
Dash: Declarative Behavioural
Modelling in Alloy

by

Jose Serna

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2019

c© Jose Serna 2019

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

An abstract model is a representation of the fundamental characteristics and properties
of a system, and its purpose is to provide feedback to stakeholders about the correctness
of the system during the early stages of development. This thesis presents Dash, a new
language for the formal specification of abstract behavioural models, which combines the
control-oriented constructs of statecharts with the declarative modelling of Alloy. From
statecharts, Dash inherits a means to specify hierarchy, concurrency, and communication,
three useful aspects to describe the behaviour of reactive systems. From Alloy, Dash uses
the expressiveness of relational logic and set theory to abstractly and declaratively describe
structures, data, and operations.

The purpose of a Dash model is to formally describe a transition system, and for this
reason transitions are first-class constructs of the language. Dash provides features such as
factoring, transition comprehension, and layering, to systematically declare and organise
the transitions of a model.

The integration between statecharts and Alloy is done in Dash at the semantic level.
The semantics of Dash use the notion of big steps and small steps to formally describe
changes in a system, and address the mismatch between declarative and control-oriented
formalisms regarding the frame problem.

This thesis presents several case studies to demonstrate the modelling capabilities and
automated analysis of Dash models. The case studies range from heavily data-oriented
systems to highly hierarchical and concurrent systems. Behaviours can be specified using
a temporal logic and the Alloy Analyzer is used for performing analyses. We extended the
notion of significance axioms and significant scopes to concurrent Dash models, to avoid
spurious instances of a model and ensure that a big enough search space is explored by the
Analyzer to check for interesting behaviours and provide useful feedback about a model.

iii

Acknowledgements

I would like to thank my supervisor, Prof. Nancy A. Day, for her constant encourage-
ment and support throughout my Master’s programme. I particularly enjoyed our many
discussions on the board and thanks to her continuous lessons while playing many different
roles (at times she was a teacher, a colleague, a leader, a mentor, etc.), I have learned and
grown a lot not only academically and professionally, but also at a personal level.

I thank Prof. Joanne M. Atlee and Prof. Daniel M. Berry who read my thesis and pro-
vided insightful comments to improve the presentation of the ideas. I thank Dr. Shahram
Esmaeilsabzali who joined on many of the discussions and helped in the development of
some of the topics of this thesis.

Thanks to my colleagues Sabria Farheen, Ali Abbassi, and Amin Bandali, with whom
I engaged in fruitful conversations and collaborations.

I especially thank my family for their unconditional love and outstanding support, their
many sacrifices have made it possible for me to focus on achieving my goals. Finally, I
am grateful to my uncle Gabriel who always nurtured and encouraged my intellectual
curiosity.

iv

dedicado a má y pá

v

Table of Contents

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Thesis Outline . 4

2 Background 5

2.1 Statecharts . 5

2.2 Alloy . 8

2.3 Model checking in Alloy . 10

2.4 Summary . 11

3 Dash Syntax and Features 12

3.1 Examples . 12

3.1.1 Musical Chairs . 12

3.1.2 Bit Counter . 13

3.2 Alloy Constructs . 13

3.3 Core Dash . 14

3.3.1 States and State Hierarchy . 14

3.3.2 Namespaces . 15

vi

3.3.3 State Variables . 15

3.3.4 Transitions . 15

3.3.5 Events . 17

3.3.6 Initial Constraints . 18

3.3.7 State Invariants . 19

3.4 Additional Syntactic Features . 20

3.4.1 Named Conditions . 20

3.4.2 Named Actions . 21

3.4.3 Factoring . 22

3.4.4 Transition Comprehension . 24

3.4.5 Layering . 24

3.4.6 Transition Templates . 26

3.4.7 Escape Blocks . 27

3.5 Temporal Properties . 28

3.6 Grammar . 29

3.7 Summary . 31

4 Semantics of Dash 32

4.1 Concurrency . 33

4.2 Big Step Maximality . 33

4.3 Event Lifeline . 34

4.4 Variable Lifeline . 34

4.5 Priority . 34

4.6 Characteristics . 35

4.7 Frame Problem . 35

4.8 Summary . 35

vii

5 From Dash to Alloy 37

5.1 Next Snapshot Relation . 37

5.2 Transformation to Core Dash . 38

5.3 Snapshot Definition . 39

5.4 State Hierarchy . 40

5.5 Events . 41

5.6 Transitions . 41

5.6.1 Pre-conditions . 42

5.6.2 Post-conditions . 43

5.6.3 Semantics . 47

5.7 Initial Constraints . 48

5.8 State Invariants . 49

5.9 Model Definition . 49

5.10 Significance Axioms . 51

5.11 Temporal Properties . 52

5.12 Alloy Paragraphs and Escape Blocks . 53

5.13 Optimisations . 54

5.14 Implementation . 54

5.14.1 Tool Options . 56

5.15 Summary . 56

6 Case Studies 58

6.1 Models and Characteristics . 58

6.1.1 Flight Guidance System . 59

6.1.2 Farmer Puzzle . 60

6.1.3 Snapshot UI . 60

6.1.4 Traffic Light . 60

6.2 Translation . 60

viii

6.3 Model Checking . 61

6.3.1 Significant Scopes . 63

6.3.2 Model Visualisation . 63

6.4 Summary . 65

7 Related Work 67

7.1 Declarative modelling languages . 67

7.2 Languages based on statecharts . 68

7.3 Languages based on Alloy . 69

7.4 Integrated languages . 70

7.5 Summary . 71

8 Conclusion 72

8.1 Future Work . 74

References 76

APPENDICES 81

A Dash Grammar 82

B Musical Chairs Model in Dash 85

C Bit Counter Model in Dash 88

D Steps Alloy Module 91

ix

List of Tables

4.1 Semantics of Dash . 33

6.1 Characteristics of case studies . 59

6.2 SLOC comparison between Dash and Alloy 61

6.3 Model Checking results . 62

x

List of Figures

2.1 Statecharts model of a two-bit counter . 6

2.2 Transition in statecharts . 7

2.3 Big step (sp is a snapshot; ss is a small step) 7

3.1 State hierarchy in Dash . 14

3.2 State variables declaration in Dash . 15

3.3 General schema of a transition declaration 16

3.4 Transition declarations in Dash . 17

3.5 Event declarations in Dash . 18

3.6 Initial constraints in Dash . 18

3.7 Invariants in Dash . 19

3.8 State invariant of musical chairs . 20

3.9 Named condition in Dash . 21

3.10 Named action in Dash . 22

3.11 Factoring by events in Dash . 23

3.12 Factoring by condition in Dash . 23

3.13 Transition comprehension in Dash . 24

3.14 Template for declaring addons in Dash . 25

3.15 Addon declarations in Dash . 26

3.16 Transition templates in Dash . 27

3.17 Escaped blocks in Dash . 28

xi

3.18 CTL operators in Dash . 28

3.19 Temporal specification in Dash . 29

3.20 Grammar of Dash . 30

3.21 Dash keywords . 31

4.1 Big steps . 32

5.1 Next snapshot relation . 38

5.2 Musical chairs snapshot representation in Alloy 40

5.3 State hierarchy representation in Alloy . 41

5.4 Events representation in Alloy . 41

5.5 Transitions representation in Alloy . 42

5.6 Predicates of a transition in Alloy . 42

5.7 Preconditions predicate of a transition . 43

5.8 Post-conditions predicate of a transition 45

5.9 Actions in a post-conditions predicate of musical chairs 46

5.10 Determining if a transition will be enabled on next snapshots 47

5.11 Semantics predicate of a transition . 48

5.12 Semantics predicate for T1 of the bit counter 48

5.13 Initial constraints for musical chairs . 49

5.14 State invariants in Alloy . 49

5.15 Model definition in Alloy . 50

5.16 Significance axioms in Alloy . 51

5.17 Complete steps significant axiom in Alloy 52

5.18 Temporal properties in Alloy . 53

5.19 Dash online tool interface . 55

6.1 Model spectrum. 59

6.2 Default visualisation of an Alloy model . 64

6.3 Improved visualisation of an Alloy model by using themes 65

xii

Chapter 1

Introduction

The goal of model-driven engineering (MDE) [44] is to reduce the complexity of system
development through the use of models that are more abstract than descriptions in design
and code. An abstract model is a representation of the fundamental characteristics and
properties of a system, which to a certain extent, alleviates the effects of partial information
and unknowns in the early stages of system development. Abstract models shield system
developers from the complexity of implementation details, allowing them to focus on the
core concepts and functionality of the system under development. These abstract models
are often specified declaratively, i.e., using constraints to specify what the system under
consideration is intended to do, instead of defining a procedural or algorithmic specification
that details how the system operates. Typically, the analysis of a system is decomposed
into different views, each of which is approached from different perspectives. For example,
a structural model describes the elements and the relationships among them in a system,
whereas a behavioural model captures the changes and evolution of a system as it executes
over time. Regardless of the nature of an abstract model, whether structural or behavioural,
its purpose is the same: to provide feedback to stakeholders about the correctness of a
system during early stages of development. For this reason, models should be specified in
an unambiguous manner and amenable to automatic analysis.

Several formal languages for behavioural models have been developed that are both
abstract and formal in order to be analysable using techniques from formal methods. Ex-
isting formal behavioural languages can be characterised along the following spectrum.
On one end, there are formal behavioural languages that are data-oriented; they focus
on the abstract description of data and its operations (e.g., Alloy [29, 30], TLA+ [54],
VDM [31], Z [48],). On the other end, there are languages that are control-oriented; they
focus on prescribing the order and priority of the sequence of operations through concur-

1

rency and synchronisation, e.g., the statecharts family of languages [25] including UML
statemachines [2], and process algebras such as CSP [26]. A few languages exist that com-
bine both data-oriented and control-oriented modelling, e.g., TCOZ [35] and Circus [52],
which combine Z [48] and process algebra; CASL-Chart [41] and OZS [24] which combine
statecharts with CASL, and Object-Z respectively; CSP-CASL [43] which combines CSP
with CASL, an algebraic language. However, these existing languages have one or more of
the following problems: 1) lack of expressiveness for specification of complex behaviours,
2) intimidating notations, 3) lack of automated reasoning and analysis, 4) no formal or
incongruent semantics.

Formalisms such as B, TLA+, VDM, Z, use primed variables to represent state change,
however, they lack support for the specification of more complicated behaviours, leaving
modellers with the task of developing ad-hoc procedures and/or relying on guidelines and
conventions to describe behavioural aspects such as concurrency and synchronisation.

On the other hand, some languages that have support for the specification of control-
oriented behaviour (e.g., statecharts [25], UML statemachines [2], Statemate [28], State-
flow [5]), despite sharing similar syntax, lack the definition of a fully formal semantics or
have incompatible semantic variations. This lack limits collaboration because a specifica-
tion might be interpreted differently by two modellers.

Furthermore, some of these languages (e.g., VDM, Z) use a strong mathematical nota-
tion, which might intimidate some modellers, or tool support has been developed around
refinement (e.g., TCOZ, CSP-CASL) with generation of proof obligations that need the-
orem proving for verification (which is time-consuming and requires expertise). Both, a
heavy mathematical notation and the need of theorem proving, hinder the widespread
adoption of these specification techniques because of a steep learning curve and the need
of highly trained users, which is not cost-effective for most applications (except for the
development of critical systems).

This thesis presents Dash 1, a new language for the formal specification of abstract be-
havioural models, which combines the control-oriented constructs of statecharts with the
declarative modelling of Alloy. From statecharts, Dash inherits a means to specify hier-
archy, concurrency and communication, three useful aspects to describe the behaviour of
reactive systems. From Alloy, Dash uses the expressiveness of relational logic and set the-
ory to abstractly and declaratively describe structures, data and operations. The semantics
of Dash seamlessly combine the constructs of Alloy with statecharts.

Dash directly addresses the challenge areas, identified by Woodcock et al. [53], that
call for further research and development to promote the widespread adoption of formal

1The name Dash comes from “Declarative abstract state hierarchy”

2

methods: lightweight formalisms, robust tool support, increased automation, and cost-
effectiveness. Dash is a lightweight formalism because it is a language tailored for the
specification of abstract behavioural models of requirements. The purpose of Dash is
to allow the identification of inconsistencies in the early stages of system development,
contrary to heavyweight formal methods that strive to provide correctness all the way in
the development life cycle to the point of implementation. Regarding tool support, Dash
uses the Alloy Analyzer for verification of models. The Alloy Analyzer is a robust tool that
has been used to uncover insidious bugs on protocols that have been claimed to be proven
correct (e.g., [55]). On top of the Alloy Analyzer, we developed a tool with advanced
editing capabilities to create and edit Dash models. Regarding automation, verification
of Dash models is based on model checking, an automated technique that exhaustively
explores the possible states of a system to verify a temporal specification. Lastly, Dash
uses Alloy which continues to become more prominent, alongside statecharts features that
are widely used in industry (e.g., UML statemachines); this means that the learning curve
for Dash is not as steep as alternative languages improving the cost-effectiveness.

Thesis statement. Dash is a new language intended for formally describing
the behaviour of systems. Dash permits the specification of behavioural models
in an abstract and declarative manner. A wide range of systems can be described
using Dash, from heavily data and operation-oriented, to highly hierarchical and
concurrent systems. The semantics of hierarchical control state constructs can
be seamlessly combined with first-order logic abstractions to create integrated
formal specifications. Behavioural properties can be specified in Dash and
then checked using the Alloy Analyzer. The notion of significance axioms and
significant scopes can be extended for concurrent and hierarchical models, and
help in the visualisation and understanding of model checking results.

The contributions of this thesis are

• a description of the syntax of Dash, a new language for formally describing abstract
declarative behavioural models,

• a description of the features of Dash for conveniently describing transition systems,
and accommodating different modelling paradigms,

• a definition of the semantics of Dash which seamlessly integrate hierarchical control
constructs with declarative modelling,

3

• a tool that translates Dash models to Alloy,

• case studies that show the modelling capabilities of Dash across the spectrum of
systems, and the verification of behavioural properties,

• an extension of the notion of significance axioms for hierarchical and concurrent
models, and

• guidelines to use Alloy’s support of themes for better visualisation of instances of a
model.

The fundamentals of the syntax of Dash have been published [47], along with a discus-
sion of some of the characteristics of Dash [8]. A presentation of the semantics of Dash is
available as a technical report [46].

1.1 Thesis Outline

Chapter 2 provides background on statecharts and its semantics, fundamental elements of
the Alloy language and model checking in Alloy. Chapter 3 presents the syntax and features
of Dash to create models, and how to specify temporal properties in Dash. Chapter 4
provides an overview of the semantics of Dash. Chapter 5 explains how a Dash model
is transformed to Core Dash, and then formalised in Alloy by describing a transition
relation. Additionally, the translator tool is presented with an explanation of the available
translation options. Chapter 6 presents some case studies that demonstrate the modelling
capabilities and model checking of Dash models, and explains how to use themes in Alloy
to improve the visualisation of an instance of a model. Chapter 7 compares Dash with
closely related work, covering issues related to syntax, semantics and tool support. Finally,
Chapter 8 concludes and points to future directions of research and development to extend
and improve Dash.

4

Chapter 2

Background

This chapter presents a brief background on statecharts and transition systems, the Alloy
language and Analyzer, and model checking in Alloy.

2.1 Statecharts

Statecharts [25] is a graphical language for describing the behaviour of reactive systems. A
reactive system is usually event-driven, thus, it runs continuously to react to environmental
input and internal changes. For example, a graphical user interface (GUI) is a reactive
system that continuously responds to commands and input given by a user through a
keyboard or a mouse. The behaviour of a reactive system is usually specified by a transition
system, which consists of a set of snapshots1 and a transition relation that prescribes the
possible movements between snapshots. A snapshot represents a moment in the execution
of a system; it is a mapping from the variables of the system and context to their values.
The movement between two consecutive snapshots of a transition system is called a step.
Statecharts provides a formalism with three key features to describe the behaviours of
reactive systems: hierarchy, concurrency and communication. Figure 2.1 shows an example
of the statecharts representation of a two-bit counter(the model is taken from [19]).

Labelled control states correspond to moments in the behaviour of a system that can
naturally be named. There are three types of labelled control states: AND, OR and
BASIC control states. AND and OR control states are containers for other states. A basic

1The common term used in the literature is state, but we use snapshot to avoid confusion with labelled
control states

5

Figure 2.1: Statecharts model of a two-bit counter

labelled control state is one that has no children. It is possible to nest labelled control
states and form a state hierarchy that defines different levels of abstraction. For example,
in Figure 2.1 state Bit1 is an abstraction of states Bit11 and Bit12 that captures a
common property of Bit11 and Bit12, namely, that they both correspond to the values
of the least significant bit of the counter. In an OR-control state only one of its children
is active at any moment, and upon initialisation of the system, the active state is denoted
by an incoming arrow pointing to that state. The other type of container state, the AND-
state, describes concurrency. In statecharts, concurrent regions are identified by dashed
lines and the meaning is that if an AND-state is active, then the system is simultaneously
active in each of the concurrent regions. For the bit-counter it means that at all moments,
one substate of Bit1 and one substate of Bit2 are active. Control states provide a means
of sequencing transitions in a behavioural model. Hierarchical states (OR-states) are a
further means of decomposing the system’s behaviour and express priority of transitions
(usually outer state over inner state). Concurrent states (AND-states) permit separation
of concerns in a model for components whose behaviours are mostly independent of each
other.

