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Abstract

Much of the structure of quantum field theory (QFT) is predicated on the principle
of locality. Adherence to locality is achieved in Algebraic QFT (AQFT) by the associa-
tion of algebras of observables with regions of spacetime. Although, by construction, the
observables of QFT are local objects, one may consider characterizing the spatial or space-
time features of a state. For example, if we have a single-particle state in QFT, how can
we say that the particle is localized in a certain region of space? It turns out that such
a characterization is obstructed by a collection of no-go theorems that we will review in
the first two chapters, which imply the absence of any suitable position operator or local
number operator in the local algebra of observables. These difficulties, along with other
considerations that involve acceleration, gravity and interactions, suggest that relativistic
QFT cannot support a particle ontology. The common factor of all these reasons is the
theory of relativity, which is commonly blamed for the inappropriateness of the particle
notion in relativistic quantum theories.

Looking towards low energies, one finds the widespread applicability of non-relativistic
quantum mechanics (NRQM), a theory in which particle states are localizable by means of
their wavefunction. This seems to imply that NRQM can support a particle ontology, so it
is natural to ask whether one can make contact between the NRQM description of particles
and some appropriate notion in the latent QFT. Admittedly QFT and NRQM are very
different theories, both at the dynamical and kinematical level, and recovering one from the
other cannot come with no cost. The main undertaking of this thesis will be to illuminate
this connection, by starting with a relativistic QFT and making suitable approximations
to recover features of NRQM. Furthermore, it has been suggested that the existence of
vacuum entanglement in a relativistic QFT is further obscuring the localizability of states.
This is why we are investigating the behaviour of vacuum entanglement under the non
relativistic approximation to ask whether vacuum entanglement is a relativistic effect.

The title of this thesis is inspired by two readings that have influenced my understanding
on fields, particles and algebras for the past two years. The first one is the paper “What is a
particle?” by C. Rovelli and D. Colosi [1] and the other one is the Algebraic Quantum Field
Theory (AQFT) textbook by R. Haag [2] “Local quantum physics: fields, particles and
algebras” that Jason Pye left on my desk one day (this book has been delightfully confusing
me ever since). In Chapter 1 we present the reformulation of QFT in the algebraic language,
mostly following [2, 3]. Chapter 2 imcludes the main no go theorems that demonstrate how
the particle notion is problematic in relativistic quantum theories (not necessarily thought
of as relativistic QFT’s). In Chapter 3 we are reviewing two relatively recent articles
that propose notions of local quanta in QFT, the paper by Colosi and Rovelli [!] and a
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follow up paper by Rodriguez-Vazquez et al [1] which is very much related to my research.
My attempt for a contribution, in collaboration with the PhD student Jason Pye and my
supervisors Achim Kempf and Eduardo Martin Martinez, corresponds to Chapter 4 and
the last section of Chapter 2. In Chapter 4 we present the project described just above
on the ‘Impacts of relativity on localizability and vacuum entanglement’. In Chapter 2 we
are characterizing the localizability of one-particle QFT states by means of the Newton
Wigner wavefunction as introduced in [5]. In the absence of a relativistically covariant
position operator, there cannot be a spatial representation of a state, aka a wavefunction,
for a relativistic quantum particle. The ‘best possible’ notion of a position operator was
concocted by Newton and Wigner, and we are making use of it in the context of QFT at
section 2.3.2. There we also speculate about how a delocalized ‘cat state’ gravitates i.e.,
the gravitational effect of a particle that is superposed in two different locations.

v



Acknowledgements

First, I would like to thank my supervisors Prof. Achim Kempf and Prof. Eduardo
Martin-Martinez for their infinite patience, support and inspiration. Prof. Achim Kempf
for being a great supervisor and such a compassionate mentor, who has helped me to figure
out the framework and content of my graduate studies for the past three years and for the
rest. Prof. Eduardo Martin-Martinez for being a great supervisor and friend, who has been
very patient and welcoming with my hesitations despite his huge momentum for research
1T would also like to thank them both for trusting me as a teaching assistant for their
courses, this has been a great teaching and learning experience, and so much fun indeed.
Moreover, I would like to thank Prof. Charis Anastopoulos for the insightful suggestions
and clarifications he provided so far, I am looking forward to our collaboration.

I also want to thank Jason Pye with whom we have been collaborating on the research
project that I present in the last chapter of this thesis, without whom the understanding
I tried to develop about these issues would have been impossible (he is solely responsible
about my interest and struggles with the algebraic approach). I very much appreciate all
the insight that he has developed and has been always eager to share. I want to thank Jose
de Ramon (aka Pipo) for the unexpectedly extensive, constructive and honest feedback
that he provided in the writing of this thesis, also for always being there to talk (and for
being such a character 2). T would also like to thank the rest of my group mates for all the
super interesting discussions, Marco Letizia, Nitica Sakharwade, Ding Jia, Erickson Tjoa,
Petar Simidzija, Nicholas Funai, Emma McKay ®, Alison Sachs, the list would be too long
because I was lucky to be part of two research groups, but I really want to thank all of the
group mates because I have learned from all.

Finally, I want to thank my close friends, family and dogs, here and overseas. Julia
Amoros Binefa, for being such a great and thoughtful friend and housemate, that has been
always eager to help with my mess and to cook for me (greek recipies!). She is the kind
of person that can make Waterloo feel like fun . Nayeli Azucena Rodriguez Briones also
a great friend and housemate, whose attitude has been so calming and inspiring to me
(always very patient with me speaking spanish!). The rest of the housemates, Dainy, Pavel
and Noch, the cutest dog in this continent. Then of course, Yorgos Stiliaris (aka futo)
with whom I have been learning and arguing about physics (also math and philosophy)
throughout my undergraduate studies, untill today, he has been proudly stubborn ° and

LAs in my proper reference frame.

2 Authentic, opinionated, with a great sense of (dark) humor.

3Compiling this thesis would have been impossible without Emma’s generous technical support.
4With the warmth and the strength of her character.

5His stubbornness has been very fruitful I have to admit.



hard to convince. Sitsos, the friend I have been missing the most. My parents Eva and
Kostas, my sister Ioli and our dogs Mozart and Hilda, for being so supportive even though
they still don’t know what I am doing here in Canada. At last but not least, the family
that I am so lucky to have here, Lamprini, Charalabos, Maria and Tasos. They helped me
so much to adjust, I would have been too homesick without them. I have been very much
appreciating this great opportunity of studying here, such a privilege that not many enjoy,
but without the people mentioned above it would have been so much harder to deal with
the struggles that such an opportunity comes with.

vi



Table of Contents

1 Quantum Theory of Fields

2

1.1

1.2

1.3

1.4
1.5

From Classical to Quantum . . . . . . ... . ... .. ... ... ... ..
1.1.1 Classical Mechanics . . . . . . .. ... ... ... ...
1.1.2  Quantum Mechanics . . . . ... . .. ... ... ... ... ...
Harmonic Oscillators . . . . . . .. ... ...
1.2.1  One harmonic oscillator, revisited . . . . . . .. ... .. ... ...
1.2.2 Fromonetomany . .. ... ... ... ... ...
1.2.3  From many to infinite . . . . . . . ...
Quantum Field Theory reformulated . . . . . . .. ... ... ... ....
1.3.1 A quantum field, takel . . . . . . .. ... ...
1.3.2 A quantum field, take2 . . . . . .. ...
Fields and Particles . . . . . . . . . . . ...
Algebras . . . . . ..

What About Particles

2.1
2.2
2.3

Theorem by Malament . . . . . . ... ... .. .. ... ... .......
Theorems by Hegerfeld and Halvorson . . . . . ... ... ... ......
Newton Wigner position operator? . . . . . ... . ... ... .. .....
2.3.1 Particle interpretation versus covariance . . . . . .. .. ... ...

2.3.2 A field theoretic twist . . . . . . . . ..

vii

TN =

11
11
13
15
20
20
21
26
31



3 Local versus global
3.1 Local quanta, unitary inequivalence and vacuum entanglement . . . . . . .
3.2 What is a particle? . . . . . . . ..
3.3 What do particle detectors detect? . . . . . . . ... .. ... ... ..

4 Impacts of relativity on localizability and vacuum entanglement
4.1 An infinite collection of harmonic oscillators . . . . . . . . . . ... .. ..
4.1.1 From global to local: The two localization schemes in QFT . . . . .
4.2 The non-relativistic approximation . . . . . . . . . . ... ... ... ...

4.3 Vacuum entanglement/frustration in the limit . . . . . ... ... ... ..
5 Epilogue
References

APPENDICES

A Derivation of the Bogoliubov transformation
A.1 Position space . . . . . . ..
A2 Momentum space . . . . . . ...
A.3 The transformation . . . . . .. . ...

A.4 Unitary inequivalence . . . . . . . . ...

B Continuously infinite tensor products

viil

58
60
67
71

75
76
78
82
38

93

94

99

100
100
101
102
102

104



Chapter 1

Quantum Theory of Fields

In this chapter we present backround material on Quantum Field Theory (QFT) mostly
following the book by Wald [3] on “Quantum field theory on curved spacetime and black
hole thermodynamics (QFTCS) and black hole thermodynamics”. Even though we will
not go into the formulation of QFT on curved spacetime, we will be interested in the
re formulation of QFT on flat spacetime that is emphasizing the elements needed for
extending the theory on curved spacetime. These elements are not interesting only from
the gravity point of view, but they can also be very insightful for understanding some
features of the theory that otherwise seem puzzling (particle number ambiguity, unitarily
inequivalent representations etc). We tried to keep the presentation self contained (and
hopefully not pedantic) even though it is not clear if this material makes much sense without
having read the references that we are citing here, mostly [3] and [6] the book by Laura
Ruetsche “Interpreting quantum theories”, which I mostly followed for the presentation
of the algebraic approach to QFT (AQFT). The writing of this chapter would have been
impossible without the two reading groups that me and my like minded peers and friends
run over the summer, with the support of Doreen Fraser and Achim Kempf.

1.1 From Classical to Quantum

In this section we are describing the quantization of a classical system of finitely many
degrees of freedom. If we are describing a system of finitely many particles the degrees of
freedom correspond to the positions of the particles, but more generally a degree of freedom
is defined as an independent physical parameter in the formal description of a physical
system. It is a non trivial procedure, how one identifies these independent parameters
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of a given physical system, and one could wonder what is meant by “independent”. In
the case of n particles case for example, their positions are not independent if there are
forces between them. Someone could then argue that the degrees of freedom are these
parameters that would be independent in the absence of forces/dynamics. This definition
suggests that the identification of the degrees of freedom is somehow independent from the
particular dynamics that the system can undergo, it is an identification that happens at
the kinematical level. In fact, a common definition of kinematics is “a branch of classical
mechanics that describes the motion of objects without considering the forces that caused
the motion”. The degrees of freedom set the “kinematical stage” on which dynamics
happens.

The distinction between kinematics and dynamics might be clear cut in classical me-
chanics, but it is more tricky in quantum theory. Even more so in quantum field theory
where Hagg’s theorem applies, and the “kinematics gets mixed up with the dynamics” [7].
This was my motivation for reviewing how the kinematics is set in the classical and the
quantum theory, through the quantization procedure, and what are the subtleties in the
case of infinite degrees of freedom [3, 8]. Another motivation is that the identification of
the degrees of freedom might inspire a formal analogy between physical systems for which
no physical analogy can be drawn safely. An outstanding formal analogy of this kind that
is being used extensively, also in this thesis, is the analogy between a quantum field and
an infinite collection of harmonic oscillators.

1.1.1 Classical Mechanics

To describe systems of finitely many degrees of freedom, we introduce n configuration
variables or “generalized coordinates” (qi, ..., ¢,) along with the n corresponding momenta
(p1,..-,pn) define the phase space P, the collection of all possible values of generalized
coordinates and momenta y = (qi, ..., Gn; P15 ---, Pn)- 10 set the kinematics of the theory
we need to specify the possible states and observables. The states of a classical system
correspond to points on the phase space P. If the configuration variables live in a manifold
M then it turns out that the phase space has the structure of the cotangent bundle
P =T*(M).

To describe the dynamics of the system, we need to specify the Hamiltonian which is
a function over the phase space H = H(q, ..., qn; D1, ---, D). The last ingredient needed is
a “symplectic structure” {2 a non-degenerate, closed, 2-form Q = " dp,, A dg,, over the
phase space P. This is needed to formulate the dynamical flow on the phase space, and the
algebraic structure of the observables as we will describe right below. Overall the phase



space, along with the specification of a Hamiltonian and a symplectic structure (P, H, ),
called a Hamiltonian structure, is all we need to formulate the kinematics and dynamics
of a classical system (and to apply the quantisation procedure).

The set of observables of the classical theory consists of real valued smooth functions
over the phase space O = {f : P — R : f € C*>°(P)} that has the natural structure
of an infinite dimensional vector space. We can use the symplectic structure to turn O
into an algebra, and in particular a Poisson algebra. A Poisson algebra is a vector space
with two multiplications, an associative one (which makes it an associative algebra) and
a non associative one defined by the Lie bracket {-,-} (which makes it a Lie algebra).
The Lie bracket is a bilinear, antisymmetric map that satisfies the Jacobi identity. In
a Poisson algebra the two multiplications are “compatible” if the Leibniz rule {fg, h} =
flg,h} + {f, h}g is satisfied [9]. Then the Lie bracket is also a Poisson bracket, and the
algebra is called a Poison algebra. The Poisson bracket is defined through the symplectic
structure

{f,9} = Q"VafVig. (1.1.1)

and one can see that it satisfies all the desired properties mentioned above (and most
crucially the Leibniz rule) through the properies of 2 and the covariant derivatives.

As we explained above, a general observable of the theory is a smooth function of
generalized positions and momenta. Of course this makes positions and momenta a special
case of a general observable, namely f = ¢, and g = p,, for which (1.1.1) gives

{u:pv} = 6 (1.1.2)
{qmqu} = {p,uapu} =0.

The generalized positions and momenta are called the fundamental observables of the
theory since all other observables are functions of those. Nevertheless, the phase space
is an abstract manifold whose elements we represent as y = (qi, ..., qn; P1,-.-Pn) only in
particular coordinates. We would like to have a coordinate independent way to express the
fundamental observables and the relations (1.1.3). This we can do through the symplectic
structure € ! in the case that the configuration space M is a vector space, rather than a
general (curved) manifold.

First let us notice that if M is a vector space, then the cotangent bundle of it P =
T*(M), the phase space, is also a vector space. The symplectic structure 2 is a two-form

1One of the difficulties in reading the book by Wald [3] is that all familiar (coordinate dependent)
quantities and expressions are re expressed abstractly in terms of €.



so we would have to input two tangent vectors of P to get a number at each point. But if
P is a vector space, we can identify it with its tangent space, and think of {2 as a map

Q:PxP—R, (1.1.4)

where we input directly points of P rather than its tangent space. This map is explicitly
given by the formula Q(y1,v2) = > 7, [p1,92, — P2,q1,]. So we can view (2 as a symplectic
structure of the vector space P. Overall, a linear system is described by a symplectic
vector space (P,€2), rather than a general symplectic manifold.

Now we can use {2 to write the linear coordinates of P in a rather abstract way. One
would have to convince themselves that Q(y, -) is a general linear function on M. Of course
for a fixed y we get a linear function, since €2(+,-) is a biliear map. For example, if we fix
y=(0,...0;1,...,0) then Q(y, ) = ¢;. The claim is that if we let y to run over P we get any
possible linear function, and so any possible redefinition of the linear coordinates. So Wald
suggests that we need to think of the “fundamental observables” as €(y,-) and rewrite
(1.1.3) abstractly as

{Qy1, ), Qy2, )} = =y, 42) (1.1.5)

Again there are two reasons for rewriting the familiar equations (1.1.3) as above, one
being the coordinate independence of (1.1.5), rather than refering to particular ¢’s and
p’s as the fundamental observables of the system. The second and most important reason
is that (1.1.5) generalizes much more naturally for systems of infinite degrees of freedom.
Crucially, in (1.1.3) the index p is discrete, counting the degrees of freedom of the system.
If we direcly try to generalize these relations for p being a rather continuously infinite
index, we run into ill-defined quanities. Relation (1.1.5) is much more straight forward
to generalize in the infinite dimensional case, since it is only making use of the symplec-
tic structure of the phase space (independently of the dimensionality of the configuration
space). As we will see in the next section, also in the case that the configuration space con-
sists of field configurations rather than generalized positions of n particles, relations (1.1.5)
are well defined. As Laura Ruetsche points out [6] from the perspective of the quantisa-
tion procedure, the Poisson algebra structure of the fundamental observables written as in
(1.1.5) is much cleaner for the purpose of quantising an infinite dimensional system, like a
field.

There is one last step we need to do from the perspective of the classical theory, to end
up with the structure that facilitates the quantisation procedure. This step only works for
the case that the equations of motion are also linear, which means a quadratic Hamiltonian.



Let us consider the solutions of the equations of motion

2n

dyt H
% - ZQWa—. (1.1.6)

v=1

For any couple of solutions w;(t), y2(t) let us define the symplectic product
s(t) = Qu1(t), y2(1))- (1.1.7)

Using the equations of motion for a quadratic Hamiltonian it is easy to see that dz_(:) =0
i.e. the symplectic product is preserved under time evolution, which makes the following
trick possible. We can identify the space of solutions & with the phase space P, viewing
its elements as initial data to the equations of motion (since the choice of the initial time
does not matter). In this way, the symplectic structure of the phase space naturally gives

rise to a symplectic structure of the space of solutions

— [dg dgo
Qy(t t) = Ego, — —2 1.1.8
(o)) =3 e, - e (118)
where we used the equations of motion to eliminate the p’s. As Wald puts it in [3] “the

symplectic vector space structure of (S, ) of the manifold of solutions for a linear dynam-
ical system, is the fundamental classical structure that underlies the construction of the
quantum theory of a linear field”. It is important to realize what a huge benefit this is
for linear systems, to appreciate the difficulties in quantizing non linear systems like field
theories with interactions [7].

1.1.2 Quantum Mechanics

Moving from classical mechanics to quantum mechanics, the kinematical scenery changes
drastically. Rather than points in a phase space, states will be represented by vectors in
a Hilbert space H, and rather than smooth functions over the phase space, observables
are represented by self-adjoint operators acting on H. At first glance this seems rather
obscure, how would someone start from a function over the phase space manifold to define
an operator over some Hilbert space? This can be succeeded by means of what is called a
correspondence map

050 (1.1.9)



that maps classical observables f € O to quantum observables f € O. As we will see there
is a set of requirements that such a map should satisfy, and so it is generally non trivial to
“put hats” on classical observables. The main structure that needs to be preserved is the
algebra structure of the observables i.e. the Poisson bracket. In most textbooks or lecture
notes of quantum mechanics we find something like

{z,p} =1—[z,p] = ih. (1.1.10)

This is a rather schematic way to represent the quantization procedure, but does not
provide us with much insight per se. Let us try to shed some light to (1.1.10) with
a mathematical remark found in [10, 9]. As we explained, classical observables form a
commutative Poisson algebra, which is a vector space with two products, the commutative
product and the Poisson bracket. If we consider a Poisson algebra that is not commutative
we can easily see that

{U1U2,’011)2} = {ul,vl}[vg,uﬂ = [Ul,ul]{UQ,Ug} (1111)

where uy, vq, ug, v are four elements of the algebra (in this case polynomials of x and p). We
can see that by evaluating the very left hand side, following the properties of the Poisson
bracket, being careful not to commute things around since the algebra is not commutative
il.e. ujug # uguy. If we stare at (1.1.1) we see that one way (turns out the only way! [10])
that it can be satisfied is that the commutator is proportional to the Poisson bracket

[v,u] = k{u,v} (1.1.12)

We can see this as a compatibility condition between the two products of a non commutative
Poisson algebra. If it were commutative [v, u] = 0 and so (1.1.1) would be trivially satisfied.
The fundamental observables of quantum mechanics are non commutative objects ? that
need to satisfy

[z, p| = ih{z,p} = ih (1.1.13)
where we have identified the proportionality constant k with the Planck constant (multi-

plied by i for hermiticity reasons).

But what guarantees that the Poisson algebra structure is respected for a pair of general
observables, i.e., arbitrary polynomials of & and p? Given three observables of the classical
theory that satisy {f, g} = h can we have something like =(f, g] = h? Let us denote the

2here the hats on x,p are only to denote that they are not number valued objects, no particular
representation is implied.



quantisation map as () in what follows, namely Q(f) = f. There is a no-go theorem by
Groenewold [3] which states that there is no map

Q : P<4 — D(R") (1.1.14)

from the polynomials at least order 4 to the space D of the differential operators with
polynomial coefficients (which is what we build out of powers of the “usual” quantum
mechanical & and p, represented as multiplication and differentiation operators) such that

1. Q1) =T
2. Q(z) =2 and Q(p) = p
3. QS a}) = 31Q(),Q(9)]  Vf.g € Pes

From the perspective of (1.1.1) we can see requirement 3 as

QU f.9%) = {Q(n). Q)] (1.1.15)

where I have used bigger Poisson bracket on the right hand side to denote that it is defined
over a different space than the Poisson bracket on the left. So one can rephrase the theorem
as that there is no such morphism (structure preserving map) of the full Poisson algebra.

Luckily, if we choose for () the so called Weyl quantisation procedure we can satisfy
the requirements of the theorem, including

[QWeyl(f)? QWeyl(g)] =ih QWeyl({fJ g}) (1116>

if at least one of the observables is not higher than second order (for a second order
Hamiltonian for example, we can have the Poisson bracket with any other observable of
the theory). Briefly, Weyl quantisation works as follows. If f(x,p) is a classical observable
then

Qweyl(f)—/f(a, b)e! @) dq db (1.1.17)

where f are the Fourier components of f. If f € £2(R?"), i.e. an £? function over the
phase space, then Qwey(f) is guaranteed to be a Hilbert Schmidt operator over £2(R"),
the Hilbert space of the quantum theory. So we see that once we know how to represent
the fundamental observables of the theory so that (1.1.13) is satisfied, we know how to
represent a general observable (up to the restrictions of the theorem) through the Weyl

7



formula (1.1.22). Nevertheless, one has to carefully define the exponentiation el (@) gince

Z, p are generally unbounded operators.

The fact that the operators & and/or p have to be unbounded, one can see as follows.
First we see that the Hilbert space where the operators act has to be infinite dimensional,
because if it was finite dimensional we would be able to take the trace of the commutation
relation [z, p| = ih to take

tr(2p — pi) = ihtrl = 0 = iAN. (1.1.18)

This shows that the space cannot be finite dimensional, which allows for the possibility that
z,p are unbounded (there cannot be unbounded operators in a finite dimensional space).
Nevertheless, one can construct bounded operators in an infinite dimensional space. We
can see that # and p cannot both be bounded, as follows. Since [2", p] = iAiz" ! from the
triangle inequality for the operator norm we have that

2|p||2|" > nh|2[" = 2|p||2] > nh Vn. (1.1.19)

Since n can be arbitrarily large, at least either £ or p ought to be unbounded. More
rigorous arguments about this one can find in [11].

We saw that just because of the commutation relations (1.1.13) we have to represent
position and/or momentum with unbounded operators. One of the problematic features of
unbounded operators, is that they do not form an algebra naturally because multiplication
e.g. px seen as composition of unbounded maps, is not guaranteed to work. What can go
wrong is that once the first operator, Z, acts on a state |¥) the image might not be in the
domain of the second operator,p, and as a result we cannot make sense of the expression
pa |¥) unless we suitably define the domain (self-adjoint unbounded operators are only
densly defined).

This is not just some mathematical subtlety, and can have physical consequences. Imag-
ine for example that someone claims that uncertainty principle is violated for a “physical”
state, represented by a square integrable wavefunction over the configuration space. This
could be considered paradoxical, but it could be that the state fails to be in the intersection
of the relevant domains D(zp)ND(pz), so the zp commutation relation [z, p| = Zp—pz = ih
does not apply and as a result the xp uncertainty principle simply does not hold for such
a state. There is a way out from this domain nightmare, which is to define the exponen-
tiated version of the commutation relation, known as Weyl relations. In most cases the
Weyl relations are equivalent to the usual commutation relations, but there are also simple
examples where they are not (for a particle in a box only the Weyl relations are satified!



see [8]). First, we can suitably define the unitaries

Ula) = e7ie (1.1.20)
V(b) = e (1.1.21)
since unitaries do not suffer the domain issues mentioned above [3, (]. Then the xp com-

mutation relation can be equivalently written as
Ula)V (b) = €“°U(a)V (b). (1.1.22)
More generally we can define a map from the phase space P to unitaries acting on H as
W(~) := ei%bU(a)V(b) (1.1.23)

where v = (a,b) € P. This definition is such as we can associate the symplectic structure
of the phase space P to a general form of the Weyl relations (1.1.22) as follows

Layby .agby
W)W (vy2) = €2 Ular)V(b1)e" 2 Ulaz)V (bo)
_ 6%[a1b1+a2b2+a1b2—a1b2+a2b1—a2b1]U(al)eiazlnU(a2)v(bl)v(62)

%(‘lle_a1b2)6%(a1+a2)(b1+b2)U(a1 + CLQ)V(bl + bQ)

I
o

In the abstract language that we introduced in the previous section, we think of W (v) =

) ag the exponentiated version of a generalised fundamental observable. As explained
in [0] it turns out that if a quantisation map satisfies

W ()W (72) = ez W (31 + 7) (1.1.24)
Wi(y) = W(=) (1.1.25)

this uniquely determines the kinematical pair (H, W (7)) i.e. the states and observables of
the quantum theory.

