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Abstract 

Online condition monitoring of critical assets constitutes one method whereby the 

electrical insulation industry can help safeguard grids through the avoidance of system outages 

due to insulation failure. This thesis introduces a novel approach for monitoring the condition of 

outdoor ceramic insulators based on partial discharge (PD) measurements. The presence of 

physical defects such as punctures, broken porcelain, and cracks will ultimately lead to the 

initiation of PD activity in outdoor ceramic insulators. In addition to defects, surface discharges 

such as that caused by corona and dry band arcing are also very common, particularly in wet and 

polluted outdoor insulators. Such a discharge activity that originates in these kinds of conditions 

can cause flashover or insulator failure, resulting in power outages. Measuring early-stage 

discharge activity is thus very important as a means of avoiding catastrophic situations in power 

networks.  

 The work presented in this thesis involved initial tests conducted to distinguish between 

different types of controlled discharges generated in the laboratory. The next step was the 

implementation of an artificial neural network (ANN) for classifying the type of discharge based 

on selected features extracted from the measured acoustic signals. First, relatively high-

frequency acoustic signals are transformed into low-frequency signals using an envelope 

detection algorithm imbedded in the commercial acoustic sensor. A fast Fourier transform (FFT) 

is then applied to each low-frequency signal, and finally, 60 Hz, 120 Hz, and 180 Hz are used as 

input feature vectors for the developed ANN.  

This initial research was then extended to include testing of the proposed diagnostic tool 

on a practical insulation system, and outdoor ceramic insulators were selected for this purpose. 

Three types of defects were tested under laboratory conditions: a cracked ceramic insulator, a 

healthy insulator contaminated by wetting with salt water, and a corona generated from a thin 

wire wound to the ceramic insulator. Both a single disc, and three discs connected in an insulator 

string were tested with respect to these defects. For both controlled samples and full insulators, a 

recognition rate of more than 85 % was achieved. 
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Chapter 1 

   

Introduction  

“Partial discharge (PD) may be defined as a localized electrical discharge that only 

partially bridges the insulation between conductors” [1]. When an electrical equipment is 

energized, the presence of defects like cavities, impurities and protrusions outside the 

insulator can result in the creation of inhomogeneous fields, which eventually initiate PD. 

Partial discharge includes a wide group of discharge phenomena: internal discharges occur in 

voids or cavities within solid and liquid dielectrics, surface discharges can be witnessed at the 

boundaries of different insulation materials, and corona discharges appear in gaseous 

dielectrics. PD that can be observed at the commissioning of high-voltage electrical equipment 

is generated because of poor design, workmanship, or improper installation. PD can also be 

initiated due to the aging of an insulation system. Early-stage detection of PD in the insulation 

system of any power equipment reduces the risk of total breakdown.  

The recent rapid growth in technology has accentuated the necessity for a reliable 

supply of electric energy. The insulation system plays an important role in transferring the 

energy produced from generating stations to load points. When both the transmission and 

distribution of power through overhead lines and underground cables are considered, the 

transfer of power using overhead lines proves more economical. The central components of an 

overhead transmission and distribution lines are the tower structure, the line insulators and 

conductors. Fig. 1.1 shows a detailed view of a typical overhead transmission line.  
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Fig 1.1.  Important components of an overhead transmission system [2]. 

 Outdoor insulators are an essential part of a power system because they provide 

mechanical support for high voltage conductors and also electrically insulate the energized 

high voltage line from the grounded tower. While fulfilling these functions, outdoor insulators 

are subjected to electrical, mechanical, and environmental stresses. Electrical stresses are the 

result of steady-state stresses imposed by operating voltages and transient stresses due to 

lightning and switching operations [3]. Mechanical stresses include vibrations, tensile and 

compressive loads under steady-state conditions, and twisting or torsion loads imposed during 

construction work, and during incidents such as vandalism and vehicle accidents involving 

poles, which are classified as man-made events [4]. Temperature variations, ultra-violet 

radiation, moisture, contamination, and wind constitute environmental stresses. All of these 

stresses vary drastically depending on the design, application, and location of the insulator. 

Ideally, insulators would be expected to withstand all types of stresses.  

Even though outdoor insulators account for only 5% of the total capital cost of 

overhead line installation, 70% of power outages are associated with deficiencies in outdoor 

insulator performance, and they represent nearly 50% of line maintenance costs [7]. Outdoor 

ceramic insulator failure could be due to surface flashover or due to aging. The external 

surfaces of all insulators eventually become contaminated, and such contamination in the 

presence of moisture significantly reduces the insulator surface resistance compared to that in 
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dry conditions. Reduced surface resistance is one of the main negative effects on outdoor 

insulation performance due to contamination [5]. In humid conditions such as rain and fog, a 

contaminated insulator surface begins to conduct a leakage current that can cause flashovers 

which lead to power outages. The capital costs associated with industrial power shutdowns is 

very high. For example, in the paper industry, a power interruption lasting less than a second 

can cost up to $50,000 due to lost production [6]. The impact of power outages is even more 

severe and involves greater capital expense in semiconductor industries.   

The degradation of outdoor insulators is another area that creates challenges for North 

American utilities, with nearly 150 million ceramic outdoor insulators having been in 

operation for more than 70 years [8]. Undertaking measures for locating the aged line 

insulators is thus of special interest to utilities. Insulator aging takes a wide range of forms, 

some of which can be detected visually but others require special testing. The most commonly 

observed degradation includes punctures, broken discs, and the formation of shaped cracks 

with varied dimensions. Traditional methods for locating faults in insulators rely on the 

selection of random samples and their testing in a laboratory [9]. Chapter 2 includes a review 

and further descriptions of commercial methods currently used in industry and literature about 

current research conducted with high frequency and acoustic methods. Cost-effective and 

robust techniques for evaluating faulty insulators under field conditions are always in demand.  

This introductory chapter provides a general overview of outdoor insulators. Firstly, 

the types of outdoor insulators, with a focus on porcelain insulators and their strengths, along 

with factors that accelerate insulation degradation are discussed. Then the motivation behind 

the research and the thesis objectives are summarized. 

 

1.1  General aspects of outdoor insulators 

Especially in the electrical industry, the development of a product that offers advantages 

over previously established technology always leads to success. With respect to outdoor 

insulators, this premise is even stronger. The first insulator was put into practical use in 1850, 

and from then on, the outdoor insulator manufacturing industry has seen numerous 

improvements. Three main classes of materials are currently used in the manufacture of 

outdoor insulators: porcelain, glass, and polymers. Porcelain and glass insulators fall under the 
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heading of ceramic insulators, and polymeric insulators are also called non-ceramic insulators 

(NCIs) or composite insulators. Each type of outdoor insulator is explained in detail below. 

1.1.1  Non-ceramic polymeric or composite insulators 

Polymeric insulators, also known as composite or non-ceramic insulators, presently 

dominate the insulator market and are being embraced by utilities. Polymeric insulators 

represent 60 % to 70% of newly installed insulators [10] and are known for their light weight, 

resistance to vandalism, superior seismic performance, and flexible design, as well as their 

hydrophobic nature that enhances their performance under wet and contaminated conditions. 

A simple polymeric insulator is depicted in Fig. 1.2. 

 

Fig.1.2. A polymeric insulator [11]. 

Polymeric insulators have three primary components: 1) the core, 2) the housing, and 3) end 

fittings. Fig. 1.3 shows a cross-section of a polymeric insulator, including construction and 

material details. 
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Fig.1.3. Schematic of a typical long rod polymeric insulator [12]. 