Transitions define how a system moves from one control state to another. Figure 2.2
shows the general syntax of a transition in statecharts, where A corresponds to the source
state and B to the target state. The transition itself is indicated by an arrow from the source
state to the target state. The pre-conditions of the transition are specified to the left of
the ‘/’ symbol. e is the enabling event of the transition, it could be an event generated
by the environment or internally by the system. Inside square brackets (‘[]’) the guard
condition c is specified. Post-conditions of the transition appear to the right side of the
‘/’ symbol. a indicates the actions of the transition and any generated event g is specified

6

using the ‘^’ symbol . A transition is taken (i.e., the system moves from the source to the
destination control state) if the enabling event occurs and the guard condition evaluates to
true. Two transitions are orthogonal, if they are contained in different concurrent regions.
For example, in the bit counter transition t1 is orthogonal to transitions t3 and t4.

Figure 2.2: Transition in statecharts

In statecharts, events are used as a mechanism for broadcast communication. When
a transition is taken an event may be generated and then sensed in another part of the
model, producing cascading effects. In the bit counter (Figure 2.1) the two orthogonal
regions communicate by means of the event tk1. When transition t2 is taken, the event
tk1 is generated, which may enable transition t3 in the other concurrent region.

sp0
stable

sp1

env input

sp2 spn−1
spn

stable

env input

ss1 ss2 . . . ssn

big step

Figure 2.3: Big step (sp is a snapshot; ss is a small step)

Since AND-states allow several concurrent regions to be active simultaneously, different
transitions might be enabled at the same time for a given input and be taken during the
same step of a transition system. There are many variations in the semantics of how
a set of transitions is chosen to be taken in a step [51, 20], but almost all variations
agree on the notion of a big step (called macro-steps by Harel) consisting of a number of
small steps (called micro-steps by Harel) as a way to represent the system’s response to
environmental input as illustrated in Figure 2.3. Small steps are taken until the system
cannot take any more transitions, which is when it is considered stable and therefore
observable. Multiple small steps exist because there are several concurrent states that
take transitions in response to the environment (or possibly a cascading effect from other

7

concurrent states). Esmaeilsabzali et al. [20], provide a framework which describes a space
of semantic aspects and options for languages that use big steps.

2.2 Alloy

Alloy [29, 30] is a popular modelling language suitable for describing and exploring struc-
tures. The language is based on first-order relational logic and set theory. In Alloy, every-
thing constitutes a relation; there is no native notion of sets or scalars. A set is a unary
relation, and a scalar is a singleton, unary relation. An Alloy model is a description of a
set of relations coupled with some constraints on these relations. Elements of relations are
called atoms and a set of atoms is defined using a type signature. Relations are declared
as fields in the body of signatures.
1 sig A {} // a set called A
2 abstract sig B {} // an abstract signature called B
3 sig C extends B {}
4 sig D extends B { // a subsignature of B called D
5 R1: C, // a relation from D to C
6 R2: C -> one A // a relation from D to C to A
7 }

The type of a field declaration can include constraints such as lone, one, and set to
limit the multiplicity of the relations. The keyword lone means that a relation contains
zero or one element, one means that the relation is a singleton (has exactly one element),
and set declares the relation to have any number of elements (possibly none). If no
multiplicity is stated the default is one. An Alloy signature that extends another signature
is called a subsignature and it declares a subtype. All the immediate subtypes of a signature
are disjoint. A signature can be declared as abstract meaning that the set exclusively
contains atoms that are in the subsignatures.

Constraints in Alloy can be defined as an optional block in a signature declaration or
packaged in a predicate, a function or a fact. The first case, known as a signature fact,
constraints the elements of a signature. For example, in the following signature declaration
F is a signature fact.
1 sig S {
2 ... // field declarations
3 } {
4 F // signature fact
5 }

8

A predicate is a template for a constraint that can be instantiated in different contexts.
a predicate is declared using the keyword pred and can be parameterised with a list of
arguments. Functions are templates for expressions, they are declared using the keyword
fun and, like predicates, functions also accept a list of arguments. Both predicates and
functions must have a name.
1 pred predicate[a: A, b: B] {
2 // predicate body
3 }
4
5 fun function[a: A]: B { // a function with type A -> B
6 // function body
7 }

Facts are constraints that always hold, they represent assumptions. Facts are intro-
duced using the keyword fact and can be anonymous or may be given a name for docu-
mentation purposes.
1 fact {
2 // at least one C for every D in R1
3 all d: D | some c:C | c in d.R1
4 }

The expression d.R1 conveniently looks like the R1 field of D’s record/class, but is actually
using the join operator (.) to take the range of the pairs in R1 that have d as their first
element. Alloy provides common set operations on relations and functions (such as join,
union, etc.,), and goes beyond first-order logic by including the transitive closure operator
(which can be computed for a finite set). All expressions in Alloy evaluate either to a
boolean value (these expressions are referred to as constraints or formulas) or result in a
relation.

Analysis in Alloy is done by mapping a model, using the Kodkod [50] finite model finder,
to propositional logic and performing constraint solving to find an instance that satisfies
the constraints. There are two types of analysis and associated commands supported by
Alloy. A run command instructs the Alloy Analyzer to search for an example that satisfies
a model. A check command searches for a counterexample that shows that an assertion
does not hold. Assertions are blocks of redundant constraints that are intended to hold
and are checked to ensure consistency of a model. Scopes are indicated when invoking a
command to put bounds on the sets of a model. The Alloy Analyzer produces a visual
representation of a satisfying instance (values for the sets and relations) when one can be
found.

9

2.3 Model checking in Alloy

Modelling transition systems in Alloy can be accomplished by creating a set of snapshots
and constraining a binary relation over these snapshots to be the transition relation. There
is a relation mapping snapshots to the values of the variables in that snapshot. A com-
parison of a few approaches for structuring snapshots for building a transition relation in
Alloy can be found in [49]. Typically, parts of this relation are described separately in
predicates 2 and composed using disjunction to form the transition relation [30]. However,
there is no explicit language support in Alloy for describing behavioural models.

A transition relation in Alloy can be iterated to do bounded model checking [11] (BMC),
which is a technique that uses symbolic model checking to verify temporal properties on
the paths of a transition system up to a certain length. Commonly, the set of snapshots is
ordered (using a built-in Alloy ordering module) to provide a nice representation for traces
of a behavioural model. In an alternative method for model checking in Alloy, called scoped
transitive-closure-based model checking (TCMC), the meaning of all temporal operators in
Computation Tree Logic with fairness constraints (CTLFC) [15] are described in terms of
the transitive closure operator. While it is usually not possible to check the properties over
the entire reachable snapshot space in Alloy (even for finite sets), bugs can be found and
some conclusions regarding the entire reachable snapshot space can be concluded (such as
liveness).

In an effort to provide some confidence that a large enough fraction of the reachable
snapshot space has been checked, significance axioms [21] can be used to instruct the Alloy
Analyzer to check parts of the snapshot space with interesting behaviours. The significance
axioms are:

• Reachability axiom: This axiom ensures that all the snapshots considered during
analysis must be reachable from an initial snapshot, and that at least one such initial
snapshot exists.

• Operations axiom: This axiom states that every transition defined in a model is
represented by a pair of snapshots in the transition relation.

These axioms are satisfiable only if the snapshot space is big enough. The minimum
scope in Alloy necessary to satisfy the axioms and to obtain a significant instance of a
model is called a significant scope.

2These are called “events” in Software Abstractions [30], but we avoid that terminology because of the
different meaning of events in control-oriented models.

10

2.4 Summary

Statecharts is a graphical language for describing the behaviour of reactive systems. Stat-
echarts provides a formalism for the specification of hierarchy, concurrency and commu-
nication; three key aspects to describe the behaviour of reactive systems. The semantics
of statecharts usually have the notion of big steps and small steps to define the set of
transitions taken when a system reacts to the environment or internal changes. Alloy is a
language suitable for modelling and exploring structures. The Alloy language is based on
relational logic and set theory, and supports multiple abstract operations. An alloy model
consists of a set of relations coupled with constraints, and analysis is done by mapping
the model to propositional logic and performing constraint solving. Model checking in
Alloy can be done by creating a set of snapshots and defining a binary relation over these
snapshots to be the transition relation. Bounded model checking (BMC) and transitive-
closure-based model checking (TCMC) are two techniques to do model checking in Alloy.
Significance axioms and significant scopes are used to ensure that the Alloy Analyzer covers
an interesting portion of the snapshot space during model checking.

11

Chapter 3

Dash Syntax and Features

Dash is a language for the specification of behavioural models that are formally described
by a transition system. For this reason, transitions are first-class constructs in Dash.
Many of the syntactic constructs and features of Dash overlap and offer multiple ways to
specify and systematically organise transitions, giving users the ability to write models
using different paradigms or modelling styles. This chapter presents a description of the
syntax and features to write transitions and temporal properties, and concludes with the
grammar of Dash.

3.1 Examples

Dash syntax and features are explained with the use of two running examples: the game
musical chairs and a two-bit counter. Excerpts of the Dash representation of the models
are used throughout the following sections to help in the explanation. The complete Dash
specifications of musical chairs and of the bit counter are available in Appendix B and
Appendix C, respectively.

3.1.1 Musical Chairs

Musical chairs is a well known children’s game. The model was originally presented by
Nissanke and formalised in Z. An informal specification of the game is given next.

“The game starts off with a collection of chairs and a collection of players.
There is always exactly one player more than the number of chairs. In every

12

round of the game, the players first dance to some music played by a third
party. In the middle of their dance, the music is terminated abruptly with no
prior notice. The players must immediately occupy a chair. Before the next
round, the person who happens to be without a chair is eliminated from the
game, and so is one of the chairs. The winner is the person who managed to
survive until the last round and to occupy the only remaining chair. Obviously,
there are other rules which are taken for granted, for example, that any chair
can accommodate only one person, that nobody is allowed to be seated while
the music is being played and that the game is finitary (i.e.,. it does not go on
forever).” [38]

3.1.2 Bit Counter

The second running example is the two-bit counter introduced in section 2.1. The model
is taken from Esmaeilsabzali’s PhD thesis, and the following is a description of the system.

“Control states Bit1 and Bit2 model the least and most significant bits of the
counter, respectively. Each time the environmental input event tk0, which
represents a clock tick, is received, the counter increments by one. After an
even number of ticks, Bit1 sends event tk1, thereby instructs Bit2 to toggle its
status. After counting four clock ticks, the counter generates the done event.”
[19]

3.2 Alloy Constructs

Dash extends Alloy to include dedicated syntax for the specification of states and behaviour.
Most of the syntactic constructs available in Alloy 1 can be directly used in a Dash model.
For example, sets are declared using signatures, data abstractions are modelled as relations,
and constraints can be packaged in predicates and facts. Section 2.2 describes some of the
fundamental Alloy syntax to create an Alloy model.

1The current version of Dash is based on Alloy 4, however, features such as macros and meta-capabilities
are not recognised by the Dash parser (They can still be included in a model as part of a escape block,
see section 3.4.7)

13

3.3 Core Dash

The minimal set of constructs necessary to describe a behavioural model in Dash is called
Core Dash. Core Dash is composed of the description of a state hierarchy, a set of transi-
tions, initial constraints, and invariants. The semantics of the language are based on this
minimal set as explained in Chapter 4. The following sections describe the constructs of
Core Dash.

3.3.1 States and State Hierarchy

A labelled control state is a named moment in the execution of a model. A control states
is an abstraction that groups past behaviours that have common future behaviours. In
Dash the key word state is used to declared such abstractions. A states is declared by
providing a name and, optionally, a modifier to identify the type of state. A concurrent
(AND-) states is declared using the modifier conc. A default states is declared using the
modifier default. State declarations can be nested to represent a state hierarchy (OR-
states, which do not need a modifier keyword for their declaration). At the same level
of the hierarchy all states must be of the same type. Additionally, a top-level state must
be declared as concurrent. The reason is that for modularity and compositionality, we
envision that future versions of Dash will support larger specifications to be defined over
multiple files, each containing the description of a different state machine. From a semantic
perspective, multiple files contain models that run in parallel. Figure 3.1 shows the state
hierarchy of the bit counter in Dash.

1 conc state Counter { // top -level state
2 conc state Bit1 { // concurrent state
3 default state Bit11 {}
4 state Bit12 {}
5 }
6
7 conc state Bit2 {
8 default state Bit21 {} // default state
9 state Bit22 {}
10 }
11 }

Figure 3.1: State hierarchy in Dash

14

3.3.2 Namespaces

A state region defines a namespaces in Dash. A reference to an element from another state
must be given by its fully qualified name. A qualified name is formed by following the state
hierarchy separating state names with ‘/’ and then adding the element name. While the
semantics of Dash uses global communication (as in most statecharts languages), enforcing
the namespaces means that duplicate names are not an issue and modellers are aware of
locality.

3.3.3 State Variables

A state variable is an abstractions of the information of a system. A variable is declared as
an Alloy relation inside the block of a Dash state. Furthermore, variable declarations can be
preceded by the keyword env meaning that the value of a variable is not controlled by the
system being modelled, but by the environment. In other other words, an environmental
variable is an input of a model. Figure 3.2 shows the variable declarations of the musical
chairs model.

1 sig Chair , Player {} // set declarations
2
3 conc state Game {
4 // Game variables
5 active_players: set Player // the players of the game
6 active_chairs: set Chair // the chairs of the game
7 occupied: Chair set -> set Player // who is sitting where
8 ...
9 }

Figure 3.2: State variables declaration in Dash

3.3.4 Transitions

A transitions indicates a change in a system. A transition is declared using the keyword
trans, and a name may be provided for documentation purposes and/or as handle to refer
to the transition. The general schema to declare a transition is the following:

15

1 trans name {
2 from source_state
3 on trigger_event
4 when guard_condition
5 goto destination_state
6 do actions
7 send generated_events
8 }
9

Figure 3.3: General schema of a transition declaration

Where source_state is a state name that indicates the source state of a transition. The
trigger_event is the name of an event that triggers a transition. A comma-separated
list of event names is also supported, in which case all events on the list must occur
simultaneously to trigger the transition. The guard_condition is an Alloy expression
that relates a model state’s variables; when the expression evaluates to true a transition is
enabled. The destination_state is the name of a transition’s destination. The actions
component is an Alloy expression that constrains primed version of a state’s variables to
model the effects of executing a transition. The generated_event is the name of an event
or a comma-separated list of events that are generated when taking a transition to model
broadcast communication and cascading effects.

All components of a transition declaration are optional and their values are given by the
transition’s context (see section 3.4.3). If the from or goto part of a transition declaration
is omitted, the container state where the transition is declared is assumed to be the source
or destination state of the transition, respectively. Both parts can be omitted to model
looping transitions. The latter case is particularly useful for modelling systems without
state hierarchy. Figure 3.4 shows the declaration of some transitions of the game musical
chairs.

16

1 state Walking {
2 trans Sit {
3 on MusicStops
4 goto Sitting
5 do {
6 occupied ’ in active_chairs -> active_players
7 active_chairs ’ = active_chairs
8 active_players ’ = active_players
9 // forcing occupied to be total and
10 // each chair mapped to only one player
11 all c : active_chairs ’ | one c .(occupied ’)
12 // each " occupying " player is sitting on one chair
13 all p : Chair.(occupied ’) | one occupied ’. p
14 }
15 }
16 }

Figure 3.4: Transition declarations in Dash

3.3.5 Events

An events is a signal of the occurrence of something noteworthy in a system. An event
is declared using the keyword event and must be given a name. The modifier env may
precede an event declaration to designate an environmental event. Figure 3.5 shows some
event declarations of the bit counter.

17

1 conc state Counter {
2 env event Tk0 {} // declaration of environmental event
3
4 conc state Bit1 {
5 event Tk1 {} // declaration of internal event
6 ...
7 }
8 ...
9 conc state Bit2 {
10 event Done {} // declaration of internal event
11 ...
12 trans T4 {
13 from Bit22
14 on Bit1/Tk1 // event is referenced using its qualified name
15 goto Bit21
16 send Done // generation of internal event
17 }
18 }
19 }

Figure 3.5: Event declarations in Dash

3.3.6 Initial Constraints

An initial constraint describes what should be true of a system upon initialisation to put
the system in a known state. An initial constraint is declared using the keyword init and
any expression written in Alloy can be included in the body. A name may be given to an
init block for documentation purposes. Figure 3.6 shows the initial constraints of musical
chairs.