One could worry that given a classical theory the quantization procedure can yield many
non-equivalent quantum theories, which would mean that the quantisation method is am-
biguous and many “different” quantum theories would correspond to the same classical
theory. The Stone von Neumann theorem guarantees that this is not the case, by demon-
strating the uniqueness of the quantisation procedure. Apart from avoiding the domain
issues, another reason why we introduced the exponentiated version of the observables and

9



the commutation relations, is that the Stone von Neumann theorem is formulated in the
language of the Weyl relations [3, 3, 0].

Concretely, the theorem states that if (P, Q) a finite dimensional symplectic vector space
and (H, W (y)), (H',WW'(v)) two strongly continuous, irreducible, unitary representations
of the Weyl relations then there is a unitary U such that

U:H—H (1.1.26)
UtW/(y)U =W (y) Yy e€P. (1.1.27)

This means that the two kinematical pairs of the quantum theory are unitarily equiv-
alent. We will elaborate on the meaning and significance of this point, but first let us give
a couple of definitions.

The irreducibility of the representation W(v) means that there is no proper subspace
of H that is invariant under the action of W (y) for all v € P. Given any proper subspace
of the Hilbert space, there is y such that W (y) maps some elements outside the space. For
example, in the case of a particle over the real line, a subspace could be the wavefunctions
of compact support over an interval. If we use the usual Schrodinger representation of the
momentum operator we see that the Weyl operator €% will displace the functions outside
the interval.

Irreducibilty has an interesting consequence, that one can extend in the QFT case.
When the Weyl relations are irreducibly represented in a Hilbert space H then for any
state |U) € H the span of {W(y)|¥),Vy} in dense in H. This means that we can reach
any state in the Hilbert by acting linear combinations of the Weyl operators on a given a
state |¥), which makes any state cyclic under the action of the Weyl algebra.

Then let us clarify what is meant by unitary equivalence of two representations, as
implied by the Stone Von Neumann theorem, and what is the connection to the physical
equivalence. Given a Hilbert space H equipped with a set of unitaries, say V,, that maps
the space to itself, and similarly another space H’' with a set V| : H" — H', the two are
unitarily equivalent if there is a unitary U : H — H' such that U™'V/U = V, Va. Then
it follows that the two states |¥) and |¥') = U |V¥) are physically equivalent in terms of
expectation values of any observables encoded in the operators V,, V., simply because

WV = (WU OV,UT U = (W], |0

From this point of view, unitary equivalence is sufficient for physical equivalence, but the
question is whether it is also necessary. This becomes important for QFT, since crucially
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the theorem applies for quantum theories for which the underlying symplectic vector space
(phase space) is finite dimensional, and of course the phase space of a classical field theory
is infinite dimensional. With the Stone von Neumann theorem being not applicable, one
has reasons to worry about physical inequivalence of unitarily inequivalent representations.

1.2 Harmonic Oscillators

In this section, we apply the tools presented in section 1.1 to the quantization of a single
harmonic oscillator, one more confirmation of the famous quote by Sidney Coleman that
“The career of a young theoretical physicist consists of treating the harmonic oscillator in
ever-increasing levels of abstraction”. In fact, the abstract reformulation of the quantiza-
tion of a finite collection of harmonic oscillators is helpful when one wants to consider an
infinite collection of harmonic oscillators, or a quantum field. The main goal of this section
is to contrast the two methods that one can follow for quantizing a collection of harmonic
oscillators, as presented in [3]. When extended to QFT, features of the two strategies are
linked to the subtelties associated with the particle notion.

1.2.1 One harmonic oscillator, revisited

A single classical harmonic oscillator in one dimension is characterized by the Lagrangian
L= %QQ — %2(]2 or the Hamiltonian H = % + “’;qz. The canonical quantisation of the
system yields H = £2*(R) and the usual representations of position and momentum as mul-
tiplication and differentiation operators in £2(R). Given those, the Hamiltonian operator
is also uniquely determined since it is quadratic and there are no ordering ambiguities. It
is also very common to define the creation and annihilation operators

w 1
= =g +iy) — 1.2.1
a 54+ i\ 5P (1.2.1)

in terms of which the Hamiltonian takes the form H = w(a'a + 31). If ¢, p satisfy the
Heisenberg algebra [q, p| = ih, then the creation and annihilation operators satisfy [a, al] =
1, and their commutator with the Hamiltonian is [H, a] = —wa. In the Heisenberg picture
the equations of motion are

=i[H,a] = —iwal(t) (1.2.2)



and from inverting (1.2.1) we get that

1 . .
q(t) = % (e7“'a(0) + e “al(0)) (1.2.3)
w
which is an expression that resembles the usual field decomposition that we will write down
in the next section, only lacking the x dependence since ¢ here is not a field operator.

This is all standard textbook presentation of the single harmonic oscillator, but let us
comment on some features that will become important in the QFT case, by contrasting
the formulation in terms of the observables ¢, p versus the formulation in terms of the (non
hermitian) a, a’. In equation (2.2.13) we defined a,a! in terms of ¢, p, but for the so called
mode quantisation of QFT we will have to do the inverse. Notice that the representation of
q, p as multiplication and differentiation operators has nothing to do with the Hamiltonian
of the system, only with the commutation relations (i.e. the symplectic structure), but the
very definition of a,a’ takes into account the form of the Hamiltonian. If someone gives
us ¢ as a multiplication operator in the Schrodinger picture, there is no way to figure out
the Hamiltonian of the system, while if one gives us ¢ as in (1.2.3) above, the Hamiltonian
is determined up to a multiple of the identity [3]. This might sound trivial since ¢ in the
Heisenberg picture is time dependent and of course the Hamiltonian is determining the
time evolution. But looking on the right hand side of (1.2.3), this means that the same
“ansatz” in terms of creation and annihilaiton operators cannot be the solution to two
different Hamiltonians.

To see this explicitly, let us assume a given ¢(t) that satisfies the Hamilton equations
of motion for two different Hamiltonians H, H'

YD a1, g(0)] = i1 (1) (12.4)

d
which implies that [H — H',q(t)] = 0. The same holds for p(t), which implies that the
difference H—H’ commutes with all the Weyl operators (since they are exponentiated linear
combinations of ¢ and p). From the Schur’s lemma [3] we have that the only operator that
commutes with all Weyl operators has to be a multiple of the identity

W(y),H—-H'l=0Vy=H—H =al (1.2.5)

so it is physically the same Hamiltonian up to a redefinition of the ground state energy.
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1.2.2 From one to many

In this section we discuss the two possible strategies that one can follow to move from
one to many harmonic oscillators. This is because one of the two strategies seems to be
favourable when we will try to move from finitely many to infinite harmonic oscillators.

First we try to quantise a classical system of n harmonic oscillators. The classical
configuration space of the system is given by the cartesian product M; x ... x M,,. It is a
functional analytic property [12] that the Hilbert space that corresponds to this composite
phase space, is the tensor product of the individual ones

HIMy X oo x M| = HIM| @ HIMs & ... @ H]M,)] (1.2.6)

Given this decomposition for the state space we can extend the operators ¢;, p; in the
obvious way, for example ¢; can be thought of as ¢y ® 1, ® ... ® 1,, acting on the “big”
Hilbert space (1.2.6). We also have the corresponding a;, az ’s for each of the Hilbert spaces

defining the energy basis as ;,¥f = 0 and H; V! = 1/%(@3)”1'\116. The total vacuum is

defined as a; ¥y =0 Vi = ¥y = @, U} and {U}, @ V2 .. ® V! Vny, .. n,} is a basis for
the total Hilbert space, and we are basically done. Once we have the quantum theory of
one harmonic oscillator, we take the theory of many harmonic oscillators simply by the
tensor product (1.2.6).

One could adapt this strategy also in the case that n = oo. The problem is that in
the case of infinite harmonic oscillators is that (1.2.6) would have to be an infinite tensor
product which is hard to define. Most commonly infinite tensor products are defined as
non separable Hilbert spaces ® and this causes many mathematical issues (reducibilty of
the representations) and physical issues (naively, measurement outcomes of “discrete” ob-
servables cannot be represented in the space, because this would correspond to a countable
basis). This is why we might want to make use of an alternative way of quantizing the
system of n harmonic oscillators that makes explicit use of the symplectic vector space
structure of the space of solutions of the equations of motion, and which extends more
naturally in the n = oo case.

In this section we review this method [3] for n being finite. First we need to complexify
the space of solutions of the classical equations of motion

S =Sais (1.2.7)

3even though there are alternative definitions in [13, 14] one of which is adopted in this thesis, and is

reviewed in Appendix B.
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The symplectic structure is inducing an “inner product” (,) : §¢ x §¢ — C defined as

(y1.y2) = —iQ(y7, y2) (1.2.8)

This is not quite an inner product in §¢ because it fails to be positive definite. The most
crucial step of this method is to find a subspace of §¢ where this map is positive definite
and can define an inner product. For n = 1 a harmonic oscilator of frequency w, S¢ is the
span of {e“! e7“'} and we can easily see that (1.2.8) is positive for

(e7™ e7") = —i ((iw)e™'e ™) — ™! (—iw)e™™") = —i(2iw) = 2w > 0. (1.2.9)

For n harmonic oscillators of frequencies w;, i = 1...n we define
H = span{e ™'} (1.2.10)

since for a general element of H the map (,) is positive definite and it defines an inner
product. We can use this inner product to complete the space, and turn H into the “one
particle” Hilbert space that we are going to use for the Fock space construction. Note that
here I am calling H a one particle space following the usual way of thinking as a Fock
space as a “multi particle” Hilbert space, but Wald [3] refrains from using this term until
he introduces detector models through which one could justify such an interpretation.

The Fock space is defined as the following tensor sum of symmetrized copies of ‘H

E%F%%OéH>, (1.2.11)

and a general element of F,(H) takes the form W = (¢, 1%, 1)(@%2) ) where we use the
index notation to denote the symmetrization in each of the fixed particle sectors. Note
that even though n goes all the way to infinity, each of the sectors is a finite tensor product
and so we avoid the problems of the infinite tensor product. If H is separable, then F(H)
is also separable.

Each Fock space construction comes with a set of creation and annihilation operators.
To define those, we need to introduce an orthonormal basis {§;(t)} for H

—iw;t

\ 2wz~ .

We associate creation and annihilation operators a! = af[¢] to the elements of this basis

as follows. The creation operator associated with & is the map a'(&;) : Fo(H) — Fo(H)
such that

(&, &) =1= &) =

(1.2.12)

&T(é)\lf _ <07 YE™, \/§§(a1wa2)7 \/gg(md)az,as)’ o ) ' (1‘2‘13)
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It follows that the commutation relations are:
la(€]),a’ ()] = &1 = 0 (1.2.14)
where £ € H*, the vector space with the same underlying set as H except with scalar

multiplication modified to ¢xv = ¢ where ¢ € H. *

Once we declare the Hilbert space to be H' = Fy(H) (rather than (1.2.6)) we can
ask what are the fundamental observables of the theory. Given a set of creation and
annihilation operators, we define the position and momentum operators to be

¢ = &(t)a; + & (t)al (1.2.15)
/ in
Pi =g (1.2.16)

Let us recall from the previous section that such an expression for ¢’, p’ also determines the
Hamiltonian H’. Overall, following the alternative quantisation procedure, we end up with
the following kinematical structure (H'; ¢, p’, H'), where H' = F4(H) is the state space and
q,p', H are the observables that are associated to this construction. Then one can ask
what guarantees the equivalence of this construction with the first one (H;q, p, H), where
we simply formed the tensor product (1.2.6) of n harmonic oscillators.

For n being finite, the answer comes from the Stone von Neumann theorem. Through
the definitions (1.2.21), (1.2.22) and the commutation relations (1.2.14) one can see that

7] = [6(0)a + & (D)al. &(t)a; + & (D] (12.17)
= (60&®) - £OG®) law,al] = b6, )la, a]) = iR (12.18)

Since the ¢/, p’ satisfy the same canonical commutation relations as ¢, p, the unitary equiv-
alence of the two constructions follows from the theorem.

1.2.3 From many to infinite

Since the distinction between the two strategies will become important for the next chap-
ters, let us briefly summarize them before we move on.

4This notation is a bit confusing, but it turns out that * defined as above is isomorphic to the dual
space of H. Below we will use the fact that H & H* = S¢.
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1. If the state space of each oscillator is a Hilbert space H;, j = 1...n, then the Hilbert
space of the total system is H = ®;H;. From the positions and momenta of each of
the oscillators we can define the creation and annihilation operators a; := \/w;/2q; +
iy/1/2w;p; in terms of which we can solve for the fundamental observables

1 . .
4;(t) = [ =— (e “ta; + e “wital (1.2.19)
J 2(,0] < J J)
dg;(t)
(t) = —2 1.2.2
) = 4! (1.220)

In this constructions we know what are the fundamental observables of each party,
and the creation and annihilation operators serve as tools for a convenient rewriting
of the Hamiltonian and the equations of motion. Following Wald [3] we denote this
construction as (H;q;, p;, H).

2. Here the important ingredients were the space of solutions of the classical equations
of motion and its symplectic structure through which we defined the Hilbert space
H out of which we built the Fock space H' = F,(H). For a given basis {§;} of H we
defined creation and annihilation operators a;, aj, 1 =1,...,n, in terms of which we
defined the 'fundamental’ observables to be

¢, = &(Ha; + & (t)a] (1.2.21)
/) in
Pi =4 (1.2.22)

Even though the a;, azT are neither fundamental nor observables, they are the primary

objects of this construction in terms of which we define the observables of the theory.
This construction we denote as (H'; ¢}, p, H').

At a first look the constructions look very different even though the underlying classical
structure is the same, and it is unclear how equations (1.2.19) and (1.2.20) relate to (1.2.21)
and (1.2.22). Do they define “the same” observables? And what about the Hilbert spaces,
are they “the same” space? After checking that ¢, p; satisfy the Heisenberg algebra, we
could be sure that there is a unitary that maps construction (#; ¢;,p;, H) to (H'; ¢}, p;, H').
For the two state spaces this concretely means that 3U : H — H' that maps one space to
the other. So the tensor product structure and the Fock space structure are isomoprhic,
which in what follows we denote as

Fo(H) ~ @H, (1.2.23)
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To appreciate the differences (and the equivalences) of the two constructions one has
to keep in mind the physical and mathematical meaning of the indices ¢ and j that are
being used. In the first strategy, the index j counts the parties, the individual harmonic
oscillators, and so the corresponding observables g;, p; are “local” having the interpretation
of position and momentum of each individual oscillator. The second construction is more
abstract and somehow more “global”, since the index ¢ is counting the basis elements of
the subspace H and has nothing to do directly with the initial local parties.

The observables of the construction (H'; ¢}, p;, H') are generalized “positions” and “mo-
menta” associated to “modes” of the classical solution space, and each different basis of
the solution space corresponds to a different reshuffling of the initial local degrees of free-
dom. If the initial composition of the total system implied in strategy one is to be given
physical significance, with j counting the local parties, then it is unclear how to physically
access the 1— degrees of freedom defined in strategy two. One should be able to measure
the positions and momenta of the individual harmonic oscillators g;, p; locally, but one
would need access to all of them to measure ¢., p;. One could even argue that the second
method provides us with a mathematically equivalent but totally unphysical description
of the system.

It is exactly this discussion that underlies the debate about the local versus the global
nature of particle states in QFT, which is why I am trying to be over explicit about the
two strategies. The first strategy is not so naturally generalizable for infinte degrees of
freedom, but could capture the local features of particle states. The second strategy is
usually pursued because it is mathematically well defined, but it is responsible for the
somehow global features of particle states in QFT that have been proven puzzling and
quite unphysical, as best discussed in [1].

Finally, we will rewrite the observables ¢/, p’ of the second strategy in a yet more abstract
way that the neglects the choice of basis in H. We have been using implicitly the following
two decompositions of the complexified space of solutions. One comes from the definition
of complexification

S=8SaiS (1.2.24)

The other one comes from the fact that each element of the complexified solution space
has a unique decomposition z = 27 + 2z~ where 27 € H and 2z~ € H*, namely

S =HoH (1.2.25)

This allows the definition of a projection map K : § — H which extracts the positive fre-
quency part of the complexified solution. Then one can define the operator that represents
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the classical observable Q(y, -) as
Qy, ) == ia(Ky*) — ia (Ky) (1.2.26)

This is well defined through (1.2.13) since Ky € H. Again, we define the observables of
the theory in terms of the creation and annihilation operators that one associates to any
element of the Hilbert space H. In this sense, equation (1.2.26) is the basis independent
version of (1.2.21) since it is not referring to a particular basis of H.

All that this definition requires is the map K, a split of the complexified solution
space as in (1.2.25). Above we defined this split through the positive frequency solutions
(1.2.10) but this split is not unique, and we need to know what specifies this choice for
a couple of reasons. First, the split guided by the sign of the frequencies is not available
for QFT in a general non stationary spacetime, and second, since the split is not unique
also in flat spacetime, we might want to make use of this freedom to solve a particular
problem. As we will review in the third chapter the authors of [1] are making use of
this ambiguity to define a notion of local quanta, since Hegerfeld’s theorem (that will
be reviewed below) shows that defining the “one particle” Hilbert space H as the space
of purely positive frequencies/energies creates the problem of instantaneous spreading.
In general, the freedom of choosing H is exactly what is creating the particle number
ambiguity in QFT and is potentially the source of unitarily inequivalent representations.
This is why we would like to have a characterization of the freedom available in this choice.

Given (8¢,) we can choose any H as long as it satisfies this list of properties:

1. The map (y;.y2) = —iQ(y;, y2) is positive definite in H.
2. The complexified space of solution is the union of the span of H and the span of H*.

3. (21,27)=0, V2T € H,z~ € H*

Condition 1 emphasizes that all we need is the positive definiteness of that map to compete
the space under the norm induced by this inner product. In that sense all we need to ensure
is the positive norm in H, which is not only the case for the positive frequencies solutions.
Conditions 2 and 3 together define the split S¢ = H & H*.

Given two Hilbert spaces H,H’' that satisfy this list of properties we would form the
kinematical pairs of states and observables

(F[H); Qy, ) (1.2.27)
Qy, ) = ia(Ky*) — ia (Ky) (1.2.28)
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and

(FIHT: Y (y, ) (1.2.29)
Q' (y,-) = ia(K'y*) —ial (K'y) (1.2.30)
where K : 8¢ — H and K’ : §¢ — H’, since each valid choice of the single particle space
defines a different projection map. Through the previous discussion we established that
each of those construction would be unitarily equivalent to the tensor product construc-

tion (strategy 1) because of the Stone von Neumann theorem, and so they are unitarily
equivalent to each other.

Given H we denote as (-, -)y the same map as realised in H, and this is indeed positive
definite. Using the definition above for z; = Ky, 20 = Ky, € H we get

(Ky1, Ky2)n = —iQ(Ky1, Kys) (1.2.31)
which if we brake in real and imaginary parts we easily see that

Re(Ky1, Kyo)y = ImQ(Ky;, Kys) (1.2.32)

Q(yla yz)

Im(Kyy, Ky2)y = —ReQ(Kyp, Kyo) = — 5

(1.2.33)

Now we define a real inner product g : § x § — R in the uncomplexified space of
solutions S through the real part as follows

w(y1, y2) := Re(Ky1, Kyo)y = ImQ(Kyq, Kys). (1.2.34)

The definition (1.2.34) above depends on the map K since we define p through the real
part of the inner product (1.2.33) which has explicit K dependence. On the other hand,
the imaginary part does not depend explicitly on K (it depends only on Q!). Overall we
have that

i
(Ky1, Ky2)u = (Y1, y2) — Eﬂ(yla Y2) (1.2.35)

Given €2, all allowed choices for ¢ imply a different projection map K such that the equation
above is satisfied.

As discussed in [3], by suitably saturating the Schwartz inequality that one can write
from (1.2.35) we get the following compatibilty condition between Q and p
1 [Q(y1, 42)]?
WY1, y1) = —max,,o————~— 1.2.36
( ) 4 nr (Y2, y2) ( )
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We see that given the symplectic structure €2 the inner product p is not uniquely deter-
mined. We need to keep in mind that (1.2.34) is the definition of u given H, but conversely
any choice of u that satisfies the compatibility condition (1.2.36) induces a valid choice of

H.

To summarize, we started from the complexified space of solutions (S¢,§2) and we end
up with the space of real solutions (S, ) where p needs to be compatible with  as in
(1.2.36), but yet not uniquely defined. When the choice of the single particle Hilbert
space H is not guided by the time translation symmetry of the system, it is possible and
preferable to specify H through the choice of u. In fact, this is what one does in QFTCS
and in the algebraic approach.

1.3 Quantum Field Theory reformulated

In this section we make use of the tools we inroduced above, to quantize a classical field
theory. In the first subsection we briefly review the standard textbook presentation of
QFT which does not provide us with well defined observables. In the second subsection
we follow [3] in a reformulation of QFT that avoids ill defined quantities and expressions,
and builds towards the algebraic approach.

1.3.1 A quantum field, takel

The action of a Klein Gordon field in Minkowski space is

1

S = —5/(aa¢aa¢+m2¢2) d*z (1.3.1)

If we put the field in a box and use the Fourier transform ¢(t,z) = ﬁ S O(t)e™™ we
can rewrite the Lagrangian density as

L=y SO — Silotk)P (13.2)

where w? = k* + m?. This looks like the Langrangian of a system of infinitely many

harmonic oscillators. Since gb}; = ¢_. the ¢(k)’s cannot be directly thought of as the gener-
alized positions of these oscillators. Nevertheless, we can define creation and annihilation
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operators such that
1
vV ka

Following the second strategy, we can define H to be spanned by

Dy =

(ap +al,) (1.3.3)

eikx—iwkt

V2oL

and the Hilbert space is the Fock space F3(H) and is well defined despite H being infinite
dimensional. Nevertheless, the operator

o(z,t) = Z Ui (z, t)ag + iz, t)aL (1.3.5)
k

Vi = (1.3.4)

which is the analogue of (1.2.3) is not well defined because the sum does not converge.
The theory does not admit a well defined observable that represents the field amplitude at
each point. So strategy two succeeded in giving us a well defined state space in the form of
the Fock space (rather than the infinite tensor product of strategy one) but failed to give
us directly well defined observables.