Insulators must be designed to withstand the mechanical loads that are carried by the fibre-

reinforced plastic (FRP). The housing is fabricated from rubber polymers, which improves 

insulator performance by adding hydrophobic properties and by protecting the core from 

moisture, sunlight, and corona discharge. The end fittings are formed mainly from forged steel 

that connects the high voltage line to the end of the insulator and the grounded tower. Despite 

the advantages offered by polymeric insulators, they also have several disadvantages: 1) 

erosion and tracking can damage these insulators, 2) their surfaces can be subject to chemical 

changes due to dry band arcing and weathering, 3) detecting faults is challenging, 4) 

determining their life expectancy and long-term reliability are difficult.  

1.1.2 Ceramic insulators 

Ceramic insulators have been in use for more than one hundred years, during which 

numerous shell profiles and attachment hardware designs have been developed. The primary 

constituents of ceramic insulators are their dielectric material, which is the fired ceramic shell, 

and their hardware, which consists of an iron cap and a pin. The primary objective of adding 

metallic hardware to the insulator shell is to enable the materials to endure the mechanical 

loading of the conductors. Fig. 1.4 is a schematic diagram of a single disc of a ceramic 

insulator. Based on the applied voltage and the pollution levels, a specific number of ceramic 

discs are connected in series to form a string insulator. While ceramic insulators include both 

porcelain and glass insulators, the work conducted for this thesis was concentrated on 

porcelain insulators only.  
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Fig.1.4. Schematic of a typical cap and pin ceramic insulator [13]. 

 1.2 Electrical performance of porcelain insulators 

Both the internal integrity and the external properties of porcelain insulators determine 

their overall performance. For example, a void or puncture in the insulator reduces its 

dielectric strength. Since the dielectric constant of porcelain is greater than that of air, the 

electric field in a void is intensified and creates a discharge, which can eventually damage the 

insulator. In addition, the surface properties affect the conductivity status of the insulator 

shell. Under polluted and humid conditions, the surface conductivity of the insulator increases 

and can initiate discharge arcs, called dry band arcs, which can lead to insulator flashover. 

1.3 Porcelain insulator failure 

As discussed above, insulators must withstand both the normal system voltage under a 

variety of weather conditions and the transients that occur due to lightning and switching 

operations. Porcelain insulators have been used in networks for a long time, and many of them 

might already have been in service beyond their expected life span. Although some of these 

older insulators are still functioning satisfactorily, many show serious defects such as cracks, 

punctures, rusted metal fittings, and broken porcelain. The following sections highlight a 

number of porcelain insulator defects. 
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1.3.1 Cement growth  

Cement growth can create radial cracks inside insulators, as depicted in Fig. 1.5. 

Cement can absorb moisture during wet conditions, thus escalating the expansion process. 

Cherney, et al. [14], studied the influence of water expansion on insulator failure. The 

researchers also carried out autoclave tests on insulators constructed using two distinct types 

of cement. Their results revealed that the critical length for insulator failure is nearly 0.12 % 

of the expansion limit for a suspension insulator.  

 

Fig.1.5. A radial crack due to cement growth [15]. 

1.3.2 Hardware corrosion 

Corona discharge can occur as a result of inappropriate electric stress grading at the 

cap of the insulator near the line end of a string of insulators. The metallic cap subsequently 

becomes exposed to corrosion as the discharge slowly degrades the protective galvanizing 

layer. Leakage current may also flow on the surface of the insulator during contamination and 

wet atmospheric conditions, which create a salt solution on the surface. Pin corrosion 

produced by electrolytic action can weaken the mechanical and cross-sectional strength of the 

pin. Damage of this sort can lead to an event as serious as conductor dropping. Fig. 1.6 is an 

example of hardware exhibiting a very high degree of corrosion.  
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Fig 1.6. Corroded pins in suspension-type porcelain and glass insulators [16]. 

1.3.3 Insulator contamination  

Under humid and moist conditions, surface contamination can cause flashover, which 

leads to system outages. Dust, rubber particles, sand, industrial pollution, and salt from the sea 

are some of the primary sources of insulator surface contamination. The deposition of 

contaminating particles is dependent on a number of factors, such as the speed and direction 

of the wind, the insulator type, and the orientation of the transmission line. Although, rain and 

heavy winds can wash away dust accumulated on insulators’ surface; the dust can still be 

accumulated on the bottom ribs.  

The orientation of the insulator string also influences the amount of contamination. 

Vertically oriented insulators, also known as an I formation, are prone to greater 

contamination than are V-shaped and horizontally oriented insulators. During moist 

conditions, the surface becomes highly conductive and the magnitude of the leakage current 

increases [17]. 

Dry band arcing that leads to flashover is the main problem under heavy contamination 

conditions [18]. Equivalent salt deposit density (ESSD) and non-soluble deposit density 

(NSSD) are the factors used for quantifying the level of contamination. ESSD is the amount of 

sodium chloride that, when dissolved, provides the same conductance as that of the natural 

deposit removed from the surface of the insulator divided by the area of that surface. NSSD is 

the amount of non-soluble residue removed from a given surface of the insulator divided by 

the area of that surface.  
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1.4 Condition monitoring of insulators  

 It is evident that exposure to environmental conditions can accelerate the deterioration 

of outdoor insulators. The above mentioned defects can thus be further exacerbated, leading to 

complete insulator failure. Identifying and repairing such defects are therefore critically 

important. Along with executing health monitoring programs for locating and repairing 

damaged insulators, utilities are under pressure to reduce their maintenance costs, increase 

transmission line loading, and improve power quality. Although many inspection techniques 

are available, most are expensive and time consuming. Even though researchers are working 

on developing new techniques, many of these new methods are not cost effective or are 

incompatible with site conditions. 

Existing condition monitoring techniques can be classified into two broad categories: 

offline and online. Offline monitoring techniques take a long time to implement and require 

the disconnection of energized lines. For these reasons, interest has shifted to online 

techniques; and some of the important ones are discussed in detail in Chapter 2. 

1.5 Thesis motivation  

The growing demand associated with today’s circumstances has brought about a 

substantial change in the business agendas of utilities worldwide. In contrast to spending a 

large amount of funds on new assets, the main focus is now shifting towards maximizing the 

life-time of existing assets. Superior performance and reliability have become important 

sought-after features of power equipment. Utilizing the complete lifespan of an asset is now a 

primary goal of utilities, but aging assets represent a greater threat from both financial and 

performance perspectives because of the increased likelihood of equipment failure [19]. Failed 

critical assets result in unplanned power shutdowns, causing production losses, environmental 

issues, and damage to other assets. Taken together, this impact results in millions of dollars in 

associated costs. 

The necessity for utilities to employ economic, innovative, robust and user-safe online 

techniques for detecting defective porcelain insulators has been constantly growing. In 

addition to defect detection, a need also exists to discriminate and classify a variety of defects 

that can occur in porcelain insulators. Researchers are working to develop online condition 
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monitoring techniques that can change routine periodic maintenance to condition-dependent 

maintenance, and that can enhance operator’s knowledge through information and insight. In 

an attempt to develop a condition monitoring technique, the focus of the research was on the 

remote inspection and classification of PD sources using an acoustic technique for data 

collection and artificial intelligence (AI) for data classification and analysis. 

1.6 Thesis objectives  

The focus of the research conducted in this thesis is to use acoustic sensors for 

detecting and distinguishing PD that originates from the hardware and a variety of surface 

conditions. Specific frequency components are extracted from the measured signals and used 

as input vectors for an intelligent system. An ANN classifier is developed to classify and 

differentiate the PD sources. Based on this background, the specific objectives of this thesis 

are as follows: 

1) To conduct experiments with a variety of controlled PD sources that represent 

hardware and surface PD generated under laboratory conditions, and to measure 

these PD signals using acoustic sensors. 

2) To conduct experiments in order to obtain insight into the effect on the acoustic 

signal amplitude of the captured acoustic signal when the measurement distance and 

angle are changed from the PD source. 

3) To use an ANN pattern recognition tool to conduct a detailed study that will provide 

an understanding of the potential of the proposed technique to differentiate between 

different controlled PD sources. 