1 init {
2 #active_players > 1
3 // there is exactly one player more than chairs
4 #active_players = (# active_chairs).plus [1]
5 // force all Chair and Player to be included
6 active_players = Player
7 active_chairs = Chair
8 occupied = none -> none // empty relation
9 }

Figure 3.6: Initial constraints in Dash

18

3.3.7 State Invariants

A state invariant describes an assumption about a state of a system. A state invariant is
local and the assumption should hold when the state an invariant is declared in is active. If
one wants to describe an invariant that should always hold for a system, the invariant must
be declared inside the top-most state block. A state invariant is declared using the keyword
invariant and any expression written in Alloy can be included in the body. However,
primed versions of state variables cannot be present on an a state invariant expression. A
name may be given to an invariant block for documentation purposes. Figure 3.7 shows
an example of invariant declarations.

1 conc state Root {
2 invariant Global { // assumption should always hold
3 ...
4 }
5
6 state S1 {
7 invariant Local { // assumption should hold when S1 is active
8 ...
9 }
10 }
11 default state S2 {...}
12 }

Figure 3.7: Invariants in Dash

In musical chairs an invariant that states that when the game is in the Walking state,
no one is occupying a chair can be expressed as:

19

1 conc state Game {
2 active_players: set Player
3 active_chairs: set Chair
4 occupied: Chair set -> set Player
5
6 default state Start {...}
7 state Walking {
8 invariant { // local invariant
9 no occupied // no chair is occupied while players are walking
10 }
11 ...
12 }
13 state Sitting {...}
14 state End {}
15 ...
16 }

Figure 3.8: State invariant of musical chairs

3.4 Additional Syntactic Features

Dash offers several syntactic constructs to ease the description of the behaviour of a system.
These constructs are meant to help in code reuse, systematic organisation and facilitate
writing a model in different manners. The following sections describe these additional
features of Dash.

3.4.1 Named Conditions

A conditions is a boolean expression that, when evaluates to true, enables a transition. A
named condition is declared using the keyword condition and must be given a name. A
named condition in Dash is a template for any Alloy expression that can be used in the
declaration of different transitions. The expression is written inside square brackets after
the name of a condition. Figure 3.9 shows an example of named conditions.

20

1 condition ReusableCondition [
2 ... // expression written in Alloy
3] {}
4
5 trans T1 {
6 from S1
7 when ReusableCondition
8 goto S2
9 }
10
11 trans T2 {
12 from S2
13 when !ReusableCondition
14 goto S1
15 }

Figure 3.9: Named condition in Dash

3.4.2 Named Actions

An action is a change in a system as the effect of taking a transition. State change is
represented in Dash by the use of primed expressions that stand for the value of variables
in the next moment. A named action is declared using the keyword action and must be
given a name. A named action in Dash is a template for any Alloy expression that can
be used in the declaration of different transitions. The expression is written inside square
brackets after the name of an action. Figure 3.10 shows an example of named actions.

21

1 action ReusableAction [
2 ... // expression written in Alloy
3] {}
4
5 trans T1 {
6 from S1
7 on E1
8 goto S2
9 do ReusableAction
10 }
11
12 trans T2 {
13 from S2
14 on E1
15 goto S1
16 do ReusableAction
17 }

Figure 3.10: Named action in Dash

3.4.3 Factoring

A labelled control state is an abstraction that groups common past and future behaviours
of a system; it is a way to factor transitions of a model. Factoring in Dash refers to
grouping together transitions based on a common element. Since Dash is a text-based
language, factoring of transitions can go beyond state hierarchy: transitions can also be
factored by conditions and events. These factoring constructs can be nested any number
of times to represent complex behaviours. Factoring offers a mechanism to systematically
organise the transitions in a model and accommodates different modelling paradigms (e.g.,
event-based modelling).

Factoring by Events

When a transition is declared in the body of an event or in one of its nested elements, the
container event is added to the list of event triggers of the transition.

22

1 event E1 {
2 trans T1 { // T1 is triggerd by E1
3 goto S2 // source state is S1 and destination is S2
4 }
5
6 event E2 { // nested event declaration
7 event E3 {}
8 trans T2 { // T2 is triggered by E1 and E2
9 goto S3
10 send E3
11 }
12 }
13 }

Figure 3.11: Factoring by events in Dash

Factoring by Condition

When a transition is declared in the body of a condition or one of its nested elements, the
container condition is conjuncted to the guard condition of the transition.

1 condition C1[...] {
2 trans T1 { // T1 is enabled when C1 is true
3 goto S2 // source state is S1 and destination is S2
4 }
5
6 // factoring by condition and by event
7 condition C2[...] { // nested condition declaration
8 event E1 {
9 // T2 is enabled when C1 and C2 are true and E1 occurs
10 trans T2 {
11 goto S3
12 }
13 }
14 }
15 }

Figure 3.12: Factoring by condition in Dash

23

3.4.4 Transition Comprehension

Transition comprehension is used to declare several transitions with a single statement. It
extends the capability of transition declaration (see Figure 3.3) to support a list of state
names, or a wildcard *, for the source and destination state parts. In the first case, a
new transition with identical definition (i.e., trigger event, guard condition, action, and
generated events) is created for every name provided in the list. If a wildcard * is provided,
an identical transition is created for every state under the current scope (i.e., for every
child state of the state element that contains the transition comprehension declaration).
Transitions that are created from a transition comprehension expression are given a unique
names as described in section 5.2. Figure 3.13 shows an example of a telephone system,
which models the behaviour of a user hanging up the phone at any moment. The statements
from line 3 to line 13, can be replaced by the transition comprehension on line 17.

1 // without transition comprehension
2 event HangUp {}
3 trans T1 {
4 from Calling on HangUp goto Idle
5 }
6
7 trans T2 {
8 from Talking on HangUp goto Idle
9 }
10
11 trans T3 {
12 from Busy on HangUp goto Idle
13 }
14 ...
15
16 // alternative using transition comprehension
17 trans ToIdle {
18 from * on HangUp goto Idle
19 }

Figure 3.13: Transition comprehension in Dash

3.4.5 Layering

Layering allows modellers to describe addon parts of a transition in different places in
a model, which are then combined together to create the complete description of the

24

transition. Addons facilitate aspect-oriented modelling which is based on Separation of
Concerns (SoC), and describes the modularisation of aspects (i.e., cross cutting concerns
like logging, security, etc) that are then combined with the main functionality [18]. An
addon is declared using the keyword addon and a name may be provided for documentation
purposes. Figure 3.14 shows the general template for declaring addons.

1 addon name (addon_effect) to target_transitions
2
3 addon_effect := do action
4 | send event_names
5 target_transitions := trans_names
6 | from (* | state_names) to (* | state_names)
7 | *
8

Figure 3.14: Template for declaring addons in Dash

addon_effect represents the purpose of the addon. It can be either the specification
of an action or the generation of some events. In the first case, the effect is specified as a
do action, where action is an Alloy expression or the identifier of a named action. In the
latter case, the effect is specified as send event_names, where event_names is a name or
a comma-separated list of the name of the events to be generated.

target_transitions is the transitions to which the addon will apply. There are three
different ways to define the target transitions. First, the transitions can be explicitly
identified with a comma-separated list of transition names. Another options is to use a
wildcard *, which means that an addon will be added to all of the transitions found in
the current scope (i.e., all transitions declared inside the state that contains an addon
declaration). The third option provides a mid-range control; transitions can be selected
based on their source and/or destination state. Figure 3.15 shows some examples of addon
declarations.

25

1 action LogError [...]{}
2 action IncrementCounter [...]{}
3 event ErrorNotification {}
4
5 // addon is specifed for a explicit list of transitions
6 addon LogErrors (do LogError) to T1 , T2 , T3, T4
7
8 // send notification for every transition that goes to Error state
9 addon RaiseError (send ErrorNotification) to (from * to Error)
10
11 // increment internal counter for every transition taken
12 addon Increment (do IncrementCounter) to *

Figure 3.15: Addon declarations in Dash

3.4.6 Transition Templates

A transition template allows code reuse of transitions that have a common structure. A
transition template is defined similarly to a normal transition, however, the keyword def
precedes the declaration, a name must be given and a list of parameters. To instantiate
a transition from a template, in the body of a transition declaration the name of the
template is included along with the actual parameters of the transition. Figure 3.16 shows
an example of using transition templates.

26

1 event E1 {}
2 event E2 {}
3
4 def trans template[src: State , e: Event] { // defines a template
5 from src // formal parameter
6 on e // formal parameter
7 goto DestinationState
8 do Action
9 }
10
11 trans FromS1 { // instantiates a transition from a template
12 template[S1 , E1] // S1 and E1 are the actual paremeters
13 }
14
15 trans FromS2 {
16 template[S2 , E2]
17 }

Figure 3.16: Transition templates in Dash

3.4.7 Escape Blocks

Sometimes it is desirable to write expressions that refer directly to the Alloy code generated
from a Dash model (for example, to write model checking properties that are based on
BMC), and to do that Dash provides escape blocks. As the name suggests, the content
of an escape block is copied verbatim from a Dash model to the generated Alloy model.
Another possible use of escape blocks is to preserve comments and documentation of a
model. Escaped content is included within an opening tag {escape} and a closing tag {/
escape}. Figure 3.17 shows the definition of a temporal property that cannot be described
directly in Dash (the current version does not support referring to the transitions that have
been taken, because that property refers to a value introduced in the semantics).

27

1 {escape}
2 /** checks that the counter always reacts to a TK0 event */
3 assert model_responsive {
4 all s: Snapshot | s.stable = True and Counter_Tk0 in s.events =>
5 some s’: s.* nextStep | s.stable = True and
6 (Counter_Bit1_T1 in s’. taken or
7 Counter_Bit1_T2 in s’. taken or
8 Counter_Bit2_T3 in s’. taken or
9 Counter_Bit2_T4 in s’. taken)
10 }
11 {/ escape}

Figure 3.17: Escaped blocks in Dash

3.5 Temporal Properties

Temporal property specification in Dash is done using CTL logic. A CTL formula can be
specified in the body of an assertion (i.e., to instruct the Analyzer to find a counterexample)
or in the body of a predicate (i.e., to try and find an example that satisfies a model).
Figure 3.18 shows the list of supported CTL operators.

ex e f eg eu
ax a f ag au

Figure 3.18: CTL operators in Dash

Temporal operators can be nested to specify complex properties. Figure 3.19 shows the
specification of some temporal properties of musical chairs.

28

1 assert ctl_safety {
2 // number of active_players is always 1 greater than number of

active_chairs
3 ag (#Game/active_players = (#Game/active_chairs).plus [1])
4
5 }
6
7 one sig Alice extends Player {}
8 pred ctl_existential {
9 // Alice wins in some instance
10 // the expression ‘state_name in conf ’
11 // is used to test if a state is active
12 ef (Game/End in conf and Game/active_players = Alice)
13 }

Figure 3.19: Temporal specification in Dash

3.6 Grammar

An abbreviated version of the Dash grammar that showcases the syntactic additions to the
Alloy language is shown in Figure 3.20 (the complete grammar definition, including Alloy
constructs, is available on Appendix A).The grammar is structured in a way that facilitates
its presentation. The actual implementation in Xtext has a different structure; in part to
take advantage of some features of Xtext, and also because Xtext uses ANTLR [3] (a parser
that implements an LL(*) algorithm), which does not support left recursive grammars.
Common BNF operators are used to define the grammar and some other conventions are
followed as indicated.

• a∗ means zero or more repetition of a

• a+ means at least one or more repetitions of a

• a | b means choice between a and b

• [a] means that a is optional

• a,∗ means zero or more repetitions of a separated by comma

• a,+ means at least one or more repetitions of a separated by comma

29

• a (elements in bold type) means that a is a terminal (including special characters
such as parentheses, square brackets, star, plus and vertical bar)

• a (elements in italics type) means that element definition is not shown for brevity

module ::= [AlloyModuleDecl] import* dashParagraph*

dashParagraph::= AlloyParagraph | stateDecl | escapeBlock
stateDecl ::= [default] [conc] state name {stateItem*}
stateItem ::= stateVar | invariantDecl | initDecl

| addOnDecl | factoringDecl | enterDecl | exitDecl
invariantDecl ::= invariant [name] block
initDecl ::= init [name] block
enterDecl ::= enter block
exitDecl ::= exit block
addOnDecl ::= addon [name] ((do expr | send qualName,+)) to transPattern
transPattern ::= * | qualName,+

| ([from (* | qualName,+)] [goto (* | qualName,+)])
factoringDecl ::= eventDecl | actionDecl | conditionDecl

| transDecl | stateDecl | transTemplate
eventDecl ::= [env] event name {factoringDecl*}
actionDecl ::= action name [expr]{}
conditionDecl ::= cond name [expr]{factoringDecl*}
transDecl ::= trans [name] {transBody | transInstance}
transInstance :: = qualname[expr,+]
transTemplate :: = def trans name paraDecls {transBody}
transBody ::= [from (* | qualName,+)]

[on qualName,+] [when expr *]
[goto (* | qualName,+)] [do expr *]
[send qualName,+]

stateVar ::= env AlloyDecl
paraDecls ::= (AlloyDecl,*) | [AlloyDecl,*]
block ::= {expr *}
escapeBlock ::= {escape} string {/escape}

Figure 3.20: Grammar of Dash

Figure 3.21 lists the keywords of Dash. The new additions to the Alloy language are in
bold typeface:

30

abstract condition ex Int private
action conf exactly int run
addon def exit invariant send
af default expect let seq
ag disjoint extends lone set
all do fact many sig
and ef for module some
as eg from no State
assert else fun none state
au enter goto not sum
ax env iden on taken
Boolean eu iff one to
but Event implies open trans
check event in or univ
conc events init pred when

Figure 3.21: Dash keywords

3.7 Summary

Dash is a language for the specification of system behaviour, which is formally described
using a transition system. For this reason, transitions are first-class constructs in Dash.
Core Dash provides the minimum set of constructs to describe a behavioural model in Dash.
Many other syntactic constructs and features such as factoring, transition comprehension,
and layering, provide modellers with the ability to systematically define and organise their
transitions, accommodating different modelling paradigms and styles. Temporal properties
are supported and can be specified using CTL.

31

Chapter 4

Semantics of Dash

Stating the semantics of a language such as Dash is difficult because its semantics are not
compositional in the structure of a model (i.e., the meaning of a model cannot be described
by combining individual descriptions of each transition). It is reasonable for transitions
in multiple concurrent states to respond to an environmental input, thus the semantics of
Dash must address the question of which transitions can be taken together in a big step as
depicted in Figure 4.1. A big step consists of one or more small steps, each of which can
be one or more transitions. The big step continues until a snapshot of the model is stable,
i.e., no more transitions are enabled. More environmental input (events and changes to
variables) is needed to enable transitions. A transition is enabled if a snapshot contains
its source state, its trigger event is in the set of current events and its guard condition is
satisfied.

sp0
stable

sp1

env input

sp2 spn−1
spn

stable

env input

ss1 ss2 . . . ssn

big step

Figure 4.1: Big step (sp is a snapshot; ss is a small step) (Copied from page 7)

The semantics of Dash are stated in terms of the semantic framework of Esmaeilsabzali
et al. [20], which describes a space of semantic aspects and options for languages that use big

32

steps. This semantic framework promotes systematicness and clarity, and its modularity
lends itself to be declaratively instantiated as Alloy predicates. The choices for each of the
semantic options are summarised in Table 4.1 and described on the next sections, and are
based on two reasons: 1) as a declarative model, a transition action can describe a “large”
change (i.e., a sequence of operations is rarely needed); and 2) ease of understanding of a
model.

Table 4.1: Semantics of Dash

Semantic Option Value in Dash
concurrency Single

big step maximality Take One
event lifeline Present in remainder of big step

variable lifeline Immeadiate change in small step
priority Source state outer hierarchical

4.1 Concurrency

The semantic aspect Concurrency determines how many transitions can be taken in a
small step. The option Single for this aspect means that only one transition can be taken
in a small step to ensure transition atomicity. This choice is because of reason (2) above
since race conditions, which could occur if multiple concurrent states place constraints on
the same variable1 are confusing to debug since they make a model inconsistent.

4.2 Big Step Maximality

The big-step maximality aspect specifies the termination criteria for a sequence of small
steps, i.e., when the system is stable. The option Take One is chosen for Dash, meaning
that at most one transition per concurrent state can be taken in a big step. For reason (2)
above, this choice is desired because it guarantees termination of big steps. One concurrent
region can generate events that cause transitions to be enabled in another concurrent state
and taken later in the big step. In an abstract model, it seems reasonable that at most

1While namespaces force users to recognise when a state is referring to a variable outside of itself, a
transition in one state can place constraints on variables outside of its own state.

