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Abstract

Path planning of the autonomous robots is one of the crucial tasks that need to be
achieved for mobile robots to navigate through the environment intelligently. The robot
paths are typically planned utilizing map that is accessible at the time with a certain opti-
mization objective such as to minimizing the travel distance, or time. This thesis proposes
a multi-objective path planning approach by integrating Simultaneous Localization And
Mapping (SLAM) with a graph based optimization approach and an object detection algo-
rithm. The proposed approach aims not only to find a path that minimizes travel distance
but also to minimize the number of obstacles in the path to be followed.

This thesis uses Visual SLAM (VSLAM) as the basis to generate graphs for global path
planning. VSLAM generates a trajectory network which is usually in the form of a spare
graph (if odometry based) or probabilistic relations on landmark estimates relative to the
robot. An object detection algorithm is run in parallel to provide additional information
on trajectory network graphs generated by the VSLAM, to be used in multi-objective
path planning. The VSLAM, object detection, and path planning fields are typically
studied independently, but this thesis links the these fields to solve the multi-objective
path planning problem.

The first part of the thesis presents the connections and methodology on using the VS-
LAM and object detection to generate trajectory network graphs. The nodes are inserted
to the graph when a new keyframe is needed in VSLAM. The distance travelled between
the nodes is the first criterion to minimize and is computed while traversing. In paral-
lel to VSLAM, the object detection component quantifies the number of objects detected
between the nodes. Only the pre-trained objects to detect are quantified and the trained
objects in the thesis are cars and trucks. The number of objects are the two additional
edge information added to the graph. Later in the thesis, the multi-objective path plan-
ning on the generated graphs is presented. The objective of path planning on graph is not
just on minimizing the distance to travel but also on minimizing the number of cars and
trucks it passes. The proposed design is tested using KITTI dataset which is specialized
for autonomous driving and consists of many cars and trucks. The design is not limited to
autonomous driving applications, but can be applied to other fields such as surveillance,
rescuing, and many more with different objects to detect.
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Chapter 1

Introduction

1.1 Scope, Motivation and Objective

In the past three decades, there has been great interest and progress in the field of au-
tonomous robots for both researchers and industries. The autonomous robots are to per-
form in wide range of applications with varying purposes. Consumer robots, such as
vacuum cleaner robots, already became commercialized and this type of robots can be
applied for similar usages such as to mow lawn or to shovel snow. Some robots are used
for industries to transport goods such as in warehouses. They are also used for search-
ing and rescuing such as to retrieve victims from potentially dangerous areas. Another
application includes exploration of new environment such as planets. The applications of
the autonomous robots are not limited to these and is expected to appear in many more
fields. The continuous development of sensing and computation technologies has led to
the development and advancement of robots to become truly autonomous. There are still
many challenges to be solved to allow fully autonomous robots to appear into the market.

For an autonomous robot to navigate without human support, the robot needs to locate
itself with respect to a map and plan paths to steer itself. Without knowing its location
within an area, the robot cannot reach its destination nor be aware of where it is heading
to. While path planning, the robot would want to find a route that optimizes certain
criteria (e.g., minimize distance), which may be single or multiple objectives. For robots
to make path planning of such routes, the robot needs to have sufficient knowledge about
the environment, be able to locate itself while traversing, and have information about the
criteria it is required to fulfil.
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Simultaneous localization and mapping (SLAM) is the process of a mobile robot to in-
crementally build a map of an unknown environment while localizing itself within the map.
Since estimating the environment and localizing itself in the environment requires informa-
tion from its counterpart, solving environment estimation and self-localization problems
simultaneously is a difficult task. SLAM has been one of the most actively researched
topics in robotics for last three decades. The classical age (1986-2004) formulated SLAM
in probabilistic world utilizing Extended Kalman Filters (EKF), Rao-Blackwellised Parti-
cle Filters, and maximum likelihood estimation [8, 15, 41]. During the subsequent period
referred to as algorithmic-analysis age, the SLAM community focused on the fundamental
properties such as observability, convergence and consistency of SLAM [8]. The current
state of art SLAM can efficiently manage thousands of landmarks in the map [22, 82], use
visual inertial algorithms to perform visual SLAM (VSLAM) [17, 55].