4) To apply the proposed acoustic technique in order to acquire an understanding of the 

condition of porcelain line insulators. To this end, test samples that represent 

hardware- and surface-related defects were made in the laboratory. Studies were 

performed with single and three-disc string insulators connected to the high-voltage 

source. 

5) To investigate the effect of defect types and location in the insulator string on the 

ANN recognition rate.  
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1.7 Thesis organization 

 The following is an outline of the thesis: 

Chapter 1 provided a general overview of different outdoor insulators along with their role in 

the power system networks. Further, the factors accelerating insulation degradation for the 

porcelain insulators are reviewed; and the objectives of the research are presented. 

Chapter 2 summarizes the online condition monitoring techniques for outdoor line insulators 

used by power industries, highlighting their advantages and disadvantages, and also providing 

a review of the literature related to acoustic techniques and high frequency methods. 

Chapter 3 outlines the materials and methods used in this research, describing the controlled 

PD sources, porcelain insulator samples, experimental setup for PD measurements, signal 

conditioning, and AI pattern recognition tools. 

Chapter 4 reports the results of the experimental work. The acoustic signals captured in both 

the time domain and the frequency domain for the controlled PD sources are presented. Using 

3-D plots, the patterns formed by the data collected from different controlled PD sources and 

defective line insulator samples are displayed. Also revealed and discussed are the ANN 

classifier results to analyze the performance of the classifier using the controlled samples as 

well as the single disc insulator and the string of insulators. The influence of the distance and 

angle between the discharge source and the acoustic sensor with respect to the ability of the 

system to detect a discharge is also explained. 

Chapter 5 presents conclusions based on the research work carried out for the thesis. In 

addition, future work in the field of the acoustic-based condition monitoring of ceramic 

insulators are also discussed. 
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Chapter 2 

   

Online Condition Assessment of Outdoor 

Insulators  

2.1 Online inspection of outdoor insulators  

Methods for detecting defects in ceramic and non-ceramic insulators can be listed as follows: 

1) Visual inspection  

2) Close contact technique 

3) Light-intensified imaging  

4) Measurement of the electric field distribution 

5) Thermal inspection 

6) Electromagnetic emission  

7) Acoustic measurements  

Each category is briefly described in the following sections. 

2.1.1 Visual inspection 

Visual inspection is an online condition monitoring technique which is considered to 

be the primary and most commonly used assessment method by many utility companies. A 

High-powered binoculars or a spotting scope mounted on a stable view point are employed for 

performing visual inspections. Excessive damage in outdoor insulators, such as broken 

porcelain, erosion, cracking, splitting, gunshot holes, or punctures as well as hardware damage 
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due to flashover [20] can be detected through visual inspection. However, internal defects in 

outdoor insulators cannot be traced using this technique. 

2.1.2 Close contact technique 

One approach most frequently used by utilities for detecting faulty line insulators is 

close contact method. Used by linemen for inspection, the close contact method is considered 

low-level technology because the method relies on measuring the resistance of each disc 

insulator. Two popular instruments developed based on this concept are the buzz meter and 

the DC insulation resistance-measuring meter developed by Megger
®

.  

The main principle underlying the buzz method is the potential difference across 

successive bells of an energized insulator string, which are used as a means of detecting a 

defective insulator. The testing kit consists of a metal prong connected to a hot stick (see Fig 

2.1). The prong is placed across each disc of the string individually. If the insulator is healthy, 

then the potential difference across the electrodes of the disc is enough to create a partial arc 

that produces a buzzing sound in the small air gap at the tip of the prong. On the other hand, if 

the disc is defective, then insufficient potential difference exists to produce the arc, and 

buzzing sound. Small internal defects are often undetected by this measurement.                                                                       

 

                                         Fig.2.1.  Buzz method for finding defects in ceramic insulators [21]. 

Megger has developed a method to measure the resistance between the cap and pin of 

each insulator disc under a high-voltage pulse or a DC voltage. The presence of a low 

resistance indicates a defect in the insulator. Similar to the buzz method, this technique can be 

used to find surface and very large internal defects. Practical working experience has shown 

that small internal defects are often not detected. 
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2.1.3 Light-intensified imaging  

Light-amplifying equipment can be used for detecting defective outdoor insulators. 

These devices are able to reveal the presence of surface discharge activity [21], which often 

marks the beginning of erosion damage or cuts in the housing material. During the night, 

discharges on the surface of outdoor insulators can frequently be viewed with the naked eye or 

with the use of a basic night vision camera. However, most of the photons emitted during 

discharge activity carry energy corresponding to a wavelength of 300 nm to 400 nm (i.e., 

ultraviolet light), which is beyond the range of visibility for both the human eye and basic 

light-intensifying devices. To address this problem, ultraviolet (UV) devices have been 

implemented because they can enhance detection capabilities. 

Intensifying the light emitted can enable the early-stage detection of defects [22]. 

Recent advances have included the development of light-intensifying cameras for detecting 

coronas in daylight. Commercial corona cameras are used extensively by utilities in the field 

for detecting levels of pollution on insulators [23]. This type of camera incorporates a video 

recorder with a UV-intensified image synchronized to a supply voltage. The device utilizes 

the fact that a corona can occur close to the peak of the supply voltage in order to separate the 

light emitted by the corona and that emitted by the sun. Using the UV image-intensification 

feature, two separate images are taken: one with, and one without the corona. After image 

processing, the final image can be seen by the user [24]. Sample measurements made using a 

corona camera are shown in Fig. 2.2. 

 

Fig.2.2. Corona discharge detected using UV intensification imaging [25]. 
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2.1.4 Measurement of the electric field distribution  

The permittivity and conductivity of materials as well as their geometry influence the 

distribution of the electric field along the insulator surface [26]. The electric field sensor 

mounted on the top of a rod is brought close to the energized insulators. Sliding the probe 

along the surface of a string of insulators enables the electric field distribution along the 

surface to be measured. The presence of a defective insulator in a string causes an abrupt 

change in the magnitude and direction of the electric field. The data collected through the 

measurement process is stored in a data logger attached to the probe, and is then transferred to 

a separate computer, where data are compared with those for a healthy insulator. The electric 

field measurement technique is applied for both ceramic and composite insulators. This 

method is used extensively by utilities. 

2.1.5 Thermal inspection  

Thermal inspection methods rely on thermal vision in order to determine the presence 

of hot and cold areas on insulators as a means of detecting defects. In general, a healthy 

insulator produces heat near the pin during wet conditions, whereas punctured insulators 

remain cold. Sensing discrepancies in the surface temperature along the string is very helpful, 

especially when several defective units are clustered at the live end of the insulator string. 

This method is used as a pre-test for detecting defects and anomalies registered through 

infrared (IR) thermography. Close contact or electric field distribution methods are then used 

for detailed investigation of insulators suspected of failing. A major disadvantage of this 

method is the sensitivity of the measurements to strong winds, dew, rain, sun radiation, and 

rapid temperature changes in the surrounding environment [27]. 

2.1.6 Electromagnetic emission  

 This method is based on the fact that defects in insulators under high voltage produce 

electromagnetic (EM) signals with different frequency ranges. The commercially available 

equipment named EXTRACTER monitors the EM noise signals and calculates a quantity 

referred as “maintenance merit”. When the calculated maintenance merit value exceeds a 

certain threshold, the device extracts frequencies ranging from the fundamental to the 50th 
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harmonic (60 Hz to 3 kHz) from the EM noise signal spectrum. The spectrum is updated every 

second and saved for further analysis and future reference. Although this method has 

produced promising results in the laboratory, insufficient evidence exists to support the 

effectiveness, accuracy, and reliability of the technique in the field. Its advantages include 

enhanced safety, and time and cost savings, which must be weighed against the disadvantage 

of the requirement for large amounts of data to be collected, processed, and analyzed [28]. 

