and the number of items, n. We use the data available online, that was

generated based on the scheme mentioned above. Small instances are from Cattrysse

et al.(1994) and belong to type C. For these instances n ranges from 15 to 60 and

m ranges from 5 to 10. There are five instances for each problem size (m,n). In the

results tables for the small instances, we report the average results of five instances

for each problem size. Medium instances of types C and D are from Chu and Beasley

(1997) and type E instances are from Yagiura et al.(2006). For these instances, n

ranges from 100 to 200 and m ranges from 5 to 20.

5.2 Numerical Results

This section reports the results from testing our proposed methodologies presented in

Chapter 4. The solution approaches are coded in Python and solved using Gurobi 8.0

on a computer with 2.6 GHz Inter Core i7 and 8GB of memory. As adding minimal
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cover inequalities to SP makes it more difficult to solve to optimality quickly, we test

our methods with different time limits on SP solution, tLim. We use tLim ∈ {1, 5}

seconds for small instances and tLim ∈ {5, 10} seconds for medium instances. In

the experiments we also vary the number of minimal cover inequalities generation

iterations, k, to capture the effect of increasing the number of these inequalities on

the lower bound and on feasible solutions. We set k ∈ {5, 10, 15} for small instances

and k ∈ {20, 30, 40} for medium instances.

The following notations are used to report the results in the tables:

• Iter: Total number of cutting plane iterations performed.

• LB: Lower bound obtained by the proposed approach.

• Lag: Lower bound obtained from the standard Lagrangian method. It is used

as benchmark for LB.

• Sol: Best feasible solution obtained by the proposed approach.

• BSol: Best known solutions. For small instances, the solution is obtained using

Gurobi. For medium instances, best known solution from Yagiura et al.(2006)

is used.

• GapR: Refers to the reduction in the optimality gap achieved by LB. It is

calculated by
(GapLag−GapLB)

GapLag
× 100, where Gaplag = BSol − Lag and GapLB =

BSol − LB.

• GapS: Refers to the percentage gap between Sol and BSol calculated by

Sol−BSol
BSol

× 100.

• GapO: Refers to the percentage gap between Sol and LB calculated by Sol−LB
LB
×

100.
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• Clckt: Total clock time used. (Since, the MP solution time is negligible,

requiring just few milliseconds, Clckt is mostly total clock time used by the

SP).

• CPUt: Total CPU time used.

• Cuts: Total minimal cover inequalities accumulated in the SP for the cut

accumulation method.

• Feas: Total number of small instances for which a feasible solution was found

by the method.

• Opt: Total number of small instances for which optimal solutions were found

by the proposed approach.
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5.2.1 Results of Modified Lagrangian approach with cut ac-

cumulation

Table 5.1 reports the average results obtained from solving five instances for each

problem size (m,n) using the Modified Lagrangian approach with cut accumulation.

It can be observed that there is a significant improvement in the lower bounds,

measured by GapR, achieving on average more than 60% improvement for all the

combinations of k and tLim values. The highest average improvement in lower

bounds of 76.4% is attained for k = 15 and tLim = 5. The method also yields

quality feasible solutions, with on average only 0.3% GapS, i.e., the gap between

Sol and BSol. The quality of feasible solutions does not vary much when k and

tLim values are increased. However, the setting with k = 15 and tLim = 5 is able

to find optimal solutions for 2 out of 5 instances on average, for each problem size

(m,n), that is the highest among all the settings. For the largest small instance,

(m = 10,n = 60), the lower bound improvement, GapR, is decreased from 68.7% to

19.7% when the value of k is increased from 5 to 15. The decline in GapR is observed

because SP becomes more difficult to solve near optimality in the given solution time

limit when the number of cover inequalities increases. Similarly, for any value of k,

when tLim is increased from 1 to 5 seconds, an average improvement of around 10%

is observed in GapR.

Similar observations can be made in the case of medium instances. In Table 5.2

the highest average GapR of 5.2% in lower bounds is achieved by (k = 20, tLim = 5)

for type C instances. As type D and E instances are more difficult to solve compared

to type C instances, adding inequalities in SP makes them difficult to solve closer

to optimality in limited solution time, leading to worse lower bounds and negative

GapR. In terms of finding the feasible solutions, for all type C instances and for 4
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k = 5 cuts, tLim = 1 k = 5 cuts, tLim = 5
n-m Iter GapR GapS GapO Clckt CPUt Cuts Feas Opt Iter GapR GapS GapO Clckt CPUt Cuts Feas Opt
5-15 13 67.3% 0.0% 0.8% 1 1 75 4 4 13 67.3% 0.0% 0.8% 1 2 75 4 4
5-20 16 64.4% 0.8% 1.6% 1 3 92 5 3 16 64.4% 0.8% 1.6% 1 3 92 5 3
5-25 20 68.1% 0.2% 0.6% 6 16 186 5 2 20 68.1% 0.2% 0.6% 6 17 186 5 2
5-30 25 51.1% 0.6% 1.5% 7 18 208 5 1 25 51.1% 0.6% 1.5% 7 18 208 5 1
8-24 19 89.2% 0.3% 0.4% 5 11 171 5 2 19 89.2% 0.3% 0.4% 5 11 171 5 2
8-32 25 78.3% 0.2% 0.4% 16 47 316 5 3 25 78.3% 0.2% 0.4% 17 47 316 5 3
8-40 41 66.9% 0.3% 0.6% 82 274 581 5 1 39 77.6% 0.2% 0.5% 108 383 567 5 2
8-48 57 43.1% 0.2% 0.6% 196 648 928 3 0 55 62.5% 0.3% 0.6% 313 1136 853 3 1
10-30 35 75.6% 0.3% 0.9% 53 185 410 4 0 33 87.8% 0.3% 0.6% 72 259 394 3 0
10-40 43 78.3% 0.1% 0.3% 81 272 594 5 3 38 80.5% 0.0% 0.3% 117 419 580 5 4
10-50 47 86.0% 0.3% 0.4% 107 355 694 5 1 45 107.2% 0.3% 0.3% 173 617 694 5 1
10-60 68 36.6% 0.1% 0.5% 285 888 1356 5 1 70 68.7% 0.2% 0.4% 811 2960 1299 5 0
Min 36.6% 0.0% 0.3% 1 1 3 0 51.1% 0.0% 0.3% 1 2 3 0
Max 89.2% 0.8% 1.6% 285 888 5 4 107.2% 0.8% 1.6% 811 2960 5 4
Avg 67.1% 0.3% 0.7% 70 226 4.7 1.8 75.2% 0.3% 0.7% 136 489 4.6 1.9