1.3.2 A quantum field, take2

To make use of the reformulation that we introduced in section 1.2 in the QFT case, we
first need to define the classical phase space of a field theory. From the Langrangian (1.3.2)
we can specify the conjugate momentum

ey = 25 _ g

=5 é (1.3.6)

A point in the phase space is a specification of (¢(z), 7(x)) on a three-dimensional hyper-
surface Yy that corresponds to some global time ¢ = 0. To fully specify this we need to
decide what is the function space where the classical field configurations live in. Since the
configurations are specified at some time ¢t = 0 we should really think of the points of the
phase space as the initial data that we input to the equations of motion to get the solution
space §. The usual choice is to pick initial data that are smooth and of compact support
on Xy, namely

P ={l¢(z) m(x)]s.t. ¢, m: Xo = R ¢, m € C5°(Xo) } (1.3.7)
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The phase space is equipped with a symplectic structure

g1, m1], (2, m2]} = / d3$(7T1¢2 — Ta1)

o

which is well defined since ¢, 7’s are compactly supported (another choice that guarantees
that the integral above converges in the Schwartz space but this turns out to be hard to
define in curved spacetimes [3]). The symplectic structure also provides us with a definition
of the Poisson bracket

{Q([¢17 7T1], ')’ Q([¢27 7T2]7 )} = _Q([¢1v 7T1]7 [¢27 WQ]) (1'3'8)

where Q([¢1,m1],-), Q([p2, T2, -) are linear functions over the phase space. How does
(2.3.40) relate to the usual {¢(z1),7(z9)} = d(x1 — x2)? Let us choose in particular
(01, m] = [0, f1] and [¢o, m2] = [f2,0]. Then the function Q([0, f1],) evaluated at a point
(¢, 7] yields Q([0, fi], [¢,7]) = [ dzfi¢ and (2.3.40) becomes

{/dxf1¢,/dxf27r} - /dxflfg (1.3.9)

This already looks more familiar, but if we choose f; = §(z — 1) and fo = §(z — )
(which strictly we cannot, since delta functions do not belong in C§°) we naively retrieve
the familiar Poisson bracket

{o(z1), m(z2)} = (21 — 32) (1.3.10)

The moral drawn by the abstract notation is that once we define the observables as linear
functions of the form Qf[¢g, 7o), -}, where [¢g, 7] a reference point in phase space, the
evaluation map at a point is not included in this space. We see tat even at a classical
level, strictly we cannot think of the field amplitudes (at points) as the observables of the
theory. This goes through once we quantize the theory, where we will see that well defined
observables have to be “smeared over regions”. For the quantized theory we want to define
observables © that obey

o, m], -}, o, mol, -} = —iQ([¢r, m1], [z, ] )T (1.3.11)

A~ ~

This substitutes the familiar commutation relations [p(z1,1), ¢(72,t)] = id(z1 — 22) since
as we saw in the previous section ¢(z,t) is not well defined. By the end of this section, we
will view (1.3.11) as a smeared version of the latter.
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As we saw previously, the symplectic product is conserved under time evolution so we
can freely input solutions to () rather than phase space points (initial data). The usual
strategy is that we split the complexified space of solutions in the positive and negative
frequency parts. Let as call S¢* the span of the positive frequency solutions then we define
the Klein Gordon inner product

(@, ke = —1Q¢™, ) (1.3.12)

which is positive definite in S¢*, so we can use it to complete it, to end up with the Hilbert
space ‘H, and the Fock space Fy(H). Then the map ¢ — ¢ defines the map K in terms
of which we define the observables

Q1p, ) = ia(K*y*) —ial (K). (1.3.13)

Next we discuss what specifies the map K i.e. the possible choices for H in QFT,
following the lecture notes by Luis Garay [15]. In the case that the complexified space of
solution is infinite dimensional what we need to define is the so called complex structure.
The complex structure is a linear map S, x S, — C that has the following properties:

1. Defines a positive definite inner product in S, through the Klein Gordon product®
() =i/, ke

2. The map J is a symplectomorphism i.e. (Jr, Jio) = (11, 1s).

3. J2=—1.

4, Jh=—J.

We can make sense of each of these properties in view of the rest ones. For example,
given the definition of the map (-, -) as in 1, and demanding that J is a symlectomorphism,
we derive property 3 as follows

(o1, Jio) = i(J*41, Jha) ke = —1(J2, 1) ke = (o, —=J%h1) = (1, —J%¢2) (1.3.14)

where we have used the antisymmetry of the Klein Gordon inner product and the symmetry
of the inner product (-,-). So requiring that J is a symplectomorphism means

(Jr1, Jaba) = (b1, —J*y) = (W1, 1) = J? = —1. (1.3.15)

Swhich we defined above through the symplectic structure as (y1.y2) ke = =iy, y2)-
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The fact that J squares to minus the identity operator is the most defining property of
this map, and this is actually why it is called a complex structure. We can also see easily
how property 4 follows

(J'¢1,¢2) = (¢1, Jp2) = (Jo, J2) = (Jo1, =) = (—J 1, ) = J' = —J  (1.3.16)

This implies that the operator iJ is self-adjoint and so splits the space in two orthogonal
subspaces H, H*, which was the point of the whole construction. Now, we can write the
projector K that projects a complex a solution into H as

1

K= 5(1-iJ) (1.3.17)

One can show the following relation between the Klein Gordon product and the maps K, J

(U1, ¥2) ke = 2(K 1, Kiba) — (¥1, 40) (1.3.18)

where J is hidden in the definition of K and the very definition of (-, ). Note the the left
hand side has nothing to do with the choice of J since the Klein Gordon inner product
only depends on the symplectic structure €2. Through the relation above we can see that
the Klein Gordon inner product is in fact positive in H. Given a ¢ € H we know that
K¢ = ¢ since K is defined as a projector that takes as in H, and so

(¢, 9)xe = 2(K, K¢) — (¢, 0) = (¢,0) >0

In other words, within #H the Klein Gordon product coincides with the inner product (-, -)
and as a result it is positive definite. Note though that one can find element that do not
belong in H and still enjoy positive Klein Gordon norm, which implies that the map J can
be defined in multiple ways, each of which would define a diferent H.

In any case, once we are given a particular complex structure J we have all the ingre-
dients to build the states and observables of the QFT. Since J specifies K and H, we use
H to build the Fock space Fs(#H), and K to define our fundamental field observables as in
(1.3.13).

To conclude this part, I will just mention that there is a relation between J and p the
real inner product defined in section 1.2.3. It holds that

(1, V2) ke = —i(V1, Ja) = 2ipu(ty, Jibo) (1.3.19)

which can be seen as a compatibility condition between pu,J and 2. By following this
path, one can reduce the choice of J to a choice of an inner product pu, in the spirit of
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the section 1.2.2. Overall, both in the finite and infinite dimensional case the choice of the
single particle sector ‘H boils down to specifying a real inner product p for the space of
solutions.

Finally, I would like to show in what sense the fundamental observables as defined
abstractly in (1.3.13) can be interpreted as smeared field observables i.e. the spacetime
average of the Heisenberg operator that would represent the field amplitude at a point.
Then we can make sense of the field amplitudes as operator valued distributions, since they
yield an operator only under integration. For this we need to establish a map between the
space of test functions on Minkowski space

T = C*(RY) (1.3.20)

and the classical solutions that go in the defintion (1.3.13). Recall that the space of
solutions is defined as solutions of initial data [¢,n] that live in C§°(Xg), so we wish
to establish a map from C§°(R*) to C§°(X). This we can do quite naturally through
the equations of motion, using the following result from the theory of partial differential
equations.

Let f € T be the source of the Klein Gordon equations, then the advanced and retarted
Green’s functions satisfy

(O—-m*)Af = f (1.3.21)

(O—-m?*)Rf = f (1.3.22)

where Rf vanishes in the causal future, and Af vanishes in the causal past of the support

of f. Then the difference EFf = Af — Rf satisfies the homogeneous Klein Gordon equation,

and so belongs to S. The initial data of the solution E f lies in C§°(Xg) where ¥y € suppf.
This establishes the map

E:T=S (1.3.23)

namely ©» = E'f as we described just above. One can see that this is an onto map, that
has the following property

/d"‘x Vf = QEf, ) (1.3.24)
where €2 the symplectic structure of S. This is exactly the property that will allow us the
“smeared field operator” interpretation in the quantum case where €2 will be represented

by Q.
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To see how (1.3.24) comes about let us consider a test function f such that suppf =0
for t ¢ [t1,t5]. Using (1.3.21) and integrating by parts twice, we get

to

[ dtwvs = / dt [ @@= m?)ag - ( [ daawar - M(M))

t1

which corresponds to the boundary terms from the integration by parts over time. The
rest of the boundary terms vanish, as well as the integral [ d*zAf(0—m?)y since i € S.
Next we use the fact that Af vanishes at ¢ = t to write the above as

[ dtwor - [ Eaualan) - w)As) = 2Af.v). (1.3.25)

Last step is to use that Rf vanishes at ¢t = ¢; and so Af = Ef which gives us (1.3.24).

At the classical level we see that the classical observable Q(Ef,-) corresponds to taking
the spacetime average with weight f. Motivated by that we define

o(f) = QES,-). (1.3.26)
If we want to use the corresponding a, a’ we know that
Q(ES,-) = ia(K*(Ef)") —id' (K(Ef)). (1.3.27)

Equation (1.3.26) is the definition of the smeared field operators over the spacetime region
that the test function f is compactly supported.

1.4 Fields and Particles

The strategy that we followed so far from [3], is that one needs to extend the methods for
quantizing mechanical systems (meaning systems of finitely many degrees of freedom) to
field systems (of infinitely many degrees of freedom). This is very different in spirit than
the usual narrative that a quantum mechanical description fails for a relativistic particle,
and somehow relativity enforces a field theoretic description. As Wald puts it “quantum
field theory is the quantum theory of a field, not a theory about ‘particles’..” and in fact we
have not appealed to the particle notion so far. Even the Fock space construction was not
motivated by allowing multi-particle states, and H is not called a single particle Hilbert
space by Wald. The Fock space is only presented as the mathematical construction that

can facilitate the mathematical subtleties of systems of infinite degrees of freedom (for free
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theories) and any interpretation in terms of the Fock states as “particle” states needs to
be justified.

The proposed justification is rather operational, and it comes from the necessity to
describe the particle like phenomenology of detection experiments. For this one needs to
suggest how to couple the field to another (detector) system i.e., propose a detector model.
The detector model that is most commonly used in Relativistic Quantum Information
(RQI) was first proposed by Unruh in [16] where he considers two cases, a field coupled
to another field and a field coupled to a quantum mechanical particle in a box. In the
second case, we want to couple a (relativistic) field system, which is described by field
operators ®(z), to a (non-relativistic) particle that is described by a position operator Q.
How can we couple the position operator Q of a particle to a quantum field? In a follow up
paper by Wald and Unruh [17] they state that this can be achieved through the interaction
Hamiltonian

Hipy = €(t) / (2)6(2 — Q)dV (1.4.1)
DI

The field is defined over the same physical space where the particle lives, or mathematically
the spectrum of Q takes the values x that are in the input of the field operator. But then
we need a notion of where and when this interaction happens. “When” is explicitly stated
in (1.4.1) through the function €(f) whose compact support defines the duration of the
interaction. “Where” the interaction happens is hidden in what is meant by the mysterious
d function in (1.4.1), as we will explain just below. Also note that the z in the field operator
corresponds to any point of the manifold, while z € 3., the spatial hypersurface defined
at time t.

Now we need to make sense of the § function that appears in the interaction Hamilto-
nian. First, notice that in the input we are subtracting an operator from a number, so we
rather mean 0(Z1 — Q) This object can be defined as mapping real valued functions to
operator valued functions f(z) — f(Z) in the distributional sense

1@ = [ daf@)sta - Q). (142)
We know how to make sense of a function of an operator through the spectral theorem

m@szmmmm. (1.4.3)

Just by comparing the two last equations someone could think of this ¢ function as rep-
resenting a projector for every ¢ as in (¢ — Q) = |¢) (¢|. In any case, equation (1.4.4)
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generalizes more naturally than (1.4.3) in the case that f is operator valued. If we want
to write (1.4.3) with another hat on f we take

Q) = / dgf(q) ® a) {al. (1.4.4)

The tensor product in the middle is necessary so that this is an operator that acts on
the composite system Hp ® Hp of the detector and the field. One can think of this as
an operator that correlates the “field amplitude at each point ¢” with the corresponding
projector |q) (q| for the quantum mechanical system. If (1.4.4) seems puzzling, we can
equivalently write (1.4.4) simply with another hat on the function

A A A

f@ = [ aefia - Q) (14.5)
Then we can compactly write the interaction Hamiltonian (1.4.1) as

Hi = €(1)®(Q). (1.4.6)
This looks different that the usual interaction Hamiltonian [3]
Hip = €(t) /d3x d(z) (F(a:)fl + h.c.) (1.4.7)

where A some observable of the detector and e(t) € C°(R) and F(x) € C3°(R?), the
smearing functions that are non zero only when/where the interaction happens. Now we
would like to bring the interaction Hamiltonian (1.4.1) in the form (1.4.7). For that we
need to represent the § function in the Hilbert space of the detector using, for example,
the energy eigenbasis {|E;)} as follows

0z —Q) =) (Eild(x - Q)|E)) |E) (Ej (1.4.8)

v

=S tEise- @) ([ ald) 1) EVE 149)

%]

= Z<Ei| /dq 0(x —q) lq) (q|Ej) | E:) (Ej| (1.4.10)

v

=D Wi@)y(2) |E) (Bl (1.4.11)

ij
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So we can rewrite the interaction Hamiltonian (1.4.1) as

Hm:e()/dm <Z¢ >|E)( ] (1.4.12)

which in fact looks like (1.4.7). If we restrict in the two lowest energy levels of the de-
tector we take exactly (1.4.7) for A = |Ey) (Ey| and F(z) = ¢%(x)¢1(z). Note that the
spatial smearing [’ now has a physical meaning in terms of the wavefuntions of the energy
eigenstates of the detector. Along these lines, in [18, 19] the authors write an interaction
Hamiltonian of the dipole moment of a Hydrogen atom with the electromagnetic field and
the spatial smearing is associated to the orbitals of the Hydrogen atom. Mathematically
this creates a bit of a subtlety, since F' is defined to be compactly supported in (1.4.7),
which is not the case for energy eigenfunctions of a system under a realistic potential.
Maybe this is one of the reasons why the initial model [10] involved a particle in a box, of
which the wavefunction has to be compactly supported by construction®.

Next we want to consider the time evolution of the composite system under the total
Hamiltonian

H= (/ daIl?(z) + 2 (2)(0 — m2)(i)($)) ®1p (1.4.13)
+€(t) / d(z) @ (F(2)A + F*(2)ANdV + 1p ® 0 ATA (1.4.14)
¢
The equations of motion for the field (in the Heisenberg picture) becomes

(O —m?)d(z,t) = €(t) /E (F(2)A(t) + F*(2)Af(t))dV (1.4.15)

so the linear coupling with the detector acts like a source for the field and it is zero outside
the support of the smearings, where/when the field evolves freely.

For the detector the equation of motion is

%w = —icA(t) +i[AT, AJe(t) / (1, 7)v*(F)aV. (1.4.16)

%

6 Another reason why it might be preferential to couple the field to a particle in a box comes from the use
of the interaction picture. As Doreen Fraser pointed out in private communication: Haag’s theorem entails
that free and interacting Hamiltonians are only well-defined on unitarily inequivalent Hilbert spaces. The
interaction picture uses both the free Hamiltonian and the interacting part of the Hamiltonian to define
time evolutions (for states and operators), which cannot be defined on the same Hilbert space. Haag’s
theorem can be evaded by putting the system in a box [7].
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The full time evolution (1.4.15) and (1.4.16) is usually hard to solve and so we apply
time dependent perturbation theory with respect to €(t). For this purpose, it is more
natural to write the observables in the interaction picture, which for the detector means
Al(t) = e79' A, The interaction Hamiltonian becomes

H! = /d?’x(e(t)e_i"tF(x)gbI(t, z) +h.c.). (1.4.17)

In first order the time evolution yields

gy = (1 —i/dtH{nt) ;). (1.4.18)

Through the integration over time we can perform a spacetime smearing of the field oper-
ator

/dtH{m = /dt/dgx(e(t)ei"tF(:z:)qﬁj(t,x) +h.e.) = ¢r[f]A+ hec. (1.4.19)

where f(t,z) = €(t)e " "'F(x) depends on the temporal and spatial smearings, and the
energy gap of the detector . The time evolution operator in first order is simply given

by (]l — gbl[f]A + h.c.). We see that the detector observable A is coupled to a smeared

field operator ¢;[f], with a smearing that is specified by the parameters of the interaction
Hamiltonian.

It is quite common to attribute the smearings to the detector system, as a switching
function and spatial profile of the detector. Mathematically it is clear that they correspond
to choices that one has to make to specify the interaction between the detector and the
field 7, so one could attribute the smearings to neither, or both. Through (1.4.19) it makes
more sense to me that the smearings are used to turn the operator valued distribution
¢r(t, z) into the well defined operator ¢[f]. One step further, we can use (1.3.13) to write
the smeared field operator as

oulf] = ia(K*(Ef)) — ia! (KES) (1.4.20)

This expression is quite abstract, but it simplifies in particular cases in a very intuitive way.
Remember that K is the map that distills the positive frequency part of a solution. In the

"Note that these choices need to be made at the “rest frame” of the detector, because for example a
smearing that is spatial in that frame, is not purely spatial in a boosted frame. See [20] if you are worried
about the relativistic covariance of the interaction Hamiltonian.
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case that the time scale that defines €(¢) is much slower than ¢, namely the switching of
the interaction is slow as compares to the energy scale of the detector, then the smearing
function f(t,z) = e(t)e "' F(z) is going to be basically of positive frequency, and the same
for Ef. As aresult KEf ~ Ef and KEf* ~ 0, and so the interaction Hamiltonian
simplifies to

¢1(f) = —ia'(Ef) = ia'(€) (1.4.21)

where we just denote £ = —F f. Then the time evolution looks like
W) = (1 —ips(f)A+hc.)|¥)) (1.4.22)
= (L+da'(€)A —a(¢")AT) [Ug). (1.4.23)

If we choose the initial state to be |¥;) = |0) |ng), we drop the second term since A |0) = 0.
One can see through the definition (1.2.13) that what remains is

(Wy) = V1) — V(& ¥)|(n = 1)y) o). (1.4.24)

We see that the transition of the detector from the ground state to the first excited
state denoted as |o) is accompanied with a “downward transition” for the field state. This
process would occur with probability that is propotional to n, as someone might expect. As
discussed in [3] this could justify the narration that the detector “absorbing one particle of
the field”. As Wald puts it “One views the quantum field theory as actually being a theory
of ‘particles’..one views the interaction of the field with a quantum mechanical system as
enabling the quantum mechanical system to absorb or emit these particles”. Nevertheless
this story is very particular to this case and cannot be supported in the general case where
for example we would have terms that correspond to both the field and the detector being
excited.

1.5 Algebras

In this section we present some well known results of the algebraic approach to quantum
field theory, since some of them will concern us in the next chapters. These results are
negative, or puzzling at the very least, and it is non trivial to demystify them mostly due to
the high level of mathematical abstraction. Here we will not delve into the mathematical
background necessary to examine the technical aspects of these results, nevertheless we
will state and discuss the statements, because in the project presented in Chapter 4 we
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attempt to make sense of their implications in the concrete context of ordinary quantum
field theory (as sketched in section 1.3.1).

In some sense algebras are the most basic mathematical structures that one could re-
quire to do physics. Quoting Laura Ruetsche [6] “Intuitively an algebra is just a collecton
of elements along with a way of taking their products and linear combinations. Insofar
that it’s the business of natural science to weave physical magnitudes into functional re-
lationships, organizing physical magnitudes into an algebra undewrites that business...it
is an austere response to the surfeit of unitary inequivalent Hilbert space realizations of
the CCRs characterizing a QM,.® might be to interpret the theory in terms of a structure
that all Hilbert space realizations share. That structure turns out to be the structure of
an abstract C*-algebra”. In the approach that we followed above [3, (] we were starting
from the classical space of solutions of a field theory to define the quantum field theory by
determining states and observables {F,(H), (v, -)}. We discussed what are the choices
that may lead to two such constructions that are unitarily inequivalent to each other.
The algebraic approach treats these different constructions somehow more democratically,
based on the observation that the algebraic relations satisfied by the observables remain
the same.

Given the symplectic vector space (S,€) of a free theory, equipped with an inner
product i : S x S — R we defined the Weyl operators W (¢) = e*(¥) Vi) € S that satisfy
the Weyl relations

iQ(Y1,%2) 4

W(wl)w(¢2) = efw(ﬁbl + ¢2) (1.5.1)

and W1(1)) = W(—1). The span of the Weyl operators forms a subalgebra of the space
L(F) of bounded operators on the Fock space, which has the natural structure of a *—
algebra.” If we use the norm that is defined in £(F) to close this subalgebra, we end
up with a C*— subalgebra A called the Weyl algebra. Two different choices for the inner
product puq, o might define unitarily inequivalent Fock spaces, but the corresponding Weyl
algebras are guaranteed to be isomorphic [6]. This is why in the algebraic approach the

8A term introduced by Laura Ruetsche to denote the quantum theory of systems of infinite degrees of
freedom i.e. quantum field theories and the thermodynamic limit of statistical mechanics.

9 Just a quick reminder of all the definitions used here. An algebra A is a vector space with an additional
bilinear map A x A — A. An algebra that has a norm is called Banach algebra (if complete) and has the
property that ||A; As|| < ||A1]]]]A2]||. A *— algebra is an algebra that posses an antilinear map * : A — A
such that A** = A and (4;45)" = A5A7. A Banach *— algebra has both structures, plus the property
[|A*|| = ||A]|. Finally, a C*— algebra is a Banach *— algebra which also satisfies ||A*A|| = ||A||? (rather
than <). The space of bounded linear operators over a Hilbert space has the natural structure of a C*—
algebra because of the norm induced by the inner product in the Hilbert space and the adjoint map.
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fundamental observables are defined as the elements of (any possible) Weyl algebra 4, and
the states are defined abstractly as functionals over the algebra w : A — R. Given an
observable A € A, the result of the action of the state w(A) is to be thought of as the
expectation value of this observable. Given a representation of the Weyl algebra, that is a
map Il : A — L(F), and a density matrix p : F — F we define an algebraic state

w(A) := tr[pII(A)] (1.5.2)

which is the familiar expression for the expectation value.
Alternatively, this functional can be defined via the inner product p, for example as

_ k()
2

wW ()] =e

without using any representation of the algebra. In general, the specification of this func-
tional is equivalent to knowing the n—point functions [3], while the definition above cor-
responds to Gaussian states (or the specification of the 2—point function).

(1.5.3)

Overall, the algebraic approach amounts to specifying the pair (A, w). To see how this
connects to the possible concrete representations {Fg(H), Q(w, )} we need to invoke the
GNS construction. We stated just above that given a state p and a representation I we
can define an algebraic state w as in (1.5.2). The GNS construction is basically doing the
converse, given an abstract algebraic state, defined as in (1.5.3) for example, we can find
a concrete state p over some Hilbert space. Explicitly the theorem states the following, let
A be a unital C*—algebra (that contains an identity element) and a state w : A — C, then
there exists a Hilbert space F and a representation II such that

W(A) = (U|II(A)|T) (1.5.4)

where |W) a state in F, that has the extra property to be cyclic. This means that the set
{II(A) |¥) VA € A} is dense in F.

We see that the GNS construction is specifying (F,II,|¥)) from (A,w). At first, this
specification seems impossible. Starting with (A,w), how could we possibly end up with
some Hilbert space, a representation and a state? The idea of the proof is rather simple,
so I will try to sketch it here. The idea is that we can use the state w to define a bilinear
map over the algebra as < A, B >4:= w(A*B). Then we can suitably turn this into an
inner product, to complete under the induced norm, and turn the algebra itself into a
Hilbert space. This naturally gives us a representation, and a state that corresponds to
the identity element of the algebra, so that (1.5.4) is satisfied.
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How does that connect with the QFT as constructed in the previous section? If the
state w is defined as in (1.5.3) (for some p that is compatible with © as in (1.2.36)) the
GNS construction will yield F to be the Fock space, and the representation will map the
algebra to the observables Q(1), -), while the state ¥ will correspond to the vaccum state.
So if we do the GNS construction, from (1.5.4) we would get that

_ p)
2

wW ()] =e

With the algebraic approach we can go around the issue of unitary inequivalence, in the
sense that it captures the algebraic structure that all representations share, but one could
still worry that different representations could give physically inequivalent results (meaning
different expectation values as defined in (1.5.4)). In the standard Hilbert space approach
for finite degrees of freedom unitary equivalence is ensured by the Stone von Neumann the-
orem, but in the algebraic approach there should be a representation independent notion
of physical equivalence, which is not tied to unitary equivalence of the representations. In
fact, this is the role of Fell’s theorem [3, 6] which states the following. Let (Fi,II;) and
(F2,II5) two representations of the same Weyl algebra A (that could be unitary inequiva-
lent). Let Ay, ..., A, elements of the algebra and €y, ..., €, real numbers. If w; is an algebraic
state that corresponds to a density matrix in F; then there exists an wo that corresponds
to a density matrix in F5 such that

= (O[II(W)[0) = (0[€2(4, -)[0). (1.5.5)

This is good news, since it means that with no finite number of expectation values of
finitely many observables one can distinguish the two states from each other (even if uni-
tarily inequivalent!). Nevertheless, as pointed out by Doreen Fraser and further discussed
in [0], the theorem only applies to the algebraic observables in representations of the Weyl
algebra, which do not include observables such as the total number operator in the QFT.
Furthermore, (1.5.6) states physical equivalence in terms of ezpectation values, while the
question becomes more subtle if one wants to ask about probabilities of successive mea-
surements. Probabilities are again expectation values of projectors, but projectors are not
guaranteed to be elements of the algebra [0].

In the Hilbert space approach, observables are represented by self-adjoint operators
that are associated to a set of projectors through the spectral theorem. Then one can find
the probability of successive measurements of Aq, ..., A, to yield certain outcomes using
expressions of the form

Prob = tr[P,...PipP;... P, (1.5.7)
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To extend measurement theory in the algebraic approach we should be able to calculate
such expressions. For this we would have to impose extra conditions on A to guarantee
that it includes projectors that are associated to its self-adjoint elements. This could be the
structure of von Neumann algebras for example with all their different types (in fact the
classification of von Neumann algebras [(] is based on the existence/properties of projectors
in the algebra). For example the algebraic approach to ordinary QM yields von Neumann
algebra of type I which includes the usual rank 1 projectors and one can apply the usual
rules for probabilities Prob = [|P|¥) | for the corresponding outcome. We will not go
through the definitions of von Neumann algebras here, but I would like to mention that
Wald considers this to be a step back, from the algebraic approach towards the Hilbert
space approach, because von Neumann algebras are rather concrete C*— algebras, tied to
their representaton in a Hilbert space [3]. As we will discuss in the end of this section,
when one applies the algebraic approach to quantum field theory projectors are not very
well behaved objects (and the type of von Neumann algebra that one would associate to a
QFT is the most exotic one).