Some of the condition monitoring techniques like radio-frequency measurement and 

ultrahigh frequency measurement techniques are designed to detect EM signals at very-high 

frequency (VHF), ranging from 30 MHz to 300 MHz, and the ultra-high frequency (UHF) 

band, from 301 MHz to 3 GHz [29]. Studies indicated that signal-to-noise ratio (SNR) for 

VHF is lower than that in UHF band due to susceptibility to interference in the lower 

frequency band. However, long distance measurements, VHF signals experience lower 

attenuation than those in the UHF band. RF based PD detection techniques have been applied 

with a reasonable amount of success to gas insulated switchgear (GIS), and transformers, but 

very little work has been performed with respect to the application in condition monitoring of 

outdoor porcelain insulators. 

2.1.7 Acoustic emission  

It is well known that defects in insulators produce electrical discharges, which produce 

sound/acoustic signals. These sound signals can be recorded using sensitive sound sensors. 

Such acoustic emission (AE) measurement techniques can be used in two ways. The first 

involves an operator listening to the acoustic signals produced by the object under study 

through parabolic dish sensors that have very sensitive microphones and high-gain amplifiers. 

Background noise at the site has been found to interfere with this type of measurement 

technique [30]. The second method is called the pulse echo method. It enables an examination 

of the propagation of an acoustic wave through the insulation based on observations of the 

signal attenuation and changes in velocity and direction associated with the wave. This 

method is carried out by directing an acoustic signal into the insulation and reading the 

reflections, which can enable the identification of defects [31].Table 2.1 summarizes the 

advantages and disadvantages of the methods discussed above.  
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Table 2.1: Advantages and Disadvantages of Methods for the Online Monitoring of Line Insulator Condition  

Technique Advantages  Disadvantages  

Buzz method (Close contact method) Very simple in operation 

Labour intensive 

Safety of linemen at risk 

Accuracy  

Megger method (Close contact method)  Very simple in operation 

Labour intensive 

Safety of linemen at risk 

Accuracy 

Light-intensified imaging method 

Improved safety compared to 

close contact method 

Expensive equipment 

Time saving achieved through 

inspecting large number of 

insulators in short amount of 

time 

Inaccurate in sunlight 

Thermal inspection  

Improved safety compared to 

close contact method 

Requires humidity to pick up a 

defective insulator 

Time saving achieved through 

inspecting large number of 

insulators in short amount of 

time 

Sensitivity/accuracy 

Expensive equipment 

   

Electric field distribution measurement method 

Very simple in operation Labour intensive 

More sensitive than buzz and 

megger methods 

Safety of linemen at risk 

High frequency emission method 

Time saving achieved through 

inspecting large number of 

insulators in short amount of 

time 

Needs skilled workers 

Potential for determining the 

type of defect  

Not well proven for field 

measurements 

Acoustic measurement  

Safe and simple to operate  Reliability 

Time saving achieved through 

inspecting large number of 

insulators in short amount of 

time 

Reflections can mislead 

Sensitivity  

 

A review of the literature related to existing condition monitoring techniques for 

outdoor insulators reveals ongoing opportunities for further enhancement of the technology. 

Such developments should take into account the future of prognostic capabilities that can 

encourage utility authorities obtain sufficient information to make timely and cost-effective 

decisions. Researchers have reported the potential for high frequency and acoustic methods to 
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address the condition monitoring of insulation due to their superior immunity to noise and 

their ease of operation [32], [33].  

2.2 Robustness of acoustic methods  

Earlier, researchers from the HVEL at the University of Waterloo conducted 

laboratory and field-based studies to distinguish discharges from a string of porcelain 

insulators with a deliberately introduced cracks, hole through the cap, and a broken disc. The 

work involves measurement of PD signals using an RF antenna with a bandwidth of 1-2 GHz. 

Wavelet analysis was conducted to extract features from the measured PD signals, which were 

fed to an ANN classifier to distinguish between different types of defects. The results showed 

a recognition rate of 95% [34]. Despite the successful classification using RF technology, 

there are disadvantages of using RF antenna. Firstly, because of their high-frequency 

bandwidth, as RF antenna can’t measure low-frequency discharges like dry band arcing [32]. 

Also, the technology suffers from electromagnetic interference (EMI) under field conditions. 

On the other hand, acoustic sensors can measure all forms of discharges, and since they are 

measuring mechanical waves, they are immune to electromagnetic interference. Hence, this 

research has concentrated on using acoustic sensors to detect different forms of defects in 

ceramic insulators.  

High frequency components for AE (16 kHz to 300 kHz) can be used for acquiring 

information about the condition of the insulation, either through direct listening to the sound 

produced by the insulation, or capturing the sound echoes. These techniques are known as 

active and nondestructive testing (NDT) techniques, respectively [35]. The following 

literature review provides insight into the application of ultrasonic techniques and their 

benefits with respect to detecting defects in different types of electrical insulation. A cast resin 

12 kV bushing failed during a partial discharge test conducted as per IEC 60270. Inspection 

using NDT ultrasound was able to reveal the presence of a void at the resin conductor 

interface [36-38]. In a similar situation, several methods failed to detect the defect in a 15 kV 

resin-impregnated paper insulation bushing. Using an acoustic technique to record the peak-

to-peak and root mean square (RMS) values of an acoustic signal along the length of the 

bushing resulted in determining the fault location. 
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Acoustic sensors consisting of highly sensitive piezoelectric films with filters, preamplifiers, 

data acquisition systems, and output devices have been employed for the condition monitoring 

of high voltage cables. Acoustic techniques for cable insulation diagnosis are not subject to 

any significant electrical interference, but an acoustic wave travelling along the cable joints 

and other interfaces may exhibit attenuation. An NDT test performed on 11 kV bundled 

conductor cable with a central conductor diameter of 6 mm enabled a determination of the 

location of voids at the interface between the XLPE and the semiconductor sheath. A study 

conducted as a means of locating the water tree in a similar type of cable proved successful. 

The repeatable feature in the acoustic signal returned did not appear in the spectra, and the 

data collected was used for training an ANN. The ANN proved to be 95 % successful in 

identifying healthy and weak areas in the cable, and demonstrated a success rate of 80 % when 

tested with different cable specimen. The literature reports that tests conducted using acoustic 

techniques on cable terminations indicate the possibility of identifying the discharge source 

and its location [36-38]. 

A cracked-insulator acoustic probe (CIAP) is a licensed technology developed by 

Hydro-Québec and used for inspecting live lines. Cracks in a porcelain insulator and any 

weakening of the metal-porcelain interface due to exposure to harsh weather can be detected 

using this technology, which has proven successful for locating cracks in high voltage 

insulators up to 120 kV [39]. The probe comes with two pairs of plastic feelers that consist of 

a proximity sensor, a small hammer, and a miniature microphone for picking up sound 

samples. Only three samples taken at different points on the shed are sufficient for tracking 

the condition of an insulator [39]. Fig. 2.3 displays details of the mounting of the sensor on the 

insulator. 



20 
  

 

Fig. 2.3. CIAP feelers probing a 120 kV insulator shed [39]. 

 

In other research [40], passive-focused paraboloid acoustic sensors were used to detect 

sound signals generated from a PD to examine the severity of the pollution on ceramic 

insulators. Artificial contamination experiments were performed in order to investigate the 

relationship between AE signals and PD intensity levels. The results revealed a clear 

distinction with respect to the transition of AE signal waveforms from the initial stage of low 

contamination levels to the final stage of flashover. 

In a similar study [41], an acoustic sensor with a bandwidth of 100 kHz to 1200 kHz 

was used for recording AE signals from porcelain insulators with cracks, punctures, chipped 

discs, and voids. These AE signals were compared with signals collected using a high 

frequency current transformer (HFCT) with a bandwidth of 1 MHz to 100 MHz coupled to the 

earth connection of the insulator and a conventional PD detection system. The authors 

reported the distinctive features of the acoustic sensor and the HFCT. They pointed out the 

attractiveness of AE detection due to its relative immunity to noise, but also noted that its low 

degree of sensitivity and narrow frequency bandwidth made it inferior to the HFCT method. 