k = 10 cuts, tLim = 1 k = 10 cuts, tLim = 5
5-15 12 71.4% 0.1% 1.1% 1 3 94 5 4 12 71.4% 0.1% 1.1% 1 3 94 5 4
5-20 15 81.4% 1.3% 1.6% 2 5 127 5 2 15 81.4% 1.3% 1.6% 2 5 127 5 2
5-25 18 68.1% 0.2% 0.6% 14 42 274 5 2 18 68.1% 0.2% 0.6% 14 42 274 5 2
5-30 22 61.8% 0.3% 1.0% 17 51 300 4 1 22 61.8% 0.3% 1.0% 17 51 300 4 1
8-24 16 85.2% 0.1% 0.3% 8 22 219 4 3 16 85.2% 0.1% 0.3% 8 21 219 4 3
8-32 23 78.3% 0.3% 0.5% 30 94 411 5 4 23 78.3% 0.3% 0.5% 31 94 411 5 4
8-40 42 55.8% 0.2% 0.7% 184 610 909 5 1 36 83.5% 0.2% 0.4% 291 1068 810 5 1
8-48 53 30.7% 0.4% 1.0% 350 1111 1456 3 0 54 60.3% 0.5% 0.9% 1097 4065 1375 4 0
10-30 31 77.8% 0.3% 0.7% 72 252 477 5 0 28 89.7% 0.3% 0.5% 144 538 470 5 0
10-40 38 62.3% 0.1% 0.5% 159 527 901 5 3 37 72.5% 0.1% 0.4% 403 1494 860 5 3
10-50 46 77.8% 0.3% 0.6% 214 688 1075 5 1 43 99.2% 0.3% 0.4% 536 1989 986 5 1
10-60 61 13.0% 0.3% 0.8% 485 1431 2142 5 1 67 40.0% 0.2% 0.5% 2032 7347 2299 5 0
Min 13.0% 0.1% 0.3% 1 3 3 0 40.0% 0.1% 0.3% 1 3 4 0
Max 85.2% 1.3% 1.6% 485 1431 5 4 99.2% 1.3% 1.6% 2032 7347 5 4
Avg 63.6% 0.3% 0.8% 128 403 4.7 1.8 74.3% 0.3% 0.7% 381 1393 4.8 1.8

k = 15 cuts, tLim = 1 k = 15 cuts, tLim = 5
5-15 11 74.9% 0.0% 0.6% 2 4 107 4 4 11 74.9% 0.0% 0.6% 2 4 107 4 4
5-20 14 93.9% 1.0% 1.3% 3 8 147 5 2 14 93.9% 1.0% 1.3% 3 8 147 5 2
5-25 19 86.0% 0.2% 0.4% 30 94 382 5 2 19 86.0% 0.2% 0.4% 30 94 382 5 2
5-30 22 59.3% 0.3% 1.1% 34 108 399 5 2 21 62.1% 0.3% 1.0% 34 104 400 5 2
8-24 16 99.8% 0.3% 0.3% 9 24 235 5 2 16 99.8% 0.3% 0.3% 9 25 235 5 2
8-32 25 89.4% 0.1% 0.3% 71 231 553 5 3 24 89.4% 0.2% 0.3% 81 275 555 5 3
8-40 36 50.8% 0.1% 0.6% 236 781 1117 5 3 35 75.6% 0.2% 0.4% 520 1912 1036 5 1
8-48 55 11.7% 0.4% 1.2% 618 1878 2098 4 0 55 53.3% 0.3% 0.7% 2089 7692 2012 5 2
10-30 29 76.1% 0.3% 0.8% 107 372 615 5 1 31 92.2% 0.3% 0.5% 331 1262 634 5 1
10-40 35 64.7% 0.1% 0.5% 220 738 1072 5 3 34 78.3% 0.1% 0.3% 540 2015 982 5 3
10-50 43 65.5% 0.5% 0.9% 293 931 1286 5 0 42 91.2% 0.4% 0.5% 848 3143 1236 5 1
10-60 53 16.4% 0.2% 0.7% 671 1935 2869 4 0 70 19.7% 0.1% 0.6% 3285 11643 3121 5 1
Min 11.7% 0.0% 0.3% 2 4 4 0 19.7% 0.0% 0.3% 2 4 4 1
Max 99.8% 1.0% 1.3% 671 1935 5 4 99.8% 1.0% 1.3% 3285 11643 5 4
Avg 65.7% 0.3% 0.7% 191 592 4.8 1.8 76.4% 0.3% 0.6% 648 2348 4.9 2.0

Table 5.1: Results of the cut accumulation approach on small instances

out of 6 type D and E instances, feasible solutions are found. The solutions can be

considered high quality as the average GapS is around 1% for type C and E instances,
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and around 4% for type D instances on average. However, the computational times

for this method are very high with an average of around 20,000 seconds of CPU time

used to solve the instances.

Problem Iter LB Lag GapR Sol BSol GapS GapO Clockt CPUt Cuts
c5-100 37 1930 1924 85.7% 1945 1931 0.7% 0.8% 331 1130 1442
c10-100 77 1386 1388 -14.3% 1409 1402 0.5% 1.7% 3360 13267 4084
c20-100 108 1220 1219 4.2% 1252 1243 0.7% 2.6% 4848 17990 5373
c5-200 50 3453 3451 40.0% 3467 3456 0.3% 0.4% 458 1497 1799
c10-200 119 2794 2796 -20.0% 2823 2806 0.6% 1.0% 8920 27889 9550
c20-200 204 2368 2377 -64.3% 2422 2391 1.3% 2.3% 17122 46986 28296
Min -64.3% 0.3% 0.4% 331 1130
Max 85.7% 1.3% 2.6% 17122 46986
Avg 5.2% 0.7% 1.5% 5840 18126