Next we will sketch the algebraic approach to QFT (AQFT), the main idea being
the association of local algebras of observables to regions of spacetime. Given a globally
hypebolic spacetime (M, g,) for any open subset O C M we can define the space of test
functions 7o that are compactly supported in O. In the previous section we saw how to
associate the space of test functions with the space of solutions §. We can suitably define
So the space of solutions with initial data that are compactly supported in O, as a closed
subspace of §. Then the Weyl algebra spanned by W(w) = W) for o) € Sp is a C*F — —
subalgebra of the full algebra A. Along these lines the construction yields a net of C*—
algebras {Ap} indexed by open spacetime regions O, where it is built in that if O C O’
then Ao C Ap/. This is usually postulated in the axiomatic approach to QFT as the
isotony postulate, since it has the interpretation that local observables/operations over a
region should be contained in observables/operations over a bigger region that contains the
first one. Along with other axioms, the most famous one is the microcausality [A, B] = 0
is A € O1,B € O, if the two regions 07, O, are spacelike separated. The covariance of
the algebra elements under the action of the Poincare group (in flat spacetime) is required,
and the existence of a unique Poincare invariant vacuum state |0) is also postulated. The
list of axioms can be found in [2, 6].

One of the most striking results of AQFT is the Reeh Schlieder theorem [21, (]. It
simply states that the unique vacuum state |0) is cyclic under the action of a local algebra
Ap. This means that the span{A|0) ,VA € Ap} is dense in space of states. Depending on
the interpretation that one assigs to the elements of the local algebras, this suggests that
one can get arbitrarily close to any (global) state of the field by means of local operations
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over a bounded spacetime region. For example, one could worry that by manipulating
observables inside a lab which is finitely extended in space and time, we could create a
“tardigrado '° (something like a beer, or a bear)” in spacelike separation '!. The intuition is
that because the vacuum state is entangled, one can create any global state only by means
of local operations. Redhead has formulated a baby version of the Reeh Schlieder theorem
in [21] by means of local operations on a singlet state, and in [22] Halvorson elaborates on
why this is not paradoxical.

An important corollary to the Reeh Schlieder theorem is that the vacuum is not only
a cyclic, but also a separating state in the local algebra [21, 23]. This has the important
implication that there cannot be local number operators in the local algebra, which is a
negative result for the particle ontology of QFT if one expects to be able to count particles
locally. A state is separating if it can ‘separate’ the elements of the local algebra from each
other, namely two elements are the same if their action on the vacuum gives the same result
A|0) = B|0) = A = B. If we take both operators on the same side calling « = A — B we
see that this implies

al0) =0= a=0. (1.5.8)

As a result any local annihilation operator ought to be trivially zero, which goes through
for creation operators and number operators (since the algebra is closed under the *—

operation) to yield that we cannot have number operators that are local in a relativistic
QFT.

Now let us return to the question of what kind of projectors one can find in such a
local algebra. As shown in [21] they all have to be infinite dimensional, as a consequence
of the exotic type of von Neumann algebra that one would have to introduce (type III).
This means that rank one projectors | V) (¥| in terms of which we can formulate “yes-no”
kind of questions do not belong in the algebra. Finally, in view of (1.5.8) we conclude
that if the probability of a measurement is zero p = || P |0) ||> = P = 0 the corresponding
projector has to vanish. This implies that any non zero projector is associated with a non
zero probablity, so literally anything is possible in the vacuum.

Let us pause for a second to summarize what kind of operators one can/cannot find
in the so called local algebras of observables. We cannot find a position operator, or

0Here tardigrade are recruited for the sake of the argument, more information about these creatures
you can find at 'Antarctic expedition yields remains of tiny, ancient 'water bears” The Guardian (2019,
January 18).

HUTalk by Juan Leon at the Relativistic Quantum Information Conference North 2016 at the IQC
https://www.youtube.com/watch?v=zm2bl7yYcJO
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a local number operator and neither rank one projectors that we would like to use for
measurement, theory. What about observables of the theory, like the stress energy tensor
for example? The way we defined the local Weyl algebra, it contains only exponentiated
linear combinations of the (smeared) field operators, so the stress energy tensor (which
is at least quadratic) is not naturally included [3]. Overall the local algebras seem to be
rather dystopian places where one cannot find most of the things they would wish for.
Nevertheless, it seems that this formalism provides a natural platform in which one can
formalize the concept of local measurements, as was recently done in [21] thanks to the
built in locality. Ordinary measurement theory is rarely explored in a spacetime context,
where one has to define a measurement theory that is compatible with relativistic causality.
Despite the recent progress, the discussion about local measurements in QFT has been
controversial from the 90’s until today [21, 25, 26, 27, 28, 29].

I would like to close this section with some references about the historical /philosophical
aspects of the algebraic approach. The axiomatization of QFT naturally followed the
axiomatization of QM in an attempt to clarify the conceptual and mathematical structure
of quantum field theories. For a historical introduction one can look at [30]. Because of the
heavy mathematical machinery it is not as popular in our days when it comes to practical
purposes, but it is much more prominent for interpretative purposes and so it is more
well spread amongst the philosophers of QFT or mathematical physicists. In [31] one can
find the proceedings of a conference that happened at Boston Univeristy in 1996 on the
“Conceptual foundations of quantum field theory”. In this conference, great physicists and
philosophers like Weinberg, DeWitt, Wightman, Rovelli, Redhead and Teller, gathered to
discuss what QFT is about. Many different views were expressed about fields, particles
and algebras, and much of the discussion was around contrasting AQFT with the ordinary
QFT that is most commonly recruited in high energy particle physics. Interestingly, some
people from the quantum gravity community like Carlo Rovelli defended the standard over
the algebraic approach, arguing that the very starting point of AQFT, that is associating
algebras of observables to regions of spacetime, is not compatible with how we should think
of spacetime according to general relativity 2 [31].

Today we are in the paradoxical situation of having QFT’s ‘that work’ (indeed very
successfully) by means of perturbation methods, while the axiomatic approach has not
yet succeeded to describe realistic particle interactions. The two variants of QFT can be
thought of as complementary to each other [33] but hopefully “...the ‘complementarity’
in the formulations of quantum field theory is only a historical accident. We have to live
with it now, as we had to live with it for the past half-century or so, but it is not here to

12Rovelli’s argument against AQFT is based on the discussion about the ontology of spacetime as
presented in his article “The disappearance of space and time” [32].
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stay. Either through more effort on the foundations of quantum field theory, or through
a new mathematical language, or through a yet unsuspected physical principle, we hope
that this paradoxical situation will be resolved...”[33]. My opinion is that one would have
to work at both fronts to resolve this situation, both trying to make better sense of why
perturbation theory works but also investigating how far one can go without quitting on
mathematical rigor of AQFT, the most formal way of combing the principles of quantum
theory and special relativity. There are lessons to be learned both from the ‘success’ of
standard QFT and the ‘failures’ of AQFT, especially from the perspective of the yet to be
found theory of quantum gravity. One could argue, why bother axiomatizing QFT since
we know it is not the end of the story? For me the reason is that a good understanding of
why (rather than how) a theory works, can provide guidance in the regime where it fails
to work.

The interpretational debates about (A)QFT are open ajoint today, mostly amongst
philosophers [34, 35] and (surprisingly) not so much amongst physicists. Maybe the in-
credible success of the standard model of particle physics for the past decades has under-
mined the pragmatic relevance of this debate, but these issues are becoming increasingly
important for low energy considerations in Relativistic Quantum Information (RQI). This
is because in RQI we wish to apply notions of information theory in the yet more funda-
mental framework of QFT when relativity cannot be ignored [36]. This requires a different
understanding of QFT which is irrelevant for high energy physics and so not very well de-
veloped. For example, the very notion of a subsystem or a 'party’” and the rules for combing
subsystems with tensor product structures are postulated in the axiomatic formulation of
quantum mechanics, but are much harder to establish in QFT (as we discuss in the last
chapter and in Appendix B). Clarifying the conceptual and mathematical basis of QFT), is
hopefully becoming one of the goals that RQI can contribute to and benefit from.
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Chapter 2

What About Particles

2.1 Theorem by Malament

In this section we will review and discuss the theorem by Malament, a no-go theorem
that demonstrates “Why there cannot be a relativistic quantum mechanics of (localizable)
particles” as it is the title of the corresponding paper [37]. The term quantum mechanics,
suggests that the systems we are describing are localizable in space. In classical mechanics
for example we are describing the motion of either pointlike or finitely extended objects, in
contrast to classical field theory where we are describing fields i.e. entities that are assigned
a value for every point in space and time. Quantum mechanics, is called mechanics because
it is describing systems that are localizable by means of a wavefunction, but as the title
of the paper suggests, this cannot be if one encorporates relativity. If we cannot have
relativistic quantum mechanics, it seems that we can only have relativistic quantum field
theories, or at least historically we did not come up with any other way to consistently
unify quantum theory and special relativity. As it is quoted in [37] “although it is not a
theorem, it is widely believed that it is impossible to reconcile quantum mechanics and
relativity, except in the context of a quantum field theory. A quantum field theory is a
theory in which the fundamental ingredients are fields rather than particles; the particles
are little bundles of energy in the field.” (Weinberg 1987, 78-79).

In this spirit, Malaments theorem could appeal to someone who wants to remain ag-
nostic as to whether a relativistic quantum theory shall be mechanics or field theory, or
anything else. Nevertheless, they would still have to make a minimal set of assumptions to
describe the system with a structure that is consistent both with quantum theory and spe-
cial relativity. Under this set of assumptions, Malament shows that such a system cannot
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be localizable, and in this sense any attempt of a relativistic quantum theory cannot give
mechanics. In particular, the theorem points out the friction between localizability and
act-outcome correlation in spacelike separation which would violate relativistic causality.
Concretely, the theorem states that any candidate for a relativistic quantum mechani-
cal representation of a single (localizable) particle, presumably, will include the following
elements :

e A Hilbert space H, the rays of which represent the pure states of the particle.

e A strongly continuous unitary representation U(«) in H of the translation group «
in Minkowski space M.
a—Ul(a) (2.1.1)

e Considering the foliation of Minkowski spacetime by a family of spacelike hypersur-
faces ¥, in a fixed frame, we require an assignment of a projection operator Px on
‘H for every open bounded spatial subregions A C X, that is

A = Pa (2.1.2)

These elements put together, comprise what is called a localization structure (M, H, A —
Pr,a — U(a)) and amounts to specifying states, dynamics and measurement tools, along
with the symmetries of the underlying spacetime that we wish to represent in the Hilbert
space. Note that the theorem is only concerned with translations, and not boosts. Now
let us impose the following constrains

1. Translation Covariance:
Prto = U(a)PAU(—a) (2.1.3)
for all vectors oo and spatial sets A in M.
2. Energy Condition:
Ulta) = e~ H(@) (2.1.4)

for all future directed unit timelike vectors in M. The spectrum of the self-adjoint
Hamitonian operator is bounded from below.

40



3. Localizability:
PA,Pn, = Pr,Pa, =0 (2.1.5)
if A1,Ay C Y, are disjoint spatial sets in the same hyperplane ¥;.
4. Locality:
[Pays Pa,] =0 (2.1.6)

it Ay C Xy,,Ay C Xy, for t; # ty and such that the two spatial intervals are spacelike
separated.

Localizability is introduced in condition 3, stating that projector that correspond to
disjoint spatial intervals at the same time should be orthogonal, so that if the particle is
detected in say A; it has zero probability to be detected in Ay if a position measurement
happens at t. The only condition that appeals to relativity is condition 4 (locality), in
a sense that we will explain below. First note that the locality condition is weaker than
localizability, since two projectors need not be orthogonal to commute. Someone could
find it reasonable to demand orthogonality, rather than commutativity, since it should
be impossible to detect the particle in spacelike separated regions because intuitively this
would mean superluminal propagation. But instead, condition 4 only imposes statistical
independence of position measurements in spacelike separation. The difference between
the two requirements is the difference between micro and macro causality, and Malament’s
theorem requires macro causality to be respected. To see this we will demonstrate that con-
dition 4 is equivalent to statistical independence by recruiting Luder’s rule for conditional
probabilities

[PAU PAz] =0 tl”[pPA2] = tl“[p/PAQ] (217)

where p' = Pa,pPa, + (1 — Pa,)p(1 — Pa,) the statistical mixture of the particle being and
not being in region A;. Equation (2.1.7) means that if statistics for position measurements
is collected in A,, it should be independent from whether a position measurement has
happened in A; of which the outcome is not known. One way of (2.1.7) is straight forward
(from left to right) assuming commutativity we see that

tr[p'Pa,] = tr[Pa, pPa, Pa, + (1 — Pa,)p(1 = Pa,) Pa,] (2.1.8)
= tr[PX, pPa, + (1 — Pa,)*pPa,] (2.1.9)
= tr[Pa, pPp, + (1 — Pa,)pPa,] (2.1.10)
= tr[pPha,) (2.1.11)
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The converse is a bit more tedious, but overall macrocausality and commutativity of the
projectors are equivalent in this context.

To make sense of condition 4, the only controversial condition that goes into the the-
orem, we had to make two choices. We have to pick a notion of causality (here macro-
causality) and the rules for probablities and state update from measurement theory (here
Luder’s rule). This demonstrates how notions of localisation, causality and measurement
theory come together to form such arguments. In particular, one cannot really make a con-
nection between notions of localizations and notions of causality without using tools from
measurement theory. Even worse, in such arguments someone has to measure “locally”
to test if causality is violated, so a specific notion of “local measurement” is needed, and
this tends to be at odds with relativistic causality. In the context of Malament’s theorem
this is manifested through the trivialization of the spatial projectors Pa. In particular,
the theorem states that if a localization structure (M, H,A — Pa,a — U(«a)) satifies
conditions 1-4 then

Py =0 VA, (2.1.12)

The theorem states that the projectors that one would wish to associate with bounded
spatial regions are trivially zero. As a result, the probability of detecting a particle within
any bounded regions A is zero

Prob,(A) = tr[pPa] =0 VA (2.1.13)

because of (2.1.12). Note that we have made no statement about the “size” of A, it can be
an arbitrarily small or large interval as long as it is bounded. This is to draw a distinction
between Malament’s theorem and arguments that set the Compton length or the Planck
length (in gravitational scenaria) as a limit to the localizability of a particle. Nevertheless,
one can imagine that the very definition of localizability as expressed in condition 3, our
ability to sharply “tell apart” disjoint spatial intervals is what should break down at smaller
scales. A generalization of Malament’s theorem in the case of unsharp boundaries can be
found in [38].

It is common that the theorem by Malament is phrased as “there is no position operator
for a relativistic quantum particle” or “there is no position operator in QFT” and in fact
the particle ontology of a relativistic QFT is debatable till today. The non existence
of a position operator follows since the projectors P would have to form its projection
valued measures. Or conversely if we had a position operator, we would write down these
projectors as

P = /Ad:v\x> (] (2.1.14)
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which is obviously not trivially zero. A position operator provides us with a (rigged) basis
over which we can expand the state to get the particle’s wavefunction ¥(z) = (z|V).
Then in fact the probability of detecting a particle in a given region is given by the usual
expression

Proby (A) = tr]| ) (U] Pa] = tr]|) <\I/|/Ad:p|x> (2] :/Adx|\ll(x)|2 (2.1.15)

which of course is generally non zero in non relativistic quantum mechanics, but zero in
(2.1.13). We conclude that if there is no position operator there cannot be a spatial rep-
resentation of a pure state of the particle i.e. a wavefunction with the usual probabilistic
interpretation, and in this sense “there cannot be relativistic quantum mechanics of (local-
izable) particles”. We conclude this section with the proof of the theorem, since it is quite
insightful to see what enforces (2.1.12). Crucially, the proof makes use of the following
lemma.

Lemma

Let U(t) = e a family of strongly continuous one-parameter group of unitary op-
erators, where the spectrum of the generator H is bounded from below. Let P, P
be two projector operators such that (i) PiP, = 0, and (ii) there is ¢ > 0 such that
[P, U(—t)PU(t)] =0 Vt € (—¢,€). Then it follows that

PU(—t)PU(t) =0 Vt. (2.1.16)

Before we proceed with the proof of the theorem we can already see how this technical
lemma becomes relevant in such considerations. This is because it provides a link between
the requirements 3 and 4, localizability and locality. If the two projectors of the lemma are
associated to disjoint spatial subsets of the same hypersurface, then (i) is satistied because
of localizability. Then there should exist an e that specifies the time period for which P,
commutes with the time evolved version of P, (condition (ii) of the lemma) so that the
locality condition is met as long as they stay spacelike separated. Then (2.1.16) means
that P, and U(—t)PU(t), the time evolved version of P,, will be orthogonal for all times.

Proof

The proof consists of two applications of the lemma. First we apply the lemma for
Py = Pr, P, = Prnyo and U(t) = U(tay) where a a purely spacelike displacement along
the hyper surface ¥ where A belongs, and a; a timelike vector (see figure below).

Condition (i) is satisfied from the localizability condition. Condition (ii) is also satisfied
since « is timelike there is an € > 0 such that for sufficiently small times A + a 4+ a;gt
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A+(ta+e)ay

A+(ta+t)az= A+a+tja;

— "\ A+(17-E)82

remains spacelike separated from A and so
[Pa,U(tag)ParoU(—aqt)] =0 (2.1.17)
form the locality condition. Then it follows from the lemma that
PAPAtotat =0 Vi (2.1.18)

where we have used the covariance condition. Next we consider a purely time like vector
g, and t, large enough so that A 4 tyan is in the timelike future of A + «. So we can find
t; such that

A—F(t—i-tg)(lg :A—f-Oé—f—O./ltl (2119)

for any t € (—e¢,€) so that the region remains in the spacelike future of A + . From
(2.1.18) for t = t; we have that

PAPa+arar, =0 (2.1.20)
so from (2.1.19)

PaPA+(t41m)0y = 0 (2.1.21)
which can be rewritten as [Pa, Pat(t4t2)as] = [Pa, U(—ta2) Pattya,U(tan)] = 0 which is

condition (ii) of the lemma. So we can use the lemma once more for P; = Pan, Py = Patast,
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and U(t) = U(tay). In fact condition (i) is also satisfied PaPata,i, = 0 from (2.1.21) for
t = 0. From the lemma we conclude that

PAU(—tag)PA+a2t2U(ta2) = PAU(OQ(t + tz))PAU(—OéQ(t + tg)) =0 (2122)
for every t. So picking t = —t, we get that
Pi=Pr=0 (2.1.23)

which completes the proof.

2.2 Theorems by Hegerfeld and Halvorson

Following a yet more minimal approach, Hegerfeld formulated another no-go theorem which
emphasizes the role of positivity of energy in the instantaneous spreading of a wavefunction
of a particle. The original version of the proof [39, 10, 11] assumes the existence of a positive
operator N(A) (not necessarily a projector) that we can use to calculate the probability
of a particle being in the region A as

Py (A) = (e, N(A)ihy). (2.2.1)
We assume that the particle was initially confined in the region A
Pyy = (Yo, N(A)th) =1 (2.2.2)

Since the state is normalized (g, 19) = 1 subtracting this from the equation above we can
see that N(A)ig = 1g. If the particle is not propagating with infinite velocity we might
require that for every ¢ there is a constant R; such that for all displacements o > R; we
have that

Py (A +a) = (b, N(A+ a)gy) =0 (2.2.3)

i.e. the particle cannot be detected arbitrarily far away in a finite time. The probability
(2.2.3) we can write as

Py, (A + ) = (0, UN(A)U_ot) = (UL N(A), v/ N(A) Ut = [[v/N(A)Uley]| = 0

for @« > R;. We have used time translation invariance and the positivity of the operator
N to define the square root and write this probability as a norm of a vector, to argue that
the vector it self has to vanish for these values of a. Multiplying with the square root

N(AYUT (), =0, a> R, (2.2.4)
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Taking an inner product with v, we have that

(o, N(A)YUT(a)y) = 0 = (oN(A),UT(a)y) = 0= (1o, UN()U(t)hg) =0 (2.2.5)

where we used that N(A)ig = 1g. We can define this last expression as

fila) = (o, Ul(a 1% (p)|PetVPHEmA e (2.2.6)

which we require to be zero for a > Ry, so f;(«) is compactly supported. Then the Fourier

transform f;(p) = \'}ﬁb WPHM hag to be entire (analytic everywhere) and it is not

because of the square root. The only alternative is that f; identically vanishes Va. But
then for t = 0 and a = 0 we get

Jo(0) = (Yo, N(A)tg) =0 (2.2.7)

which contradicts our initial assumption. This demonstrates that because of the positivity
of energy the particle cannot propagate causally.

In [12] Halvorson reformulated the theorem more abstractly as follows. The theorem
by Hegerfeld only requires time-translation invariance, since it is not making use of a
representation of the translation group. So the localization system we have been restricting
above is

(H,A — Ea,t — Up). (2.2.8)

The operators Ea that we associate to spacial regions, are positive operators. Projectors are
only a special case, which allows to generalise Malament’s result for unsharp localization.
The restriction that the theorem imposes to this localization structure are the following.

1. Time translation covariance with energy bounded from below
U(—ta)EAU(ta)) = Eaya (2.2.9)
for every timelike vector a.

2. Monotonicity: If {A,} is a downword nesting of the hypersurface 3 such that
U, A, = A, then |, Ea, = Ena .

3. No instantaneous wavepacket spreading: If A C A’ there is € > 0 such that Ex <
Enryy for 0 <t <e
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The theorem states that if we impose the following constrains to the localisation structure
(3.2.4) it follows that

UtEAUft — EA. (2210)

Note that from time translation covariance it should be that U, EAU_; = Eay,; rather than
(2.2.10), which means that the time evolution of the positive operators becomes trivial.
The theorem by Hegerfeld is usually stated as “a wavepacket that is initially localized will
propagate superluminally because of the positivity of energy”. Here we see that imposing
finite propagation (condition 4) the wavepacket is doomed to remain in the initial regions
for all times, because (2.2.10) is equivalent to

EA’Q/) = ’QD = EA¢t = @/Jt Vt. (2211)

We can see the equivalence as follows

Extp = = UEat) = Upp = U EAU_Upp = Upp = Exthy = 1y (2.2.12)

The proof makes use of the following lemma.
Lemma

Let a family of unitary operators U, = %! where H is bounded from below and
A is a positive operator. Then for any state ¢ either (i) (Up), AUwp) = 0 Vi, or (ii)
(U, AU # 0 for almost all ¢.

Proof

Considering this family of intervals A, bigger than A, from NIWS (condition 4) it
follows that for every A, there is an €, such that

(Uih, Ea, Uph) = 1 (2.2.13)

for t < €,. The intuition is that due to finite propagation speed if the particle is initially
localized at A it should be with certainty within a bigger A, up to sufficiently small time
€n. If we combine (2.2.13) with the unitarity of time evolution (U1, Upyp) = 1 we get that

(U, (1 = Ea,)Urh) = 1 (2.2.14)

for t < €,. Since (1 — EA,) is a positive operator we can use the lemma above. Since this
holds in a region of ¢’s (ii) of the lemma cannot hold so we have that it holds for all t i.e.

EnUip = U (2.2.15)
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for all ¢t and for all n. From the monotonicity condition it follows that
E U = Ugp (2.2.16)
which as we showed above it is equivalent to
U;EAU_; = Ea, (2.2.17)

which concludes the proof. Comparing to Malament’s theorem we see that Ex = 0 is a
special case of (2.2.17). In this sense Hegerfeld’s theorem is more general, it trivializes the
time evolution of Fa rather than requiring that they are trivially zero.

Contrasting the two proofs, one can reflect on the role that relativity plays in the con-
clusion. My understanding is that the proof by Hegerfeld seems to be using the relaivistic
symmentry explicitly (since the analyticity argument is based on the square root of the
dispersion relation) while Halvorson’s proof seems to be using only the positivity of en-
ergy indeed. To clarify the role of relativity in that, Halvorson moves on to formulate a
Malament /Hegerfeld kind of theorem in his thesis [12] as an attempt to investigate the
(in)compatibilities of the requirements that go into either/both theorems.

First he introduces a notion of probability conservation abstractly as follows, if {A,,, n €
IN} is a covering of ¥ and {II,, n € IN} a covering of ¥ + ¢, then U,A,, = U,II,. This
is to separate this condition form the condition of unitary time evolution, which implies
this kind of probablity conservation to find the particle somewhere only if a position basis
exists. Halvorson came up with the following indespensable set of conditions that one
might wish to impose to a localization structure (H, A — Ea,t — Uy).