Researchers have also employed a commercial acoustic sensor and an ANN to 

investigate the ability to classify PD signals generated due to dry band arcing, corona signals 

from sharp electrodes, and mechanical noise signals. An average recognition rate of 93.3 % 

was achieved [42]. 
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The application of acoustic sensors is not limited to outdoor electrical insulation. The 

results of studies related to the condition monitoring of transformers and GIS insulation are 

also very promising [43-46]. Inspired by all of the contributions concentrated on 

understanding the health condition of insulation using acoustic technology, the research 

presented in this thesis was conducted with the goal of investigating the possibility of 

detecting and classifying controlled PD sources and defects in ceramic disc insulators. 

 

2.3 Summary  

This chapter has provided a summary of available online inspection methods practiced 

by utilities for the assessment of defective line insulators, including a table list of the 

advantages and disadvantages of each method. A detailed review of the literature related to 

acoustic techniques and their successful implementation for the condition monitoring of 

electrical equipment in power networks has also been presented.  
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Chapter 3 

   

Materials and Methods 

Acoustic methods used for detecting electrical discharge are quite popular because of 

their immunity to electromagnetic noise and their relative ease of application. Controlled PD 

sources representing a variety of discharge types, such as corona (discharge in air), surface 

discharge, internal discharge, and wet surface discharge were generated in the laboratory. 

Based on the test results, and knowledge obtained through the classification of these 

controlled sources with the use of acoustic sensors, the technique was then applied to 

detecting defects in outdoor insulators.  
This chapter describes the test setup for generating controlled PD sources and also 

explains different types of PD sources created using porcelain insulators in the experimental 

work. Details of the experimental setup, data acquisition techniques, and the artificial neural 

network topology are also provided.  

 

3.1 Controlled PD sources  

As illustrated in Fig. 3.1, five common types of PD were considered for the multi-class 

classification analysis: PD from a sharp point, surface discharge from a smooth electrode, 

surface discharge from a sharp electrode, wet surface discharge from a smooth electrode, and 

internal discharge from voids.  
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Fig. 3.1. Illustrations of the geometrics of the PD sources used: (a) PD from a sharp electrode; (b) surface discharge from a smooth electrode; 

(c) surface discharge from a sharp electrode; (d) wet surface discharge from a sharp electrode; (e) internal discharge from a defective 

dielectric medium. 

 

3.2 Porcelain insulator samples  

The study involved samples of three PD sources: discharges due to cracks, hardware 

corona, and wet surface discharge due to surface contamination. Fig. 3.2 shows a ceramic 

insulator disc with a deliberately introduced crack.  

 

Fig.3.2. Porcelain line insulator with a deliberately introduced crack. 

 

Fig. 3.3 shows a healthy insulator with a thin wire wound around the cap that is used to 

replicate a hardware corona. This kind of discharge is very common in power systems, but 

hard to distinguish from other types of severe discharge using the regular online monitoring 

techniques currently available. 
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Fig.3.3. Hardware corona generated using a thin wire wound around  cap of a line insulator. the

 

For the third case study, a healthy insulator was sprayed with salt water so that the 

electrolyte solution acts as a surface pollutant. 

3.3 Need for ultrasonic measurement 

  Each PD event produces an ultrasonic emission. Fig. 3.4 indicates the frequency 

ranges of the different generated acoustic emissions (AEs) including the generated PD AEs. 

The range considered for measurement using the acoustic sensor in this thesis is from 16 kHz-

80 kHz. The range above the 20 kHz is categorized under ultrasonic range of frequencies. 

 In general, ultrasound provides a very good signal-to-noise ratio, which means that the 

equipment used for measuring high frequency acoustic emissions can reject high levels of 

background noise and can focus on a desired range of frequencies.  

Audible, low frequency sound waves tend to travel large distances, reflecting from 

walls, equipment, etc., before diminishing. These reflections add to the background noise in 

the audible range, whereas, ultrasonic sound cannot travel long distances and is usually 

softened completely prior to reflection. These high attenuation rates of ultrasonic signals result 

in low background noise levels, even in the least favorable environments. For example, a 

typical industrial environment has background audible noise levels up to 100 dB, while only 

15 dB of noise is around 40 kHz [47]. For this reason, isolating the desired signal from the 
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background noise is comparatively easier using ultrasonic sensors than measuring audible 

acoustic signals.  

 
Fig. 3.4. Frequency ranges of different acoustic emissions generated compared to PD acoustic emissions [47]. 

 

3.4 Airborne ultrasonic sensors 

In commercially available airborne ultrasonic sensors, three types of data can be 

extracted depending on the degree of sophistication, i.e, qualitative, quantitative, and 

analytical. Qualitative information offers the ability to convert the signals to low frequencies 

through frequency modulation so that the human ear can hear the ultrasound version. 

Quantitative information includes details of the intensity (dB) of the measured ultrasonic 

signal, which are displayed on the instrument screen, and analytical data can be collected from 

spectral analysis software to enable a review of the recorded sound samples. The sensor used 

in the research has a combination of qualitative, quantitative and analytical features.  In 

practice, three types of airborne ultrasonic sensors are widely used by utilities: handheld units, 

parabolic dish concentrators, and extended wand-type sensors. Table 3.1. Illustrates the 

features of the sensor employed in this research. 
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Table 3.1: Features of the MK-720 Acoustic Sensor  

Model  MK-720 

Detection frequency  Central frequency 40 kHz ( Suitable to measure PD in the range 16 kHz  - 80 

kHz) 

Detection directionality  ±8° 

Dimensions – Net weight  W 174 mm x H 268 mm x D 98 mm – Approx. 370 g 

Ambient measurement parameters 0 °C to 40 °C, 10 % to 85 % relative humidity (non-condensing ) 

Function  Display of discharge component rate; display of converted value in acoustic 

pressure; alarm based on discharge component rate;  measuring point 

indicated by laser pointer (laser pointer light intensity Class 2 IEC 6825-1） 

 

3.5 Test setup 

The schematic of the test setup used for generating and measuring controlled PD from 

different types of sources is shown in Fig. 3.5. A 150 kV/20 kVA test transformer with a PD 

level of less than 2 pC. The inception of PD activity was ascertained using a classical PD 

detector, which employs a coupling capacitor per IEC 60270. For the experimental work, the 

initial PD inception voltage (PDIV) was measured with the simultaneous use of both a 

standard PD detector (Hipotronics
®

, DDX 9101) and the MK-720 acoustic sensor. The PDIV 

for corona from a sharp electrode was observed at 9.6 kV by the coupling capacitor, and also 

using the acoustic sensor. This shows that both methods were in good agreement with the 

inception voltage measurement. 

 As per the vendor provided datasheet, the acoustic sensor is not sensitive at distances 

above 2 m from the source of discharge. With consideration of the sensitivity factor and also 

laboratory safety standards, the sensor was placed 1.6 m from the test setup. Fig. 3.5 shows 

the arrangement used for testing the porcelain disc insulator. 
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Fig.3.5. Schematic of simultaneous PD measurements using a coupling capacitor and an acoustic sensor. 

 

3.6 Signal processing  

The output of the acoustic sensor was first run through a high-pass filter (HPF) in 

order to remove  noise, following which, the outer envelope of the filtered signal was detected 

prior to the final step, which was the application of a fast Fourier transform. The MK-720 

acoustic sensor is equipped with the tools necessary for performing these operations on a 

measured acoustic signal. A typical measured acoustic signal and its FFT from a sharp 

electrode are shown in Fig. 3.6 and Fig. 3.7, respectively, and the stages involved in the signal 

processing are identified in Fig. 3.8. 