d5-100 57 6346 6346 0.0% 6424 6353 1.1% 1.2% 1128 4611 2371
d10-100 98 6324 6324 0.0% 7130 6355 12.2% 12.7% 8487 31934 9941
d20-100 170 6115 6143 -41.2% - 6211 - - 14153 44505 22275
d5-200 67 12736 12737 -14.3% 12814 12744 0.5% 0.6% 773 2153 3079
d10-200 142 12418 12419 -5.3% 12557 12438 1.0% 1.1% 13092 44418 13939
d20-200 287 12214 12218 -7.8% - 12269 - - 29164 66597 53319
Min -41.2% 0.5% 0.6% 773 2153
Max 0.0% 12.2% 12.7% 29164 66597
Avg -11.4% 3.7% 3.9% 11133 32370

e5-100 55 12653 12642 28.2% 12831 12681 1.2% 1.4% 624 2418 1855
e10-100 130 11541 11544 -9.1% 11794 11577 1.9% 2.2% 7999 28819 7807
e20-100 215 8305 8360 -66.3% - 8443 - - 14011 41564 23558
e5-200 65 24922 24922 0.0% 25002 24930 0.3% 0.3% 225 406 2110
e10-200 146 23291 23294 -23.1% 23559 23307 1.1% 1.2% 11154 34974 12626
e20-200 324 22319 22356 -160.9% - 22379 - - 29253 60297 56654
Min -160.9% 0.3% 0.3% 225 406
Max 28.2% 1.9% 2.2% 29253 60297
Avg -38.5% 1.1% 1.3% 10544 28080

Table 5.2: Results of cut accumulation approach on medium instances, k = 20 and
tLim = 5 seconds

Table 5.3 shows the results for increasing the time limit on the solution of SP,

tLim, from 5 to 10 seconds while keeping the number of cover inequalities generation

iterations k = 20, that is same as in the previous Table 5.2. We find that allowing

more solution time for SP leads to an average improvement of around 20% in GapR

for type C instances. For types D and E, the average GapR is still negative but

it has improved. For type E instances the average GapR reduced from -38.5% to

-26.6% due to increase in tLim. In terms of finding feasible solutions, 2 out of

5 instances of type C for which a feasible solution was found with tLim = 5, no
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feasible solution was found by increasing tLim to 10. For one instance in type D, a

feasible solution was found with tLim = 10, for which no feasible solution was found

with tLim = 5. This shows that by increasing the SP solution time, the likelihood of

finding a feasible solution is not necessarily increased. In terms of quality the feasible

solutions, increasing tLim from 5 to 10 seconds leads to noticeable improvement in

type D instances with average GapS reducing from 3.7% to 1.5%. For type C and

E, the average GapS remained almost the same.

Problem Iter LB Lag GapR Sol BSol GapS GapO Clockt CPUt Cuts
c5-100 37 1930 1924 85.7% 1945 1931 0.7% 0.8% 331 1127 1442
c10-100 69 1395 1388 50.0% 1409 1402 0.5% 1.0% 5919 25747 4100
c20-100 103 1226 1219 29.2% - 1243 - - 8754 39058 5203
c5-200 50 3453 3451 40.0% 3467 3456 0.3% 0.4% 462 1518 1799
c10-200 129 2795 2796 -10.0% 2834 2806 1.0% 1.4% 18576 62567 10476
c20-200 215 2369 2377 -57.1% - 2391 - - 35666 107339 29377
Min -57.1% 0.3% 0.4% 331 1127
Max 85.7% 1.0% 1.4% 35666 107339

Average 23.0% 0.6% 0.9% 11618 39559
d5-100 52 6346 6346 0.0% 6424 6353 1.1% 1.2% 696 3460 2104
d10-100 121 6326 6324 6.5% 6401 6355 0.7% 1.2% 20977 83312 11539
d20-100 167 6124 6143 -27.9% 6464 6211 4.1% 5.6% 26852 96991 23274
d5-200 61 12737 12737 0.0% 12811 12744 0.5% 0.6% 778 1746 2875
d10-200 129 12418 12419 -5.3% 12596 12438 1.3% 1.4% 20008 78838 12294
d20-200 278 12209 12218 -17.6% - 12269 - - 52946 142571 52413
Min -27.9% 0.5% 0.6% 696 1746
Max 6.5% 4.1% 5.6% 52946 142571

Average -7.4% 1.5% 2.0% 20376 67820
e5-100 58 12654 12642 30.8% 12831 12681 1.2% 1.4% 777 3159 2101
e10-100 142 11546 11544 6.1% 11752 11577 1.5% 1.8% 19481 73646 9077
e20-100 207 8301 8360 -71.1% - 8443 - - 25749 85699 22191
e5-200 65 24922 24922 0.0% 25002 24930 0.3% 0.3% 264 413 2110
e10-200 146 23293 23294 -7.7% - 23307 - - 20998 75985 11604
e20-200 309 22329 22356 -117.4% - 22379 - - 51539 131491 50764
Min -117.4% 0.3% 0.3% 264 413
Max 30.8% 1.5% 1.8% 51539 131491

Average -26.6% 1.0% 1.2% 19801 61732

Table 5.3: Results of the cut accumulation approach on medium instances, k = 20
and tLim = 10 seconds

Table 5.4 shows the results from increasing the value of k from 20 to 40 while

the solution time limit on SP is the same, 5 seconds, so as to capture the effect of

increasing the number of minimal cover inequalities in SP. The new setting leads

to worse lower bounds compared to previous settings, with average GapR reducing
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from 5.2% (k = 20, tLim = 5) to -16%(k = 40, tLim = 5) for type C instances.

However, there is an improvement in the feasible solutions in all types of instances,

with the average GapS for type D being reduced from 3.7% to 1.9%.