1. Probablity conservation

2. Localizability

3. Time-translation covariance
4. Energy bounded from below

5. Microcausality

From (all) these five conditions it follows Uy EAU_; = Ea. These conditions are indispens-
able in the sense that no one of them can be dropped without sucrificing the conclusion.
For example if someone drops microcausality, then then EA’s correspond to the usual po-
sition operator of non relativistic quantum mechanics and so we get that U, EAU_; = Eayy
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instead of (2.2.17). Also, if we only require 1-4 we get Malament’s result Ex = 0 instead
of (2.2.17), and so on. In this way, Halvorson’s version of the Malament /Hegerfeld type of
theorems closes this circle of no go results by spelling out and separating all the ingredients
that are necessary for the negative conclusion.

2.3 Newton Wigner position operator?

It might seem quite contrary to the spirit of the no-go theorems presented above that
Newton and Wigner introduced a position operator by means of which they can define
“localized states for elementary systems” in [5]. As we will discuss later, this operator
fails to be fully relativistically covariant, but it is “good enough” under certain conditions.
One might notice that the title of the paper refers to “elementary systems” rather than
“elementary particles”. Usually the term elementary particle means that it is not possi-
ble/purposeful to assign further structure, so an elementary particle does not consist of
others. The notion of an elementary system is quite more abstract, as it refers to a system
that is described by an irreducible representation of the Poincare group. Again, for the
next subsection we remain agnostic as to whether a field theoretic decription is needed
for an elementary system. Without going into the complications of a QFT, Newton and
Wigner start from the Poincare group to find a way to represent the state |¥) of an elemen-
tary system in position space. We are only making quantum field theoretic considerations
in subsection 2.3.2, where I present some results from an on going project for which we
associate the Newton Wigner wavefunction with the stress energy density of one particle
states in QFT.

2.3.1 Particle interpretation versus covariance

To start with, one might wonder why the irreducibility of the representation is characterized
as “elementary”. As Newton and Wigner explain in [] this is because “there must be no
relativistically invariant distinction between the various states of the system which would
allow for the principle of superposition”. The superposition principle follows from the fact
that the state space of the system is a vector space, and for an elementary system there
should not be any subspace of the state space that is invariant under the action of the
Poincare group (which would be the case if the representation was reducible). In other
words, for an elementary system any “brunch” of a superposed state should be accessible
through the action of the Poincare group. Newton and Wigner undertook the task of
defining localized states such systems, since this is not naturally provided by the Poincare
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group. The observables of the system, given by the generators of the Poincare group, are
the energy, the momentum and the angular momentum, while there is no position operator
conjugate to the momentum operator i.e. satisfying the Heisenberg algebra [z, p| = ih. As
we described in the previous chapter, for a quantum mechanical system the commutator
between the position and momentum operators is the very starting point of the quantisation
procedure. It is this commutation relation that allows to translate between the spatial and
the momentum space wavefunction through the Fourier transform

wmzwwz/mwwmwz/Mfmww (23.1)

For an elementary system what we naturally have from the Poincare group is the compo-
nents ¥(pg, p) of its state |¥) over the energy and momentum spectrum. Then the question
is how we translate this to position space since there is no position operator to provide us
with a spatial representation of the state W(z), and overall the machinery described just
above does not apply.

A natural guess would be to take the relativistically covariant version of a Fourier
transform as follows. Lets denote the position and momentum four-vectors as x, p, and
their spatial components as x, p. Given the function ¥(p) we can define

¥(x) = [ du(p) (pe™ (2:32)

where px = p,a* and dyu(p) the Lorentz- invariant measure

dpodp 2 dpodp
du(p) = S(p'pu —m*)O(po) = —=5—0(po — /P2 +m?). (2.3.3)
/_271'3 H 0 —27732])0 0

If we call w, = \/p? + m? we have that

/du(p>f<p) = %5@0— V% + m?) f(po, p) = \/;_ﬁg /Zd%;f(wp,p) (2.3.4)

To justify calling the Fourier transform (2.3.2) let us quickly check how it transforms
under a Lorentz transformation x’ = Ax.

B(x) = T(Ax) = / dp(p) T (p)e®™ — W' (x). (2.3.5)
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Next wee notice that p(Ax) = p,a™ = p,A¥ 2” = (A1), p.a” = (Np)x. So by defining
p' = A"'p = p = Ap equation (2.3.5) becomes

V() = [ du(p)ue)er™ = [ du(p)(pre (2:3.6)
— [ autnw)pne)e” = [ du)wp)e” (2.3.7)

where U/ = W o A. Since p,p’ are dummy indices we can write

V(o) = [ dupue)e™™ = [ dulp)uinp)e™ (238)

Written as a spatial Fourier transform this means that

dp Wy p)er” .,

U(t ) = i (2.3.9)
d \Ij , pr )
p VW D) e _ V(t, ) (2.3.10)

V o 2wp
which demonstrates the invariance of the position space wavefunction defined as in (2.3.2).

One last property of the transformation (2.3.2) that we will use below is that we can
invert it as follows

dp ¥(w,, p)e™rt
V o 2wp
Now we want to make sense of (2.3.2) as a solution of the Klein Gordon equation (O +
m?)¥(x) = 0. This is a second order differential equation, and so to solve it we need to
input the values of the function and its time derivative at some initial time. It follows from

definition of (1.1.12) and its inverse form, that ¥ and ;¥ are not independent [2]. We can
see this as follows

U(t,x) =

W) a0 @

v .

0 —(t,x) o(—iw,)ePe=ert) (2.3.12)

ot ‘/271- 2wp
- 2w 2wp /dzgzv’\lf(t,:e')ei”””/)(—iwp)ei’”c (2.3.13)

Vo7 b

1 - /
= /d3x’\1'(t,:c')—3/d?’p(—iwp)elp(w_m) (2.3.14)
V2

/d%"l’(t x)(x — ') (2.3.15)
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2+m2 ip(x—x'

where £ the integral kernel £(x — ')

This is a case in which someone really needs to keep track of the factors w,, since
it was exactly these “leftovers” that gave us the integral kernel above that non locally
associates the value of the derivative at a point with the value of the function everywhere.
Much of the study of non local effects in relativistic quantum theories requires examining
the behaviour of kernels like the one above, since they directly follow from imposing the
relativistic symmetries to the system. Another instant of this, has to do with the inner
product as written in position space. In momentum space \IJ|\II f Lp \If \IJ’ and it is
easy to see that for U = U’ we take a positive Lorentz invariant number as a norm of the
state. Now we will use the inverse transform (2.3.11) to write the inner product in position
space

(U0’ :/g—z (pr/d?’azllf(t,w)eim) 2wp/d3$’\11’(t,w’)e_im, (2.3.16)
= / d*z / B’ U(t, )V (t, x') / d3p 2w, eP@=2") (2.3.17)
—2i/d3x/d3x’\lf(t,m)5(a: —x)U(t, ). (2.3.18)

Or to make it explicitly (anti)symmetric
(W0 / d*z / B U(t, )V (t, 2')( / Ad*pw, @) _ / d*p W)@ =2)) (2.3.19)

= z'/d3 (\If’a—‘y — \IJN) (2.3.20)

ot ot

where we see the symplectic structure of the space of solution appearing. This inner product
is not positive definite, so we see why we would fail to interpret ¥(x) as a wavefunction
that gives us the probablity amplitude of finding the particle at x. This demonstrates that
the straightforward generalizaton of non relativistic wave mechanics is rather problematic.
One can have a relativistically covariant “wavefunction” W(x) that satisfies the relativistic
wave equation, but it cannot carry the interpretation of ordinary quantum mechanical
wavefunction. To fix this, Newton and Wigner introduced the definition

V(w ) d3 ] —px
Vw(p) = Yo p) Uw(t, @) = Uy (p)ei@rt=pe) (2.3.21)

QWP 1/271-

The definition is exactly such that we get rid of the annoying factors of ,/w,, to eliminate
the non locality in the inner product (2.3.18). Indeed, the inner product in position space
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becomes
/ d3 / 3 /
) = [ GPuu, = [ @i, ) (2.3.22)
_ / de Do (£, )V (1, ) / P eP@—=) _ / ColU (L) (23.23)
and could be interpreted as a probability of finding the particle at x. Of course Uy (z)

still satisfies the Klein Gordon equation but it fails to be covariant (as we demonstrated
(2.3.2) is the covariant one). The Newton Wigner wavefunction relates to (2.3.2) nonlocally

Uw(t, @) = /d3p\I/Nw(p)ez(w”tm) = /d3p2—p«/2wpe’(wpt+p‘”) (2.3.24)
p
/2 /d?’x’pr\If(t ) ! @rt=PT) | /o, el —wrttpe) (2.3.25)
Wp
= / P’ (t, x") / d3py/2w,ePE==) (2.3.26)

So we see that

Uyw(t, @) = /d%"ﬂt,w')[((w — ') (2.3.27)

where the integral kernel is the Fourier transform of |/2w,, K(z—2') = [ d*p\/2w,eP@=2).

Overall, we see that trying to come up with a spatial characterization of the state of a
relativistic system we are facing the following trade off, covariance versus the probability
interpretation. By choosing the Newton Wigner definition, we rather sacrifice covariance,
but this could be justified for particular purposes (for example if one only cares about a
particle description in a fixed frame).

Closing this section, I would like to mention that the literature is quite messy on this
topic. This is mostly because of different conventions regarding the distribution of these wy,
factors, as it is also very common in QFT, only that in this kind of discussion it becomes
particularly important to keep track. The narration above is mostly based on Hagg’s book
[2] but if you look at the initial paper by Newton and Wigner [5] you will see that their
definition of the NW wavefunction is Wy (t,2) = [ de \I! e which looks more than the
covariant definition (2.3.2). Later in the paper they show that translation covariance of
this state imposes that W(p) has to be proportional to ,/w,, say ¥(p) = ,/w,¥(p) and so
we can rewrite their definition as

U (t, 7)) = /dp V) oo (2.3.28)

\/ 2wy
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where we can call Wy (p) = % which matches exactly the definition given above in

(2.3.21) which clarifies how the two definitions are consistent.

2.3.2 A field theoretic twist

First, some comments on the kind of arguments that have been presented so far regarding
the particle concept, the field concept and how they relate to each other. The spirit of
the the first chapter, following Wald [3], was that quantum field theory is the quantum
theory of fields and there is no reference whatsoever to the notion of particle. One can
easily accept this view for a QFT that comes from a classical field theory, like Maxwell’s
electromagnetism. Quantizing a classical field theory, one should end up with a quantum
field theory for light. But what about the classical (non-relativistic) mechanics of massive
particles? Once we quantize that, we end up with non relativistic quantum mechanics. It is
because of relativity, that we need to describe a massive relativistic quantum particle with
a massive Klein Gordon field, which in fact has no classical analogue (we need both ¢ and &
to form the Compton scale so that the Klein Gordon equation makes sense dimensionally,
see Appendix Al). In the end, it seems that we need a field description for something that
started out as a particle and a particle description for light that started out as a field (the
famous photons). These two notions are so interwined that one can keep chasing ones tail
indefinitely.

Even if we consider the field description as fundamental, we still need to account for
particle-like phenomenology and this is the role of the detector models that we discussed
at the end of the first chapter. But then one can ask what the detector is, a particle or a
field? And in fact, both scenarios have been investigated in the literature [16, 3, 24]. A view
that takes field theory seriously (complemented with models that can explain experience)
seems to be supported by the no go theorems of chapter 3, which seriously challenge the
fundamental status of the particle concept. So up to section 3.4 of this thesis, one has
every reason to believe that fields are fundamental, particles don’t make any sense in a
relativistic setup and all we can hope for is empirically successful detector models.

The spirit of the Newton Wigner attempt is quite the converse of that. They tried
to rescue the particle concept for a relativistic quantum theory, without introducing any
field concepts. The connection to field theoretic concepts was made later by Fulling [12].
Coincidentally, this also came up in my research when my supervisors asked me to calculate
the components of the stress energy tensor for single particle states. Their intuition was
that if we want to ask “where a particle is” in quantum field theory, a theory in which
observables are local, we should better look at the spatial profile of observables when the
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state of the field is what we call a one particle state. As we saw, in the absence of a position
operator in QFT there is no wave function to tell us where the particle might be. But one
can still refer to the Newton Wigner wavefunction, to which we managed to associate the
energy density of a 'particle’ in QFT.

We consider one particle states that are formed by acting a smeared field operator on
the ground state

W) = / da:\Il(a:)@)(a:,O)\O) = / dz ¥ (x) / \;‘% —tkza|0) (2.3.29)
e [ dk
\/2_]% Az (z)e ™" k) = \/2_/%F(k)|k) (2.3.30)

where F'(k) = F[¥(z)] the Fourier transform of the spatial smearing W(x). We see that
this is in fact a one particle state since the negative frequency part of the field operator
annihilates the vacuum.

It easy to see that for such states the expectation value of the field operator is zero and
as a result

(AD)? = (T|(D — D)?|T) = (T|D?| D). (2.3.31)

We need to calculate the expectation value of the field squared over such states

(\If|<i>2(x,t)|\ll>:( \;%F*(p)<0|&p)<i>2(xt< \j% ’T|o>) (2.3.32)

Using the usual field decomposition ®(z, ) = [ dkuy(, t)ag +uj(z, t)a! the non zero terms
this expectation value are
dp dp'
V2po \/2p),

From the commutation relation [a},a,] = 6(k — p) we have that

(F* (p)wruj (1) (0lapanal,al, [0) + F* (p)ujup F (1)) (0layakaral,0)).

(Olaparal,al,|0) = 5(k' — p)d(p/ — k) + (K — k)o(p' — p) (2.3.33)
(Olayatawal, 0y = 5(k — p)s(k' — p') (2.3.34)

and finally we get

(0|2 ) = 2 t
w1919) =2| [ S

+/;—£)|F(p)|2/dk|uk(x,t)|2 (2.3.35)
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If the smearing W(z) is square integrable, so is its Fourier transform F'(p). The divergent
second term goes away by normal ordering since (0|®?|0) = [ dk|ug(z,t)]?. Subtracting
the vacuum expectation value, the renormalized field fluctuations are

(AD)? = (U] : D2(x, 1) =2 ‘/ k)uy(z,t) (2.3.36)

—9 / z(kx wit)
2wk

So we see that the spatial profile of the expectation value of the square field operator
(and so the field fluctuations) are given by the Newton Wigner wavefunction of the one
particle state. What other quantities of a QFT could one associate to the Newton Wigner
wavefunction of a one particle state? In every quantum theory we can project the abstract
state to the basis that corresponds to the classical configuration space.! Similarly to how
we get a wavefunction for a particle through (x|¥) = ¥(x), we get a wavefunctional for
a quantum field theory W[f(x)] = (f(x)|¥), which gives the probability amplitude for the
field to be found in a particular field configuration. One then can ask, if the field is in a one
particle state, can we associate the possible field configuration with the Newton Wigner
wavefunction of that state? We find that

U[f ()] = (f(2)[0) / 0 ()W (1), (2.3.38)

This means that the probability of finding a particular field configuration is basically that
over the vacuum state multiplied with the inner product of the field configuration with
the NW wavefunction. For example a field configuration that is orthogonal to the Newton
Wigner wavefunction will have zero probability to be found.

= Wy (@, 1) (2.3.37)

Next we find that similarly to (2.3.37) we can associate the components of the stress
energy tensor to the Newton Wigner wavefunction for one particle states, exactly because
it is quadratic in the field operators. For example, the stress energy density is given by

A 1 A A A
TOO = 5[(3,5@)2 + (VCI))Z + mQ(I)Q] (2339)
Taking the expectation value over |¥) and renormalizing as before we get

Ul T k)0, 1)

:|V\I/Nw(x,t)| + [0V Nw(x,t)] +m2|\Iwa(x,t)|2

k)Vug(z,t)

F
2k

1 Schematically one can see the quantisation procedure as assigning a ket to every possible configuration,
which would be a position for a particle x — |z) and a field configuration for a field f(z) — |f(z)).
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We saw in the previous section that the Newton Wigner wavefunction is defined in a
way that it could maintain the interpretation of probability density to find the particle in
position space, similarly to non relativistic quantum mechanics. Nevertheless, in QM the
wave function is not an observable and cannot be associated with densities of observables as
above because this can only happen in a field theory, where observables are locally defined.
It is in a QFT that we managed to associate the probablity density with the energy density
of the particle, and yet in a quite non expected way. One would expect that the energy
density shall be higher were the amplitude of the probability is higher, but we see in (2.3.40)
how the derivatives also contribute. Overall we see that the energy density for one particle
states is shaped by the Newton Wigner wavefunction and its derivatives. Given this, one
could try to answer where/how such a particle gravitates using semiclassical gravity and
the semicalssical Einstein equation. To the extent of the applicability of semiclassical
gravity for such states, one can argue that gravitational field of such a particle is not only
sensitive to the “center of mass” of the particle but also the profile of the derivatives of its
wavefuntion. One can try to go one step further, and consider a superposition of such a
particle in two different locations i.e. the superposition |V) = o |W;) + 3 [¥s) of two states
with different momentum smearings F (k) and Newton Wigner wavefunctions Uy o(z,1).
We get that

(W] Too : [ W) = |al? (W] : Too : [T1) + B2 (W] : Too : |Ws) (2.3.40)
+ 2Re[a8* (VU5) (V1) + (9, 5) (0, Wy) + W5, )] (2.3.41)

If the branches of the superposition are orthogonal, say for example ¥, 5 are compactly
supported in disjoint regions, then the third term in the expression above vanishes. But
if the two branches are interfering it seems that semiclassical gravity will see the interfer-
ence. Even further, notice that the two wavefunction could be such that the third term is
negative. This is quite an interesting feature because it means that one single particle can
be characterized by negative energy density due to its delocalization in space. There are
more interesting questions that one could ask in this setup, and this is work in progress.
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Chapter 3

Local versus global

One of the most common problems that a student of quantum mechanics learns how to
solve, is the so called particle in a box. By box we usually mean an infinite square well
potential, so that the particle has zero probability to be found outside the box i.e. the
particle’s wavefunction is compactly supported inside the box. So in this set up we know
that there is one particle definitely inside the box, maybe with higher probability to be
found on the right or the left depending on what its wavefunction looks like. Then in most
quantum field theory textbooks one finds the argument that if we make the box smaller
and smaller we are decreasing the uncertainty in position so much that the uncertainty
in momentum or energy is large enough to allow for particle creation. Due to the special
theory of relativity we enter the regime where we cannot know how many particles are
in the box, and somehow we have to switch to a quantum field theoretic description to
accommodate the phenomenon of particle creation and annihilation.

On top of the physical intuition described above, we just saw some formal mathematical
results like the Malament’s theorem, only one of the results that support the common
knowledge that there is no position operator in quantum field theory and“ x is just a label
of the field operator, as it should, since the theory is supposed to be treating space and
time on equal footing due to relativity”. After all, instead of position operators we should
better be looking for local number operators in a QFT. But as we discussed the Reeh
Schlieder theorem implies that such objects cannot exist either. In the absence of well
defined position operators and local number operators it becomes unclear what are the
spatial features that one can attribute to a QFT state.

Due to all these subtleties associated with position space, momentum space is somehow
preferable in the standard quantisation procedure. This is the reason why the so called
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quanta are not particle like entities in any sense of the word, they are rather global. This
rather awkward situation has motivated the operational view that “particles are whatever
the detectors detect”. As Paul Davies puts it “there are quantum states and there are
particle detectors. Quantum field theory enables us to predict probabilistically how a
particular detector will respond to that state. That is all. That is all there can ever be
in physics, because physics is about the observations and measurements that we can make
in the world. We can’t talk meaningfully about whether such-and-such a state contains
particles except in the context of a specified particle detector measurement” [13].

Of course physical theories need to account for particle phenomenology, but this does
not shed light on the ontological question “what do the detectors detect”. This question
is irrelevant if we adopt Davies’ opinion that physics is about the observations and mea-
surements that we can make in the world, as quoted above. From a realist’s perspective
physics is about what kind of things and processes the world is made out of, independently
of us making measurements and observations. As long as we agree that there is some kind
of reality out there with which we interact, the details of our interaction with it and the
available theories through which we describe these interactions, should provide us with
some clues about the nature of reality. Of course not all elements of the mathematical
description correspond to elements of reality. It is highly non trivial how one identifies
these elements of the 'best’ working theories that we have and of those that will succeed
them, converging towards 'how things are’. Succeeding in this task we should be able
to successfully describe phenomenology without involving any 'miracles’, but a successful
phenomenological description cannot provide answers to ontological questions. To put it
simply, ontology can explain the phenomenology but not the other way around.

In the two articles that we will review below [/, 1] the authors are not necessarily
defending an ontological status of local particles but nevertheless they are introducing
mathematical notions of local quanta. After all an ontological interpretation, or any in-
terpretation, boils down to establishing a map between the mathematical formalism of
the theory and elements of reality [11]. If one wishes to defend the ontological status of
particles in QFT, they should better identify the corresponding mathematical structure
that would allow for such an interpretation. In the two articles, the authors investigate
whether there is an alternative quantisation procedure, or any alternative way of looking
at the usual quantisation of a field theory, that would allow for a notion of quanta that are
local. Nevertheless, there remains some hesitation in making the interpretative step as we
will discuss in the last section of this chapter.
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3.1 Local quanta, unitary inequivalence and vacuum
entanglement

I was particularly happy to run into this article, first because it is very closely related to my
research interests (chapter 4) and second because it serves as a very concrete example of the
abstract QFT construction that we reviewed above [3] (chapter 1). The authors apply the
alternative quantization of section 1.3.2 for a QFT in a box. As we saw, there are certain
ambiguities in this quantisation procedure which challenge the applicability /usefulness of
the particle notion in QFT. Nevertheless, the authors of this paper suggest that it is exactly
this ambiguity that we can make use of, to construct strictly localised and quasi-localised
one particle states. Their alternative quantisation procedure turns out to be unitarily
inequivalent to the ordinary one, but both constructions are argued to be “legal” and
physically relevant.

First let us ask, what does it mean to define local quanta for a QFT in a box? It
means that one can answer whether such a particle is likely to be found on the left or right
side of the box, without having to split the box into two boxes. Without going into the
discussion of what a box represents in QFT, we just comment that this question cannot
be answered in the standard quantization that uses global stationary modes. We might
have this intuition that doing QFT in a box plays some role of confinement, but everything
remains global within the box. Quanta in a box inherit all the side effects of the standard
quantisation procedure, and the only way to localize them is to define them in a yet smaller
box, which is equivalent with splitting the initial one into many. So let’s see how they go
around this issue in this paper.

As we know already, to quantise a classical real valued field obeying the equations
of motion (O 4+ m?)é(x,t) = 0 we have to introduce the complexified vector space of
solutions S® a suitable subspace of which will serve as the one particle Hilbert space. This
space is equipped with the usual Klein-Gordon (pseudo) inner product which fails to be
positive definite. Then we introduce a complete orthonormal basis of the complexified
space of solutions { f,,(z,t), i (x,t)} where m is a discrete index when we are quantising
in a box, such that (fn, fn) = dmn, ([, f2) = —6mn, (f1, fn) = 0 and as a result any
complex valued solution can be written as ®(x,t) = > amfm(x, t) + a’, [ (z,t) where
a’ = (fr,®). The one particle space is defined as the span of the positive norm modes,
so that we can complete to obtain a Hilbert space

H = span{ f, } (3.1.1)

The complex structure that we introduced in section.. in this context is simply J =
1> N fm) (fl + 1) (fii]. The definition of the one particle Hilbert space, or equivalently
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the definition of the map J, depends explicitly on the choice of basis for S which leads
to the well-known particle number ambiguity in QFT, and is also the source of unitarily
inequivalent representations.

In this paper they consider a quantum field in an one-dimensional box of size L, where
the usual choice of modes is

—ilwnt

nwT m2n2
Uy(z,t) = sin , Wp =
n( ) Lwn L n L2

+m? (3.1.2)

First we need to clarify why the quantisation that follows from this choice is global. There
is no state in the one particle Hilbert space that can be confined in a subregion of [0, L] for
any arbitrarily small time interval At. This is guaranteed by Hegerfeld’s theorem [11] and
as he says for this behaviour “no field theory, no relativity is needed, only a Hilbert space
‘H and positivity of energy”. It can be argued to be an overstatement that relativity plays
no role in this, but indeed instantaneous spreading is well known in the context of non
relativistic quantum mechanics. It is not a problem that the wavefunction of the quantum
mechanical particle W(x,t) spreads superluminally because of the non relativistic nature
of the theory. This is why the first attemt for relativistic quantum mechanics has been to
solve relativistic wave equations where a propagation velocity for W(z,t) is built in. But
as we saw in this case ¥ cannot be interpreted as a probablity amplitude, and there is no
clear connection of the variable = and the position of the particle to start with.