33

one transition in each concurrent state should be allowed in a big step because of reason
(1) above.

4.3 Event Lifeline

For the event lifeline aspect, the option Present in remainder of big step is chosen,
which indicates that a generated event can trigger transitions in the small steps after its
generation until the end of a big step. For reason (2) above, we wanted the small steps to
be causal.

4.4 Variable Lifeline

For the variable lifeline2, the option Immediate change in small step makes the effects
of actions of a transition immediately available in the next small step to enable transitions,
permitting a cascading flow of variable changes. Because of Take One for big-step max-
imality, the variable lifeline choice cannot cause a non-terminating big step where
two transitions keep enabling each other. This choice was made for reason (2) above: se-
mantic choices that refer to the value of variables at the beginning of a big step throughout
the big step are hard to follow. Because of reason (1) above, it is expected that the number
of small steps in a big step to be reasonably small, thus there should not be many event
and variable changes within a big step.

4.5 Priority

For priority, the option Source state outer hierarchical specifies that transitions whose
source state is a parent state take precedence over those from a child state. This choice is
the most common one in statechart languages, is easier to understand than priority based
on scope (source and destination state), and less tedious than specifying explicit relative
values for each transition.

2In [20], this aspect is decomposed into multiple aspects.

34

4.6 Characteristics

The set of semantic values chosen for Dash results in the semantics of Dash being cancelling,
non-deterministic, and priority consistent. The semantics of Dash are cancelling because
it is possible for a transition to be enabled during a big step and then become disabled by
the effects of other transitions taken during the same big step. For example, the trigger
condition of a transition t may evaluate to true at the beginning of a big step, but after
one or more small steps are taken, the cumulative effects of the actions of the taken
transitions may make the guard condition of t to no longer hold, disabling the transition.
The non-determinism in the semantics of Dash means that if the same environmental input
is applied to two big steps of a model that have the same initial snapshot, the final result
and snapshots may be different, even if both big steps execute the same set of small steps
and no transition is cancelled. The difference arises because of the order of execution of
the small steps affects the cumulative effects of the actions of the transitions. Finally, the
semantics of Dash are priority consistent, meaning that always transitions that have higher
priority are taken before other transitions with lower priority.

4.7 Frame Problem

Finally, the semantics of Dash address the frame problem where there is a mismatch
between the usual choices of declarative and control-oriented languages. In declarative
languages, if a variable is not constrained in an action, it is allowed to change non-
deterministically. In control-oriented languages (where actions are typically a sequence
of assignments), an unchanged variable retains its value from the previous snapshot. In
Dash, by declaring a variable env, it is allowed to change when the system is stable, but
otherwise retains its value. For non-environmental variables, if their primed version is
mentioned in the action of transitions, it is assumed that an action will constrain them; if
their primed version is not mentioned in any action then variables retain their values from
the previous snapshot. This last semantic choice can be overridden and it is controlled by
an option of the translation process (see section 5.14.1)

4.8 Summary

The semantics of Dash are not compositional in the structure of a model, and must address
the problem of identifying the set of transitions that are enabled by an environmental input.

35

Environmental input may enable different transitions on different concurrent regions, and
for this reason the semantics of Dash use the notion of big and small steps. The big step
boundaries are demarcated by stable snapshots, which describe moments when no more
transitions are enabled. The semantics of Dash are stated in terms of the framework of
Esmaeilsabzali et al. [20], which describes a space of semantic aspects and options for these
languages. Two main reasons were considered for choosing the semantics of Dash: first,
Dash is a declarative language and each transition can describe large changes, and second,
ease of understanding of a model. Besides materialising some of the aspects described
by the semantic framework, the semantics of Dash also address the mismatch between
declarative and control-oriented languages regarding the frame problem.

36

Chapter 5

From Dash to Alloy

This chapter describes the process of translating a Dash model to an Alloy model that
describes a next snapshot relation based on the semantics described in Chapter 4. Addi-
tionally, this chapter explains how temporal properties are transformed to be used with
TCMC. Throughout the following sections, fragments of abstract code along with excerpts
from the bit counter and musical chairs models are used to help in the presentation. The
structure of the generated Alloy model follows the guidelines proposed by Farheen [21].

5.1 Next Snapshot Relation

The purpose of a Dash model is to define a next snapshot relation containing pairs that
are the possible small steps of a system. In Dash, a stable snapshot is the first snapshot
of the current big step, and at the same time, is the last snapshot of the previous big step.
Usually, in big-step representations there is a reset step that clears the outputs generated
in a big step and prepares the system for the next environmental input (e.g., [39], [33]).
This reset step makes a clear distinction between two consecutive big steps, there are no
overlapping snapshots so the last snapshot of the previous big step is different from the first
snapshot of the current big step. However, the next snapshot relation of a Dash model
is compacted and a stable snapshot is shared between two consecutive big steps. This
compact representation avoids having to add an extra reset step and an extra snapshot
for every big step which would greatly impact the snapshot scope used for analysis (see
section 6.3). Snapshots that are stable are characterised by having:

37

• an unconstrained set of environmental events that can trigger transitions in the next
big step;

• internal events that were generated in the previous big step;

• unconstrained environmental variables values that can trigger transitions in the next
big step;

• internal variable values that have the accumulated effects of all transitions taken so
far;

• the set of transitions taken in the previous big step.

Figure 5.1 shows a schematic of the next snapshot relation where each small step
contains one transition (t1, . . . tn, k1). Each pair of snapshots related in the diagram is in
the next snapshot relation. In Dash, an event is either environmental or internal but cannot
be both at the same time. Similarly, a variable can either be internal or environmental.
envev and envvar are environmental events and variables, respectively; gen_ev represents
events generated by transitions; actions represents the effects of the actions of transitions
where + is used informally; intvar represents internal variables and their values; new
means a non-deterministic choice of values. The internal events generated during a big
step, gen_ev, are available in the last snapshot of a big step, which is stable, to make
them observable because they are outputs of a model. However, these generated events
cannot trigger transitions in the next big step, only the environmental events present in
the stable snapshot can trigger transitions.

s0
stable

s1
¬stable

s2
¬stable

s3 ¬stable
envev(s0)
gen_ev({t1, . . . , tn−1})
envvar(s0)
intvar(s0)
+actions({t1, . . . , tn−1})
{t1, . . . , tn−1}

s4 stable

new envev
gen_ev({t1, . . . , tn})
new envvar
intvar(s0)
+actions({t1, . . . , tn})
{t1, . . . , tn}

s5 ¬stable
envev(s4)
gen_ev({k1})
intvar(s4)
intvar(s4)
+actions({k1})
{k1}

t1 . . . tn−1 tn k1

Figure 5.1: Next snapshot relation

5.2 Transformation to Core Dash

The first step in the translation of a Dash model to Alloy is a transformation to Core
Dash. The transformation involves unfolding the effects of factoring, expanding transition

38

comprehensions and layering addons. At the end of the transformation, a model consists of
a description of a state hierarchy, a set of transitions completely defined, initial constraints
and state invariants.

During the unfolding of factoring, transition declarations are complemented with the
factoring elements. For example, if unfolding some transitions that have been declared
factored by an event, the factoring event is added to the list of triggering events of the
transitions. A similar process is done when unfolding the factoring by condition, in which
case, the condition is conjuncted to the guard condition of the transitions. If the from
or goto part of a transition declaration are missing, the container state is added to
complete the definition of the source and/or destination state. Additionally, during this
step transitions declared using a template are instantiated and formal parameters are
replaced with actual values.

Next, transition comprehension declarations are expanded. A new transition, identical
to the one being expanded (i.e., same trigger events, guard condition, action, and generated
events), is created for either: 1) every state name present on the list of source and/or
destination states or 2) for every state under the current scope if a wildcard * is used.
Newly created transitions have the same name as the original declaration, but a numeric
suffix is appended to uniquely identify the transitions. Since names of transitions are
optional, if no name is given, a generated name with the format T_counter will be used,
where counter is a internal variable that keeps track of the number of transitions generated.

Finally, addons are applied to complete transition declarations. Addon actions are
conjuncted to the action part of transitions, and generated events are added to the list of
names of generated events.

Once the transformation to Core Dash is completed, the priority (according to the
semantic option priority, see section 4.5) and the set of possible conflicting transitions
(according to the semantic option big-step maximality, see section 4.2) are computed
for each fully defined transition, and this information is stored to be used on a later step
in the translation to Alloy process.

5.3 Snapshot Definition

A snapshots contains the information that represents the state of a system at a moment
during its execution. A snapshot is composed of a configuration set that contains the
label controlled states that are active, a set of events that have been generated (either
internally by the system or by the environment) and the current values of the system

39

variables. Additionally, a set of transitions is included to keep track of the transitions
taken during a step, and a boolean flag is used to mark stable snapshots. Figure 5.2 shows
the representation of a snapshot of musical chairs1.

1 sig Snapshot {
2 conf: set StateLabel , // set of active control states
3 events: set EventLabel , // events generated
4 taken: set TransitionLabel , // transitions taken during the step
5 stable: one Bool , // indicates big -step boundaries
6 // system variables
7 Game_active_chairs : set Chair ,
8 Game_occupied : Chair set -> set Player ,
9 Game_active_players : set Player
10 }

Figure 5.2: Musical chairs snapshot representation in Alloy

5.4 State Hierarchy

State hierarchy is encoded using Alloy’s subtyping. The state hierarchy of a Dash model is
exactly represented by creating a subtyping tree in Alloy. An abstract signature StateLabel
is the base type for all control states. AND and OR- control states are defined as abstract
because they are containers of other control states. Concrete (i.e., non-abstract) signa-
tures are used for basic control states. Signatures of basic states are disjoint. The keyword
one means that the set contains only one element. Figure 5.3 shows the state hierarchy
representation of the bit counter.

1The actual translated model differs slightly because an Alloy module is used that contains reusable
definitions (see Appendix D), and also because some of the optimisations that are used when generating
the Alloy code (see section 5.13).

40

1 abstract sig StateLabel {} // base type of all control states
2 abstract sig Counter extends StateLabel {}
3 abstract sig Counter_Bit1 extends Counter {} // container state
4 one sig Counter_Bit1_Bit11 extends Counter_Bit1 {} // basic state
5 one sig Counter_Bit1_Bit12 extends Counter_Bit1 {}
6 abstract sig Counter_Bit2 extends Counter {}
7 one sig Counter_Bit2_Bit21 extends Counter_Bit2 {}
8 one sig Counter_Bit2_Bit22 extends Counter_Bit2 {}

Figure 5.3: State hierarchy representation in Alloy

5.5 Events

An event is represented using a signature in Alloy. The distinction between internal and en-
vironmental events is materialised by declaring the disjoint Alloy subtypes EnvironmentalEvent
and InternalEvent of a universal abstract EventLabel signature. Figure 5.4 shows the
event representation of the bit counter.

1 abstract sig EventLabel {}
2 abstract sig EnvironmentalEvent extends EventLabel {}
3 abstract sig InternalEvent extends EventLabel {}
4 one sig Counter_Tk0 extends EnvironmentalEvent {}
5 one sig Counter_Bit1_Tk1 extends InternalEvent {}
6 one sig Counter_Bit2_Done extends InternalEvent {}

Figure 5.4: Events representation in Alloy

5.6 Transitions

A transitions is identified using an Alloy signature. An abstract signature TransitionLabel
is declared to be the base type of all transitions. Figure 5.5 shows the transition signatures
of musical chairs.

41

1 abstract sig TransitionLabel {}
2 one sig Game_Start_Walk extends TransitionLabel {}
3 one sig Game_Start_DeclareWinner extends TransitionLabel {}
4 one sig Game_Walking_Sit extends TransitionLabel {}
5 one sig Game_Sitting_EliminateLoser extends TransitionLabel {}

Figure 5.5: Transitions representation in Alloy

A transition relates two snapshots that belong to the step relation. The relation is
structured in pre- and post-conditions of the transition, and this is reflected in the model
by generating corresponding Alloy predicates. Additionally, a third predicate is generated
that contains constraints to enforce some of the semantics options chosen for Dash. The
following is the predicate structure for a transition t1.

1 pred t1[s: Snapshot , s’: Snapshot] {
2 pre_t1 [s] // describes pre -conditions
3 post_t1 [s ,s’] // describes post -conditions
4 semantics_t1[s, s’] // enforces semantic choices
5 }

Figure 5.6: Predicates of a transition in Alloy

5.6.1 Pre-conditions

The pre-conditions of a transition t1 are represented using an Alloy predicate which is
evaluated relative to the current snapshot, s. The predicate is satisfied if the source state
of the transition is present in the configuration of the snapshot, and the value of the
snapshot variables satisfy the guard condition. Trigger events are evaluated depending
whether the current snapshot is the beginning of a bigstep (i.e., stable or not). When
the current snapshot is stable, t1’s trigger event must be one of the new events from the
environment; otherwise its event must be in the snapshot’s set of events, which includes
the environmental events generated at the beginning of the big step and any internal
events generated so far in this big step. Figure 5.7 shows an abstract representation of the
preconditions of transition t1.

42

1 pred pre_t1[s:Snapshot] {
2 src_state_t1 in s.conf
3 guard_cond_t1[s]
4 s.stable = True => {
5 // beginning of a big step
6 // transition can be triggerd only by environmental events
7 trig_events_t1 in (s.events & EnvironmentalEvent)
8 } else {
9 // intermediate snapshot
10 // transition can be triggered by any type of event
11 trig_events_t1 in s.events
12 }
13 }

Figure 5.7: Preconditions predicate of a transition

5.6.2 Post-conditions

Postconditions of a given transition t1 are modelled using an Alloy predicate which is
evaluated relative to the current snapshot, s, and the next snapshot, s’. Figure 5.8
shows an abstract version of the predicate that models the postconditions of t1. The
predicate is satisfied if the configuration changes between s and s’ exit the source states
and enter the destination states of transition t1 (line 2). Variable values are updated
according to the actions of transition t1 (line 3, Figure 5.9 shows a concrete example of a
transition’s actions), to enforce the semantic choice for Variable lifeline of Immediate
change in small step (see section 4.4). Within this constraint, internal variables whose
primed versions are not mentioned in an action are required to retain their values from the
previous snapshot2.

Next, four cases arise to constrain events and environmental variables, depending
whether s is stable and s’ will be stable. The predicate testIfNextStable evaluates
to true, if after taking transition t1 no more transitions would be enabled, which makes
s’ stable. Then, depending on if the current snapshot, s, is stable, two types of small
step are possible. When the current snapshot is also stable, the transition is between two
stable snapshots, meaning that the small step is equivalent to a big step. In such case,
only internal events generated by t1 are allowed to be contained in the set of events of s’.
No further constraints are declared, so environmental events and environmental variables
can take on new values on s’. If the current snapshot is not stable, then the small step is

2This behaviour can be turn on/off by a configuration option of the translation tool (see section 5.14.1).

43

the last one of a big step. In this case, the events generated by t1 are added to the set of
events of s’ and any previous events generated during the big step are preserved. No fur-
ther constraints are declared, allowing environmental events and environmental variables
to take on new values on s’.

On the other hand, if the next snapshot, s’, is not stable, environmental variables do
not change and two other types of small steps are possible: either the transition corresponds
to the first step of a big step, or corresponds to an intermediate small step. In the first case,
the current snapshot, s, is stable. The only internal events of s’ are the ones generated by
t1 (clearing any internal events generated on previous big steps), and the environmental
events remain the same. When a small step corresponds to an intermediate step, the set of
events s’ is equivalent to the events present in the current snapshot, s, with the addition
of any event generated by t1.