Problem Iter LB Lag GapR Sol BSol GapS GapO Clockt CPUt Cuts
c5-100 46 1928 1924 57.1% 1931 1931 0.0% 0.2% 2137 7819 2811
c10-100 73 1386 1388 -14.3% 1410 1402 0.6% 1.7% 8214 27914 8809
c20-100 106 1221 1219 8.3% 1251 1243 0.6% 2.5% 8113 28182 7903
c5-200 57 3453 3451 40.0% 3463 3456 0.2% 0.3% 3688 12627 3705
c10-200 99 2793 2796 -30.0% 2824 2806 0.6% 1.1% 14611 42289 16027
c20-200 162 2355 2377 -157.1% - 2391 - - 24518 61910 43327
Min -157.1% 0.0% 0.2% 2137 7819
Max 57.1% 0.6% 2.5% 24518 61910
Avg -16.0% 0.4% 1.1% 10214 30124

d5-100 52 6346 6346 0.0% 6386 6353 0.5% 0.6% 4044 17737 4054
d10-100 105 6315 6324 -29.0% 6440 6355 1.3% 2.0% 19026 61853 18458
d20-100 158 6108 6143 -51.5% 6593 6211 6.2% 7.9% 25209 70224 42683
d5-200 64 12736 12737 -14.3% 12779 12744 0.3% 0.3% 4159 12019 5310
d10-200 142 12415 12419 -21.1% 12564 12438 1.0% 1.2% 29309 78672 29699
d20-200 221 12205 12218 -25.5% - 12269 - - 42199 73879 77635
Min -51.5% 0.3% 0.3% 4044 12019
Max 0.0% 6.2% 7.9% 42199 78672
Avg -23.6% 1.9% 2.4% 20658 52397

e5-100 54 12654 12642 30.8% 12831 12681 1.2% 1.4% 3060 12175 3448
e10-100 124 11535 11544 -27.3% 11797 11577 1.9% 2.3% 16668 52600 15434
e20-100 169 8243 8360 -141.0% - 8443 - - 17157 49372 31887
e5-200 70 24921 24922 -12.5% 25045 24930 0.5% 0.5% 3845 10875 5411
e10-200 134 23291 23294 -23.1% - 23307 - - 20763 58797 21091
Min -141.0% 0.5% 0.5% 3060 10875
Max 30.8% 1.9% 2.4% 20763 58797
Avg -32.8% 1.4% 1.6% 13692 39369

Table 5.4: Results of the cut accumulation approach on medium instances, k = 40
and tLim = 5 seconds

Hence, drawing from the results for the Modified Lagrangian approach with accu-

mulation of cover inequalities, we observe that, for the small and medium instances

and for different combinations of k and tLim values, increasing the number of mini-

mal cover inequalities does certainly lead to improvement in lower bounds and quality

feasible solutions, given that the SP is solved closer to optimality.

38



5.2.2 Results of Modified Lagrangian approach with restart

In this section, we present the results for a slightly different version of the previous

methodology. In this version the minimal cover inequalities that are added to SP in

one iteration of the cutting plane method, are not carried forward to the following

iterations. Because the cover inequalities are not accumulated, the number of these

inequalities in SP can grow to a maximum of m× k. This is a much smaller number

of cuts compared to the previous method where the number of inequalities in SP, in

the last cutting plane iteration, can grow to a maximum of m× k× iter, where iter

is the total number of cutting plane iterations performed. Hence, we hope to obtain

improved lower bounds and good feasible solutions from this method with less SP

solution time.

Table 5.5 presents the results for the small instances. In terms of GapR, it can be

observed that this method achieves as much as 57.6% improvement on average in the

lower bounds for the setting (k = 15, tLim = 1), but the improvement is around 20%

less when compared to the cut accumulation method (k = 15, tLim = 5). When

the value of k is increased from 5 to 15, the average GapR improves by around

17.6%. In this method, finding a feasible solution is less likely compared to the cut

accumulation method. For k = 5 no feasible solutions are found for any instances for

6 out 12 problem sizes. As k increases from 5 to 15, the number of times an optimal

solution is found on average increases from 0.42 to 1.17. However, it is still lower

compared to the cut accumulation method which finds an optimal solution for 2 out

of 5 times on average, in the best case (k = 15, tLim = 5). In terms of the quality of

solutions, the best average GapS achieved by the current method is slightly worse,

0.4% compared to 0.3% for the cut accumulation method. Although this approach

does not perform as well as the accumulation method on all the metrics discussed
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k = 5 cuts, tLim = 1 k = 5 cuts, tLim = 5
n-m Iter GapR GapS GapO Clckt CPUt Cuts Feas Opt Iter GapR GapS GapO Clckt CPUt Cuts Feas Opt
5-15 20.6 39.6% 0.0% 1.3% 1 1 29 2 2 20.6 39.6% 0.0% 1.3% 1 1 29 2 2
5-20 22.4 41.7% 1.6% 2.9% 2 1 36.6 3 2 22.4 41.7% 1.6% 2.9% 2 1 36.6 3 2
5-25 26.6 31.2% 0.8% 1.6% 2 2 38.8 3 1 26.6 31.2% 0.8% 1.6% 2 2 38.8 3 1
5-30 33.6 26.4% 2.8% 4.3% 3 3 43.6 3 0 33.6 26.4% 2.8% 4.3% 3 3 43.6 3 0
8-24 34.2 52.2% 1.5% 2.1% 4 3 43.2 1 0 34.2 52.2% 1.5% 2.1% 4 3 43.2 1 0
8-32 39 48.1% - - 5 5 57.8 0 0 39 48.1% - - 5 4 57.8 0 0
8-40 54 38.5% - - 5 4 64 0 0 54 38.5% - - 5 4 64 0 0
8-48 70.6 25.0% 0.8% 1.1% 7 6 68.4 1 0 70.6 25.0% 0.8% 1.1% 7 7 68.4 1 0
10-30 51.8 43.6% - - 4 4 57.8 0 0 51.8 43.6% - - 4 4 57.8 0 0
10-40 72 43.9% - - 7 6 66 0 0 72 43.9% - - 7 6 66 0 0
10-50 61.6 47.1% - - 7 6 76.8 0 0 61.6 47.1% - - 7 6 76.8 0 0
10-60 90.6 42.3% - - 12 11 88.8 0 0 90.6 42.3% - - 12 12 88.8 0 0
Min 25.0% 0.0% 1.1% 1 1 0 0 25.0% 0.0% 1.1% 1 1 0 0
Max 52.2% 2.8% 4.3% 12 11 3 2 52.2% 2.8% 4.3% 12 12 3 2
Avg 40.0% 1.3% 2.2% 5 4 1.08 0.42 40.0% 1.3% 2.2% 5 4 1.08 0.42