In the context of a relativistic field theory the field amplitude ®(z,t) satisfies a rela-
tivistic wave equation, and it does not carry any interpretation of a wavefunction, despite
what the term “second quantization” might suggest. If we were to restrict only to the
positive frequency part, the field expectation value needs to have support in the entire
cavity for almost all times (even if we specify initial conditions of compact support in a
subregion) which for example implies that observables like the Hamiltonian density will
also be generally supported in the whole box. Since ® does not have the interpretation of a
wavefunction, we can only think of superluminal propagation in terms of the local observ-
able quantities of the theory. It is the very definition of the one particle sector in terms of
only positive frequencies that makes Hegerfeld’s theorem applicable, so here they propose
an alternative definition of H that suitably mixes positive and negative frequencies so that
superluminal propagation is avoided. Another choice of local non-stationary modes, allows
for localisable one particle states i.e. local excitations that can be localised instantly and
then causally spread out in the rest of the box.

To motivate these local modes, the authors are considering what happens if we place a
perfect mirror at a location z = r < R which imposes the boundary condition ¢(r,t) = 0 Vt.
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Then we would consider the usual stationary modes {u(z,t),u*(z,t)} and {u(z,t), u*(z,t)}
at each side of the cavity
1 : Irx 1 o . m(x—1)
w(z,t) = ——e “sin—, @ = ——e “Msin——~
(1) NG ot N R—r
where w, @ the corresponding frequencies as in (3.2.2). But this leaves us with two distinct
cavities [0, 7] and [r, R] which is a different physical problem (remember, we don’t want to
split the box into two boxes!). Mathematically, these modes are in fact not suitable for
quantising the whole cavity [0, R] since they do not form a basis for the complexified space
of solutions 8% over [0, R].

(3.1.3)

The remedy that the authors are suggesting is that we can use the standard modes
(3.1.3) at some t = 0, only as initial conditions, while for later times they are free to
spread out over the entire box without satisfying the boundary condition at r. We can
convince ourselves that this would define another basis of S for the entire cavity. First
it is noted that at ¢ = 0 these modes comprise the Fourier basis in [0,7] and [r, L] and
by Fourier analysis we have pointwise convergence in £%([0, L]) norm which means we can
generate any initial condition and thus any solution of S€. To solve for all times, they
impose initial conditions

P S £ o ) o B

w(z,t=0)= \/r_culsmT (r—=x), w(r,t=0)=—iww(x,t=0)
and similarly for u. A we described in words, the initial profile of the modes is given by the
stationaty ones on each side of the box, and the choice of the first derivative is such that
these non stationary modes “imitate” the stationary ones. Instead of solving explicitly, we
can calculate the inner product of the local modes with the global ones at ¢ = 0, and since
the inner product is time independent, we can expand on the global basis to solve for all
times

U (2,1) = (Uny i) Un (., £) = (Uy ) U () (3.1.4)

n

U (2,1) = (Un ) Un (2, t) — (Uy, ) Us () (3.1.5)

n

Now we can use the basis {u(z,t),u*(z,t), u(z,t),u*(z,t)} to quantise the field in the full
cavity which suggests the following expansion for the field operator

O(,t) = At (2, 1) + Gl (1) + al,up, (2, 1) + @}, 05, (2, 1) (3.1.6)

m
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Note that this decomposition need to have four terms, rather than the usual two terms
when we expand over the global modes ®(z,t) = > A, U, (z,t) + Al Uz (z,t).

Next we notice that by construction the a, a" and @, a' associated to the non-overlapping
initial conditions commute, which implies the split

Fl=faf (3.1.7)

where f, f the Fock spaces associated with the corresponding creation and annihilation
operators {a,a'} and {a,a'}, and L stands for is local. This means that with this quanti-
sation scheme we end up with a tensor product structure between the left and right side
of the box, which is not a feature of the standard quantisation procedure.

Let us pause for a second, to compare with the scenario where instead we do have two
boxes to start with. In this case of course the Hilbert space of the composite system is
given by a tensor product. By virtue of (3.1.7) one might worry (as I did when I first
read this) that the authors have split the big box into two boxes, even though they did
not mean to. To clarify this one has to be careful with the role of time evolution, and the
translation between solutions and initial data that we established in the previous chapter.
The decomposition (3.1.7) was argued to follow from the commutativity of a,a! and a, a,
which here is guaranteed by {u(z,t),u*(z,t),u(z,t),u*(z,t)} being an orthonormal basis
for the full solution space. These modes were chosen to initially compactly supported on
the disjoint regions (0,7) and (r, L) but exactly after they will start fuzzing in a way that
they span the full solution space, so the commutativity of the creation and annihilation
operators happens non trivially, comparing to the case of two boxes where operators of
different systems trivially commute to give a tensor product structure.

We can also see how the tensor product comes about without appealing to the com-
mutativity of the operators, through the construction that we presented in the previous
chapter. We have used the identification between solutions and initial data to split only
initially the support of the solutions. If we denote as &y the solutions that are initially
compactly supported in (0,7) and Sk the solutions that are initially supported in (r, L),
the full space of solutions can be decomposed as S = Sy, & Si by linearity. One can see
that this decomposition translates into the choice of the single particle space Hy & Hg and
so the Fock space of the full theory is

Fr=FHr®Hp|=FH)@F[Hrl=f f (3.1.8)

as in (3.1.7). In this sense the commutativity of the operators follows from the underlying
tensor product structure, rather than the other way round, but always dealing with one
box.
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This tensor product structure is maybe the most important feature of the local Fock
space. It implies that the corresponding ground state is unentangled

0), =0) ®|0) (3.1.9)

and so in this way of quantizing a QFT in a box, there is no vacuum entanglement.
Furthermore, this is exactly what allows for the local quanta to be strictly localized.

To see this, first let us define the notion of strict localisation as introduced by Knight
[15]. A state |¥) is strictly localised in a region R if the expectation value of every local
observable O(z) outside that region is the vacuum expectation value, namely

(U|O(2)|¥) = (0|O(z)[0), Vo ¢ R (3.1.10)

Knight had shown that the usual global Fock states cannot be strictly localized. Never-
theless, the local quanta defined here can be, thanks to the separability of the vaccum.
Ecplicitly, let us consider a local single excitation |¥) = af |0), = |1,,,0) on the left side of
the box, noting that any observable on the right side of the box will be function of a,,, a! .
So we see that

(U0 (@, a},)|¥) = (0, 14| O(@m, @)1, 0) = (0|O (@, a,)|0) (3.1.11)

the expectation value of any observable on the right hand side of the box is vacuum
expectation value when we create a local excitation on the left side of the box, which
happens trivially because of separability of the ground state.

Next we need to see how these local excitations propagate causally, and how micro-
causality is built into this construction. To see this the authors introduce a third subregion
of the box [F, R] where 7 > r and built the corresponding Fock space f out of the creation
and annihilation operators @, a! defined in terms of local modes that are compactly sup-
ported at a later time 7 > 0. Knowing the expressions for a,a’ and @,a' in terms of the
global A, AT we can calculate that

[, al,) = (@, ) (3.1.12)

which is zero for 7 < |r — 7| which is when the two regions are spacelike separated. This
imples that the operators commute under this conditions so we can show strict locality

(1n,0]0(@, a")[1,,0) = (0r]a,O(@,a")al,|0L) = (0|O(a, a")anal|0L) = (0£|O(a, a")|0L)
(3.1.13)
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which demonstrates that the local excitation propagates causally. Note that it is not clear
if this commutativity implies some tensor product structure for Fy, or to put it differently
it is not explained in the paper if we should think of the Fock space f as a factor of Fj,
as we did before, since the modes we used to construct those were localised at a different
time. My understanding is that the reasoning I tried to scketch for (3.1.8) doesn’t go
through, exactly because the solutions are compactly supported at different times (but not
very sure about that). At least we cannot so straightforwardly decompose the space of
solutions with this choice of initial data at different times.

Finally, the authors demonstrate how the local quantisation described above is uni-
tarily inequivalent to the usual quantisation. For this they are using the following crite-
rion (that can be traced back to Fulling [12]), given a Bogoliubov tranformation between
two Fock space representations i.e. two sets of creation and annihilation operators here
{an,al,a,,al} the local ones and {A,, AT} the global ones, the two representations are
unitarily inequivalent iff the expectation value of the number operator as defined in one
representation over the vacuum state defined in the other, is divergent. In our case this
means that the expectation value local number operator N = >°  (ala, + aa,) over the
global vacuum diverges

<Og|N|0g> = O (3‘1.14)

Laura Ruetsche in [0] takes the symptom of unitary inequivalence (3.1.14) as implying
incommersurable particle notions. In the case where there exists a Bogoliubov transfor-
mation but (3.1.14) is not divergent in fact the two theorists that adopt the different
descriptions will disagree on the content of particle states, but like two rulers that use
different units of length, the measurements of one can be translated in the measurements
of the other. As Laura Ruetsche explains “In short, they agree about what states are in
the extension of the particle concept, and about what discriminations, even modal ones,
that concept makes possible. This suggests to me that the theorists disagree not about
what particles are, but about how to enumerate them. Insofar as their enumerations are
intertranslatable, their particle notions are notational variants on one another.” On the
contrary, unitary inequivalence is rather more puzzling, like two rulers that cannot be
compared to each other.

This sounds quite discouraging, why would one take the local quanta seriously if they
end up being unitarily inequivalent to the usual global ones? Crucially, despite the unitary
inequivalence, the authors point out the following mathematical asymmetry. Even though
the global number operators are not well-defined in 7, the local number operators are
well-defined in F. For example we can use the local number operators to excite the global
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vacuum which gives what they call quasi-localised states. Of course we should not expect
strictly localised states by locally exciting the global vacuum, since strict localisation was
based on the separability of the local vacuum which the global does not posses. As the
authors explain, the failure of these “quasi localized” states to be strictly localised is
directly related to the vacuum entanglement and the Reeh-Schlieder theorem.

Finally, one of the important points of the paper is the convergence of the local modes
to the global ones which is also the theme of the Rovelli paper that we will discuss next. We
need to keep in mind that this only well defined because the local modes converge to the
global ones in the strong operator topology in F¢ where they are both well-defined despite
the inequivalence of the representations. So we have to make use of the mathematical
asymmetry that we discussed above to define the limit in which the local becomes global
for r — R. Concretely, we have that

a =Y (u, Un)An + (u, UR) Ay (3.1.15)
N
where
1 (1) gin M7T
LUn) = r R 3.1.16
U = e G- (3.116)
1 I -1 l Nrr
(w, Uy) = — LU cos T (3.1.17)

AV RTQN(,U[ QN + wy

where Qn = my /1 + (8%)2 and w; = my /1 + ()2, For r — R we get that (u;, Uy) — 0

and (u;, Uy) — 0.. Another interesting limit is the one in which we are trying to localise the
particle beyond its Compton wavelength, namely r < A\, where A\, = % In this case the
authors claim that the § coefficients of the Bogoliubov transformation have to vanish and
to see that I wrote them explicitly in terms of the quantities r/\. = mr and R/\. = mR
Im(—1)" sin 2Z- 1

2N2 2 PR2\1/4(+2]2 2,2\1/4
mr(m2N? + m2R2)V4(w212 + m2r2)l/ \/1+(;_11v%)2+\/1+<7r_l)2

(w, Uy) = (3.1.18)

One can convince themselves that this goes to zero for mr — 0. What exactly changes
when we approach the Compton wavelength? In that limit, we have that

0@’n1’00 Z’ ul,UN —)0 (3.1.19)
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so the expectation value of number of local quanta over the global vacuum vanishes. This
is another manifestation of the fact that 8 coefficients vanish in this limit we have that the
Bogoliubov transformation (4.1.9) reduces to

a; = Z(UI,UN)AN (3120)

In the limit, the local annihilation operators are just a linear combination of the global
annihilation operators (and not the creation operators). This means that the two sets of
operators, local and global, ought to annihilate the same vaccum in that limit [0), — |0),.
Does this imply that the global vacuum would adopt features of the local vacuum in the
limit, like the separability between left and right of the box and accordingly the failure
of Reeh Schlieder theorem, existence of local number operators on the global vacuum etc.
This is a question that also came up in my research, on a different but yet similar set up.
We attempt to answer some of these questions in the next chapter.

3.2 What is a particle?

The motivation for this paper [I] mostly comes from the challenges of the particle notion
in classical and quantum gravity. On curved spacetime there is no preferred notion of
particle states, but still one has to account for the particle like phenomenology which
is that “particles” are entities that are detected locally. This is why the authors ask if
particles are global or local entities and quantify how these two notions converge to each
other in the limit in which particle detectors are sufficiently large. The main idea is that
QFT should be interpreted through local observable quantities, rather than a theory about
particles, and it is local observable quantities and correlators through which the authors
are defining the convergence of the local to global particle notions in the weak topology.

This is easier to see first in the example of a chain of n coupled harmonic oscillators
¢;, © = 1...n described by the Hamiltonian

n n—1

1

i=1 =1

By diagonalising the Hamiltonian we obtain the normal modes of the system Q),, a = 1...n
in terms of which we define our notion of global quanta as usual. The eigenstates of the
Hamiltonian are of the form |nq,...,n,) where n, the number of excitations of the a-th
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normal mode. So from now on the index 7 is to indicate the local degrees of freedom while
the index a indicates the global normal modes. Now let us consider the state

i) =Y Ui |1a) (3.2.2)

where [1,) = |0...1,...0) a single excitation of the a-th global mode. This is a one- particle
state, in the global sense, which we could think of as concentrated mostly on the i-th local
oscillator. But crucially this is not what we would call a local excitation of the i-th degree
of freedom, denoted as |7),,.. The main point of this paper is demonstrated by exactly

contrasting the two states |i) and |i),,..

Let us now define |i), . by splitting the chain of oscillators in two regions R; and R»
where region R; consists of the first n; degrees of freedom that act on a Hilbert space H;
and Ry consisting of the remaining degrees of freedom acting on a Hilbert space Hs so that
the total Hilbert space is H = H; ® Ho. We can also split the Hamiltonian in the local
terms of the two regions plus the interaction terms H = H; + Hy + V. Now we want to
define local excitations in region R;, keeping in mind that the state (3.2.2) with i < ny is
rather a global state in R;. If we make a local measurement in region R; we cannot end up
with a state like (3.2.2) since it cannot be an eigenstate of any local observable. Since this
state is constructed out of normal modes it is generally a state in which the two regions
are correlated.

Now if we restrict to observables in region R; like the local Hamiltonian H; and find
the normal modes that diagonalize only H; then we can define the local vacuum |0), and
similarly to (3.2.2) we can define

i)y = > Ui [b), (3.2.3)

where b = 1...n; is indexing the normal modes in the region R,. By repeating this procedure
for the region R, we can define the local vacuum |0), as the lowest eigenstate of Hy alone.
Then we can define the local vacuum |0) = |0), ® |0), and the state

[10e = 1)1 ©10), (3.2.4)

The claim is that this state, rather than (3.2.2), is what can be measured by a local
detector in region Ry. Then the question is whether [i), . — [¢) in the limit where R,
is sufficiently large. Turns out that this is not the case since |i) captures correlations
between the two regions that are not captured by [i) Nevertheless, what is converging

loc®
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is the expectation value of local measurements. One of the main claim of this paper is that
local observables cannot distunguish the local from the global states in the limit that the
subregion is sufficiently large.

To demonstrate this point the authors consider the measurement of a local excitation
in region R; as represented by the projector P/° = |i), (i|, when the system is in the global
state |7). The quantity

(1| Pl°°li) = 1 — » (3.2.5)

T 16 o

captures the error between the local and global states, since if we replace |i) with |i), . this
probability would be equal to 1. We see that the correction is second order in the coupling
strength A\ in the Hamiltonian, which makes sense since it is exactly the correlations be-
tween the two regions induced by the interacting Hamiltonian that creates this difference
between local and global. We also observe that this quantity is independent of n; i.e. the
size of the region which shows that 'smaller’ local excitations do not differ from the global
excitation |¢) more than the 'bigger’ ones as one might have expected.

Overall they conclude that global and local do not converge in the Hilbert space norm
since |i),,. # |¢) but they do converge in the weak operator topology. To put it simply,
for the purpose of describing particles as somehow local entities we should better refer to
local observables rather than local states. Quantum field theory is naturally providing us
with local observable quantities, since observables are functions of the field operators, but
the notion of local states is more tricky.

The local object that the authors examine for a scalar quantum field theory is the two
point function. They show how the two point function over the local vacuum converges
to the one over the global Minkowski vacuum. For that they consider a quantum field
theory in a box of size L and a local detector of size R, and for a massive quantum field
theory the Compton wavelength A. = 1/m is the lengthscale to which we can compare
both the size of the box and the detector. Note that similar to the previous paper we have
three characteristic length scales, but now “the size of the detector” plays the role of the
subregion in the box. The subregion considered in the previous paper was crucial in how
the local quantisation lead to unitarily inequivalent Hilbert spaces which seems not to be
an issue in this paper.

The authors calculate the two point function of the field in the box over the local
vacuum, and after a lengthy calculation it turns out to be

(Ozl(z, t)p(2",)|0L) = % Z[Ko(mbﬁ — 2’| 4+ 2nL) — Ko(m|z + 2’| +2nL)]  (3.2.6)

n
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where K| is the so called Mac Donald function. In the case that the Compton wavelength
is much larger than the size of the box i.e. m/L > 1 this function becomes

™

—m|z+z’+2nL| 3.9.7
(m\xix/|+2nL|)e ( )

Ko(mlz £ 2| + 2nL) = \/2

so we see that it falls exponentially in mL i.e. the ratio of the Compton wavelength with
the size of the box. In this limit Ko(m|z — 2'|) > Ko(m|z + 2'|) which for 0 < z,2' < L
gives

limg 0 (Or|¢(2, £)o(a', £)[0) = %Ko(mlx —a'[) ~ (0l (z, t)p (2, 1)[0) (3.2.8)

so away from the boundaries of the box the local two point function converges to the one
calculated over the global vacuum.

Returning to the initial motivation about local observables, note that for example the
stress energy tensor components can be written as functions of this coincidence limit of
the two point function as we learn in Wald [3]. So the convergence of the two point
function (3.2.8) should go through all the way to stress energy tensor components, but this
would be something to check explicitly. Then indeed we would be justified in describing
particles through their local energy momentum since the energy tensor components would
be insensitive to the difference between local and global states. Nevertheless the authors
discuss that the distinction between global and local remains important at a conceptual
level. If we ask ourselves what kind of entities is a quantum field theory describing, we
might be tempted to say that it doesn’t really matter given the analysis above, they could be
local or global as long as any local measurement cannot tell the two apart. We need to keep
in mind that the global particle notion tight to the global symmetries of spacetime which
does not survive on curved spacetime snd this is privileging the local notion. The global
notions are not generalisable on curved spacetime so we have any reason to distrust them.
As the authors put it “local particle detectors detect particles also on curved spacetime”.

As to whether a quantum field theory is a theory about particles, the authors argue
that the answer is partially yes and partially no. Fock particles do not correspond to
real physical objects since they carry 'unpalatable physical properties’ and they cannot
be detected by a localized detector. The elements of the Fock basis, providing us with
the particle content of a QFT state, forms this picture of a QFT state consisting of a
superposition of fixed particle sectors. This is mathematically precise but it is not to
be taken literally since with no experiment we can measure the global number operators
which would reduce the state to one of the fixed particle sectors. The Fock basis is a useful
mathematical construction, but it is an unphysical one.
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On the other hand, eigenstates of local observables are somehow more physical. In
contrast to Fock states that are defined once and for all, the notion of a local particle
depends on the observable we want to consider and as the authors say '“no observable
is more real than others”. Since local observables in a given region in general will not
commute there is no unique local particle basis. In the absense of local number operators
(as an implication of the Reeh Schlieder theorem) really all we have is local observables
providing us with complementary characterizations of the same local object that we call a
particle. The authors close the paper with the phrase that “the world is much more subtle
than a bunch of particles that interact”.

3.3 What do particle detectors detect?

It is a common view amongst the philosophers of quantum field theory that QFT is not
a theory about particles [16, 17, 34, 6]. So far we mostly presented negative arguments
about localizabiilty and local countability, but there are many more reasons why QFT’s
cannot support a particle ontology. These reason are acceleration on flat spacetime (Unruh
effect), the curvature of a general spacetime and the existence of interactions [31]. In all
these reasons it is relativity that undermines the particle interpretation. If QFT’s are not
about particles, then what are they about? A natural guess would be fields, but this is also
depatable for similar reasons [13]. If one comes up with some ontology for QFT that does
not involve particles, then it seems mysterious why the detectors respond in the way they
do. The mystery can be resolved only by grounding the detector models on the theory and
the ontology that it admits. As Doreen Fraser puts it in [19] “Davie’s slogan is "particles are
what particle detectors detect’. On its own, this brand of operationalism about particles
addresses the first motivation for a non-fundamental particle notion, namely to account for
the phenomenology of particle detection, but does not adress the other motivations. The
other motivations require a connection of the experimental context of particle detectors
and the theory. How does QFT enable us to predict the response of particle detectors?”.

The spirit of both papers is that the global features of the particle states (quanta)
is rather an artifact of the quantisation procedure, and so it does not provide the basis
on which one can doubt the fundamental status of particles in QFT thought of as local
entities. In both papers the authors propose candidate states that can play the role of
local particle states and then they examine the limit in which these local notion converge
to the global ones. In this sense both papers express the view that the global particle
notion (quanta) is approximate. It provides an approximately accurate description of the
states that each approach identifies as representing the system.“The particulate properties
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of global Fock space are an artifact of the simplification taken by approximating a truly
observed local particle with easier-to-deal-with Fock particles” [34].

Nevertheless in neither approaches the authors are making strong ontological statements
about the nature of the proposed local particle states. In the Colosi and Rovelli paper (I)
emphasis is given in the local nature of observables through which they define their local
particle notion, but with this they rather justify the operational view that “whether a
particle exists or not depends on what I decide to measure”. In the paper by M. Rodriguez-
Vazquez et al (II) the ontological status of the proposed local states is unclear to me due
to the unitary inequivalence. As we discussed the authors are proposing a local notion of
particle states that live in a representation which is unitary inequivalent to the usual one.
Since the two representations are unitarily inequivalent, this raises the question of which
one should we take seriously at an ontological level. One can wonder why the issue of
unitary inequivalence does not come up in I. In this spirit one has to carefully identify the
similarities and the differences between the two constructions. My understanding is that
the local particle notion proposed in I is within the context of the standard quantisation
procedure. The remedy they are proposing is to remove attention form the global nature
of the Fock states to the local nature of observables through which they can define particle
states locally but nevertheless living in the same Hilbert space, namely the Fock space
spanned by the global particle states.

Even though II is thought of as a follow up to I, the proposed remedy is of a different
type. The authors introduce a set of local creation and annihilation operators in terms
of which they construct an alternative, unitarily inequivalent Fock space representation
that can support what they call “local quanta”. The term might even sound paradoxical
since the term quanta was originally adopted to emphasize the global features of the Fock
particle states, but in fact this term captures the essense of their proposal. Fock space
constructions provide us with a notion of quanta, but nothing prevents us from using an
alternative Fock space that has the desired local features built in by construction. Overall
the alternative construction introduces features that are not existent in the usual global
Fock space construction, neither in I. One of these features is the separability of the local
vacuum state, which allows for the existence of local number operators since the Reeh
Schlieder theorem does not apply. This was also the reason why they can create strictly
localised states by locally exciting the local vacuum, while in the usual quantisation we
know that no state of fixed particle content can be strictly localised [15]. In fact in II there
cannot be a notion of local number operator, which is the reason why they emphasize that
it is not the states that we should be looking at but rather the locally defined observables.
On the contrary, in I the observables on the two sides of the box as somehow trivially
localised thought of as functions of the corresponding creation and annihilation operators
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that are by construction associated to each side.

The existense or absense of unitary inequivalence also changes the notion of convergence
that the authors of either paper are using. As we saw above, in II it is emphasized that
eventhough the local states do not convrege to the global ones, expectation values of
observables converge to each other so the limit is taken in the weak operator topology.
In I they work out the Bogoliubov transformation between the local and global creation
and annihilation operators, first to demonstate unitary inequivalence. For example if one
were to ask whether the local vacuum converges to the global vacuum in some limit, this
would be an ill posed question since the two vacua live in unitarily inequivalent Hilbert
space representations. This is where the mathematical asymmetry played an important
role, because the local operators are well-defined in the global Fock space eventhough the
inverse is not true. This allowed to define the local to global convergence in the strong
operator topology with respect to the global Hilbert space F; where both objects are
well defined. This might sound like a technical remark but I think it is important for the
following reason. This mathematical asymmetry is exactly the reason why it is “legal” to
use the local excitation operators to excite the global vacuum which led to the so called
quasi localised states.