44

1 pred pos_t1[s:Snapshot , s’: Snapshot] {
2 s’.conf = s.conf - exit_src_state_t1 + enter_dest_state_t1
3 actions_t1[s,s’]
4 testIfNextStable[s, s’, t1, gen_events_t1] => {
5 s’. stable = True
6 s.stable = True => {
7 // big step = one small step
8 // only internal events are the ones generated by t1
9 // allow env events to change
10 no ((s’. events & InternalEvent) - gen_events_t1)
11 } else {
12 // last small step of the big step
13 // add t1 ’s generated events to the internal events
14 // allow env events to change
15 no ((s’. events & InternalEvent) -
16 (gen_events_t1 + InternalEvent & s.events))
17 }
18 } else {
19 s’. stable = False
20 env_vars_unchanged_t1[s,s’]
21 s.stable = True => {
22 // first small step of the big step
23 // only internal events are the generated by t1
24 s’. events & InternalEvent = gen_events_t1
25 // env events stay the same
26 s’. events & EnvironmentalEvent = s.events & EnvironmentalEvent
27 } else {
28 // intermediate small step
29 // add t1 ’s generated events to the events
30 s’. events = s.events + gen_events_t1
31 }
32 }
33 }

Figure 5.8: Post-conditions predicate of a transition

The musical chairs example illustrates that complex actions can refer to the previ-
ous and next values of snapshot variables. The constraints for the variables in the post-
condition of the Sit transition are:

45

1 pred pos_Game_Walking_Sit[s, s’: Snapshot] {
2 ...
3 s’. Game_occupied in s.Game_active_chairs -> s.Game_active_players
4 s’. Game_active_chairs = s.Game_active_chairs
5 s’. Game_active_players = s.Game_active_players
6 all c : (s’. Game_active_chairs) | one c.s’. Game_occupied)
7 all p : Chair.(s’. Game_occupied) | one (s’. Game_occupied).p
8 ...
9 }

Figure 5.9: Actions in a post-conditions predicate of musical chairs

The auxiliary predicate testIfNextStable , is evaluated relative to the current snap-
shot, s, the next snapshot, s’, the transition to be taken, t, and its set of generated events,
genEvents. The purpose of this predicate is to determine whether any transitions will be
enabled in s’ if t is taken, so it relies on enabledAfterStep predicates for each transition.
For example, to determine if transition t1 will be enabled after taking transition, t, the
predicate enabledAfterStep_t1 is defined using constraints similar to the pre-conditions
for t1. However, these constraints depend on the variable values of s’ and the generated
events of t, to simulate the effects of executing t. Additional constraints are added to
enforce that only transitions orthogonal to t1 have been taken.

46

1 pred testIfNextStable[s,s’,t,genEvents] {
2 not enabledAfterStep_t1[s,s’,t,genEvents] and
3 not enabledAfterStep_t2[s,s’,t,genEvents] and
4 ...
5 }
6
7 pred enabledAfterStep_t1[s, s’,t, genEvents] {
8 src_state_t1 in s’.conf
9 guard_condition_t1[s’]
10 (s.stable = True) => {
11 // only transition taken in big step is t
12 // as long as t1 is orthogonal to t
13 // then t1 is enabled in next snapshot
14 orthogonal_t1[t]
15 // t1 can be triggered by environmental events of the big step
16 // or by any events generated by t
17 trig_events_t1 in {(s.events & EnvironmentalEvents) + genEvents}
18 } else {
19 // as long as t1 is orthogonal to t + s.taken
20 // then t1 is enabled in next snapshot
21 orthogonal_t1[t + s.taken]
22 // t1 can be triggered by any events present in the big step
23 // or any events generated by t
24 trig_events_t1 in (s.events + genEvents)
25 }
26 }

Figure 5.10: Determining if a transition will be enabled on next snapshots

5.6.3 Semantics

The semantics predicate for t1 is evaluated relative the current snapshot, s, and the next
snapshot, s’. The predicate is true if t1 is orthogonal to all transitions in the set of
transitions already taken in this big step, enforcing the choice of Take One for big-step
maximality (see section 4.2). This predicate may also include priority-related predicates
when necessary. If two transitions have source states related in the hierarchy (e.g., one
transition’s source is a ancestor or descendant of the other’s), then the negation of the
pre-condition of the higher priority transition is included in this semantics predicate to
enforce the choice of Source state Outer Hierarchical for the priority semantic aspect (see
section 4.5). Additionally, if the snapshot s is stable, then this is the first step of a big
step and only t1 should be included in the set of transitions; otherwise, t1 is added to the

47

set of transitions. This last constraint ensures that only one transition is taken in a step
(enforcing Single semantic choice for concurrency) (see section 4.1).

1 pred semantics_t1[s,s’: Snapshot] {
2 s.stable = True => {
3 s’.taken = t1 // SINGLE semantics
4 } else {
5 s’.taken = s.taken + t1 // SINGLE semantics
6 orthogonal_t1[s.taken] // TAKE ONE semantics
7 }
8 !pre_t2[s] // transition with higher priority
9 !pre_t3[s]
10 ...
11 }

Figure 5.11: Semantics predicate of a transition

For the bit counter the semantics predicate of one of the transitions is as follows:

1 pred semantics_Counter_Bit1_T1[s, s’: Snapshot] {
2 s.stable = True => {
3 s’.taken = Counter_Bit1_T1 // SINGLE semantics
4 } else {
5 s’.taken = s.taken + Counter_Bit1_T1 // SINGLE semantics
6 // TAKE ONE semantics
7 no s.taken & { // no other transition in the
8 Counter_Bit1_T2 + // same region as T1 has been taken
9 Counter_Bit1_T1
10 }
11 }
12 }

Figure 5.12: Semantics predicate for T1 of the bit counter

5.7 Initial Constraints

Initial constraints are modelled by an Alloy predicate. The generic initial constraints on
snapshots are that the system is in its default states, no transitions have been taken, and
there are no internal events. Environmental events can be present in an initial snapshot

48

to enable transitions. Furthermore, an initial snapshot must be stable. Additional con-
straints defined by the model are appended to the predicate. Figure 5.13 shows the initial
constraints for musical chairs.

1 pred init[s: Snapshot] {
2 s.conf = default_states
3 no s.taken
4 no s.events & InternalEvent
5 s.stable = True
6 // model -specific constraints
7 #(s.Game_active_players) > 1
8 #(s.Game_active_players) = (#(s.Game_active_chairs)).plus [1]
9 s.Game_active_players = Player
10 s.Game_active_chairs = Chair
11 s.Game_occupied = none -> none
12 }

Figure 5.13: Initial constraints for musical chairs

5.8 State Invariants

A state invariant is modelled using an Alloy fact on a snapshots. Since a state invariant is
local (it depends on the state that contains its declaration), it is expressed as an implication.
Figure 5.14 shows the associated Alloy fact for an invariant of musical chairs that states
that when the game is in the Walking state, no one is occupying a chair.

1 fact Game_Walking_emptyChairs {
2 all s: Snapshot | Game_Walking in s.conf => {
3 no s.Game_occupied
4 }
5 }

Figure 5.14: State invariants in Alloy

5.9 Model Definition

A Dash model is translated to Alloy to describe a next snapshot relation, which is defined
in terms of the small steps. To model the small steps, a predicate is created which contains

49

the disjunction of the transition predicates of a model, and an Alloy fact is included to
formally define the next snapshot relation. As described in [21], the small steps can also be
modelled as the conjunction of the individual transition predicates, granted that transitions
are structured in a manner that the preconditions of a transition imply the post-conditions
of the transition (pre_t1 => pos_t1). However, the disjunction of the transitions provides
more structure and modularity; adding a new transition does not change the behaviour of
existing transitions.

Snapshots that satisfy the initial constraints are defined as the initial snapshots of a
model, and pairs of snapshots that satisfy the small_step predicate conform the next
step relation. An additional predicate, equality, is defined to avoid duplicate snapshots.
In Alloy, by default every atom is different even when a pair of atoms contain the same
values. Lastly, a significance predicate may be included, which contains constraints to
get a significant model (see section 5.10).

1 pred small_step[s, s’: Snapshot] {
2 Game_Start_Walk[s, s’] or
3 Game_Start_DeclareWinner[s, s’] or
4 Game_Walking_Sit[s, s’] or
5 Game_Sitting_EliminateLoser[s, s’]
6 }
7
8 fact {
9 all s: Snapshot | s in initial iff init[s]
10 all s, s’: Snapshot | s->s’ in nextStep iff small_step[s, s’]
11 all s, s’: Snapshot | equals[s, s’] => s = s’
12 significance
13 }
14
15 pred equals[s, s’: Snapshot] {
16 s’.conf = s.conf
17 s’. events = s.events
18 s’.taken = s.taken
19 // Model specific declarations
20 s’. Game_active_chairs = s.Game_active_chairs
21 s’. Game_active_players = s.Game_active_players
22 s’. Game_occupied = s.Game_occupied
23 }

Figure 5.15: Model definition in Alloy

50

5.10 Significance Axioms

The significance axioms help in ensuring the exploration of a portion of the snapshot
space that contains interesting behaviours, and in avoiding the generation of spurious
counterexamples when model checking. Farheen [21] defines two axioms: the reachability
axiom and the operations axiom.

The reachability axiom ensures that every snapshot generated is reachable from an
initial snapshot, and that such an initial snapshot exists. The operations axiom ensures
that there is at least one representative of every transition in a model.

1 pred significance {
2 reachabilityAxiom
3 operationsAxiom
4 completeStepsAxiom
5 }
6
7 /** Every snapshot is reachable from an initial snapshot */
8 pred reachabilityAxiom {
9 all s : Snapshot | s in Snapshot .((initial) <: * (next_step))
10 }
11
12 /** There exists at least one representative of every transition */
13 pred operationsAxiom {
14 some s, s’: Snapshot | T1[s, s’]
15 some s, s’: Snapshot | T2[s, s’]
16 some s, s’: Snapshot | T3[s, s’]
17 ...
18 }

Figure 5.16: Significance axioms in Alloy

For Dash, we extended the significance axioms to concurrent models. A new axiom is
introduced to ensure that instances of a model are composed by complete big steps. The
axioms is defined as:

Complete big steps axiom: All big steps of a concurrent model must be complete. This
axiom prevents spurious instances where branching small steps are generated but do not
end in stable snapshots, which would produce incomplete big steps.

51

1 /** An unstable snapshot cannot be the last one of a trace */
2 pred completeStepsAxiom {
3 all s: Snapshot | s.stable = False => some s.nextStep
4 }

Figure 5.17: Complete steps significant axiom in Alloy

5.11 Temporal Properties

Temporal properties are specified in Dash using CTL formulas in the body of Alloy pred-
icates and/or assertions. When a model is translated to Alloy, temporal expressions are
converted to set comprehension expressions that can be used with the Alloy implemen-
tation of TCMC. Additionally, since the next snapshot relation of models with concur-
rency may contain big steps composed by several small steps, an expansion of tempo-
ral properties is required to correctly check properties at stable snapshots. At the Dash
level when a property uses the Next temporal operators (ax , ex), it should refer to the
next stable snapshot of the transition relation, which might not be the same as the ac-
tual next snapshot in the small step relation. In these cases, the temporal property is
transformed to use the corresponding Until operator (au , eu). For example, a prop-
erty expressed in Dash with the form AG(p =⇒ EX q) is translated to Alloy as
AG(stable ∧ p =⇒ EX(¬stable EU(stable ∧ q))). These transformation apply at
any level in a nested property. Figure 5.18 shows some of the translated temporal proper-
ties of musical chairs.

52

1 /**
2 * Dash model
3 */
4 assert ctl_safety {
5 ag (#Game/active_players = (#Game/active_chairs).plus [1])
6 }
7
8 pred ctl_existential {
9 ef (Game/End in conf and Game/active_players = Alice)
10 }
11
12 /**
13 * Generated Alloy model
14 */
15 assert ctl_safety {
16 ctl_mc[
17 ag[{s: Snapshot |
18 #(s.Game_active_players) = (#(s.Game_active_chairs)).plus [1]
19 }]
20]
21 }
22
23 pred ctl_existential {
24 ctl_mc[
25 ef[{s: Snapshot |
26 Game_End in s.conf and s.Game_active_players = Alice
27 }]
28]
29 }

Figure 5.18: Temporal properties in Alloy

5.12 Alloy Paragraphs and Escape Blocks

Regular Alloy constructs supported by Dash such as signatures, predicates, functions and
facts, are copied as they are originally declared at the Dash level (with the exception of
temporal expressions which require a transformation). Escape blocks are copied verbatim
to the generated Alloy model.

53

5.13 Optimisations

Some sensible modifications are made to signatures and predicates to simplify generated
models. The optimisations depend on the following conditions of a model: events are not
used and/or no concurrent states are declared.

When a model does not declare any event to trigger transitions, the events relation
is removed from the snapshot signature definition. If a model does not have concurrency,
every snapshot can be assumed to be stable, making every small step equivalent to a
big step. This assumption, greatly simplifies the constraints of the post-conditions of
transitions, and the predicates to determine if a next snapshot is stable are no longer
needed. Additionally, the stable flag is removed from the snapshot signature. These
simplifications are automatically performed based on static analysis of a model.

5.14 Implementation

Dash has been implemented using Xtext [7], a framework for the development of program-
ming and domain-specific languages. The framework provides the necessary tool support
for parsing, linking, type checking and compiling. Advanced editing capabilities such as
syntax highlighting, code completion, and marking of occurrences, can be easily developed
and shipped as an Eclipse plugin or a web editor. Our implementation checks several
well-formedness constraints such as that all state declarations are of the same type at the
same level of a state hierarchy, environmental events are not generated by a transition, and
actions do not constrain the next value of environmental state declarations. Furthermore,
a simple type checking 3 is performed on all expressions to ensure for example, that only
formulas are used with boolean operators or that relations with the appropriate arity and
type are used for set operations. The translator tool for Dash is available as a web interface
at http://129.97.7.33:8080/dash. The website contains further documentation about
the language, and an online editor with several sample models to help users familiarise
with the syntax and features.

3The type checking of our implementation is not as complete or advanced as the implementation in
Alloy, and many errors will only be reported on the translated Alloy model.

54

http://129.97.7.33:8080/dash

Figure 5.19: Dash online tool interface

55

5.14.1 Tool Options

The online tool of Dash lets users control some of the parameters of the translation process.
The available options are:

• Assume single input : This option controls the generation of an Alloy fact that con-
straints the number of events present in snapshots. When active, at most one en-
vironmental event can be present in every snapshot, allowing users to verify their
models using the single event hypothesis.

• Check reachability : This option controls the automatic generation of temporal prop-
erties to check that every basic state of a model is reachable (i.e., properties of the
form EF).

• Descriptive names : When this option is checked, the names of Alloy elements are
generated based on the Dash qualified names, which makes it easier to relate Al-
loy constructs with their corresponding Dash declarations. When the option is not
checked, an auto-generated name is used instead.

• Vars unchanged : This option controls what happens to snapshot variables whose
primed version are not present on the actions of a transition. When the option is
selected, predicates are included to force unconstrained snapshot variables to retain
the same value as in the previous snapshot.

• Generate enter/exit : This option controls the generation of Alloy functions to com-
pute the entered and exited states of a transition. When the option is not selected,
these states are directly listed on transitions post-conditions. This option is an addi-
tional optimisation of the translation; it makes a model more concise, however, the
impact on analysis time is yet to be determined.

• Snapshot scope: This option indicates the number of snapshots to be used when
generating the scopes for auto-generated reachability properties. The option helps
to find a significant scope (see section 6.3.1).

5.15 Summary

A Dash model is a description of the behaviour of a system that is formalised by declar-
ing a next snapshot relation in Alloy. The translation process of a Dash model to Alloy

56

begins with a transformation to Core Dash, by unfolding the effects of factoring, expand-
ing transition comprehensions and layering addons. At the end of the transformation a
description of a state hierarchy, a set of transitions, initial constraints and state invari-
ants is obtained. Core Dash models are then formalised using Alloy signatures, predicates
and facts that contain constraints to enforce the semantics choices of Dash. Temporal
properties are expanded to check their validity at the boundaries of big steps. Signif-
icance axioms are extended for concurrent models and implemented in the generated
Alloy code to avoid spurious model instances and force the Alloy Analyzer to explore
parts of the snapshot space with interesting behaviours. A translator tool is available
at http://129.97.7.33:8080/dash that contains multiple sample models to help users
familiarise with the syntax and features of Dash.

57

http://129.97.7.33:8080/dash

Chapter 6

Case Studies

This chapter presents several case studies1 that have been developed to demonstrate the
modelling capabilities of Dash, the translation to Alloy, and model checking analysis of
Dash models. The models range over the control-oriented versus data-oriented spectrum,
and are characterised based on features such as state hierarchy, concurrency and use of
events.

6.1 Models and Characteristics

In addition to the game musical chairs and the two-bit counter (introduced on section 3.1),
four more case studies were developed to evaluate Dash. Each model has several features
such as the use of events, state hierarchy, concurrency and data abstractions that help to
characterise the model and place it on the control versus data-oriented spectrum. Table 6.1
summarises the characteristics of each model and Figure 6.1 places each model on the
spectrum.

1The case studies are available as sample models at http://129.97.7.33:8080/dash.

58

http://129.97.7.33:8080/dash

Table 6.1: Characteristics of case studies

Model
Control States

Events Transitions
Data

AbstractionsTotal Basic Concurrent Hierarchy

Depth

Farmer puzzle 1 1 0 0 0 2 2 relations
Musical chairs 5 4 0 1 2 4 3 relations

NASA FGS 63 33 16 5 2 43
53 boolean
in/out

Snapshot UI 8 5 0 2 7 7 0
Traffic light 9 6 2 2 2 6 0
Bit counter 7 4 2 2 3 4 0

Fa
rm

er
pu
zz
le

M
us
ica

l C
ha
irs

NA
SA

FG
S

Sn
ap
sh
ot

UI
Tr
affi

c L
igh

t
Bi
t C

ou
nt
er

data-oriented control-oriented

Figure 6.1: Model spectrum.