k = 10 cuts, tLim = 1 k = 10 cuts, tLim = 5
5-15 17 53.4% 0.0% 0.9% 2 2 39.4 2 2 17 53.4% 0.0% 0.9% 2 2 39.4 2 2
5-20 22 55.8% 0.1% 1.2% 3 3 46.6 5 4 22 55.8% 0.1% 1.2% 3 3 46.6 5 4
5-25 23 40.7% 0.6% 1.2% 4 5 50 4 1 23 40.7% 0.6% 1.2% 4 5 50 4 1
5-30 36.4 31.8% 3.3% 4.6% 7 9 54.6 3 0 36.4 31.8% 3.3% 4.6% 7 8 54.6 3 0
8-24 27.6 61.2% 0.7% 1.1% 5 7 58 3 0 27.6 61.2% 0.7% 1.1% 5 6 58 3 0
8-32 45.8 55.9% 1.0% 1.5% 13 20 74.8 5 2 45.8 55.9% 1.0% 1.5% 13 19 74.8 5 2
8-40 45.6 52.1% 0.2% 0.5% 9 15 80.6 2 0 45.6 52.1% 0.2% 0.5% 9 15 80.6 2 0
8-48 67.6 30.4% - - 17 33 85.6 0 0 67.6 30.4% - - 17 32 85.6 0 0
10-30 49.8 51.7% 0.4% 0.8% 9 14 80.8 1 0 49.8 51.7% 0.4% 0.8% 9 14 80.8 1 0
10-40 64.8 49.0% - - 15 25 88.8 0 0 64.8 49.0% - - 15 24 88.8 0 0
10-50 58.4 69.6% - - 14 23 94.2 0 0 58.4 69.6% - - 14 23 94.2 0 0
10-60 96 42.3% 0.3% 0.5% 32 62 109 1 0 96 42.3% 0.3% 0.5% 33 62 109 1 0
Min 30.4% 0.0% 0.5% 2 2 0 0 30.4% 0.0% 0.5% 2 2 0 0
Max 69.6% 3.3% 4.6% 32 62 5 4 69.6% 3.3% 4.6% 33 62 5 4
Avg 49.5% 0.7% 1.4% 11 18 2.17 0.75 49.5% 0.7% 1.4% 11 18 2.17 0.75

k = 15 cuts, tLim = 1 k = 15 cuts, tLim = 5
5-15 15 64.5% 0.0% 0.9% 3 4 49.6 3 3 15 64.5% 0.0% 0.9% 3 4 49.6 3 3
5-20 18.6 62.8% 0.1% 1.0% 4 6 61.8 5 3 18.6 62.8% 0.1% 1.0% 4 6 61.8 5 3
5-25 24 54.0% 0.9% 1.5% 8 14 64.2 5 2 24 54.0% 0.9% 1.5% 8 14 64.2 5 2
5-30 32 34.6% 1.1% 2.4% 11 18 65.6 3 0 32 34.6% 1.1% 2.4% 11 18 65.6 3 0
8-24 26 77.7% 1.0% 1.5% 9 16 71.6 4 1 26 77.7% 1.0% 1.5% 9 16 71.6 4 1
8-32 41.4 64.8% 0.0% 0.4% 22 41 90.4 4 3 41.4 64.8% 0.0% 0.4% 22 42 90.4 4 3
8-40 53.8 57.9% 0.2% 0.5% 22 49 91.4 2 0 53.8 57.9% 0.2% 0.5% 23 49 91.4 2 0
8-48 74.8 38.2% - - 40 101 99.6 0 0 73.6 38.2% 3.6% 4.2% 41 104 100.4 1 0
10-30 49.8 58.9% 0.0% 0.2% 19 39 102.8 1 1 49.8 58.9% 0.0% 0.2% 19 39 102.8 1 1
10-40 62.6 54.5% 0.0% 0.3% 28 58 109 1 1 62.6 54.5% 0.0% 0.3% 28 57 109 1 1
10-50 63.6 72.5% 0.3% 0.5% 34 81 115.2 2 0 62.6 72.5% 0.3% 0.5% 34 80 115.4 1 0
10-60 94 48.0% 0.3% 0.5% 76 202 131.2 1 0 94.2 48.0% 1.2% 1.4% 74 202 131.6 3 0
Min 34.6% 0.0% 0.2% 3 4 0 0 34.6% 0.0% 0.2% 3 4 1 0
Max 77.7% 1.1% 2.4% 76 202 5 3 77.7% 3.6% 4.2% 74 202 5 3
Avg 57.4% 0.4% 0.9% 23 53 2.58 1.17 57.4% 0.7% 1.2% 23 53 2.75 1.17

Table 5.5: Results of the restart approach on small instances

above, it is more time efficient as expected. For this method, the highest average

CPU time taken is 53 seconds(k = 15, tLim = 5), which is around 4 times less than
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the lowest average CPU time used by the cut accumulation method 226 seconds

(k = 5, tLim = 1).

k = 20, tLim=5 seconds k = 20, tLim=10 seconds
Problem Iter LB GapR Sol GapS GapO Clckt CPUt Cuts Iter LB GapR Sol GapS GapO Clckt CPUt Cuts Lag BSol
c5-100 40 1928 57.1% 1953 1.1% 1.3% 33 78 159 40 1928 57.1% 1953 1.1% 1.3% 33 78 159 1924 1931
c10-100 98 1392 28.6% 1442 2.9% 3.6% 141 366 204 98 1392 28.6% 1442 2.9% 3.6% 124 331 204 1388 1402
c20-100 231 1230 45.8% - - - 1270 4410 264 231 1230 45.8% - - - 1176 4172 264 1219 1243
c5-200 64 3452 20.0% 3960 14.6% 14.7% 66 135 243 64 3452 20.0% 3960 14.6% 14.7% 62 115 243 3451 3456
c10-200 142 2798 20.0% 2827 0.7% 1.0% 384 1131 306 160 2798 20.0% 2821 0.5% 0.8% 468 1605 294 2796 2806
c20-200 350 2382 35.7% - - - 4795 15667 356 337 2382 35.7% - - - 5385 26932 384 2377 2391
Min 20.0% 0.7% 1.0% 33 78 20.0% 0.5% 0.8% 33 78
Max 57.1% 14.6% 14.7% 4795 15667 57.1% 14.6% 14.7% 5385 26932
Avg 34.5% 4.8% 5.2% 1115 3631 34.5% 4.8% 5.1% 1208 5539