 

Fig.3.6. Example of acoustic signal measured using the MK-720 from a sharp electrode. 
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Fig.3.7. Typical FFT of a PD acoustic signal acquired using the MK-720 from a sharp electrode. 

 

 

Fig.3.8. Envelope detection and FFT operations for converting the measured acoustic signals from time domain to frequency domain [46].   
 

The intensity of the ultrasound emitted from a PD source varies periodically with the 

alternating voltage. The acoustic sensor uses the amplitude modulation technique where 

carrier wave with particular frequency is changed according to the intensity of the audio 

signal. Here, the sensor has inbuilt technology to use carrier waveform frequency same as 

supply voltage frequency [48], which means that the amplitude spikes of the processed 

acoustic signal dominate at the fundamental frequency of the supply voltage and its integral 

multiples. Details of the signal strength for 60 Hz, 120 Hz, and 180 Hz frequency components 

were used for analysis. The analysis process and the tools used for the classification of the 

discharges are presented in Chapter 4. 

3.7  Artificial neural network 

Machine learning (ML) is an element of AI and is currently widely used in many 

applications. It refers to the science of using signal processing, mathematical, and statistical 

tools for making interpretations based on perceptual data. Reliable and accurate ML is very 
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useful and some of the successful implementations can been seen in fingerprint identification, 

DNA sequence identification, automated speech recognition, etc. ML systems differ, but all 

involve three essential stages: 1) data acquisition and preprocessing 2) feature extraction and 

3) decision making. 

In data acquisition and preprocessing, the data are collected from the source and then 

preprocessed to filter out noise or outliers. Users must define the relevant features for 

identifying different patterns. In the final stage, the ML algorithm performs the desired 

operation of either classification or regression. 

In the work presented here, the PD signals collected using the acoustic sensor 

described earlier are passed through multiple signal processing operations and the three 

frequency components are recorded, i.e., 60 Hz, 120 Hz and 180 Hz. The dominant frequency 

components can then be used as input feature vectors to train the selected classifier, which for 

this study, is an artificial neural network. These models are computing systems that consist of 

a very large number of processors that have been interconnected so that they can handle huge 

amounts of data. ANN models are typically self-adaptable with respect to learning and 

resolving complex problems based on available training and knowledge, thus giving rise to 

their name. ANNs are designed to work like a biological brain, with the interconnected 

processors functioning in a manner similar to that of neurons. The interconnections enable 

data to be transferred between neurons. The learning process determines the weights applied 

to the connections, which in turn, indicate the importance of the contribution of the preceding 

neurons. Fig. 3.9 and Fig. 3.10 illustrate the structures of the ANNs used for developing the 

classifier for this research. 

 

Fig.3.9. Structure of the ANN implemented in the analysis conducted for distinguishing types of PD from controlled PD sources: three input 

feature vectors, 20 hidden neurons, and five output classes. 
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Fig.3.10. Structure of the ANN implemented in the analysis conducted for distinguishing types of PD from the porcelain insulators used in 

the case study: three input feature vectors, 20 hidden neurons, and three output classes. 

 

Each element in the structures consists of input, hidden and output layers: The input layer 

communicates with the external environment to manage all of the input and present it to the 

neural networks. The input feature vectors are composed of the magnitudes of 60 Hz, 120 Hz, 

and 180 Hz frequency components of the received signal. 

The hidden layer lies between the input and output layers and consists of activation 

functions. The role of the hidden layer is to process the input obtained from the previous layer. 

The number of hidden layers plays a crucial role in determining the performance of the 

classifier. In this research, only one hidden layer was used with variable number of hidden 

neurons. Fig.3.11 displays the average recognition rate plotted against the number of hidden 

neurons. The graph reveals that the additional hidden neurons gradually increase the average 

recognition rate until it reaches a saturation level.  

 

 

Fig.3.11. Graph showing the variation in test efficiency with increased numbers of hidden neuron. 
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The output layers act as information interfaces from the system to the output classes. 

In the work conducted for this thesis, controlled PD sources are represented as class-I (wet 

surface discharge from a smooth electrode), class-II (designating surface discharge from a 

smooth electrode), class-III (internal discharge from defective dielectric material), class-IV 

(surface discharge from a sharp electrode), and class-V (corona). For the study of the 

porcelain line insulators, class-I represents corona, class-II designates discharge from a 

cracked line insulator, and class-III refers to discharge from a contaminated surface.  

 

 3.8 Summary  

This chapter has outlined the materials and methods employed for the research. 

Particulars have been provided for the five controlled PD source setups used for the initial 

studies and for the different defective samples of porcelain insulators on which the new 

technique was applied. Other components explained in detail include a schematic of the test 

setup with the specifications for the acoustic sensor employed in the study, and the signal 

processing methods used for extracting features for further analysis. 
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Chapter 4 

   

Results and Discussion   

As described in Chapter 3, the extracted features (low-frequency components) were 

used for training and testing the developed classifier. Classification performance results for 

controlled PD sources, single-disc insulators, and string insulators were represented visually 

using 3D plots and then assessed using the ANN classifier. The effect on the efficiency of the 

proposed technique with respect to a number of factors, such as variations in the linear and 

angular distance of the acoustic sensor is also discussed in this chapter. 

4.1 Characteristics of the controlled PD signatures 

As previously discussed, both acoustic signal envelopes and their FFTs were captured 

for different types of controlled PD. Fig. 4.1 shows examples of signal results captured from a 

sharp electrode (corona), and wet surface discharge from a smooth electrode. 

It is apparent that each discharge type has a signature distinguishable from those noted 

with other types of discharges. For example, the amplitude and repetition rate of the spikes are 

relatively high for the discharge from sharp electrodes compared to those from a smooth 

electrode. With respect to the frequency content of the measured envelope, it can also be 

observed that the corona discharge has a more consistent pattern than the wet surface 

discharge. Differences in the acoustic signal signatures are due to the nature of the streamers 
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formed as a result of the ionization of the air surrounding the electrode and the dielectric 

medium. 

   
 

(a) 

 

  
(b) 

Fig.4.1. Signal envelopes of the acoustic signals and their FFTs measured from (a) discharge produced by a sharp electrode, and (b) wet 

surface discharge produced by a smooth electrode. 

 

4.2 Influence of distance on acoustic PD signal measurements 

To examine the influence of distance on the measurements obtained from the acoustic 

sensor for two different discharges (i.e., the corona discharge and the surface discharge), 

measurements were made using a sharp electrode at 150 cm, 200 cm, 250 cm, and 300 cm 

from the test sample. Regardless of the type of discharge, the acoustic sensor was able to 

detect PD signals even at a distance of 300 cm. These results demonstrate that the technique 

can be used at a safe distance for overhead distribution line inspection.  
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The results related to the attenuation rate of the measured acoustic signal frequency 

components with discharges from a sharp electrode in air (corona) and from a dielectric 

medium (surface discharge) are shown in Fig. 4.2 and Fig. 4.3, respectively. 

 

 

Fig.4.2. Attenuation of the signal strength with distance for a 60 Hz component with corona discharge. 

The results reveal that a decreasing trend in the amplitude of the acoustic signal 

strength can be observed in the corona with the 60 Hz component. A similar trend with the 

signal strength was noted with 120 Hz and 180 Hz components. 

On the other hand, for a surface discharge, only the 120 Hz component exhibits a 

decreasing trend similar to that for a corona. No consistent trend can be observed for either the 

60 Hz or the 180 Hz components. However, for both types of discharge, the total signal 

strength decreases with distance. 
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   (a) 

 
    (b) 

 
   (c) 

Fig.4.3. Attenuation of the signal strength with distance with a surface discharge for (a) a 60 Hz component, (b) a 120 Hz component, and (c) 

a 180 Hz component. 
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4.3 Influence of the angle of measurement on the acoustic PD 

signal  
 

Fig.4.4 shows the test setup arrangement for studying the effect of measuring angle on 

acoustic signal measurement. The attenuation of the signal strength as a result of changes in 

the angle of measurement from the corona was investigated. The results are shown in Fig.4.5. 