On the question of physical equivalence, in a seminar given at Perimeter Institute by
one of the authors of II, the speaker elaborated on this point when the question was raised®.
What they claimed is that in a practical situation in which we only have access to the field
by coupling a detector to it, the coupling will effectively introduce an ultraviolet regulariza-
tion for the field. If the field is in the box (I am assuming, not explicit in their argument)
we also have an IR cutoff which makes the degrees of freedom finite. For finite degrees
of freedom the Stones Von Neumann theorem applies and there cannot be inequivalent
representations. Along these lines the speaker claimed that unitary inequivalence is an in-
teresting mathematical feature, but from this perspective “it does not seem to be an issue
for physics”. One of the most important results on the issue of unitary versus physical
equivalence is Fell’s theorem. As we briefly saw in the previous chapter, the theorem states
that any finite set of measurements of finite accuracy cannot distinguish two inequivalent
representations. From the operational point of view this theorem settles the issue in the
sense that unitary inequivalence can be argued to be physically irrelevant which resem-
bles a lot the spirit of the answer presented above. Indeed introducing detectors one can
argue that they should not be able to tell inequivalent representations apart on the basis
of Fell’s theorem, even without involving regularisations that the detectors shall introduce
to get rid of the unitary inequivalence at the first place. The motivation for this would
be that Fell’'s theorem is a general mathematical result that should hold in any concrete

! http://pirsa.org/14050117/
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realization, while the detector coupling along with the regularisation that it would intro-
duce is model dependent. I would like to investigate these two aspects in the context of
the Unruh-DeWitt detector model that is broadly used in Relativistic Quantum Informa-
tion, and as introduced by Wald [3]. How do we specify a detector model that couples to
the local rather than the global quanta of the QFT? Can we apply Fell’s theorem to see
the two notions are physically equivalent (under a given precision)? Such questions about
inequivalent particle notions have been investigated in [50] by means of Fell’s theorem to
argue that Rindler quanta are in fact “real”, and could be applied in the context of II.
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Chapter 4

Impacts of relativity on localizability
and vacuum entanglement

As we discussed so far, in relativistic quantum theories there are many subtleties associated
to position space which is why momentum space is somehow preferred in the quantisation
procedure, blurring the particle interpretation of a QFT. In the quest of answering whether
one can describe localized particle-like entities in a quantum field theory, it is helpful to
clarify how one creates local excitations i.e. how to excite the ground state of a quantum
field locally over a bounded spatial region. To form what we call “local excitations” we
have to recruit local creation and annihilation operators {a,, al} ! indexed by the position
space variable x, the same z as in the field operator, to excite the ground state |0). From
the perspective of the Reeh Schlieder theorem this would seem as a hopeless expectation,
since it implies the non existence of local creation operator (section 1.5, equation (1.5.8)).
Nevertheless, it is worth attempting in the context of ordinary quantum field theory to see
concretely what is problematic about local excitations, but also what tools are available.

To define local creation and annihilation operators, we will recruit the analogy between
a free massive Klein Gordon field and an infinite collection of harmonic oscillators. This
analogy is usually made in momentum space (through the normal modes decomposition)
but it can also be pursued in position space where one can define an infinite collection of
coupled harmonic oscillators. This way we can compare the local and the global descrip-
tion in the fully relativistic theory, but also under a non relativistic approximation. The
reason for studying the non relativistic regime of the theory, is that most of the features

L Just to clarify that the {, } notation is used to bracket these objects and not to denote their anticom-
mutator.
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or problems of a relativistic quantum field theory, are usually blamed to relativity. Mala-
ment’s and Hegerfeld’s theorems shows that a position operator cannot be compatible with
relativistic causality, and the Reeh Schlieder theorem is formulated for relativistic QFT’s
2. By “undoing” what relativity is doing in the non relativistic limit we can ask, do we
recover notions of localizabiltiy? Looking towards low energies, one finds the widespread
applicability of non-relativistic quantum mechanics (NRQM), a theory in which particle
states are localizable by means of their wavefunction, which seems to imply that NRQM
can support a particle ontology. So it is natural to ask whether one can make contact
between the NRQM description of particles and some appropriate notion in the latent
QFT.

What precisely is the difficulty with localized particle states in a relativistic QFT? The
problem can be seen as a result of competing requirements that one would like to attribute
to such states. Perhaps the most basic requirement is that particles should be entities that
can be counted (there should be an observable number operator acting on a corresponding
Fock space), that particles should persist in time (at least in free theories) and that the
particle excitations should exhibit the appropriate relativistic dispersion relation between
mass, momentum, and energy [17, 11]. What are the obstructions to localizing particle
states that satisfy these requirements? We wish to investigate whether the incompatibility
of these requirements is smoothed out in the non relativistic regime of the theory, where
one would wish to recover localizable and locally countable particle states. Finally, it
has been argued [1, 52] that localizability of particle states is further obscured by the
existence of vacuum entanglement, which has been argued to be a relativistic effect. We
wish to investigate whether a diminishing behaviour of vacuum entanglement allows for
the recovery of localizability of particle states in the non relativistic limit.

Most of the material presented in this chapter is a result of my collaboration with Jason
Pye, and is included in a paper that is under completion.

4.1 An infinite collection of harmonic oscillators

As we explained in section 1.2.3 to move from finitely many to infinite harmonic oscillators,
we had two strategies to choose from. The most straight forward one would be to work
with the infinite tensor product, and the second one is to use the structure of the classical
space of solutions to define a Fock space as copies of what is called the one particle Hilbert

2Even though one can find both positive and negative arguments in the literature as to whether the
Reeh Schlieder theorem applies in Galilean QFT’s [51, 40].
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oo

FH] = PH™)s (4.1.1)

n=0

The Fock space is the main Hilbert space structure that one wishes to associate to a
quantum field theory, because it naturally represents the quanta interpretation of a QFT
as a theory that can describe a system with indefinite number of quanta, that is a theory
that can describe “particle creation and annihilation”.

Nevertheless, the second strategy establishes the formal analogy between a quantum
field theory and an infinite collection of harmonic oscillators, say indexed by ¢. The Hilbert
space of such a system corresponds to an infinite tensor product structure ®;°H, that I will
refer to as i—TPS. Most commonly the analogy is motivated by the form of the Hamiltonian
in position and momentum space, in which cases © = z or k accordingly. Then the Hilbert
space would be a continuously infinite tensor product, unless cutoffs are imposed. The
second strategy is not usually undertaken explicitly because infinite tensor products are
tricky to define. Nevertheless, this is the structure we are appealing to in this project since
infinte tensor products can be suitably defined (as I reproduce in Appendix B) establishing
an explicit relation between the Fock space and the infinite tensor product.

Here I would like to sketch how the Fock space structure of the Hilbert space relates
to different i—TPS structures, and then we will address the particular cases in which ¢
represents position or momentum. Each Fock space construction (for a given basis of H)
is associated to a set of creation and annihilation operators, and a vacuum state defined
as the state that is being annihilated by all the annihilation operators. If {e;} a basis for
‘H then

FH] = @M, (4.1.2)

where H; is the space where the creation and annihilation operators a; := ale;] act. As
we saw in section 1.2.2 (equations (1.2.13)-(1.2.14)) if the basis {e;} is orthonormal the
corresponding creation and annihilation operators satisfy the algebra [a;, a}] = ¢0;; and the
corresponding vacuum is defined as

a; 10) = 0 Vi = |0) = ®;]0), (4.1.3)

Equation (4.1.2) provides the relation between the two ways of viewing the Hilbert space
of a QFT, the Fock space and the infinite tensor product. Every change of basis in the
single particle sector of the Fock space, corresponds to a different tensor product structure
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of the Hilbert space, a “rearrangement” of the degrees of freedom or a different infinite
collection of harmonic oscillators through which we are describing the quantum field theory.
For another orthonormal basis of H say {f;} we have another j—TPS of the Hilbert
space and the corresponding operators a[f;] := a; are related to the previous ones via
a; =y .(ef, fj) a;. Since there is no mixing (zero f coefficient) the two annihilate the same
vacuum (4.1.3), that is |0) = ®; |0);, = ®, |0),.

I would like to comment that it is not clear what is the physics that one can associate
to these different tensor product structures and (4.1.2) can only establish a purely mathe-
matical (formal) analogy. Nevertheless, a physical analogy is usually motivated in the case
that ¢ represents position or momentum, interpreting the QFT as an infinite collection of
uncoupled harmonic oscillators in momentum space, or an infinite collection of coupled
harmonic oscillators in position space. In [53] it has been proposed that tensor product
structures are observable induced, in the sense that the observables associated to each of
the “parties” of the tensor product should better be physically accessible. Otherwise we
are dealing with a mathematical decomposition of the system that can be argued to be
physically irrelevant. Here, appealing to the position space z—TPS can be physically mo-
tivated in terms of “local access” to the observables of the theory that are locally defined
in a QFT. Moreover, a well defined notion of ®,H, can be recruited to define localized
subsystems.

4.1.1 From global to local: The two localization schemes in QFT

In this section we will define the local degrees of freedom and we will consider how one moves
from position to momentum space, which in NRQM of a single particle we can simply do
with the Fourier transform. In analogy here, can we use the Fourier basis in the one particle
sector H of the QFT to switch between the two tensor product structures (z, k—TPS) as
we described in the previous section? It turns out that to go from momentum space to
what we would naturally call position space in a QFT we need to do something more
radical, which is to move to a different Hilbert space and yet a unitarily inequivalent one.

To define local creation and annihilation operators, we will recruit the analogy between
a free massive Klein Gordon field and an infinite collection of coupled harmonic oscillators
in position space. This analogy is usually made in momentum space, inspired by the form
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of the Hamiltonian

1 =3 [ N + (Vo) + ko)) (1.1.4)
- —% /dx [mc2 (ala, + azal) — QH_m (! + a2)V2(al + a,) (4.15)

where the local creation and annihilation operators are defined through the field operators
O(x),[I(z) as

m 7
ay = 1| —=P(x) +
( ) \V2m

2
We see that these oscillators are coupled through the Laplacian operator, which is exactly
what we “switch oft” with the Fourier transform to define an infinite collection of uncoupled
harmonic oscillators in momentum space. We also note that we can desinde the local
oscillators (4.2.4) only for a massive field, and the mass of the fields specifies their frequency.

(). (4.1.6)

As we saw, the Reeh Schlieder theorem asserts that there are no local creation and
annihilation operators which seems to be at odds with definition (4.2.4). This is because
we could define non-zero annihilation operators over a region by smearing (4.2.4), which
would contradict the implication (1.5.8) of the theorem. The reason we do not run into this
contradiction is that the theorem does not apply because the local annihilation operators
do not annihilate the global vacuum (as the theorem requires). Of course they define their
own “local vacuum” through

a,[0), =0, Va (4.1.7)

but this is not the ground state of the Hamiltonian (4.1.5). The ground state |0) is the
‘global vacuum’ defined by the annihilation operators in momentum space ay, [0), = 0Vk.
To summarize

10) = 10) # 10), - (4.1.8)

One can see this through the Bogoliubov transformation between the two sets of creation
and annihilation operators {a,, a}} and {ax,al} (derived in Appendix A). We get that 3

1 [ dk
2] Vor

3We are writing everything in 1 + 1 dimensions only to avoid heavier notation.

Ay

[c+(k;)eik"”ak +c_ (k)e*ik’”a,t] . (4.1.9)
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The coefficients are given by cx(k) = [1 + (k/ko)?]”* £ [1 + (k/ko)?]"* where k. = mc/h
the Compton wavelength.

We see that the local annihilation operators are a mixture of the global creation and
annihilation operators, which is why the two sets of operators do not define the same
vacuum. The fact that the ground state is not the local vacuum

0) # [0), = ®.[0), (4.1.10)

also demonstrates that the ground state is not separable with respect to the local degrees
of freedom and so the ground state is entangled. As discussed in [1] it is the entanglement
of the ground state that prevents the existence of local creation and annihilation operators
over the global vacuum |0),. On the other hand, the local vacuum [0), can be annihilated
locally by (4.2.4) since it is separable and the Reeh Schlieder theorem does not apply.

From the perspective of the local harmonic oscillators, the field amplitude ®(x) is the
amplitude of the oscillator at each point x with L£5(R,d®(z)) being the corresponding
Hilbert space. Then one can think of the total Hilbert space of the collection of oscillators
as

®.La(R, A (z)) (4.1.11)

i.e. the continuously infinite tensor product of H, := Lo(R,d®(z)), the space where the
local operators (4.2.4) act. Following Appendix B we can establish that

@, La(R, d®(1)) = F[Ly(R, dz)] := F, (4.1.12)

to define the continuous tensor product as a separable Fock space, that we denote as the
local Fock space Fp,.

Distinct from the local quantization, the most popular quantization scheme *, as seen
in most particle physics textbooks, is to quantize the normal modes of the free Hamiltonian
of the theory. In flat spacetime, the normal modes for the free Klein-Gordon theory are
simply plane waves. In Fourier space, the Hamiltonian is

1 dk w?
H== 2T, 1% + =2 | By |2 4.1.13
5 o [C’ k| +C2’ k| ( )
1 dk
hwi(alax + agal). (4.1.14)

“2) Vor

4The main appeal of the momentum space quantization scheme is that the “global” excitations aL 10)
exhibit the appropriate relativistic dispersion relation between mass, momentum and energy.
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where wy = c\/k? + k? and the momentum space creation and annihilation operators

defined as
Wi , 2
=4/ ——=® I1,.. 4.1.1
a \ 2hc? F +Z\/ 2hw, F ( )

The corresponding Hilbert space is the usual “global” Fock space as defined in chapter
1 and will be denoted Fg as opposed to the local Fock space Fj defined above. The
Bogoliubov transformation (4.1.9) is associating operators that act on different spaces,
namely {a,,al} acting on Fr, and {a, aL} acting on Fg. In Appendix B we demonstrate
that F;, and Fg are unitarily inequivalent unless further conditions are imposed. When
two Hilbert spaces are unitarily inequivalent, it basically means that the operators that
are acting on one of them cannot act on the other. The unitary inequivalence of F; and
F¢ can be seen as the concrete Hilbert space version of the abstract algebraic statement
that “there is no local number operators” meaning there is no local number operators in

Fa.

As we discussed in the previous section, changing a basis in the one particle Hilbert
space H can be seen as a rearrangement of the degrees of freedom, or a different infinite
collection of harmonic oscillators through which we are describing the quantum field theory.
In this spirit, one can start from the global Fock space F¢ and define a change of basis
through the Fourier transform of the global creation and annihilation operators

i dk
v V2T

This definition is inspired by NRQM where we switch between position and momentum
space with the Fourier transform. In fact, these operators are commonly introduced in
the literature as non-relativistic field operators [54, 55]. In the following section we will
comment on the relevance of these operators in the non-relativistic limit. However, first
we must clarify that perhaps counter to expectations, the index y is not what we would
naturally identify as corresponding to a point in space. One can use the Bogoliubov
transformation between the local and global creation and annhilation operators (4.1.9)
and the definition (4.1.16) to derive the transformation

e*ay,. (4.1.16)

ay = /dx[F+(y—:1:)ax+F_(y—x)a;rc], (4.1.17)

where Fy (z) = [ %eikxci(k), the Fourier transform of the Bogoliubov coefficients (4.1.9).

The operators {a,,al} we defined in terms of the field operators ®(x),II(x) so the are the
ones that we would naturally associate to the local degrees of freedom. We see that the
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relation (4.1.17) between {ag,al} and {a,,al} is non-local, and in that sense y does not
represent the local degrees of freedom faithfully. Although the functions F, are non-local,
they decay asymptotically as Fi(x) ~ e *l#l and hence the non-locality of the operators
a, is suppressed at distances much larger than the Compton wavelength of the field.

At the kinematical level, the difference between the two localization schemes {a,,al}
and {dy,dz} is the difference between changing a basis (of Fg) and changing a Hilbert
space (moving to Fr). Again, because of the unitary inequivalence {a,,al} are not well
defined in Fg. The best we can naturally define in Fg is the “non relativistic” ones
{ay, ELL}. In the next section we investigate if in any sense the two localization schemes
coincide in the non relativistic limit. Finally, from the definition (4.1.16) it follows that
|0) = ®,|0,) since the two sets of annihilation operators ought to annihilate the same
vacuum. We see that the ground state of the Hamiltonian is separable with respect to the
y degrees of freedom, which faithfully represent the local degrees of freedom x only up to
the Compton scale. This observation motivates asking what is the fate of the ground state
entanglement towards the non relativistic regime of the theory, which we investigate in the
last section. We close this section with a table that summarizes the differences between
the two localization schemes as defined in (4.1.9) and (4.1.16).

Scheme 1: {a,,al} Scheme 2: {a,,a}}

locally related to @, I1(x) non locally related to @, I1(z)
Bogoliubov mixing of {a;,al} | Fourier transform of {ay, a}}
0) # @4 |0), 10) = ®,10), ("

live in F, % Fq live in Fg

4.2 The non-relativistic approximation

The non relativistic limit for a classical particle, is the limit of small velocities as compared
to the speed of light v/c < 1. The velocities in question are typically the velocities of each
of the individual particles in the system (and not, for example, the total momentum, which
could be small for, e.g., two particles moving near the speed of light in opposite directions).
It is less obvious how to take this limit for a quantum particle, and even more so in the
context of QFT, a theory that can accomodate multi-particle states. A QFT naturally
provides us with a momentum operator that corresponds to the total momentum operator.
To take the non relativitic limit, we need to impose a restriction that guarantees that also
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for multi particle states the momentum of each of the particles is sufficiently low, since this
is not a priori guaranteed by cutting of the spectrum of the total momentum operator.

For more general single-particle wavepacket states of the form [ \‘/i—%w(k)a}; 0),, one
may consider declaring that such particles are “slow” if the expectation value and the
variance of the momentum is small. For example, this could be achieved by restricting
the set of allowable wavepackets to those with a suitably quick decay at large momenta.
However, this space fails to be a closed linear space, which is crucial for the superposition
principle to hold, since as we will see it is these wavepacket functions which become the
wavefunctions of particles in the non-relativistic limit. The only means to ensure this is
to impose a hard cutoff on the set of allowable wavenumbers, i.e. the support of these
wavepackets should be restricted to supp(¢)) C {|k| < A}, where A is a cutoff such that
A/k. < 1. The corresponding single particle Hilbert space (bandlimited wavefunctions)
will be denoted B(A). Notice that imposing such a cutoff picks out a preferred frame (that
is, we break the Lorentz-invariance of the theory at this stage) but of course there cannot
be a frame-independent notion of “slow”.

To build towards multi particle states, let us now consider a general two-particle state
i dkldk?@b (k1, k:z)aklak2 |0).,. The appropriate restriction would be to limit the support of ¢
in both variables k; and ks to the region {|k1|, |k2] < A}. Hence, the two-particle subspace
of the theory should be identified as (B(A)®?)g, and similarly for higher particle-number
subspaces. Overall, our construction will be to create the Fock space out of symmetrised
copies of B(A), namely define it as F[B(A)]. This is a subspace of the global Fock space

and it is where the non relativistic approximation holds. Because this restricted Fock
space is a subspace of the global Fock space, it is straightforward to define the restriction
of operators to this subspace, for example, the total momentum operator becomes

A

Pl rpy) /k|< Vo

which we see is simply a restriction of the integration range of the k values. As we men-
tioned above, this is different than a restriction of the spectrum of P, which consists of
elements of the form f dkhkn;, where £k € R and ni € INy. Hence, a restriction on the

——hk alay, (4.2.2)

spectrum of P would also entail a restriction on the admissible values ny, which is not
the aim here since a state of many slow particles would have large total momentum, but
should be admitted to the non-relativistic regime.
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Note that one can also think of the bandlimited Fock space as obtained by removing
(tracing out) the set of degrees of freedom associated with wavenumbers above the cutoff,
ie.,

F[B(A)] 22 ®@penLa(C, dBy) C F[Ly(R", dk)] = @5 La(C, dDy). (4.2.3)

Then an operational means through which one could motivate this kind of cutoff necessary
for the non-relativstic limit is through an interface with a probing system which only
couples to this subset of modes. This could occur, for example, in a detector model
which couples to the field via a bandlimited smearing function, which intuitively would
correspond to a large detector (compared to the Compton wavelength of the field). We
can consistently describe the physics restricted to F[B(A)] = ®pj<aL2(C,dPy), since in
the free theory each k sector is decoupled.

In analyzing the behavior of the QFT in the non-relativistic limit, we will need to under-
stand how various operators behave in the regime where A/k. < 1. For our purposes, we
expand various operators in powers of A/k. and characterizing them in the non-relativistic
regime by keeping terms up to second order (the kinetic term of the Hamiltonian). For
example, we can expand the Bogoliubov transformation between the local and global cre-
ation/annihilation operators (4.1.9) by expanding the coefficients c. (k) in powers of A/k..
To second order, these coefficients become ¢y (k) ~ 1 and c_(k) &~ %(k/k.)?, hence the
Bogoliubov transformation is

dk 1/ k\?
. L P 4.2.4
’ /k<A Vo [ak 4 (kc> a_k] 424

We wish to understand the impact of relativity on localizability by taking the non
relativistic limit, to see what features of NRQM one recovers in the limit. The features
we are interested in are both dynamical and kinematical. Do we recover a Schrodinger
type of equation and, starting from QFT, what is the object that can play the role of a
wavefunction in the limit? Do we recover a position operator and the Heisenberg algebra
accordingly? As we will describe, the recovery of non-relativistic QM from QFT is only
approximate, and we will discuss how it differs from standard NRQM.

The key difficulty comes from the comparison of the two localization schemes {a,,al}
and {a,,al} that we introduced in the previous section. Features of the two schemes have
been investigated in the literature [51, 56]. Here we are comparing the two localization
schemes in the non relativistic limit. As we are finding, they do not coincide in the limit as
someone would hope, so we are still in the awkward situation of having to choose between
the two. We make this choice by demonstrating which one can better imitate the quantum
mechanical behaviour in the limit.
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The subspace in which we wish to recover the quanum mechanical description is F[B(A)]
in which we can define a, = kaA e*¥a;, and we can write (4.2.4) as

Uy _%_l/kkAj%(k)QT (4.2.5)

We see that the two operators differ at second order of the expansions. We observe that
the difference does not matter for quasi-localized one particle states but it does matter for
higher particle states. To see this let us consider the state |¥(t)) = [ dz¥(z,t)al |0) where
|0) is the global vacuum. This is called a quasi-localized state because we are acting with
the local creation operators on the global vacuum, which we are allowed to do because of
the cuct off (see Appendix B). Through (4.2.5) we see that

|W(t)) = /dw@(z,t)al |0) = /d:v\I/(ac,t)&L |0) (4.2.6)

which means that the two schemes coincide for these states. Nevertheless, it is easy to
convince ourselves that for higher particle states the two schemes differ. For example, for
a two particle state we find that

o) = / day deg¥(a1, 23)al al [0) (4.2.7)

1
/dml dzo ¥ (21, 22)al al |0) — Z/dl'ldl'g\lf(l'l,xg)g(l'l,l‘g) |0) (4.2.8)

2 .
where g(x1, 23) fk|<A pvr ( ) eik(z1—22)

We see that al ..al [0) and al ..al [0) are different states for N # 1. Tt is the

wavepackets of the first kind

(1) = /dxl...de\p(xl,...,xN,t)a;...a;N 10) (4.2.9)

that evolve under a multi-particle Schroedinger equation in the non relativistic limit. To
consider the time evolution of these states we need to restrict the Hamiltonian operator
(4.1.5) in the subspace F[B(A)] where our approximation holds

1 dk h?k?
Hlzipy = /k| N [ ‘- om } atay (4.2.10)
<
2
/dy [chQTay — Qh—~TV2 ] (4.2.11)
m
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We see that in fact the restricted Hamiltonian in terms of the {al, a,} operators takes
the form of a non relativistic Hamiltonian as we would expect in the limit.

Note that if we were to recruit the {a, a,} operators for the full relativistic Hamiltonian
(4.1.5) we get

1 dk
H = / wka ap = /dydy fly—y )EL ay, (4.2.12)
[k|<A V2 g

where f(y—y') = f\k\<A %wkeik(y_y/) a non local integral Kernel. Comparing (4.2.11) with
(4.2.12) we see that what the non relativistic approximation is doing is “switching off” the
non locality that is introduced through this kernel, when it comes to the Hamiltonian
operator. Of course the Hamiltonian is always local with respect to the {a,,al}’s as in
(4.1.5), but in the limit it becomes local with respect to the {a,, &L}’s, even though the
two sets of operators still differ (4.2.5).