d5-100 63 6346 0.0% 6432 1.2% 1.4% 205 959 139 53 6346 0.0% 6432 1.2% 1.4% 92 378 154 6346 6353
d10-100 162 6326 6.5% - - - 933 4102 194 131 6326 6.5% - - - 1131 5693 204 6324 6355
d20-100 310 6149 8.8% - - - 2840 12110 292 330 6149 8.8% - - - 3956 21109 290 6143 6211
d5-200 63 12737 0.0% 12814 0.5% 0.6% 60 113 261 55 12737 0.0% 12872 1.0% 1.1% 55 109 276 12737 12744
d10-200 151 12419 0.0% - - - 871 3398 297 142 12419 0.0% 12841 3.2% 3.4% 1223 6396 297 12419 12438
d20-200 365 12220 3.9% - - - 3647 12428 403 369 12220 3.9% - - - 4487 21655 393 12218 12269
Min 0.0% 0.5% 0.6% 60 113 0.0% 1.0% 1.1% 55 109
Max 8.8% 1.2% 1.4% 3647 12428 8.8% 3.2% 3.4% 4487 21655
Avg 3.2% 0.9% 1.0% 1426 5518 3.2% 1.8% 1.9% 1824 9223

e5-100 66 12646 10.3% - - - 56.1 197.6 179 58 12646 10.3% 12831 1.2% 1.5% 91.7 259.3 154 12642 12681
e10-100 159 11551 21.2% - - - 302.3 1277.7 181 150 11551 21.2% - - - 514.2 1649.3 217 11544 11577
e20-100 360 8379 22.9% - - - 4557.7 27114.9 273 356 8379 22.9% - - - 7246.8 27086.5 278 8360 8443
e5-200 59 24922 0.0% - - - 30.9 49.1 252 63 24922 0.0% - - - 57 82.5 261 24922 24930
e10-200 152 23295 7.7% - - - 386 1804.9 284 149 23295 7.7% 23748 1.9% 1.9% 675.3 2075.5 304 23294 23307
e20-200 427 22362 26.1% - - - 4322.2 22224.6 359 435 22362 26.1% - - - 8602.5 29980.2 379 22356 22379
Min 0.0% - - 30.9 49.1 0.0% 1.2% 1.5% 82.5 154.0
Max 26.1% - - 4557.7 27114.9 26.1% 1.9% 1.9% 29980.2 379.0
Avg 14.7% - - 1609.2 8778.1 14.7% 1.5% 1.7% 10188.9 265.5

Table 5.6: Results of the restart approach on medium instances, k = 20 and tLim
= {5,10}

For the medium instances, the results confirm the observations from the small

instances. Increasing the k, from 20 (Table 5.5) to 30 (Table 5.6) leads to slight

improvement of 3% percent in the lower bounds for type C instances, while no

improvement is found for type D instances. Also, improvement in the quality of

feasible solutions is observed as the GapS reduces from 5.2% to 0.9% for type C

instances, when k increases from 20 to 30. Increasing the SP solution time limit,

tLim, from 5 to 10 seconds, does not lead to any notable improvement in the metrics.

When compared to the cut accumulation method for type C medium instances, Table
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k = 30, tLim=5 seconds k = 30, tLim=10 seconds
Problem Iter LB GapR Sol GapS GapO Clckt CPUt Cuts Iter LB GapR Sol GapS GapO Clckt CPUt Cuts Lag BSol
c5-100 40 1928 57.1% 1953 1.1% 1.3% 75 215 176 40 1928 57.1% 1953 1.1% 1.3% 76 214 176 1924 1931
c10-100 93 1393 35.7% - - - 441 1456 233 93 1393 35.7% - - - 438 1430 233 1388 1402
c20-100 230 1231 50.0% - - - 5193 21153 341 218 1231 50.0% - - - 5892 26608 346 1219 1243
c5-200 74 3452 20.0% 3474 0.5% 0.6% 144 369 254 74 3452 20.0% 3474 0.5% 0.6% 148 380 254 3451 3456
c10-200 149 2798 20.0% 2823 0.6% 0.9% 1289 4854 329 145 2798 20.0% - - - 1231 4753 349 2796 2806
c20-200 352 2383 42.9% - - - 13028 56139 456 350 2383 42.9% - - - 18651 91261 466 2377 2391
Min 20.0% 0.5% 0.6% 75 215 20.0% 0.5% 0.6% 76 214
Max 57.1% 1.1% 1.3% 13028 56139 57.1% 1.1% 1.3% 18651 91261
Avg 37.6% 0.8% 0.9% 3362 14031 37.6% 0.8% 1.0% 4406 20774

d5-100 54 6346 0.0% 6432 1.2% 1.4% 258 1108 194 64 6346 0.0% 6455 1.6% 1.7% 610 2953 204 6346 6353
d10-100 149 6326 6.5% 6489 2.1% 2.6% 2364 10606 263 130 6326 6.5% 6464 1.7% 2.2% 3302 16824 257 6324 6355
d20-100 324 6149 8.8% - - - 10758 50170 387 331 6149 8.8% - - - 13792 73491 374 6143 6211
d5-200 65 12737 0.0% 12812 0.5% 0.6% 157 468 239 57 12737 0.0% 13303 4.4% 4.4% 205 735 300 12737 12744
d10-200 154 12419 0.0% 12611 1.4% 1.5% 2253 9213 364 157 12419 0.0% 12612 1.4% 1.6% 3754 17407 329 12419 12438
d20-200 380 12220 3.9% - - - 9204 37344 463 383 12220 3.9% - - - 12199 55281 451 12218 12269
Min 0.0% 0.5% 0.6% 157 468 0.0% 1.4% 1.6% 205 735
Max 8.8% 2.1% 2.6% 10758 50170 8.8% 4.4% 4.4% 13792 73491
Avg 3.2% 1.3% 1.5% 4166 18151 3.2% 2.3% 2.5% 5644 27782