The results reveal that as the angle of deviation from the PD source increases, the 60 

Hz component is subject to minimum attenuation. Similar behaviour was observed for the 120 

Hz and 180 Hz components.  

 

Fig.4.4. Test setup to study the influence of angle of measurement on the measured acoustic sensor. 

 

Fig.4.5. Attenuation of the signal strength with the angle of measurement for a 60 Hz component with corona discharge. 
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4.4 Visual representation of frequency component patterns using 

3D plots 

The low frequency selected features i.e., 60 Hz, 120 Hz, and 180 Hz components, were 

plotted against one another. The 3-D plots are presented in Figs. 4.6 - 4.8 for controlled PD 

sources, single disc insulators, and string insulators, respectively.  

These plots clearly indicate that the different classes are nonlinearly separable, which 

means that a nonlinear classifier is required to distinguish among them. As well, the 3-D plots 

for both single and string insulators also exhibit some similarity with respect to class 

distribution. It should be noted that the defective sample in the string insulators was always 

connected to the high voltage end.  

 

Fig. 4.6. Signal magnitudes for 60 Hz, 120 Hz, and 180 Hz frequency components in controlled PD sources. 
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Fig.4.7. Signal magnitudes for 60 Hz, 120 Hz, and 180 Hz frequency components with single insulators. 

 

Fig.4.8. Signal magnitudes for 60 Hz, 120 Hz, and 180 Hz frequency components in string insulators. 
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Moving the position of the cracked insulator to the middle of the three-disc string 

insulator resulted in a different pattern, as indicated in Fig. 4.9. 

 

Fig.4.9. Signal magnitudes for 60 Hz, 120 Hz, and 180 Hz frequency components in string insulators with a cracked insulator placed in the 

middle of the string. 

 

A shift toward the corona cluster and away from the wet discharge can be seen in the 

cluster representing the discharge from a cracked insulator placed in the middle of the string. 

This observable shift in the pattern is attributable to the fact that the voltage levels across each 

disc insulator in the string are not identical, but vary according to the position of the disc. The 

maximum voltage occurs across the disc nearest to the conductor, while the lowest levels are 

associated with the disc nearest to the cross arms (grounded conductor). It is also evident that 

the readings for both the corona and crack insulator classes are mixed together which makes it 

extremely hard for any classifier to distinguish between them. 

4.5 Recognition rates for five controlled PD sources 
As mentioned in Chapter 3, an ANN classifier was used for the classification of the 

five different PD types. Total of 450 test data have been collected from five different PD 

sources. The data was randomly mixed and 70 % of the total data collected is used for 

training, 15 % for validation, and 15 % for testing. This random mixing of data was repeated 

for 5 times and the recognition rates are shown in table 4.1. A sample confusion matrix is 
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shown in Fig. 4.10 and summarizes the classifier recognition rates for the five controlled PD 

sources. Rows of confusion matrix represent the instances in a predicted class and column 

represents the instances in an actual class [49]. 

Table 4.1: Recognition Rates for the Standalone ANN Classifier Data for Five Controlled PD Sources 

Trail No. Class-I Class-II Class-III Class-IV Class-V Total recognition rate  

1 100 100 92.3 92.9 82.4 92.6 

2 85.7 95.2 100 92.3 80 91.2 

3 83.3 100 94.1 73.3 94.1 89.7 

4 87.5 100 100 93.8 93.8 95.6 

5 77.8 94.7 100 100 82.4 91.2 

Average 86.86 97.98 97.28 90.46 86.54 92.06 

Class-I – wet surface discharge from a smooth electrode; Class-II – surface discharge from a smooth electrode; Class-III – internal discharge 

from defective dielectric material; Class-IV – surface discharge from a sharp electrode; Class-V – corona. 

In the matrix shown in Fig. 4.10, a trend of confusion can be observed between the wet 

surface discharge from a smooth electrode and the surface discharge from a sharp electrode, 

and also between the corona and surface discharges from a sharp electrode. Of all the signals, 

surface discharge from a smooth electrode and internal discharge from a defective insulator 

stand out as unique and easily distinguishable. 

Based on the results, the minimum accuracy level with respect to recognition of 

different PD groups was 89.7 %, the maximum level was 95.6 %, and average recognition rate 

was 92 %. The high classification rate shows that the proposed approach in this thesis is 

clearly able to distinguish the PD associated with variety of PD sources. 



41 
  

                        

Fig. 4.10. Typical confusion matrix showing individual class recognition rates and total classifier efficiency with respect to distinguishing the 

PD patterns of five controlled PD sources: Class-I – wet surface discharge from a smooth electrode; Class-II – surface discharge from a smooth 

electrode; Class-III – internal discharge from defective dielectric material; Class-IV – surface discharge from a sharp electrode; Class-V – 

corona. 

4.6 Effect of measurement distance on the classification rates for 

controlled PD sources based on training and testing with different 

datasets 

An additional case study was conducted in order to observe the behaviour of two 

classifiers, one of which was trained only with data collected from close proximity (ANN 1) 

and the other trained with all of the datasets collected from a variety of distances integrated 

together (ANN 2). Both classifiers were employed for recognizing PD data collected at 

different distances. Table 4.2 summarizes the recognition rates obtained from the two 

classifiers. 

Although the ANN classifier trained with all of the datasets collected from different 

distances integrated together produced better recognition results than the other classifier 

trained with only close-proximity data points, a moderate recognition rate can still be achieved 

using ANN 1 up to a distance of 250 cm.  
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Table 4.2: Comparison of Recognition Rates from Two ANNs: Effect of Distance on Signal Recognition  

4.7 Effect of the measurement angle on the classification rates for 

five controlled PD sources 

A similar study was conducted in order to investigate the effect of the measurement 

angle on the recognition rate. One of the ANN classifiers was trained using data measured at a 

0° deviation from the line of sight and was then tested using data recorded at 5°, 20°, and 30° 

deviations. The results are presented in Table 4.3. 

The recognition rates for the data measured with different angles of deviation from the 

PD source were very close. This similar recognition rate between the different angles can be 

attributed to the similar pattern distribution between the different classes as depicted in Fig. 

4.11 for two different angles, i.e., 0 and 30 degree. 

Table 4.3: ANN Recognition Rates: Effect of the Measurement Angle on Signal Recognition  

Test data  ANN 1 ANN 2 

Training information Trained only with data collected at 

150 cm from the source 

Trained with the total data collected 

at 150 cm, 200 cm, 250 cm, and 300 

cm from the source 

Data collected at 200 cm 90 % 98 % 

Data collected at 250 cm 82.7 % 92.2 % 

Data collected at 300 cm  70.2 % 87.8 % 

Training Data Recognition Rate 

Test with 5° of deviation from the source  84.6 % 

Test with 20° of deviation from the source 83.8 % 

Test with 30° of deviation from the source 85.8 % 
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(a)                                                                                                                (b) 

Fig. 4.11. Pattern formations for (a) a 0° deviation and (b) a 30° deviation. 

4.8 Application of the classifier for porcelain insulator condition 

monitoring  
 Total of 300 test data have been collected from single-disc and string insulator 

arrangements. The data was randomly mixed and 70 % of the total data collected is used for 

training, 15 % for validation, and 15 % for testing. Tables 4.4 and 4.5 show the recognition 

rate obtained from five sets of testing sessions conducted using the two classifiers. 

The average recognition rates with single-disc and string insulators were 89.34 % and 

87.54 %, respectively. The good recognition rates show the huge potential for the application 

of the acoustic emission (AE) technique with respect to detecting defects and surface 

conditions in porcelain line insulators, and as a tool for condition monitoring applications. 
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Table 4.4: Classifier Recognition Rates for Acoustic Data Recorded from a Single-Disc Line Insulator  

Class-I: corona; Class-II: discharge from a cracked line insulator; Class-III: discharge from a contaminated surface. 