Despite these achievements and continuous progress in SLAM, not much research has
been touched upon utilizing the maps built by SLAM for navigation purposes. One of the
common goals for autonomous robots is not to just build a map, but to use the map it
builds for navigation purposes. The applications that utilize the map the robot builds,
for instance use of the map to plan the future path has received less attention than the
map building process. In terms of robot path planning, much of the research is focused on
finding optimal routes from prescribed start and target positions. This thesis focuses on
planning of a multi-objective path via the map built through SLAM.

1.2 Contributions of the Thesis

The main contribution of this thesis, which is novel to the best of my knowledge, is to
development of an approach which allows for a mobile robot to plan multi-objective paths
using the map it builds with SLAM. Most of the research on path planning of the mobile
robot is focused on finding a path with the shortest distance, and lacks in utilizing the
map built via SLAM. This thesis approaches the mobile robot path planning problem by
relating VSLAM with an object detection algorithm to build maps and multi-weighted
graphs and plan pareto-optimal paths, integrating mapping, object detection, and path
planning, which are often studied independently. The proposed solution can be utilized
in different fields via optimizing different objectives, such as finding a short path to travel
while avoiding predefined obstacles (e.g., fire, heavy rocks or hazardous material) using the
acquired map. As the test scenario of the thesis, a city environment is considered with the
goal of finding a path that minimizes the distance to travel yet avoids car and trucks.

The overall system architecture is shown in Figure 1.1. This architecture utilizes thesis
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implements already developed solutions from the VSLAM and object detection algorithms
to generate a multi-weighted graph. The VSLAM algorithm consists of front-end and
back-end processes, and produces a map along with a pose graph, whose vertices represent
the keyframes and edges the constraints between the keyframes. The object detection
algorithm uses a convolutional neural network (CNN) to recognize trained objects given an
image. The predefined objects to detect are cars and trucks. Then the thesis combines the
pose graph from VSLAM and the object detection information to generate a multi-weighted
graph. In addition to edges as the distance information between the keyframes, the multi-
weighted graph also contains information about the number of objects detected between
the vertices, i.e. the keyframes. The multi-objective path planning algorithm optimizes
the multi-criteria represented by this multi-graph and generates paths for navigation. The
proposed path planning scheme is adequate for scenarios where a robot is initially guided for
exploration such as for map construction or scouting of the environment, and autonomous
navigation follows afterwards.

Figure 1.1: System architecture.
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1.3 Organization of the Thesis

The outline of the thesis is as follows:

Background information on, VSLAM, image recognition, and path planning along with
an overview of what other researchers in the fields worked on is provided in Chapter 2.
Further in this chapter, the evolutions of SLAM and current approaches in VSLAM are in-
troduced with background of computer vision techniques, the evolution of object detection
and CNN is explained, and single and multi-criteria shortest path planning methodologies
are reviewed.

Chapter 3 presents the overall design of the proposed solution. In Chapter 4, the
main VSLAM algorithm utilized in the thesis is explained. Chapter 5 discusses the image
recognition implemented. Thereafter Chapter 6 presents method to calculate multi-criteria
paths. Using the proposed approach Chapter 7 provides the experimental results. Con-
cluding remarks are given in Chapter 8.

4



Chapter 2

Background and Literature Review

2.1 Simultaneous Localization and Mapping

SLAM incrementally constructs a map with information from sensors while simultaneously
localizing itself to the map. One particular approach to update the maps for autonomous
robot localization and embed the dynamic environment information in such maps is SLAM.
The solution was primarily developed by Hugh Durrant Whtye and John J. Lenonard in
1991 [41] that was based on work by Smith et al. in 1990 [76]. SLAM is considered as
one of the key autonomous localization methodologies. When the robot is in an unknown
environment, SLAM incrementally builds the map while localizing itself and navigating
through the environment. SLAM research has been substantially active for past 30 years
in robotics. Depending on the main task the robot is trying to accomplish, SLAM can be
distinguished in many ways.

Full SLAM refers to posterior estimation of the entire path [81]. Online SLAM refers
to the estimation of the current posterior only [81]. Depending on the types of map that
SLAM builds, it can be referred to as feature-based SLAM or volumetric SLAM [81].
The map is built based on points of interest, such as features, using feature-based SLAM,
while the map is built at high resolution, which allows photorealistic reconstruction with
volumetric SLAM [81]. Other methods of distinction are metric and topological mapping
[81]. Metric SLAM have metric information in environment such as metric information
from one place to another, while topological SLAM provides qualitative information about
the places [81]. The SLAM can also be distinguished by static and dynamic SLAM. Static
assumes that the environment does not contain any dynamics of the surrounding, and if
anything changes treat the changes as noise [81]. Dynamic SLAM takes into account the
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dynamics and sometimes track the changes [81]. Depending on the objective of SLAM,
different approaches and variations to tackle the problem have been proposed.