e5-100 60 12649 17.9% 12831 1.2% 1.4% 126.5 640.4 184 68 12649 17.9% 12831 1.2% 1.4% 251.5 830.4 169 12642 12681
e10-100 149 11553 27.3% 11770 1.7% 1.9% 1459.3 8704.2 230 152 11553 27.3% 11800 1.9% 2.1% 1935.1 7044.5 224 11544 11577
e20-100 386 8381 25.3% - - - 14493.9 92738 326 376 8381 25.3% - - - 26696 103171.2 326 8360 8443
e5-200 56 24923 12.5% 25495 2.3% 2.3% 75.4 236.7 287 62 24923 12.5% 25065 0.5% 0.6% 131.2 315 273 24922 24930
e10-200 149 23296 15.4% - - - 1301.1 7549.2 355 173 23296 15.4% - - - 2535.6 8890.2 356 23294 23307
e20-200 428 22362 26.1% - - - 12045.3 65481.9 470 443 22362 26.1% - - - 22484.1 82400.4 443 22356 22379
Min 12.5% 1.2% 1.4% 75.4 236.7 12.5% 0.5% 0.6% 131.2 315.0
Max 27.3% 2.3% 2.3% 14493.9 92738.0 27.3% 1.9% 2.1% 26696.0 103171.2
Avg 20.7% 1.7% 1.9% 4916.9 29225.1 20.7% 1.2% 1.4% 9005.6 33775.3

Table 5.7: Results of the restart approach on medium instances, k = 30 and tLim
= {5,10}

5.3 (k = 20,tLim = 10), this method achieves higher improvement in GapR of 34.5%

using much less CPU time of around 3600 seconds on average, compared to 23% for

cut accumulation method with around 40,000 seconds. For type D GapR improves

from -7.4% from the accumulation method to 3.2%. Hence, the restart method is

more effective in terms of finding improved lower bounds with less SP solution time.

However, this method is not effective in finding feasible solutions as feasible solutions

for none of the type E instances were found.
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5.2.3 Feasible Lagrangian approach

m-n Iter GapR GapS GapO Clckt CPUt Cuts Feas Opt

5-15 21.2 48.4% 0.1% 1.7% 0.6 0.8 37.6 5 4
5-20 26 35.3% 0.6% 1.5% 0.7 1.0 43.8 5 2
5-25 28.8 17.0% 0.7% 0.8% 0.6 0.4 37 5 2
5-30 31.4 24.9% 1.7% 1.3% 0.9 0.7 49.4 5 0
8-24 35.4 63.8% 0.2% 0.5% 1.8 2.9 70.8 5 2
8-32 48.8 45.6% 0.6% 0.5% 2.4 3.1 76.4 5 1
8-40 56.6 37.0% 0.5% 0.6% 2.9 3.9 82.2 5 0
8-48 69.4 46.2% 0.7% 0.4% 142.8 817.5 321 5 0
10-30 70 43.8% 0.5% 0.9% 6.3 13.1 128.6 5 0
10-40 76.6 44.4% 0.4% 0.6% 6.9 13.2 122 5 0
10-50 71 60.1% 0.4% 0.4% 6.6 11.2 135.4 5 1
10-60 91.8 39.1% 0.3% 0.4% 7.7 10.7 133.4 5 1

Min 21.2 17.0% 0.1% 0.4% 0.6 0.4 37.0 5.0 0.0
Max 91.8 63.8% 1.7% 1.7% 142.8 817.5 321.0 5.0 4.0
Avg 52.25 42.1% 0.6% 0.8% 15.0 73.2 103.1 5.0 1.1

Table 5.8: Results of the Feasible Lagrangian approach on small instances

In this method, we keep adding the minimal cover inequalities in the SP until a

feasible solution is found. Subsequently, using the SP with all the cover inequalities

and the MP, cutting plane method is used to obtain lower bounds. Table 5.8 presents

the results from Feasible Lagrangian approach for small instances. This method finds

feasible solutions for all the instances with an average gap of 0.6% from the optimal

solutions. It also achieves an average improvement in GapR of 42.1%.

For medium instances in Table 5.9, it yields high quality feasible solutions for

almost all the instances with an average GapS of around 1%. It also achieves positive

GapR for all the instances with improvement of around 23% for type C, which is

same as the cut accumulation method(k = 20, tLim = 10), but around 15% less

than the method with restart(k = 30, tLim = 5). The method uses CPU time with

an average of around 2000 seconds for type C instances. This is smaller compared to
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Problem Iter LB Lag GapR Sol BSol GapS GapO Clockt CPUt Cuts
c5-100 46 1926 1924 29% 1976 1931 2.3% 2.6% 3 2 119
c10-100 102 1391 1388 21% 1410 1402 0.6% 1.4% 10 11 158
c20-100 210 1233 1219 58% 1245 1243 0.2% 1.0% 1727 11787 803
c5-200 57 3452 3451 20% 3469 3456 0.4% 0.5% 7 8 272
c10-200 140 2797 2796 10% 2830 2806 0.9% 1.2% 23 21 227
c20-200 348 2383 2377 43% 2403 2391 0.5% 0.8% 216 426 585
c10-400 174 5592 5592 0% 5603 5597 0.1% 0.2% 65 58 512
c20-400 411 4776 4775 14% 4795 4782 0.3% 0.4% 278 272 644
c40-400 1234 4237 4236 11% 4250 4245 0.1% 0.3% 2446 5247 1127
Min 0% 0% 0% 3 2
Max 58% 2% 3% 2446 11787

Average 23% 1% 1% 531 1981
d5-100 47 6346 6346 0% 6432 6353 1.2% 1.4% 3 2 108
d10-100 138 6325 6324 3% 6563 6355 3.3% 3.8% 13 12 146
d20-100 391 6147 6143 6% 6580 6211 5.9% 7.0% 74 71 277
d5-200 57 12737 12737 0% 12814 12744 0.5% 0.6% 5 4 207
d10-200 139 12419 12419 0% 12615 12438 1.4% 1.6% 24 22 273
d20-200 411 12219 12218 2% 12683 12269 3.4% 3.8% 145 132 456
d10-400 157 24957 24956 8% 25136 24969 0.7% 0.7% 59 51 520
d20-400 395 24554 24553 3% 24949 24587 1.5% 1.6% 272 268 974
Min 0% 1% 1% 3 2
Max 8% 6% 7% 272 268