Table 4.5: Classifier Recognition Rates for Acoustic Data Recorded from a String Insulator Arrangement. 

 
Class-I: corona; Class-II: discharge from a cracked line insulator; Class-III: discharge from a contaminated surface. 

Based on the similarity of the single-disc and string insulator pattern formations, a 

single ANN classifier was trained using the data obtained from the three single porcelain disc 

samples and then tested on the string insulator datasets. Table 4.6 shows the five sets of test 

results, and Fig. 4.11 presents a sample confusion matrix of the test results. 

The average recognition rate for discharge produced from corona, wet surface 

discharge and cracked insulator were 98.04 %, 66.4 %, and 62.84 % respectively. It is 

apparent from these results that each insulator arrangement (single disc vs three discs) need to 

be trained and tested separately.  

 

 

 

Trail No. Class-I Class-II Class-III 

1 100 % 80 % 82.4 % 

2 100 % 92.3 % 76.5 % 

3 100 % 100 % 88.9 % 

4 100 % 80 % 85.7 % 

5 100 % 78.6 % 81.8 % 

AVG 100 % 86.18 % 83.06 % 

Trail No. Class-I Class-II Class-III 

1 100 % 81.3 % 87.5 % 

2 100 % 100 % 66.7 % 

3 100 % 91.7 % 84.2 % 

4 100 % 93.8 % 86.7 % 

5 100 % 50 % 75 % 

AVG 100 % 83.36 % 80.02 % 
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Table 4.6: Recognition Rates Obtained from a Classifier Trained Using Single-Disc Insulator Data and Tested on 

String Insulator Data  
 

Class-I: corona; Class-II: discharge from a cracked line insulator; Class III: discharge from a contaminated surface 

 

Fig. 4.12. Typical confusion matrix showing individual class recognition rates and total classifier efficiency with respect to 

distinguishing PD patterns from a classifier trained with data recorded from a single-disc insulator and tested with data 

recorded from a string insulator: Class I – corona; Class II – discharge from a cracked line insulator; Class III – discharge 

from a contaminated surface. 

4.9 Analysis with varied insulator disc positions  

To study the robustness of the proposed technique, investigations included an 

examination of the effect on the recognition rate when the insulator disc position was varied. 

Table 4.7 presents the five sets of test results obtained from the ANN classifier. 

 

 

 

Trail No Class-I Class-II Class-III Total Recognition 

Rate 

1 97.7 % 64.6 % 63.2 % 73.7 % 

2 97.6 % 68.2 % 69 % 76.7 % 

3 97.6 % 65.5 % 66.9 % 75 % 

4 100 % 55.3 % 65.2 % 70 % 

5 97.3 % 60.6 % 67.7 % 72.7 % 

AVG 98.04 % 62.84 % 66.4 % 73.62 % 
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Table 4.7: Recognition Rates Obtained from an ANN Classifier Trained with Data Collected from a Three-Disc 

Insulator String with a Cracked Middle Disc 

 

Class-I: corona; Class-II: discharge from a cracked line insulator; Class-III: discharge from a contaminated surface 

 The average recognition rate was 86.2 %, which was very close to that for a defective 

insulator placed near the high voltage supply end. It can be observed that the recognition rate 

for class-I (i.e., corona, was compromised, and that the recognition rate for the class-III wet 

surface discharge was elevated. Based on this analysis, it is clear that the classifier is able to 

differentiate defects based on the type of defect, and that the position of the defects has a low 

impact on the overall recognition rate. 

 

 

 

 

 

 

 

 

 

 

 

 Trail No. Class-I Class-II Class-III Total Recognition 

Rate 

1 75 92.9 90.9 84.4 

2 86.4 73.3 100 84.4 

3 83.3 90.9 100 91.1 

4 78.6 76.5 92.9 82.2 

5 80 84.6 100 88.9 

AVG 80.66 83.64 96.58 86.2 
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Chapter 5 

   

Conclusion and Suggestions for Future Work 

5.1 Summary and conclusion  
 

The primary goal of this research was to investigate a feasibility index for detecting and 

classifying different types of electrical discharge using acoustic emission (AE) signatures. An 

additional objective was to explore ways of applying the knowledge gained in classifying 

different types of discharge so that it could be used for the condition monitoring of ceramic 

line insulators. To this end, numerous experiments were conducted in order to assess a variety 

of controlled PD signatures and defective line insulators, both in string and single-disc 

conditions. Based on the results, the following conclusions can be drawn:  

1) Each type of controlled PD source produced a unique acoustic signature, which were 

analyzed further using signal-processing tools. 

2) Distinguishable patterns were observed using acoustic signal magnitudes of 60 Hz, 

120 Hz and 180 Hz, with the results further enhanced by employing the ANN for 

differentiating PD sources with signal magnitude data at 60 Hz, 120 Hz, and 180 Hz as 

input features. 

3) The trained classifier has been proven effective for the classification of each specific 

type of controlled PD, with a high degree of accuracy: more than 90 %. 
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4) Through repetitive measurements, the impact of angular and linear distance variations 

on the measurement of acoustic signals was examined. The findings revealed that the 

amplitude of the measured acoustic signal decreased with increases in the linear and 

angular distances from the sample. Angular deviation was more sensitive to distance 

with respect to acoustic sensor measurements. 

5) The study was extended to include the classification of defects and contamination 

conditions in both string and individual insulators. In this regard, the classifier 

produced a recognition rate of more than 85 %. 

6) Varying the position of a cracked insulator disc within a string has only a very small 

effect on the level of classification performance. 

5.2 Future work 

A number of challenges can be addressed based on the work presented in this thesis. 

Important possibilities for future work are highlighted in the following sections.  

5.2.1 Applications in the field 

All of the experiments described in the thesis were conducted in a noise-free and 

completely shielded environment. The laboratory was free from any of the external 

interference that is generally present in a field environment. A set of selective noise levels 

shall be generated in laboratory and their effect on acoustic signal measurement to be studied 

in the first place and later environmental factors on the strength of the acoustic signals to be 

studied in the field. 

5.2.2 Increasing the number of line insulators in the string 

  The study performed in this research was limited to the use a string of insulators 

consisting of three porcelain disc insulators. Future work should consider studying the effect 

of increasing the number of discs in the string and also changing the defect location in the 

string. 
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5.2.3. Relationship between acoustic signal and conventional 

measurement techniques 

In conventional PD measurement techniques, the apparent charge is generally 

quantified by a band-pass filter, as specified in IEC 60270. Unlike apparent charge 

measurements, acoustic measurement techniques are not subject to any well-established 

standards. For acoustic measurement techniques to become well accepted, correlations should 

be established between acoustic signal measurements and actual PD signatures identified 

according to IEC 60270. 

5.2.4. Extending testing to include defective polymeric and other 

ceramic models 

With ceramic insulators, utilities encounter major problems created by punctured 

insulators, which can also become a safety hazard for the linemen who generally perform 

contact-based testing and maintenance work. Although the current work was limited to 

cracking, contamination, and hardware defects, future work could include collaboration with 

industry in order to collect punctured samples, and the AI classifier library could be updated 

to incorporate the data collected from the testing of punctured samples of both individual and 

string insulators. The work presented in the thesis should also be extended to incorporate 

different types of defective polymeric insulators, which are widely used as replacements for 

ceramic insulators. 

5.2.5. Unmanned aircraft-mounted PD measurement and 

classification systems  

The ultimate aim of this work is to create an online AI-powered device that can 

differentiate PD from practical insulation systems. The developed prototype could be mounted 

on top of a drone that could fly close to line insulators, collect the required data samples, and 

determine the type of defect. In this way, this method would ensure complete human safety 

and could also contribute to future smart systems. 
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