Each of the case studies was developed based on an existing Alloy model or a statecharts
representation. The models were constructed to guide the integration between Alloy and
statecharts, so none of the novel features of Dash were used, with the exception of factoring
transitions by state and the specification of some state invariants.

6.1.1 Flight Guidance System

The NASA Flight Guidance System (FGS) [16] is a component that generates pitch and
roll values for an aircraft to minimise the difference between a desired state (position,
speed, altitude) and measured values. The mode logic is the sub component of the FGS
that specifies the modes, which are abstractions of the current state of the flight control,
and the rules for transitioning between them. The mode logic is divided into two different
components: event processing to prioritise events, and flight modes to control the logic

59

for transitions. As part of the case study only the flight modes have been modelled and
the event processing has been left unconstrained; hence some of the properties checked fail
because there is no explicit priority of the occurrence of events.

6.1.2 Farmer Puzzle

The farmer puzzle [6] is a classic riddle where a farmer is to cross a river taking a chicken,
a sack of grain and a fox safely to the other shore. The farmer crosses using a small boat
and can only take one of the items at a time. Some constraints are in place that dictate
which item can be safely carried on the boat or left on the shore. For example, the fox
and the chicken cannot be left alone on the shore while the farmer crosses with the sack
of grain, because then the fox would eat the chicken.

6.1.3 Snapshot UI

Snapshot 2 [4] is an application that allows teachers to assign quizzes or “snaps” to stu-
dents. Results are summarised and presented as several reports. The model captures the
behaviour of the application and how users can navigate through the different reports.

6.1.4 Traffic Light

The traffic light [19] example models the behaviour of a traffic light controller at an inter-
section that controls the lights on the north-south direction and east-west direction. The
lights change according to two environmental events: end and change, which are assumed
to occur following the sequence end, change, end, . . .

6.2 Translation

Table 6.2 shows the sizes of the Dash models and their translation to Alloy (without
helper files) with respect to source lines of code (SLOC) (skipping comments, blank lines
and statements of properties). Dash models are considerably more concise compared to
their equivalent translation in Alloy. The available hand-crafted Alloy models (prepared

2Snapshot is the name of the app and should not be confused with the definition used in this thesis as
a mapping to values that represents a moment in the execution of a system

60

prior to this work) are all smaller than the generated Alloy models, however, the Dash
translation has to cover the generality of all the variations of control state hierarchy and
the big steps that concurrency creates. The Dash models are similar in size (or smaller in
one case) than the hand-crafted Alloy models.

Given the popularity of UML statemachines and this modelling paradigm, Dash pro-
vides a natural transition for these modellers into abstract formal representations of data
operations. Dash has enhanced Alloy with the ability to model transition systems that in-
clude control state hierarchy and events, thus providing structure to Alloy models. This en-
hancement makes it possible for Dash to be used to model systems all across the spectrum,
ranging from data-intensive models to highly hierarchical and control-oriented models.

Table 6.2: SLOC comparison between Dash and Alloy

Model Hand-
crafted
Alloy

Dash Generated
Alloy

Farmer puzzle 27 41 100
Musical Chairs 116 51 160
NASA FGS - 723 5246
Snapshot UI 32 49 205
Traffic Light - 44 431
Bit Counter - 37 349

6.3 Model Checking

After translating a Dash model to Alloy, Model checking can be done using TCMC or BMC.
BMC checks properties of finite traces. TCMC checks infinite traces within finite subsets of
the reachable snapshot space. Both techniques in Alloy are currently substantially limited
in the number of snapshots that they can check; usually much less than the reachable
snapshot space even for a finite model. However, we expect the performance of constraint-
based model checking (e.g., IC3 [12]) will continue to improve. Thus, the purpose of this
evaluation is to show that model checking analysis of Dash models is possible with some
useful results now. The model checking results are summarized in Table 6.3. The analysis
was executed on an Intel(R) Xeon(R) CPU E3-1240 v5 @ 3.50GHz x 8 machine running
Linux version 4.4.0-137-generic with up to 64GB of user-space memory.

61

Table 6.3: Results of case studies. Properties were checked with TCMC or BMC. Entries
are properties that fail. N/A means below significant scope.

Model Property
Snapshot Scope

7 8 9 10 12

Musical Chairs

Always more players than chairs N/A 0.7s 1.4s 3.1s 20.0s
Alice wins the game N/A 0.3s 0.04s 0.1s 1.6s
Alice wins the game N/A 0.1s 0.2s 0.02s 4.6s
Players sit during the game N/A 0.05s 0.1s 0.1s 0.5s
Game eventually finishes N/A 0.6s 3.4s 13.7s 4.4m

Bit Counter
Model is responsive 0.03s 0.05s 0.04s 0.1s 0.01s
Final bit status 0.2s 0.3s 0.6s 1.4s 4.0s

Traffic Light Both lights not green 0.1s 0.3s 0.8s 2.3s 14.6s
Farmer puzzle No quantum objects 0.6s 3.9s 1.1m 19.3s 10.6m

Snapshot UI
Answers through students 0.2s 0.5s 1.5s 2.8s 10.0s
Logs out and logins back 0.01s 0.01s 0.01s 0.02s 0.13s

NASA FGS

At most one lateral mode activea N/A N/A 1.6m 7.4m 20.9m
At most one lateral mode activea N/A N/A 2.0m 1.5m 12.3m
AP engaged implies modes on N/A N/A 1.2m 4.6m 44.7m
AP engaged implies modes on N/A N/A >10hr >10hr >10hr
Onside FD on implies modes onb N/A N/A 35.2s 23.4s 2.41m
ROLL Selected iff ROLL active N/A N/A 35.8s 1.1m 6.1m

a Property fails because the event processing is unconstrained.
b Property fails because there is no fixed order of execution of orthogonal regions.

To enable model checking analysis of Dash models, three problems were addressed: 1)
ensuring the properties to be checked are stated at the Dash language level (not the Alloy
level) so users do not have to be aware of the distinction between big steps and small steps;
2) determining a reasonable snapshot scope; and 3) evaluating how easy it is to understand
the counterexamples from the Alloy Analyzer.

For all the case studies, the analysis begins with auto-generated, application-independent
properties such as the reachability of basic states (see 5.14.1). Then, properties specific to
each model are checked.

As explained on section 5.11, temporal properties specified in Dash are transformed
and expanded to guarantee that they are correctly checked on stable snapshots, so users

62

do not need to be aware of the distinction between the types of steps. For example, for the
FGS system the requirement that The mode annunciations shall be on in the next step if
the AP is engaged is specified in Dash as

AG(isAPEngaged⇒ AX modesOn)

The “next” step may include several small steps before the model reaches a stable snapshot
because of concurrency in the model, so the original CTL next (AX) operation is converted
and expressed in Alloy as an until operation

AG(stable ∧ isAPEngaged⇒AX(¬stable AU (stable ∧modesOn)))

6.3.1 Significant Scopes

To determine a reasonable snapshot scope, we follow the guidance of significant scopes [21]
to ensure that the subset of the reachable snapshot space checked has interesting behaviour
in it. For simple models, the significant scope is one where every transition can be taken
at least once. For Dash models, we extended the concept of significant scope based on the
hierarchical control state structure of a model. The significant scope is one where every
labelled control state can be reached. For the FGS model, this scope is reasonable because
the concurrent states are mostly independent. Longer traces are formed by interleaving
shorter subtraces, so verifying these shorter traces provides useful feedback about the
complete system. The significant scope for the case studies are: bit counter (7), farmer
puzzle (8), Snapshot UI (7), traffic light (7), musical chairs (8), and NASA FGS (9).

6.3.2 Model Visualisation

Through careful design of the structure of the snapshots signatures in Alloy and the Alloy
Analyzer’s support for themes, instances of a model can be made to resemble the schematic
of the next snapshot relation depicted in Figure 5.1, which clearly shows the transitions
taken in steps making it possible to interpret model checking results in terms of the original
Dash models3.

Model instances in Alloy can be presented in different formats for inspection. Alloy
supports presentation of a model as text, a table, a tree or a graph. For behavioural models,

3A complete description of how to configure the Alloy Analyzer to display instances is available at
http://129.97.7.33:8080/dash/documentation/tutorial.html#visualizing-model

63

http://129.97.7.33:8080/dash/documentation/tutorial.html#visualizing-model

the graph representation is appropriate because it can clearly show the steps and related
changes of a model. Figure 6.2 shows a significant instance of the bit counter model, as a
graph, using the default settings of Alloy. By default, all atoms are displayed as rectangles
and relations are displayed as arcs. These settings clutter the visualisation of a model
making it hard to understand.

Figure 6.2: Default visualisation of an Alloy model

In our translation, the snapshot signature act as a package for a model’s variables
and some context information. For this reason, we choose to display snapshot atoms as
rectangles, and the other signature elements as attributes. The only relation displayed as
an arc is next_step, which relates snapshots and highlights the steps. Figure 6.3 shows
the same instance of the bit counter, but using a theme with the settings described above.
The graph clearly presents the transitions taken during a step, and the value of variables
in each snapshot, which facilitates the understanding of an model.

64

Figure 6.3: Improved visualisation of an Alloy model by using themes

6.4 Summary

Several case studies were developed to demonstrate the modelling and model checking
capabilities of Dash. In Dash, we can model systems all over the control-oriented versus

65

data-oriented spectrum. Our case studies are characterised based on features such as state
hierarchy, concurrency and use of events. While hand-crafted Alloy models may be more
concise, the translation of Dash models handles the generality that all variations of state
hierarchy and concurrency creates. Properties can be specified directly at the Dash level, so
users do not need to be aware of the distinction between small and big steps. An extension
to the notion of significant scope is introduced for Dash models and used to ensure that a
big enough portion of the snapshot space is searched for behaviours. Careful design of the
snapshot signature definition and Alloy’s support for themes are used to present instances
of a model that clearly show the transitions taken on a step helping users to interpret the
results in terms of original Dash models.

66

Chapter 7

Related Work

Dash is a declarative language for the specification of behavioural models that integrates
statecharts-like constructs with Alloy, which makes it possible to integrate descriptions of
systems with complex behaviours and rich data structures and operations. This chapter
describes some similarities and differences between Dash and several other formalisms.
The chapter is organised by first comparing Dash with other declarative languages, then
a comparison between Dash and other languages based on statecharts and Alloy is given,
respectively, and finally, a comparison between Dash and other integrated languages is
presented.

7.1 Declarative modelling languages

Declarative modelling languages such as B [9], TLA+ [54], VDM [31], Z [48], are based on
first-order logic and/or set theory abstractions to formally describe systems with complex
structure, and behaviour is captured by means of state change representation through the
use of primed expressions. However, these formalisms lack support for the specification of
more complicated control-oriented systems, leaving modellers with the task of developing
ad-hoc procedures and/or relying on guidelines and conventions to describe behavioural
aspects of reactive systems such as concurrency and synchronisation (e.g., [45, 27]). Dash
provides statecharts-like constructs for the specification of control-oriented behaviour and
offers different syntactic features such as factoring, transition comprehension and layering
to accommodate various modelling paradigms. Furthermore, some of these languages have
a strong mathematical notation that may intimidate some users (e.g., VDM, Z), and most
of the tool support has been developed around refinement with the generation of proof

67

obligations that require theorem proving for verification. In contrast, Dash is based on
Alloy whose syntax would be familiar to most programmers (Alloy’s syntax resembles
common object-oriented constructs) and which has been designed with an emphasis on
automatic analysis [29].

7.2 Languages based on statecharts

The statecharts family of languages (prominently represented by UML statemachines [2])
usually have a fixed condition and action language that does not allow for declarative
specification of user-defined data types and operations. OCL [1] is a formal language
for expressing invariants, pre- and post- conditions, which can be added onto parts of
a UML model (described in a context), somewhat similar to Dash’s addon construct.
In contrast, Dash permits the use of FOL formulae directly in transition conditions and
actions, and has a fully formal semantics. In addition, Dash offers modelling flexibility
through factoring, layering, transition comprehension, and transition templates to describe
a model. Although several extensions to UML (e.g.,[57] [32]) have been proposed to express
temporal constraints, the official specification does not support this type of constructs.

Zhao and Krogh [56] developed sf2smv, a tool that generates the stepping transition
relation of Stateflow diagrams [5] (a variant of the statecharts formalism developed by
MathWorks) in SMV [36] to model check their behaviour. Temporal constraints, expressed
in CTL, are expanded to take into account the difference between small steps and big
steps, making sure that properties are checked at stable snapshots. In Dash, a similar
approach is followed for the translation of properties to ensure the correct verification of
behaviour. On the other hand, the semantics of Dash differ from the semantics of sf2smv.
In sf2smv, it is assumed that the transition relation has deterministic steps, however, in
Dash any valid sequence of interleaving steps is allowed. Non-deterministic steps is a
desired quality in Dash because the language is tailored at the specification of abstract
models of requirements.

CASL-Charts [41] is a language that integrates statecharts with the algebraic specifica-
tion language CASL. Data operations are axiomatized and transition triggers are expressed
in the CASL language, however, transition actions are still a sequence of assignments or
event triggers as in statecharts. Its semantics are defined as a combination of the languages
rather than a mapping to CASL.

In OZS [24], statecharts are combined with Object-Z. The actions of a transition are
described using a Z schema and the semantics of the language are given by a mapping to

68

Object-Z. In Dash, statecharts is novelly coupled with Alloy, a popular language for the
specification of complex structural systems, in a seamless manner: Dash extends the Alloy
language so both pre and post conditions of transitions are described in Alloy.

7.3 Languages based on Alloy

Chang and Jackson [14] propose a simple modelling language that integrates relational and
temporal logic. The language allows writing specifications in a declarative or imperative
manner, and supports relational operators from Alloy, imperative constructs (e.g., as-
signments, procedures), control operators (e.g., if-then-else, for loops), integer arithmetic,
and temporal logic (CTL). A prototype model checker was developed based on BDDs
demonstrating that is possible to embed expressive relational operations into standard
CTL symbolic model checkers.

DynAlloy [22, 23, 42] extends Alloy with actions to represent state change, and uses
the Floyd-Hoare approach to program correctness. Atomic actions are described by pre-
and post-conditions and these can be composed sequentially, non-deterministically, or it-
eratively using DynAlloy operators. Similar to Dash, variables in DynAlloy whose primed
versions do not appear in a post-condition retain their values. Analysis is done via opti-
mized translation of a DynAlloy model to the Alloy language and then run in the Alloy
Analyzer.

Electrum [34] is a language that combines Alloy with TLA+, designed for the specifica-
tion of systems with rich structural properties and their evolution over time. Expressions
are described using the Alloy language, and temporal operators and primed variables (used
to refer to next snapshot values) from TLA+are used to specify behaviour. Additionally,
signatures and fields may be tagged as variable so their values can change over time. Elec-
trum offers two modes of model checking: bounded and unbounded model checking. In
the first case, an Electrum model is translated to Alloy and a time signature is explicitly
introduced and ordered to represent traces. Analysis is done via the regular Alloy Ana-
lyzer. In the unbounded model checking version, an Electrum model is reduced to an LTL
specification and then directly encoded into nuXmv [13] for the analysis.

Compared to these extensions to Alloy, Dash explicitly supports the common modelling
paradigm of hierarchical and concurrent control states and events to compose snapshot
changes described as transitions. In particular, Dash’s support for model decomposition
accomplished by concurrency is not easily captured in either of the previously discussed
languages. Furthermore, in Dash, variables can be marked as environmental to guide the

69

default behaviour for whether a variable retains its previous value or not in a step (rather
than explicitly labelling variables as modifiable as in Electrum), which matches the idea of
reactive systems as describing the system interactions with its environment. For analysis,
through scoped TCMC, Dash supports scoped CTL temporal logic model checking, without
relying on extensions to the Alloy Analyzer.

7.4 Integrated languages

TCOZ [35] is a language that combines Object-Z to describe data and its operations with
Timed CSP for the formalization of real time constraints, concurrency and synchronization.
Although the language does not directly support analysis and verification of models, some
transformations have been developed to reuse existing tools as in [17] where a specification
is projected into Timed Automata.