Average 3% 2% 3% 74 70
e5-100 60 12648 12642 15% 12831 12681 1.2% 1.4% 5 6 182
e10-100 169 11549 11544 15% 11789 11577 1.8% 2.1% 17 18 196
e20-100 - - - - - - - - 10000 10000 -
e5-200 76 24924 24922 25% 25112 24930 0.7% 0.8% 7 7 217
e10-200 181 23296 23296 0% 23603 23307 1.3% 1.3% 65 71 788
e20-200 - - - - - - - - 10000 10000 -
e10-400 164 45740 45740 0% 45933 45745 0.4% 0.4% 964 1522 4345
Min 0% 0% 0% 5 6
Max 25% 2% 2% 10000 10000

Average 11% 1% 1% 3008 3089

Table 5.9: Results of the Feasible Lagrangian approach on medium instances

around 14,000 seconds used by the restart method. Due to the time efficiency of this

method compared to the other methods, we were able to solve some larger instances

with n = 400 and obtained quality feasible solutions with less than 1% GapS. Thus,

this methodology proves more effective in yielding quality feasible solutions and in

improving the lower bounds with much less computational time.
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5.3 Results comparison of the proposed method-

ologies

In this section, we compare the performance of the two variants of the Modified

Lagrangian approach and the Feasible Lagrangian approach, for both small and

medium instances.

Figure 5.1: Comparison of results from different approaches for small instances

Figure 5.1 above compares the average results for small instances for the cut ac-

cumulation approach with setting k = 15 and tLim = 5 and the restart approach

with setting k = 15 and tLim = 1. The comparison shows that the cut accumula-
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tion approach achieves the highest reduction in the optimality gap, GapR, of around

75%. It finds feasible solutions for almost all the instances within an average gap

of 0.3% from the optimal solutions. However, the CPU time used by this method

is very high, around 500 seconds on average, compared to 53 seconds for the restart

approach. Restart method also achieves high improvement in GapR of around 58%,

but it is less successful in finding feasible solutions. It finds feasible solutions for

only 2.6 out of 5 instances for each problem size on average, compared to 4.6 for the

accumulation approach. Restart approach offers efficiency in solution time compared

to the accumulation approach. Feasible Lagrangian approach achieves the least im-

provement in GapR and lower quality of feasible solutions compared to the previous

two approaches, but it is able to yield feasible solutions for all the instances, which

the other two approaches failed to achieve.
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Figure 5.2: Comparison of results from different approaches for medium instances

For the medium instances, the accumulation method (k = 20, tLim = 10) leads

to negative GapR, i.e., LB bounds being lower than the Lagrangian bounds, Lag.

This is because of the problem becoming too difficult to be solved near optimality in

the imposed solution time limit. The restart approach (k = 30, tLim = 5) achieves

the highest improvement in lower bounds for all data types, but it is not able to

find feasible solutions for around half of the instances. Feasible Lagrangian approach

shows the best performance on medium instances. It achieves GapR improvement

nearly as good as the restart method and finds feasible solutions to almost all the

instances, with less than an average gap of 2% from the best-known solutions. It

also uses very less CPU time compared to the other two approaches.
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5.4 Results Summary

The results from testing our methodologies on the small and medium instances

demonstrate that our proposed approach leads to improved lower bounds and good

quality feasible solutions. For the small instances, the best results are achieved by

Modified Lagrangian approach with cut accumulation, obtaining at least 60% im-

provement in the lower bound for all the instances in all different settings (k,tLim).

High quality feasible solutions are obtained, that lie within 1% of the optimal so-

lutions. However, as the problem size increases, the subproblem difficulty also in-

creases. As the subproblem is not solved to optimality, it leads to a decline in

the performance. Modified Lagrangian approach with restart is able to consistently

achieve improvement in lower bounds in both small and medium instances because

the subproblem is solved near optimality in short time. However, its success in finding

feasible solutions is less than the cut accumulation method. The Feasible Lagrangian

approach proves to be the most robust of all, with an average improvement in lower

bounds ranging from 3% to 23% for type D. It was also able to yield quality feasible

solutions for almost all the instances within 1% gap from the best-known solution in

the literature (Yagiura et al. 2006).

48



Chapter 6

Conclusion

In this thesis, we proposed two main modifications to the standard Lagrangian ap-

proach, with the objective of achieving improved bounds and quality feasible solu-

tions. We presented a general framework based on the idea that if the information

generated by the subproblem solutions can be used to strengthen the subproblem

with valid cuts, it may lead to feasible solutions for the original problem as well as

tighter bounds. The general strategy we proposed is to repeatedly solve the subprob-

lem at each iteration of the Lagrangian procedure and strengthen it with violated

valid inequalities so that its solutions can be pushed towards feasibility for the orig-

inal problem.

To test the proposed approach, we focused on the generalized assignment problem

and generated valid cuts based on minimal cover inequalities. In the first method-

ology, at each iteration of the cutting plane method we repeatedly added minimal

cover inequalities to strength the subproblem. As the subproblem became more diffi-

cult to solve with the added inequalities, we imposed a time limit on the subproblem
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solution. For this method we proposed two variants: Modified Lagrangian approach

with accumulation of cover inequalities, where the cover inequalities accumulate in

the subproblem from one Lagrangian iteration to the other, and Modified Lagrangian

approach with restart, where the inequalities added in the subproblem in one cutting

plane iteration are discarded in the following iteration. For the second methodology,

Feasible Lagrangian Method, first the minimal cover inequalities are added to the

subproblem until a feasible solution to the GAP is obtained. Then the subproblem,

with all the added inequalities, is solved in a Lagrangian fashion to find a lower

bound.

We tested these methods on small and medium size benchmark GAP instances.

For the first methodology, we used different settings, (k, tLim), where k is the number

of minimal cover inequality generation iterations performed on the subproblem and

tLim is the time limit imposed on the subproblem solution. In the second method,

the subproblem was solved to optimality, without imposing any time limit on the

solution. The results demonstrate that our proposed approach succeeds in achieving

improved bounds and quality feasible solutions. While all the methods were able

to achieve improvement in the lower bounds and quality feasible solutions for small

instances, for the medium instances, Feasible Lagrangian Method was able to consis-

tently achieve improvement in lower bounds, with average improvement ranging from

3% to 23% for type D. It was also able to yield quality feasible solutions for almost

all the instances within 1% gap from the best-known solution in the literature.
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