We can translate the abstract time evolution of the state (4.2.9) under the Hamilto-
nian (4.1.5) ihd, |[U(t)) = H|¥(t)) into a differential equation for the smearing function
U(zy,...,zn,t). Note that we can absorb all the time dependence in the smearing function
because the state (4.2.9) is a N —particle state in F¢ and the Hamiltonian preserves the
global number operator, but not the local one. This is why the quasi-local states do not
retain the same “form” over time. It is easy to see that the smearing function indeed
satisfies the Schroedinger equation

ihOy ¥V (1, ..., N, t) = (mc2N - — ZV2> (1, ..., TN, ) (4.2.13)

Viewing QFT as “second quantisation” implies that what we are quantizing is the wave-
function of the first quantised theory, and the field operator represents the operator valued
wave function. We see that this is not the case, since it is rather the smearing functions
that obey the Schroedinger equation in the non relativistic limit and play the role of the
wavefunction in NRQM. To justify that the smearing function imitates the wavefunction in
the limit, it does not suffice to recover the right (non relativistic) equations of motion, but
we also need to make sense of the inputs z1, ..., xx of the smearing function. A quantum
mechanical wave function is defined as (z1,...,xn,t) = (21, ...,xx]1(t)) the coefficients
of the state over the position basis provided by the position operators X;.. Xn of the
N particles, that satisfy the Heisenberg algebra with the conjugate momentum operators
[XZ-, PJ] = ihd;;. In QFT we do not have the position operators to provide us with such
basis, and the inputs x4, ..., xy rather correspond to N possible labels of the infinite degrees
of freedom as represented by the {a,,al}’s.
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Starting from a QFT of infinite degrees of freedom, and taking the non relativistic
limit, we cannot end up with N degrees of freedom satisfying the Heisenberg algebra, that
is N pairs of position and momentum operators such that [Z;, p;] = ik, i = 1...n, which is
a consequence of the fact that quanta are aggreagable, can be counted, but cannot carry
labels [14]. Since quanta cannot carry labels, the corresponding observables cannot carry
labels, they are rather collective. Even when restricted to a fixed particle sector of the
Fock space, an operator that carries a label, say z; the position of the first’ particle would
not be well defined in this space (because of the antisymmetrization in the very definition
of the Fock space). In a QFT we naturally have a total momentum operator, and we can
build the conjugate total position operator for the “centre of mass” of the N-particles

X =N+ / drzald, (4.2.14)

where N7t is the pseudo-inverse of N. The eigenstates of the position operator are
21, @) =al ---al |0y, (4.2.15)

with eigenvalues % Efil x;. This operator satisfies the Heisenberg algebra with the total
momentum operator

. a . dk
X, P| = N*/dw:z:&de,/ —hka*a] = ih(1 —10) (0 4.2.16
.7 { o | | = iRy — |00 (4.2.16)

except in the zero particle subspace, which is annihilated by both X and P.

In this section we saw by what means and in which sense we recover the non rela-
tivistic equations of motion and the Heisenberg algebra in the non relativistic limit. We
have the Schroedinger equation (4.2.13) for the smearing function of a N particle state
and a total position operator that satisfies the Heisenberg algebra with the total mo-
mentum operator as restricted to the subspace where the non relativistic approximation
holds. We saw the negative result that the two localization schemes do not coincide un-
der the non relativistic approximation, but yet the operators {a,,al} are justified as non
relativistic’ because if we define (4.2.9) and (4.2.14) in terms of {a,,al} we do not re-
cover these results. On top of the discrepancy between the two localization schemes in
the limit, imposing a cutoff in momentum space non trivially affects both schemes since
[®(x), TI(z)] = ih fyen dke>x=%) =L §(x — 2'). The effect of an ultraviolet cutoff to the
local degrees of freedom has been studied in [57]. We elaborate more on this point in our
upcoming paper [58].
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What we described above is not really the full structure of NRQM, but only an approx-
imation. It has been argued in [59] that the full structure cannot be recovered under any
approximation methods. In ordinary NRQM arbitrarily large momenta are allowed, while
starting from the relativistic QFT we had to restrict the allowed momenta to take the non
relativistic limit and as a result we only recover a bandlimited version of NRQM. This is
to be expected, similar to how arbitrarily large speeds are allowed in classical Newtonian
mechanics, since there is no ¢ and no Compton wavelength built in NRQM to set the
limitations of the theory. Only going back words, from the relativistic theory to the non
relativistic theory, we can concretely set the limitations of the latter.

4.3 Vacuum entanglement /frustration in the limit

The usual intuition about why there is ground state entanglement in a quantum field theory
is that the local degrees of freedom are coupled through the d’Alembertian operator in the
Hamiltonian. In [60] for example, they calculate the entanglement entropy of the ground
state making the analogy with a system of coupled harmonic oscillators. As we showed
in the previous section the global vacuum is separable with respect to the y—degrees of
freedom, despite the fact that the non relativistic Hamiltonian couples the {a,, dL} as in
(4.2.11). So we see that eventhough the Hamiltonian is non-local, the ground state is not
entangled in the limit. Of course any local Hamiltonian possess a separable ground state,
but not all interactions are inducing entanglement in the ground state. As we will discuss,
it depends on the type of the interaction terms whether the ground state is separable or
not.

The question then is what kinds of interactions in the Hamiltonian are inducing entan-
glement in the ground state. One intuitive criterion is the commutativity of the interaction
terms with the local terms. If the interaction terms commute with the local ones then the
ground state is separable. This is because if they do commute, there is a common set of
eigenvectors and since we know that the eigenstates of the local Hamiltonian are separable,
this is still the case for the full Hamiltonian. But this is not conclusive, since the local and
non-local terms might only share the ground state in which case they might not commute.
To demonstrate this let us consider the example of N uncoupled harmonic oscillators. The
Hilbert space of such a composite system is given by the tensor product H = ®;H; and
the Hamiltonian is H =), wiajai. Since the oscillators are uncoupled the ground state is
clearly |0) = ®; |0;). Now let us introduce the operators

J
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where Uj; are the coefficients of a N x N unitary matrix so that the tilted set of creation and
annihilation operators also satisfy [@;, ax] = ;5. The tilted operators suggest a different
splitting of the Hilbert space [53], namely H = ®j7:[j where 7:[]- the space where a;, Ez; act.
Let us now rewrite the Hamiltonian with respect to the j degrees of freedom

N N N
=1 J,k=1 7 J,k=1

where Aj;, = > w;U;;Uj.. We see that in general the Hamiltonian becomes non-local. Note
that the coupling of the tilded harmonic oscillators comes from the off-diagonal elements
of the matrix we defined as A. In the case that all the harmonic oscillators are of the same
frequency w then Aj; = wd,), are the components of a diagonal matrix and the Hamiltonian
remains local. In this case it is intuitive that the ground state of the Hamiltonian is
separable with respect to both tensor product structures. In the general case that A is not
a diagonal matrix, it is still true that

0) = ®; ’0>z = |0>j (4.3.3)

So looking at the Hamiltonian as rewritten in (4.3.2) we have an example of a Hamiltonian
with interaction terms of which the ground state is not entangled (4.3.3).

Maybe this would make us expect that the interaction terms have to commute with the
local ones. Nevertheless, it is easy to check that this is not the case

D oAGN Y Awda| = Y AjAu[N; dal]
j

kAl kAL
=D AyAn(aady — dpaa) = Y Ai(Ay; — A )aga; # 0
jA ik

So this is a counterexample where the fact that the local terms do not commute with the
non local onesnon does not imply entanglement in the ground state.

As has been examined in [01] “ground state entanglement may or may not occur when
the interaction terms of the Hamiltonian fail to commute with the local terms”. The au-
thors quantify this statement by proving a bound for the ground state entanglement, which
depends on the so called frustration energy of the Hamiltonian. Consider a Hamiltonian
of the form H = Hy + Hj, then the frustration energy is defined as follows

E;=E, - Ey - E} (4.3.4)
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where Ej is the ground state energy of the total Hamiltonian and EY, E! are the ground
states energy of the local and the interacting part respectively.

We expect the frustration energy to be relevant to the ground state entanglement since
it captures whether a given ground state can “minimize” both the local and the interaction
terms of a Hamiltonian. In fact, in the case that the local and interacting terms share a
common ground state Ey = E}' + El which makes the frustration energy vanish. To bound
the entanglement £[|0)] of the ground state by the frustration energy the authors need to
introduce another energy scale AE (which will be discussed below). Then the so called
frustration entanglement bound is

£[0)] < L (435)

Given a set of systems that are coupled to each other and without explicitly calculating
the ground state, this bound provides a way to quantify how much entanglement can be
contained in the ground state. For example, if the interaction is such that the frustration
energy is zero the ground state has to be separable.

Indeed in the example we gave above, the frustration energy of the Hamiltonian is zero.
To see this let us split the total Hamiltonian (4.3.2) in the local and interacting part

H= ZANN +) " Agala; (4.3.6)
J#k

It is easy to see that EJ = 0 and so the frustration energy (4.3.4) will be
hw hA;;
_ L _ ii
Ef_EO—EO_Ei _%T— § wzl—E U351?) E wi(l —6) =0

From the entanglement frustration bound (4.3.5) we can convince ourselves that the in-
teraction terms in the Hamiltonian (4.3.6) are not inducing entanglement in the ground
state. This behaviour crucially depends on the type of interaction terms in the Hamilto-
nian. To apply this bound to the QFT case, we briefly review the derivation of the bound.
The first step is to expand the ground state over the eigenstates of the local Hamiltonian
|0) = « ‘OL> + 0 }EL> where }0L> the local ground state and |EL> the expansion over the
rest of the orthogonal eigenstates. This means that (E+|H|E+) > EF which we are going
to use below as follows

(0[H.[0) = |a*Ey + |B*(E*|HL|ET) (4.3.7)
> |aPE} + |BP(E iEL) (4.3.8)
=Ef+ (1 — o) (EF - E}) (4.3.9)
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Then it is easy to see from the definition of the frustration energy that
E; > (0|HL|0) — Ey > (1 — |a]?)(E} — EY) (4.3.10)

using the inequality above. If we call AE = Ef — El the first excitation gap of the local
Hamiltonian we have that

Ey 9
— > (1- . 3.
~p 2 d=lal) (4.3.11)

To complete the proof we need to associate the right hand side of the inequality to a
measure of ground state entanglement defined as

E(19)) =1 —maxy,,..g,|(d]$1 ® ... ® dn)[". (4.3.12)

Since the ground state of the local Hamiltonian is a the separable state !EOL ) =|E}, ..., EY)
we have that the entanglement of the total ground state satisfies

£(10)) <1—[{0[E7)P =1~ |af? (4.3.13)
Combining (4.3.11) with (4.3.13) we get the entanglement frustration bound £(|0)) < %.

Going back to the QFT case, the Klein-Gordon Hamiltonian as written in terms of
local creation and annihilation oscillators

2

1 h
H== / dz [mCZ (a}as + azal) = o (a] + a2) V*(a] + az) (4.3.14)
m

there are also interaction terms of the kind a,a,, alal/, axal/(since the discrete version of
the Laplacian is coupling neighboring points x, z') and so the vacuum state that they define
®. |0;) is not an eigenstate of the interaction terms. As a result |0) # ®, |0,) and there is
ground state entanglement. After the non-relativistic approximation described above the

Hamiltonian becomes

N h?
H = mdc? / dzN, — 5— [ dz al via, (4.3.15)

m

Just from comparison with the Hamiltonian (4.3.6) of the discrete example, we see that
the interaction is exactly of the same type (if we would introduce a discretization of the
d’Alembertian operator). In analogy we can see that

E; = / dk(hwy — mc?) — 0 (4.3.16)
|k|<A
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in the limit Aw, — mc?. The local energy scale AFE that goes in the proof of the bound
can be naturally identified with mc?. Applying the bound we get that

£(loy) < /WA dk (@ . 1) =0 (4.3.17)

mc?

in the ultra non relativistic limit where the energy is dominated by the mass.

To conclude, (4.3.16) this shows that vacuum entanglement vanishes ultimately in the
limit where the mass is dominant. The benefit of applying the entanglement frustration
bound is that we can argue this only through the behaviour of the frustration energy
in the limit, without explicitly calculating any measure of entanglement for the ground
state. Also, it establishes the picture that in the ultra non relativistic limit the harmonic
oscillators in position space are still coupled but yet not frustrated, and so not entangled.
This discussion is particularly relevant for cases in which entanglement of the ground state
is treated as a resource, entanglement harvesting for example [62]. Along these lines we are
also investigating the “bipartite” two mode entanglement of the vacuum in the presence
of the ultraviolet cutoff [58] and in future work it would be interesting to investigate its
extractability. So far we find that the ground state is still entangled at second order of
the approximation, which settles that not all of vacuum entanglement can be blamed to
relativity. All these considerations boil down to the expression for the [ coefficient of the
Bogoliubov transformation that mixes the local and the global creation and annihilation
operators, since this is the reason why the global ground state fails to be separable with
respect to the local degrees of freedom. The Bogoliubov transformation as derived in the
appendix reads

ay = % \j;f_ﬂe"k” <c+(k)ak + c_(k:)aT_k> (4.3.18)
cx (k) = /me2/hwy, £ \/hwy/mc? (4.3.19)

for an arbitrary dispersion relation wy. Here we considered the non relativistic dispersion
relation as an approximation to the relativistic one, but one can apply similar approxima-
tion methods for a general (analytic) dispersion relation which can give interesting results
for vacuum entanglement in quantum field theories with modified dispersion relations, like
in condensed matter systems or modified theories of gravity.

92



Chapter 5
Epilogue

In this thesis we summarized the mathematical results which demonstrate that the very
intuitive picture of particle like entities localized in space does not have a mathematical
analogue in relativistic quantum theories. This intuition is formed by how we interact with
the world, and in particular the particle likeness of the detection processes and the localized
‘clicks’ of the detection devices. Overall we find our selves in the paradoxical situation of
“particle talk without particle ontology” [12]. Quoting Haag “...it is not possible to assume
that an electron has, at a particular instant of time, any position in space; in other words,
the concept of position at a given time is not a meaningful attribute of the electron. Rather,
position is an attribute of the interaction between the electron and a suitable detection
device.” [30]

A possible way to resolve this could be a first-principles approach to detector models.
One might wonder how far this can go, since models are called as such because they require
some phenomenological input that cannot be ‘derived’ from the theory. Nevertheless, an
important step in this direction would be to carefully translate notions from measurement
theory for the detector models that we are using in relativistic setups. This is becoming
increasingly important for information theoretic considerations, where one can ask how is
quantum information localized and how it is transmitted on relativistic spacetimes. For
example, can we really think of a qubit ‘traveling” on Minkowski spacetime? Can we really
‘measure’ a quantum field by coupling it to a detector system? When/where and why
do the detectors click? These are the kinds of questions that I would like to investigate
further.
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Appendix A

Derivation of the Bogoliubov
transformation

A.1 Position space

In this appendix we are not using natural units so that we can keep track of the constants
since the non-relativistic approximation involves comparing to the Compton wavelength
A = h/me. One can think of the Klein-Gordon equation for a free massive scalar field

((8:/c)* — V2 + (1/N)?) ®(x,t) = 0 (A.1.1)

as describing a system of coupled harmonic oscillators in position space, where the coupling
is provided by the d’Alembert operator. Then we can suitably define the corresponding
creation and annihilation operators in position space as

«

Gy = —hcﬁ(x) + II(z) (A.1.2)

i
20V R
so that the commutation relation for the field operators

A A

[®(z,t),11(2', )] = ihd(z — ) (A.1.3)
implies that [a,,a,] = d(x — 2’). To fix the coeflicient a we need to use the inverse
transformations

- h
b(x) = % (al + a,) (A.1.4)
11(z) = iavVh(al — a,) (A.1.5)



to rewrite the Hamiltonian of the Klein-Gordon field in terms of the creation and annihi-
lation operators as follows

1 . 1 R .
H=3 /d:v (CQHQ(x,t) + ﬁqﬂ(x t) — @(x,t)v2q>(x,t))

ﬁ 2 2 1 2 1
=3 /dx (—c o?(al — a,)* + (204)\)2(al+ax) ~ @y

(al + a.)V3(al + ax))

h 2.2 1 2 2 2.2 1 1 2
- §/dx (—a c+ (204)\)2> (a? +a2) + [ @ + o)’ (ala, + azal) — W(al—i—%)v (al + a,

We pick a such that the first term vanishes, namely

1 m
= — == Al
2cA 2h (A.1.6)
since A = h/mc the Compton wavelength. So with this choice the Hamiltonian becomes
y_ 1 24 N 2t
H = —3 dz | me(ala, + azal) — 2—(% +a,)V(al + a;) (A.1.7)
m

and the field operators read ®(z) = —— (al + as) , I(z) = i/Z(al — ay).

2m

A.2 Momentum space

The creation and annihilation operators ay, aL associated with the harmonic oscillators in
momentum space are defined such that

by, = \2/; (ak + a_k) (A.2.1)
I, =iV <_ak + GT_;C) (A.2.2)

where &, = f e_””’q) (x) (wtmeans). Again the form of (A.3.1) is such that [®y, IIx] =
iho(k + k) 1mphes lar, al,] = 6(k — k') and we pick the coefficient 3 to be 8 = \/w/2¢2

) = \/E (ax +al ) (A.2.3)
1, = \/@ (—ak +aik) (A.2.4)
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so that the Hamiltonian reads H = f hwkakak where wy = ¢y/k? +1/A2. Note that
with this choice of units the usual field decomp051t10n looks like

b(x) = KLIFYR / hc2 ak L k / hc? akelkx n a};efik:r:) '
v/ 27T \ 27 2wk B \ 27 2wk

A.3 The transformation

Now we want to find the transformation between the two sets of creation and annihilation
operators in position and momentum space which we can work out from the definitions
above

a, = \/Eé()+\/;_ﬂ()
o e
\/;/mik\/?i@wraik)—\/l_ j%eikx\/@<—ak+aik)

We see that the annihilation operator in position space is a 'mixture’ of the creation and
annihilation operators in momentum space namely

a, = L % <c+(k)e””ak + c,(k)e’ikxaz> (A.3.1)
cx (k) = /me2/hwy, £ \/hwy /mc? (A.3.2)

The inverse transformation is ay, = 5 [ dze ™ (ci(k)a, — c_(k)al).

A.4 Unitary inequivalence

In [12, 3, 1] one finds the following sufficient condition for unitary inequivalence of two
representations. Two Fock-space representations are unitarily inequivalent if the vacuum
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state of one representation has infinitely many particles in terms of the number operator
of the other representation. Applying this criterion to the transformation (A.3.1) between
the local and the global creation and annihilation operators we get

(Og|/dxaLaI|Og) = /dk’|c_(k:)|25(0) (A.4.1)

which is infinite because of the §(0), and so it demonstrates unitary inequivalence of the
two representations. We can also check for the global number operators over the local
vacuum

(Oplalax]0s) = e (k)P / T e = 0. (A42)

—00

We conclude that (Fy, {a.,al}) and (F, {ax, al}) are unitarily inequivalent i.e. there
is no unitry map that can relate the Hilbert spaces and the corresponding algebra. The
notation J, % F that we used in the text might be confusing because it does not explicitly
refer to the operators but only the Hilbert spaces. Of course there is a unitary between
the two Fock spaces, but it cannot preserve the algebra structure. In this sense, the
local number operators are not well defined in the global vacuum and the global number
operators are not well defined in the local vacuum. Nevertheless, this symmetry breaks in
the bandlimitted where the local number operators are well defined in the global ground
state

A
(Og|alax\()g> = <Ogl/ dkdk’ei‘”(k’kl)c,(k)c,(k/)akal,|Og>
—A

A

A
= (0¢| / dkdk'e** = ) e_(k)e_ (K)o (k — K')|0g) = / dklc_(k))? < oo
—A A
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Appendix B

Continuously infinite tensor products

We have been contrasting continuous tensor product structures with Fock space structures
all along. These are generally very different constructions. For example one might worry
that a continuous tensor product structure would generally give a non separable space,
while one might expect that a Fock space is separable. Eventhough it is mathematically
counter intuitive one can suitably define an infinite tensor product ®,H, to be a Fock
space, in the case that the H,’s are themselves Fock spaces, namely we can suitably
define ®,F[H.| to be the Fockspace of something. The question we are adressing in this
appendix is whether we write the continuous tensor product of Fock spaces as a Fock space.
Schematically, we are asking

Ry F[H,] ~ F|of what?] (B.0.1)

One could guess that we can follow our intuition from the finite case [12] where for example

we know that F[H1] ® F[Ha] ~ F[H1 @ Ha| to claim that

9. F[Ha] = F / TN (B.0.2)

This is basically what turns out to be, but it is non trivial to ensure that the inner product
is well defined in the infinite case. This construction can be found in [14] and here I will
reproduce the steps as [ understand them, because the 'trick’ is quite insightful and also
applicable in the QFT case. First we need to define the ’exponentiation’ of a Hilbert space

et = é (@H)q (B.0.3)

n=0

104



where by ()¢ we mean the spanned by vectors of the form (® |¢))", which are symmetric
by construction. One might think that this should be a subspace of the usual n—particle
sector of a Fock space, but actually it is the whole space. This is because one can always
write symmetrized product vectors as linear combinations of elements of (®H)5. For
example, if n = 2 we have that

91) @ |@2) + |d2) @ [91) = |¢1 + P2) ® |1 + d2) — [P1) @ |d1) — |d2) @ [Pa)

So e is just another way to write the Fock space F,(#H). Let us consider the states in e
that are of the form

H

— (@19)"
ex = — B.0.4
owe) =2 (B.0.4)
where |¢) € H. The inner product of such states is
(exp plexp ) u Z ¢|¢ = lPlIn (B.0.5)
n=0

Note that this inner product is quite counter intuitive. For example if the vectors that we
are exponentiating are orthogonal (¢|t))y; = 0 then (exp ¢plexp ) .x = 1, and if (p|1))y = 1
then (exp ¢lexp ¢).x = e and so the states (B.0.4) are not normalized. Overall, they form

an (over)complete basis for e’*.

The reason why we introduce this kind of Hilbert space here, is because one can use the
construction above to define the continuous tensor product of such spaces. In particular,
given a family of Hilbert spaces H, for some continuous index x, we can suitably define
®geMte. If we try to define ®,H, instead we run into the following trouble. Motivated by
the finite case where one defines an inner product in ®} ,H,; as

n

(U1 ® .. @Up|vy ® ... @ Up) = H(uz|vl>;¢ = exp Zlog(ui, Vi)H, (B.0.6)

i=1 i=1

one can attempt to define the inner product of ®,H, as

(@] @2 0) = exp [ delog, v, (B.0.7)
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which is generally well defined because of the logarithm. But using the property (B.0.5)
we can have a well defined inner product in ®,e** since

(@500 0, expi) = exp [ deloglexpo, i) (B.0.8)
= exp/dxlog (e<¢z|¢’z>”w) (B.0.9)
:exp/dx (Do|a)n, (B.0.10)

But now we notice that this is exactly the inner product in the exponentiated tenor sum
el® M2 which would establish an isomorphism between this space and ®,e** (note that
in contrast to the continuous tensor products, continuous tensor sums are well defined as
long as we make sure that the integrals in the tensor product converge). To see this, let us
recall that for finite tensor sums the inner product is defined as

(1@ . ® Gulths & o DY) = > _(Bilthi)r, (B.0.11)

=1

Let us denote as |¢p(z)) = |®,¢,) a vector in the continuous tensor sum [ ®%,. Then in
analogy with the finite case one defines

Ola)lv@)) = [ do (6o, (B.0.12)

and accordingly the inner product in e/ U He i

(exp o) exp () = exp [ do (i), (B.0.13)
which is is exactly what we ended up with above. So we have that
Qe ~ el He (B.0.14)

which exactly confirms our initial guess (B.0.2). Finally, one can convince themselves that
the familiar function space £2 can be written as the following tensor sum

®
L3R, dr) ~ / dxC,. (B.0.15)
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Using this we can establish that
LB) o o) deCe g (o ®.L2(R) (B.0.16)
where we have used (B.0.14). Or in more familiar terms, we have that
®.L2(R) ~ F[L*(R, dz)] (B.0.17)

Quite magically, the continuous tensor product of copies of £2 turns out to be the Fock
space over £2, which can be suitably applied in the QFT case when we wish to define
continuously infinite tensor products. In particular, from the perspective of the local
harmonic oscillators that we defined in the previous appendix, the field amplitude ®(x) is
the amplitude of the oscillator at each point x with Lo(R, d®(z)) being the corresponding
Hilbert space. Then one can think of the total Hilbert space of the collection of oscillators
as

@ Lo(R, dD()) (B.0.18)

i.e. the continuously infinite tensor product of H, = Lo(R,d®(x)), the space where the
local operators act. From (B.0.19) we can establish that

@, La(R, dD(1)) = F[Ly(R, dz)] := F, (B.0.19)

to define the continuous tensor product as a separable Fock space, which in this thesis we
denote as the local Fock space Fi.
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