2.1.1 Formulation of SLAM

The formulation of SLAM is depicted in Figure 2.1. At time step k, states of the vehicle
including position and orientation are represented by xk, the control input applied at time
step k − 1 to move the vehicle state to xk is denoted as uk. The observable map points,
and the measurements by sensors are denoted, respectively by mk and zk. Note that the
representation of the map can depend on the implemented sensors. In this thesis, the map
is assumed as observable points such as location of landmark. The state of the robot,
map, control input, and measurement sequences are denoted as x1:k = {x1, x2, ..., xk} ,
m1:M = {m1,m2, ...,mM} , u1:k = {u1, u2, ..., uk} , z1:k = {z1, z2, ..., zk} respectively. The
goal of SLAM is to find the x1:k, and m1:M from the u1:k and z1:k.

Figure 2.1: Formulation of SLAM.

2.1.2 Paradigms of SLAM

The three main paradigms to solve the SLAM problems are Kalman filter, Particle fil-
ter, and Graph-based SLAM. Many effective variations of the three methods have been
proposed and implemented in the literatures. The following dynamic state-space model

6



notation is used to describe the robot motion and sensor model:

xk = f(xk−1, uk, εk)

zk = h(xk,m,+ιk)
(2.1)

where f(·), h(·) model nonlinear vehicle kinematics and measurement correspondingly, and
x, m, u, z, ε and ι as the state of the vehicle, map, control input, measurement, process
noise and measurement noise.

Bayes filter is the basis of the two filter based SLAM. It uses all known inputs u1:k, and
measurements z1:k, to estimate the joint posterior probability density function (pdf) of the
states of the vehicle x1:k and map m. This probability distribution is denoted as:

p(xk,m|z1:k, u1:k) (2.2)

The belief about the current state prior to measurement and after the measurement is
denoted as:

β̄(xk,m) = p(xk,m|z1:k−1, u1:k)
β(xk,m) = p(xk,m|z1:k, u1:k)

(2.3)

Using the Bayes rule, Markov property, law of total probability, Bayes filter algorithm
recursively calculates the pdf in two-step as shown in Table 2.1.

Table 2.1: Bayes Filter Algorithm

Prediction: β̄(xk,m) =
∫
p(xk|xk−1, uk)β(xk−1)dxk−1

Update: β(xk,m) = ηp(zk|xk)β̄(xk)

In Table 2.1 p(xk|xk−1, uk) is the motion model, p(zk|xk) is the sensor model, and η is
the normalizing constant that does not depend on the state. There are many solutions to
Bayesian filter for different systems.

Kalman or Extended Kalman filter (EKF) can be the optimal estimation in terms of
minimizing the mean square error sense. Kalman and EKF assumes the posterior density
is Gaussian distributed with added zero mean Gaussian process noise ε and measurement
noise ι and its covariance represented by Rk and Qk, respectively [80]. EKF SLAM have
been the earliest approach and was introduced in [76, 77, 54]. The EKF algorithm has

been summarized in Table 2.2, where µ = (x,m), ∂fk = ∂f(µ̂k−1,uk−1)

∂µ
, and ∂hk = ∂h(µ̂k)

∂µ
.

The state estimates includes the poses of the vehicle and the features of the environment.
As the vehicle moves, the state vector and its covariance matrix are updated. When new

7



Table 2.2: Extended Kalman Filter Algorithm

Prediction:
Predicted State: µ̂k|k−1 = f(µk−1|k−1, uk)
Predicted Covariance: Σk|k−1 = ∂fkΣk−1|k−1∂f

T
k +Rk

Update:
Kalman Gain: Kk = Σk|k−1∂h

T
k (∂hkΣk|k−1∂h

T
K +Q)−1

Estimated Covariance: Σk|k = (I −Kk∂hk)Σk|k−1
Estimated States: µk|k = µ̂k|k−1 +K(zk − h(µ̂k|k−1))

feature is observed, it is added to the state vector. EKF SLAM and its variations have
been implemented for many mobile robot navigation. In practice, the robots often exhibit
nonlinear motion dynamics. Kalman filter and its variant filters do not perform well during
non-linear systems, and has many limitations resulting in other two methods to become
more popular.