Circus [52] is another integrated language that combines Z and CSP, and its purpose is
to provide a refinement calculus for the development of concurrent programs. Imperative
constructs are supported (e.g., assignments, conditionals and loops) alongside declaration
of channels, processes and actions. Ongoing work is being done on the development of
a model checker for specifications written in the Circus [37]. In Circus, the integration
between Z and the process algebra is done at the syntactical level; it allows for deeper
integration of the notations but the semantics of Z and CSP constructs have to be defined.
In contrast, the integration in Dash is at the semantic level. Dash combines the meaning
of control constructs provided by statecharts with relational notions of Alloy.

CSP-CASL [43] blends CSP with CASL [10] (an algebraic language that allows modular
and hierarchical specifications). Data types are defined in CASL libraries, and declaration
of processes and communication channels are used for control specification. Refinement
can be applied to both data and processes, and tool support is available [40].

The aforementioned languages use process algebras to describe control-oriented be-
haviour. The semantics of a process algebra can usually be described in a compositional
manner. On the other hand, Dash is based on statecharts which presents different chal-
lenges for stating its semantics. Broadcast communication allows a transition in one state
to enable/disable a transition in another state so context is needed and it is difficult to
define its semantics in a compositional manner. The semantics of Dash use the notion of
big and small steps, which allow the system to react to environmental input in a concurrent
and causal manner, demarcating specific observable moments. Additionally, refinement is
not a characteristic of Dash because Dash is intended to be used during the early stages of

70

development to quickly get feedback about the correctness and consistency of requirements,
which usually are expressed with a high level of abstraction.

7.5 Summary

Many specification languages have been proposed to formally describe the structure and
behaviour of systems. Dash is a new modelling language intended for the declarative
specification of abstract behavioural models. This chapter presents some similarities and
differences between Dash and other formalisms, covering issues related to syntax, semantics,
and tool support.

71

Chapter 8

Conclusion

This thesis presents Dash, a new language for the formal specification of abstract be-
havioural models, which combines the control-oriented constructs of statecharts with the
declarative modelling of Alloy. From statecharts, Dash inherits a means to specify hi-
erarchy, concurrency and communication, three useful aspects to describe the behaviour
of reactive systems. From Alloy, Dash uses the expressiveness of relational logic and set
theory to abstractly and declaratively describe structures, data and operations.

A behavioural model is formalised using a transition system, so transitions are particu-
larly important for this type of specifications. In Dash, transitions are first-class constructs,
and the language provides features such as factoring, transition comprehension and layer-
ing, to systematically declare and organise the transitions of a model. Furthermore, CTL
formulas can be used to formally specify behavioural properties.

In Dash, the integration between statecharts and Alloy is done at the semantic level.
The semantics of Dash are not compositional in the structure of a model and must address
the question of determining which transitions are enabled by an environmental input and
internal changes. Since many transitions can be enabled in different concurrent regions,
the semantics of Dash use the notion of big and small steps. A step represents a change
in a system when a transition or group of transitions is taken. When no more transitions
are enabled, the system becomes stable which demarcates the boundary of a big step. The
semantics of Dash are stated in terms of the framework by Esmaeilsabzali et al. [20], which
describes a space of semantic aspects and options for modelling languages that use big
steps. Two main reasons were considered for choosing values for the semantic options:
first, by being a declarative language, Dash can describe large changes, and second, ease
of understanding of a model. Additionally, the semantics address the mismatch between

72

declarative and control-oriented languages regarding the frame problem.

Transition systems described by Dash models are formalised in Alloy by creating a
next snapshot relation. The formalisation begins with a transformation to Core Dash,
which is the description of a state hierarchy, a set of transitions, initial conditions and
state invariants. Alloy signatures and predicates are created to describe the next snapshot
relation, and to enforce the semantic choices for Dash. Temporal properties are expanded
and transformed to be used with TCMC, and to ensure that behaviours are properly
checked at the boundary of each big step. We extended the notion of significance axioms
to concurrent Dash models, and they are implemented in the generated Alloy code to avoid
spurious instances of a model. A tool for editing and translating Dash models to Alloy is
available online at http://129.97.7.33:8080/dash.

We developed several case studies to demonstrate the modelling and model checking
capabilities of Dash. The case studies were selected to range across the control-oriented
versus data-oriented spectrum. While hand-crafted Alloy models may be more concise,
the translation of Dash models to Alloy handles the generality of all the variants of state
hierarchy and concurrency creates. We extended the notion of significant scopes to hier-
archical concurrent models to ensure a snapshot space big enough for checking properties.
We carefully designed the Alloy signature definition of snapshots and used Alloy’s support
for themes to present to users instances of a model that facilitate the interpretation of
model checking results in terms of the original Dash model.

Lastly, many different languages and formalisms have been proposed for the specifica-
tion of behavioural models. The thesis discusses differences and similarities, between Dash
and some of the closely related alternatives, regarding syntax, semantics, and tool support.

In the introduction (see Chapter 1) we identified four general problems that exist-
ing modelling formalisms have: 1) lack of expressiveness for specification of complex be-
haviours, 2) intimidating notations, 3) lack of automated reasoning and analysis, 4) no
formal or incongruent semantics. Throughout this thesis we have addressed problems
1,3, and 4, demonstrating how Dash supports the specification of complex behaviours (see
Chapters 3 and 6), how analysis in Dash is based on model checking which is an automated
form of reasoning (see section 6.3), and that Dash has formal semantics (see Chapter 4).
Regarding problem 2, we have presented the syntax of Dash (see Chapter 3) which is based
on Alloy, a modelling language that is widely used. Alloy’s syntax is considered simple
and we hope that our extensions to the Alloy language keeps that simplicity. However, we
have not provided a thorough analysis of how the syntax of Dash is less intimidating for
the specification of behavioural models, and we consider it one of the main issues to be
addressed in future work (see section 8.1).

73

http://129.97.7.33:8080/dash

The contributions of this thesis are

• a description of the syntax of Dash, a new language for formally describing abstract
declarative behavioural models,

• a description of the features of Dash for conveniently describing transition systems,
and accommodating different modelling paradigms,

• a definition of the semantics of Dash which seamlessly integrate hierarchical control
constructs with declarative modelling,

• a tool that translates Dash models to Alloy,

• case studies that show the modelling capabilities of Dash across the spectrum of
systems, and the verification of behavioural properties,

• an extension of the notion of significance axioms for hierarchical and concurrent
models, and

• guidelines to use Alloy’s support of themes for better visualisation of instances of a
model.

8.1 Future Work

Future efforts can improve Dash by focusing on:

Validation. First and foremost, Dash would greatly benefit from a usability study
to validate the different features of the language and its modelling checking capabilities.
Future research could examine the different syntactic constructs of Dash to identify which
features enhance the modelling experience and which constructs need to be refined. Ad-
ditionally, some stylistic guidelines and conventions could be developed to help modellers
best use novel features such as factoring.

Tool Support. Another way to enhance the user experience is to provide more robust
tool support. In Dash, it is easy to distribute the declaration of a transition in multiple
parts of a model, by using transition templates, transition comprehension, addons, etc.,.
So tool support could be developed, for example, to let users select a transition and present
them with its complete definition, as it would finally appear in the generated Alloy model.

74

Expressiveness. A Dash model specifies the behaviour of a single instance of a state.
The language could be extended in a way to allow the description of the behaviour of an
unspecified number of similar states, and then, at analysis time, a bound would be set
in a similar manner as scopes are provided for Alloy atoms. Such feature would permit
Dash to easily model the behaviour of distributed systems, where the behaviour of different
components have considerable similarities. For example, a telephone network where there
are multiple phone number nodes each of which with complex but similar behaviours, all
interacting as part of a bigger system which is the network.

Performance. In terms of improving the analysis time of Dash models, future work
can focus on two areas: providing more efficient expansions of temporal properties and
optimising the generic translation of Dash models.

In the first case, as discussed in section 5.11, temporal properties are expanded to
distinguish between small and big steps, so behaviour is properly checked on stable snap-
shots. The current generic expansion consists on transforming the next temporal operators
(EX,AX) to be expressed in terms of an until temporal operator (EU,AU). Some tests
showed that the until operator seems to be computationally expensive, and that other
property-specific transformations could be used to expedite the analysis. For example, a
property of the FGS expressed at the Dash level as

AG(isAPEngaged⇒ AX modesOn)

is expanded and expressed in Alloy as

AG(stable ∧ isAPEngaged⇒AX(¬stable AU (stable ∧modesOn)))

However, the following alternative that uses the contrapositive and exploits the fact that
environmental input remains the same throughout a big step, takes significantly less time
to analyse

AG(AX(stable ∧ ¬modesOn)⇒(¬isAPEngaged))

Another way to improve the performance of the analysis of Dash models is to further
optimise the generic translation. We found that the order of declarations in an Alloy
signature has an impact on the analysis time of a model. For example, by changing the
order of two declarations of one of the sample models of Dash 1, it can take up to 130 times
longer for the Alloy Analyzer to find an instance of the model. Further investigation could
provide some heuristics to organise the declarations and structure of a model to improve
the performance.

1The model is the EHealth (Environment) available on the Dash website at http://129.97.7.33:
8080/dash

75

http://129.97.7.33:8080/dash
http://129.97.7.33:8080/dash

References

[1] OMG object constraint specification (OCL) specification. http://www.omg.org/
spec/OCL/2.4/PDF, 2014. [Online; accessed 18-November-2018].

[2] OMG unified modeling language. http://www.omg.org/spec/UML/2.5/PDF/, 2015.
[Online; accessed 18-November-2018].

[3] Antlr (another tool for language recognition), 2018. [Online; accessed 18-November-
2018].

[4] Formally specifying UIs, 2018. [Online; accessed 18-November-2018].

[5] Stateflow. https://www.mathworks.com/products/stateflow.html, 2018. [Online;
accessed 04-December-2018].

[6] Tutorial for alloy analyzer 4.0, 2018. [Online; accessed 18-November-2018].

[7] Xtext. https://eclipse.org/Xtext/, 2018. [Online; accessed 18-November-2018].

[8] Ali Abbassi, Amin Bandali, Nancy A. Day, and Jose Serna. A comparison of the
declarative modelling languages B, Dash, and TLA+. In 2018 IEEE 8th International
Model-Driven Requirements Engineering Workshop (MoDRE), pages 11–20, Aug 2018.

[9] Jean-Raymond Abrial. The B Book: Assigning Programs to Meanings. Cambridge
University Press, August 1996.

[10] Egidio Astesiano, Michel Bidoit, Hélene Kirchner, Bernd Krieg-Brückner, Peter D
Mosses, Donald Sannella, and Andrzej Tarlecki. Casl: the common algebraic specifi-
cation language. Theoretical Computer Science, 286(2):153–196, 2002.

[11] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan
Zhu. Bounded model checking. volume 58 of Advances in Computers, pages 117 –
148. Elsevier, 2003.

76

http://www.omg.org/spec/OCL/2.4/PDF
http://www.omg.org/spec/OCL/2.4/PDF
http://www.omg.org/spec/UML/2.5/PDF/
https://www.mathworks.com/products/stateflow.html
https://eclipse.org/Xtext/

[12] Aaron R. Bradley. SAT-based model checking without unrolling. In Verification,
Model Checking, and Abstract Interpretation, pages 70–87. Springer, 2011.

[13] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessandro
Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri, and Stefano Tonetta. The
nuXmv symbolic model checker. volume 8559, pages 334–342, 2014.

[14] Felix Sheng-Ho Chang and Daniel Jackson. Symbolic Model Checking of Declarative
Relational Models. In International Conference on Software Engineering, pages 312–
320, May 2006.

[15] Edmund M. Clarke, Orna Grunberg, and Doron A. Peled. Model Checking. MIT
Press, 1999.

[16] Darren Cofer and Steven P Miller. Formal methods case studies for DO-333. Technical
Report NASA/CR2014-218244, NASA Langley Research Center, 2014.

[17] Jin Song Dong, Ping Hao, Sheng Chao Qin, Jun Sun, and Wang Yi. Timed pat-
terns: TCOZ to timed automata. In International Conference on Formal Engineering
Methods, pages 483–498. Springer, 2004.

[18] Tzilla Elrad, Omar Aldawud, and Atef Bader. Aspect-oriented modeling: Bridging the
gap between implementation and design. In Generative Programming and Component
Engineering, pages 189–201, 2002.

[19] Shahram Esmaeilsabzali. Prescriptive Semantics for Big-Step Modelling Languages.
PhD thesis, 2011.

[20] Shahram Esmaeilsabzali, Nancy A. Day, Joanne M. Atlee, and Jianwei Niu. Decon-
structing the semantics of big-step modelling languages. Requirements Engineering
Journal, 15(2):235–265, 2010.

[21] Sabria Farheen. Improvements to Transitive-Closure-based Model Checking in Alloy.
MMath thesis, 2018.

[22] Marcelo F. Frias, Juan P. Galeotti, Carlos G. López Pombo, and Nazareno M. Aguirre.
DynAlloy: Upgrading Alloy with actions. In International Conference on Software
Engineering, pages 442–451, 2005.

[23] Marcelo F. Frias, Carlos G. López Pombo, Gabriel A. Baum, Nazareno M. Aguirre,
and Thomas S. E. Maibaum. Reasoning about static and dynamic properties in Alloy.
14(4):478–526, 2005.

77

[24] Juan Pablo Gruer, Vincent Hilaire, Abder Koukam, and P Rovarini. Heterogeneous
formal specification based on object-Z and statecharts: semantics and verification.
Journal of Systems and Software, 70(1-2):95–105, 2004.

[25] David Harel. Statecharts: A visual formalism for complex systems. Sci. Comput.
Program., 8(3):231–274, June 1987.

[26] Charles Antony Richard Hoare. Communicating sequential processes. Communica-
tions of the ACM, 21(8):666–677, 1978.

[27] Ledang Hung and J SOUQUIERES. Contribution for modelling uml state-charts in
b [c]. proc. Of IFM’2002, pages 109–127, 2002.

[28] i Logix Inc. Statemate 4.0 analyzer user and reference manual, 1991.

[29] Daniel Jackson. Alloy: a lightweight object modelling notation. 11(2):256–290, 2002.

[30] Daniel Jackson. Software Abstractions. MIT Press, 2nd edition, 2012.

[31] Cliff B. Jones. Systematic Software Development Using VDM (2nd Ed.). Prentice-Hall,
Inc., 1990.

[32] Bilal Kanso and Safouan Taha. Temporal constraint support for ocl. In Software
Language Engineering, pages 83–103, 2013.

[33] Yun Lu, Joanne M. Atlee, Nancy A. Day, and Jianwei Niu. Mapping template seman-
tics to SMV. pages 320–325, 2004.

[34] Nuno Macedo, Julien Brunel, David Chemouil, Alcino Cunha, and Denis Kuperberg.
Lightweight specification and analysis of dynamic systems with rich configurations.
pages 373–383, 2016.

[35] Brendan Mahony and Jin Song Dong. Blending object-Z and timed CSP: an introduc-
tion to TCOZ. In International Conference on Software Engineering, pages 95–104.
IEEE, 1998.

[36] K. L. McMillan. The SMV system. http://www.kenmcmil.com/language.ps, Novem-
ber 06 1992.

[37] Alexandre Mota, Adalberto Farias, André Didier, and JimWoodcock. Rapid prototyp-
ing of a semantically well founded circus model checker. In International Conference
on Software Engineering and Formal Methods, pages 235–249. Springer, 2014.

78

[38] Nimal Nissanke. Formal Specification: Techniques and Applications. 1999.

[39] Jianwei Niu, Joanne M Atlee, and Nancy A Day. Template semantics for model-based
notations. IEEE Transactions on Software Engineering, 29(10):866–882, 2003.

[40] Liam O’Reilly, Markus Roggenbach, and Yoshinao Isobe. Csp-casl-prover: a generic
tool for process and data refinement. Electronic Notes in Theoretical Computer Sci-
ence, 250(2):69–84, 2009.

[41] Gianna Reggio and Lorenzo Repetto. CASL-CHART: a combination of statecharts
and of the algebraic specification language CASL. In International Conference on
Algebraic Methodology and Software Technology, pages 243–257. Springer, 2000.

[42] Germán Regis, César Cornejo, Simón Gutiérrez Brida, Mariano Politano, Fernando
Raverta, Pablo Ponzio, Nazareno Aguirre, Juan Pablo Galeotti, and Marcelo Frias.
DynAlloy analyzer: A tool for the specification and analysis of Alloy models with
dynamic behaviour. pages 969–973, New York, NY, USA, 2017. ACM.

[43] Markus Roggenbach. CSP-CASLâĂŤa new integration of process algebra and alge-
braic specification. Theoretical Computer Science, 354(1):42–71, 2006.

[44] D.C. Schmidt. Guest Editor’s Introduction: Model-Driven Engineering. IEEE Com-
puter, 39(2):25–31, 2006.

[45] Emil Sekerinski. Graphical design of reactive systems. In International B Conference,
pages 182–197, 1998.