Particle filter is another popular filter which is uses N number of particles to model
arbitrary distribution of true posterior [37, 14, 63]. The ith particle pose, xi, and its nor-
malized weight, wi are represented as X = {xi, wi}i=1,..,N . These particles are sampled
from a distribution such as posterior distribution. However, it is often difficult to sample
from the true posterior density, instead the particles are sampled from a proposal distribu-
tion π(xk|X0:k−1, z0:k), chosen by the designer. The idea behind the particle filter is to use
the particles from a proposal distribution to approximate the target distribution (posterior
density). To compensate difference between target distribution, importance weight, wi, is
computed. The samples that are less likely represent the state, x , are replaced by more
likely samples through resampling process. The algorithm of particle filter is presented in
Table 2.3.

Monte Carlo Localization (MCL) is a specific form of a particle filter based localiza-
tion that is being used widely in mobile robot localization [21]. In MCL, the proposal
distribution is the motion model; the particles are propagated through motion model. The
weight of the particles are computed via the measurement model. This type of localization,
and its variants perform well in low-dimensional spaces, but as the size of the state space
increases, particle filter becomes impractical. This is the major drawback of particle filter
based localization, as the environment gets complicated, more particles are required for
pose estimation and the computational complexity grows.

In 2002, Montemerlo et al introduced FastSLAM to allows less computational power
to solve SLAM problem using particle filter [51]. FastSLAM was able to reduce the high
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Table 2.3: Particle Filter Algorithm

Sampling:
for i = 1, ..., N

Draw x
(i)
k from π(xk|X0:k−1, z0:k)

w
(i)
k = p(x(i))

π(x
(i)
k )

X
(i)
0:k = X

(i)
0:k−1 + (x(i), w

(i)
k )

Resampling:
for i = 1, ..., N

Draw i ∈ 1, ..., N with probability w
(i)
k

Add x
(i)
k to Xk

dimensional state space by independently estimating the landmarks. By exploiting the
dependences between variables, the trajectory of the vehicle is estimated by samples, while
mapping is computed analytically using 2 dimensional Kalman filter.

There are two versions of FastSLAM. FastSLAM 1.0 uses the motion model for pro-
posal distribution, and the particle of weights are computed according to the marginalized
observation model [51]. FastSLAM 2.0 takes into account the current observation for the
proposal distribution and the particle weight is calculated according to the importance
function [50].

Both filtering based localization techniques have been active research areas and im-
portant development in the SLAM literature. The current state of art is solving SLAM
problem by constructing a graph. The graph-based SLAM approach was proposed in 1997
by Lu and Milios [47]. The basic idea of graph-based SLAM is to represent nodes with
the location of robot, and the edges as spatial measurements between the nodes. The edge
can be represented by odometry measurements taken from consecutive frames or by obser-
vation, which results in virtual measurements about the position of xj from xi, when the
vehicle observes the same part of measurements. With the graph, the localization of the
vehicle is implemented by finding the poses that satisfy the constraint. The architecture
of graph based SLAM is shown in Figure 2.2, having two main processes, front-end and
back-end. The front-end process interprets sensor data and constructs the graph by defin-
ing nodes and edges, while the back-end performs inference on the graph by optimizing
it.

The front-end heavily depends on the types of available sensors. The back-end for-
mulates SLAM as a Maximum A Posterioir (MAP) estimation. In MAP, x is estimated
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Figure 2.2: Graph-based SLAM architecture.

as

x∗ = argmax
x

p(x|z) = argmax
x

p(z|x)p(x) (2.4)

Assuming measurements are independent, and measurement noise is Gaussian with
information matrix, Ω, (2.4) can be rewritten as the

x∗ = argmin
x
−log

(
p(x)

m∏
k=1

p(zk|xk)
)

= argmin
x

m∑
k=1

εTΩkε (2.5)

where ε =
∥∥hk(xk)− zk∥∥. (2.5) minimizes square of error which is suitable for least squares

problem. Depending on the nature of available sensors, the meaning of error is different.