[46] Jose Serna, Nancy A. Day, and Shahram Esmaeilsabzali. Dash: Declarative modelling
with control state hierarchy (preliminary version). Technical Report CS-2018-04, Uni-
versity of Waterloo, David R. Cheriton School of Computer Science, 2018.

[47] Jose Serna, Nancy A Day, and Sabria Farheen. Dash: A new language for declarative
behavioural requirements with control state hierarchy. In 2017 IEEE 25th Interna-
tional Requirements Engineering Conference Workshops (REW), pages 64–68. IEEE,
2017.

[48] John Michael Spivey. The Z Notation: A reference manual. International Series in
Computer Science (2nd ed.). Prentice Hall, 1992.

[49] Allison Sullivan, Kaian Wang, and Sarfraz Khurshid. Evaluating State Modeling
Techniques in Alloy. In SQAMIA 2017 - Proceedings of the 6th Workshop on Software
Quality Analysis, Monitoring, Improvement, and Applications, pages 11–13, 2017.

79

[50] Emina Torlak and Daniel Jackson. Kodkod: A relational model finder. pages 632–647,
2007.

[51] Michael von der Beeck. A comparison of statecharts variants. In Formal Techniques
in Real-Time and Fault-Tolerant Systems, volume 863, pages 128–148, 1994.

[52] Jim Woodcock and Ana Cavalcanti. A concurrent language for refinement. In Pro-
ceedings of the 5th Irish Conference on Formal Methods, pages 93–115. BCS Learning
& Development Ltd., 2001.

[53] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald. Formal
methods: Practice and experience. ACM computing surveys (CSUR), 41(4):19, 2009.

[54] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model checking TLA+ specifica-
tions. pages 54–66, 1999.

[55] Pamela Zave. Using lightweight modeling to understand chord. ACM SIGCOMM
Computer Communication Review, 42(2):49–57, 2012.

[56] Qianchuan Zhao and Bruce H Krogh. Formal verification of statecharts using finite-
state model checkers. IEEE transactions on control systems technology, 14(5):943–950,
2006.

[57] Paul Ziemann and Martin Gogolla. Ocl extended with temporal logic. In Perspectives
of System Informatics: 5th International Andrei Ershov Memorial Conference, pages
351–357, 2003.

80

APPENDICES

81

Appendix A

Dash Grammar

module ::= [moduleDecl] import* paragraph*

moduleDecl ::= module qualName [[name,+]]

import ::= open qualName [[qualName,+]] [as name]

paragraph ::= sigDecl | factDecl | funDecl | predDecl

| assertDecl | cmdDecl | stateDecl | escapeBlock

sigDecl ::= [sigQual] sig name,+ [sigExt]

{varDecl,+} [block]

sigQual::= abstract | lone | one | some | private

sigExt ::= extends sigRef | in sigRef (+ sigRef)*

sigRef ::= univ | seq/Int | Int | qualName

stateDecl ::= [default] [conc] state name

{stateItem*}

stateItem ::= stateVar | invariantDecl | initDecl

| addOnDecl | factoringDecl | enterDecl | exitDecl

invariantDecl ::= invariant [name] block

initDecl ::= init [name] block

enterDecl ::= enter block

82

exitDecl ::= exit block

addOnDecl ::= addon [name] ((do expr | send qualName,+)) to transPattern

transPattern ::= * | qualName,+

| ([from (* | qualName,+)] [goto (* | qualName,+)])

factoringDecl ::= eventDecl | actionDecl | conditionDecl

| transDecl | stateDecl | transTemplate

eventDecl ::= [env] event name {factoringDecl*}

actionDecl ::= action name [expr]{}

conditionDecl ::= cond name [expr]{factoringDecl*}

transDecl ::= trans [name] {transBody | transInstance}

transInstance :: = qualname[expr,+]

transTemplate :: = def trans name paraDecls {transBody}

transBody ::= [from (* | qualName,+)]

[on qualName,+] [when expr*]

[goto (* | qualName,+)] [do expr*]

[send qualName,+]

mult ::= lone | some | one

decl ::= [private] [disj] name,+ : [disj] expr

stateVar ::= env decl

factDecl ::= fact [name] block

predDecl ::= pred [qualName .] name [paraDecls] block

funDecl ::= fun [qualName .] name [paraDecls] : expr block

paraDecls ::= (decl,*) | [decl,*]

assertDecl ::= assert [name] block

cmdDecl ::= [name :] [run | check] [qualName | block] [scope]

scope ::= for typeScope,+ [expect (0|1)]

| for number [but typeScope,+] [expect (0|1)]

83

typeScope ::= [exactly] number [qualName | int | seq]

expr ::= const | primitiveType | qualName | @name

| this | unOp expr | expr binOp expr

| expr arrowOp expr | expr [expr,*]

| expr [!| not] compareOp expr

| expr (=> | implies) expr else expr | let letDecl,+ blockOrBar

| quant decl,+ blockOrBar | {decl,+ blockOrBar}

| (expr) | block | expr’

primitiveType::= State | Event | Boolean

const ::= [-] number | none | univ | iden | events | conf | taken

unOp ::= ! | not | no | mult | set | # |~ | * | ^ | ax | ex | af | ef | ag | eg

binOp ::= || | or | && | and | <=> | iff | => | implies

| & | + | - | ++ | <: | :> | . | eu | au

arrowOp ::= [mult | set] -> [mult | set]

compareOp ::= in | = | < | > | =< | >=

letDecl ::= name = expr

block ::= {expr*}

blockOrBar ::= block | bar expr

escapeBlock ::= {escape} string {/escape}

bar ::= |

quant ::= all | no | sum | mult

qualName ::= [this/] (name/)* name

name ::= ID

84

Appendix B

Musical Chairs Model in Dash

1 /* **
2 * Title: MusicalChairsWithEvents.dsh
3 * Authors: Jose Serna
4 * Created: 2018 -04 -25
5 * Last modified: 2018 -10 -29
6 *
7 * Notes: The purpose is to present an equivalent model of musical active_chairs
8 * but using events
9 *

10 *** */
11
12 open util/integer
13
14 sig Chair , Player {}
15
16 conc state Game {
17 // Game variables
18 active_players: set Player
19 active_chairs: set Chair
20 occupied: Chair set -> set Player
21
22 env event MusicStarts {}
23 env event MusicStops {}
24
25 default state Start {
26 trans Walk {
27 on MusicStarts
28 when #active_players > 1
29 goto Walking
30 do occupied ’ = none -> none
31 }
32
33 trans DeclareWinner {
34 when one active_players
35 goto End
36 }
37 }

85

38
39 state Walking {
40 trans Sit {
41 on MusicStops
42 goto Sitting
43 do {
44 occupied ’ in active_chairs -> active_players
45 active_chairs ’ = active_chairs
46 active_players ’ = active_players
47 // forcing occupied to be total and
48 // each chair mapped to only one player
49 all c : active_chairs ’ | one c .(occupied ’)
50 // each " occupying " player is sitting on one chair
51 all p : Chair.(occupied ’) | one occupied ’. p
52 }
53 }
54 }
55
56 state Sitting {
57 trans EliminateLoser {
58 goto Start
59 do {
60 active_players ’ = Chair.occupied
61 #active_chairs ’ = (# active_chairs).minus [1]
62 }
63 }
64 }
65
66 state End {}
67
68 init {
69 #active_players > 1
70 #active_players = (# active_chairs).plus [1]
71 // force all Chair and Player to be included
72 active_players = Player
73 active_chairs = Chair
74 occupied = none -> none
75 }
76 }
77
78 {escape}
79 // allows to run predicate that generates a significant instance
80 run significance for exactly 3 Player , exactly 2 Chair ,
81 exactly 8 Snapshot , 2 EventLabel expect 1
82 {/ escape}
83
84 /* ******************************** PROPERTIES ******************************** */
85
86 /* ********************************** SAFETY ********************************** */
87 assert ctl_safety {
88 // number of active_players is always 1 greater than number of active_chairs
89 ag (#Game/active_players = (#Game/active_chairs).plus [1])
90
91 }
92 check ctl_safety for exactly 3 Player , exactly 2 Chair ,
93 exactly 8 Snapshot , 2 EventLabel expect 0
94

86

95 {escape}
96 assert safety {
97 all s: Snapshot | #s.Game_active_players = (#s.Game_active_chairs).plus [1]
98 }
99 check safety for exactly 3 Player , exactly 2 Chair ,

100 exactly 8 Snapshot , 2 EventLabel expect 0
101 {/ escape}
102
103
104 /* ******************************** EXISTENTIAL ******************************* */
105 one sig Alice extends Player {}
106 pred ctl_existential {
107 // Alice wins in some instance
108 ef (Game/End in conf and Game/active_players = Alice)
109 }
110 run ctl_existential for exactly 3 Player , exactly 2 Chair ,
111 exactly 8 Snapshot , 2 EventLabel expect 1
112
113 {escape}
114 pred existential {
115 some s: Snapshot | Game_End in s.conf and s.Game_active_players = Alice
116 }
117 run existential for exactly 3 Player , exactly 2 Chair ,
118 exactly 8 Snapshot , 2 EventLabel expect 1
119 {/ escape}
120
121 /* ******************************** FINITE LIVENESS *************************** */
122 assert ctl_finiteLiveness {
123 // ctl_mc[af [{ s : Snapshot | Game_Sitting in s.conf }]]
124 af (Game/Sitting in conf)
125 }
126 check ctl_finiteLiveness for exactly 3 Player , exactly 2 Chair ,
127 exactly 8 Snapshot , 2 EventLabel expect 0
128
129 {escape}
130 /* ****************************** INFINITE LIVENESS *************************** */
131 assert ctl_infiniteLiveness {
132 // number of active_players eventually always reaches and remains at 1
133 ctl_mc[af[ag[{ s : Snapshot | #s.Game_active_players = 1}]]]
134 }
135 check ctl_infiniteLiveness for exactly 3 Player , exactly 2 Chair ,
136 exactly 8 Snapshot , 2 EventLabel expect 0
137 {/ escape}

87

Appendix C

Bit Counter Model in Dash

1 /* **
2 * Title: BitCounter.dsh
3 * Authors: Jose Serna
4 * Created: 2018 -04 -14
5 * Last modified: 2018 -10 -29
6 *
7 * Notes: Two bit counter model taken from Shahram ’s PhD thesis
8 *
9 *** */

10
11 conc state Counter {
12 event Tk0 {}
13
14 conc state Bit1 {
15 event Tk1 {}
16
17 default state Bit11 {}
18 state Bit12 {}
19
20 trans T1 {
21 from Bit1/Bit11
22 on Tk0
23 goto Bit12
24 }
25
26 trans T2 {
27 from Bit12
28 on Tk0
29 goto Bit11
30 send Tk1
31 }
32 }
33
34 conc state Bit2 {
35 event Done {}
36
37 default state Bit21 {}

88

38 state Bit22 {}
39
40 trans T3 {
41 from Bit21
42 on Bit1/Tk1
43 goto Bit22
44 }
45
46 trans T4 {
47 from Bit22
48 on Bit1/Tk1
49 goto Bit21
50 send Done
51 }
52 }
53 }
54
55 {escape}
56 // The final status of bits when done counting
57 {/ escape}
58 assert ctl_final_bitStatus {
59 ag (
60 Counter/Bit2/Done in events =>
61 {Counter/Bit1/Bit11 + Counter/Bit2/Bit21} in conf
62)
63 }
64 check ctl_final_bitStatus for 7 Snapshot , exactly 2 EventLabel expect 0
65
66 {escape}
67 assert final_bitStatus {
68 all s: Snapshot| s.stable = True and Counter_Bit2_Done in s.events =>
69 {Counter_Bit1_Bit11 + Counter_Bit2_Bit21} in s.conf
70 }
71 check final_bitStatus for 7 Snapshot , exactly 2 EventLabel expect 0
72 {/ escape}
73
74 {escape}
75 // The bitcounter has a significant scope of 10 Snapshots
76 run significance for 7 Snapshot , exactly 2 EventLabel expect 1
77
78 // Model is responsive
79 assert ctl_model_responsive {
80 ctl_mc[
81 ag[
82 imp_ctl[
83 {s: Snapshot| Counter_Tk0 in s.events},
84 af[{s: Snapshot |
85 s.stable = True and
86 (Counter_Bit1_T1 in s.taken or
87 Counter_Bit1_T2 in s.taken or
88 Counter_Bit2_T3 in s.taken or
89 Counter_Bit2_T4 in s.taken)
90 }]
91]
92]
93]
94 }

89

95 check ctl_model_responsive for 7 Snapshot , exactly 2 EventLabel expect 0
96
97
98 assert model_responsive {
99 all s: Snapshot | s.stable = True and Counter_Tk0 in s.events =>

100 some s’: s.* nextStep | s.stable = True and
101 (Counter_Bit1_T1 in s’. taken or
102 Counter_Bit1_T2 in s’.taken or
103 Counter_Bit2_T3 in s’.taken or
104 Counter_Bit2_T4 in s’.taken)
105 }
106 check model_responsive for 7 Snapshot , exactly 2 EventLabel expect 0
107 {/ escape}

90

Appendix D

Steps Alloy Module

1 /* **
2 * Title: steps.als
3 * Authors: Jose Serna - jserna@uwaterloo.ca
4 *
5 * Notes: This module helps defining step relations for transition systems.
6 * Several axioms are included to get a significant model.
7 *
8 *** */
9

10 module steps[S]
11
12 open ctl[S]
13
14 one sig Step {
15 initial: some S,
16 next_step: S -> S,
17 equality: S -> S
18 }
19
20 // A snapshot is a set of control states , a variable evaluation , and a set
21 // of events.
22 abstract sig BaseSnapshot {
23 /** Label control states */
24 conf: set StateLabel ,
25 /** Semantics consistency */
26 taken: set TransitionLabel
27 }
28
29 fact {
30 all s: S | s in BaseSnapshot
31 Step.next_step = nextState
32 Step.initial = initialState
33 }
34
35 // These functions must be defined by the calling code
36 /** Define the elements that represent the initial state of the system */

91

37 fun initial: S { Step.initial }
38 /** Define the next state relation */
39 fun nextStep: S -> S { Step.next_step }
40 /** Define the criteria to consider two elements as equal */
41 fun equals: S->S { Step.equality }
42
43 /* ***************************** EVENT SPACE ********************************** */
44 abstract sig EventLabel {}
45 abstract sig EnvironmentEvent , InternalEvent extends EventLabel {}
46
47 /* ***************************** STATE SPACE ********************************** */
48 abstract sig StateLabel {}
49
50 /* **************************** TRANSITIONS *********************************** */
51 abstract sig TransitionLabel {}
52
53 /* ************************ Significance Axioms ******************************* */
54
55 pred reachabilityAxiom {
56 all s : S | s in S .((Step.initial) <: * (Step.next_step))
57 }
58
59 pred equalityAxiom {
60 all s, s’: S | s->s’ in Step.equality => s = s’
61 }
62
63 // The system is always in some state
64 assert check_some_conf {
65 ctl_mc[ag[{s: S | some s.conf }]]
66 }
67 check check_some_conf for 10 expect 0

92

	List of Tables
	List of Figures
	Introduction
	Thesis Outline

	Background
	Statecharts
	Alloy
	Model checking in Alloy
	Summary

	Dash Syntax and Features
	Examples
	Musical Chairs
	Bit Counter

	Alloy Constructs
	Core Dash
	States and State Hierarchy
	Namespaces
	State Variables
	Transitions
	Events
	Initial Constraints
	State Invariants

	Additional Syntactic Features
	Named Conditions
	Named Actions
	Factoring
	Transition Comprehension
	Layering
	Transition Templates
	Escape Blocks

	Temporal Properties
	Grammar
	Summary

	Semantics of Dash
	Concurrency
	Big Step Maximality
	Event Lifeline
	Variable Lifeline
	Priority
	Characteristics
	Frame Problem
	Summary

	From Dash to Alloy
	Next Snapshot Relation
	Transformation to Core Dash
	Snapshot Definition
	State Hierarchy
	Events
	Transitions
	Pre-conditions
	Post-conditions
	Semantics

	Initial Constraints
	State Invariants
	Model Definition
	Significance Axioms
	Temporal Properties
	Alloy Paragraphs and Escape Blocks
	Optimisations
	Implementation
	Tool Options

	Summary

	Case Studies
	Models and Characteristics
	Flight Guidance System
	Farmer Puzzle
	Snapshot UI
	Traffic Light

	Translation
	Model Checking
	Significant Scopes
	Model Visualisation

	Summary

	Related Work
	Declarative modelling languages
	Languages based on statecharts
	Languages based on Alloy
	Integrated languages
	Summary

	Conclusion
	Future Work

	References
	APPENDICES
	Dash Grammar
	Musical Chairs Model in Dash
	Bit Counter Model in Dash
	Steps Alloy Module