The basic graph-based SLAM is shown in Table 2.4, where εij = zij − hij(xi, xj), the
virtual measurement of node j from node i. SLAM algorithms are mainly based on iterative
nonlinear optimization assuming that good initial guess is available, and local minima is
in the neighborhood. The matrix H is symmetric, positive semi-definite, and sparse. With
these porperties, different solvers can be used to compute ∆x [13, 29, 44, 40, 36].

Compared to other SLAM techniques, graph-based SLAM is capable generating higher
dimensional maps. For more details about graph-based SLAM, and the state-of-art for
least-squares error minimization, readers are referred to [8, 28].

2.1.3 Loop Closure

The front end process of SLAM uses a technique, called “loop closure”, to recognize pre-
viously visited places in order to make SLAM robust and long-term. After some period of
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Table 2.4: Graph Based Algorithm

while (not converged)
for all (εij,Ωij)

Aij =
∂εij(x)

∂xi

∣∣∣∣
x=x̂

Bij =
∂εij(x)

∂xj

∣∣∣∣
x=x̂

Hii+ = ATijΩijAij Hij+ = ATijΩijBij

Hji+ = BT
ijΩijAij Hjj+ = BT

ijΩijBij

bi+ = ATijΩijεij bj+ = BT
ijΩijεij

∆x = −H−1b
x̂∗ + = ∆x

time of running the SLAM algorithm, the map or the graphs are continually added and
the error accumulates. Nevertheless, if the vehicle visits the places it visited before and
recognizes the place, this could reduce the uncertainty and the error of SLAM. Therefore,
it is clear that having a reliable and accurate technique is essential as wrong loop closure
could result in failure of SLAM.

The loop closure techniques are sensor dependent. The early approaches of loop closure
were involved with laser scan [11, 30, 47]. The technique of overlapping the scan with
respect to the reference scan is often referred to as scan matching. Various scan matching
algorithms were proposed in the last decade, among them one of the most widely used is
Iterative Closest Point (ICP) [4]. ICP, which iterates to align the scan have been bases for
many variations on scan matching, and the improvements are promising [59, 5, 10, 6].

Relatively recent approach of loop closure involved using camera, the technique often
referred to as place recognition or image/visual matching. Some approaches of image
matching involved using the feature descriptors while some proposed to use patches of
image to recognize the places, also known as Bag of Words (BoW).

2.2 Visual SLAM (VSLAM)

The term Visual Odometry (VO) was first used by Nister [61]. VO is similar to dead
reckoning, but it is a more accurate approach and has gained attention in research and
industrial field with the advancement of computational power and computer vision [72].
It is a particular case of a technique called Structure From Motion (SFM). The SFM
reconstructs 3D scene and camera poses from an unordered set of images and usually is
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implemented off-line. VO on the other hand is often accomplished in real time but using an
ordered image sequence. In addition to estimating the motion of the camera and mapping,
VSLAM also recognizes the already visited places.

Using the images captured at each instant, the goal of VSLAM is to compute relative
transformation from one image to the next and to find the full trajectory of the camera.
VSLAM is free from any errors that are terrain or vehicle parameter dependent such as
wheel variations. It is a much cheaper solution compared to LiDAR based localization
which can perform similar tasks but with higher computational power.

As images are full of useful information, there are many approaches to estimate the
poses. The two main approaches, (1) feature-based, and (2) appearance based method
to approximate the poses have been developed using various techniques. Both approaches
estimate motion by estimating the movement of a point (a feature or pixel) from one image
frame to the next. As VSLAM uses images, this methods work under an assumption that
there is sufficient illumination in the surrounding of the cameras to observe enough texture
in the environment. This thesis assumes that the images captured are sufficient enough to
observe necessities to do motion estimation of the robot.

2.2.1 Fundamentals

The recent advances in computer and computer vision technology brought back the at-
tention in vision sensors and have been one of the key components in mobile robotics for
navigation purposes. With the abundant information that they provide, vision sensors are
considered as excellent tools to observe details of immediate surrounding. To use the data
from the vision sensors for navigation purposes, it is essential to relate 3D world into 2D
images. Various techniques are proposed to recover 3D features from images. This section
relates 3D point in the monocular camera to 2D images and discuss the fundamentals of
the computer vision.

3D to 2D Perspective Projection

The camera model proposed for the discussion is pin-hole camera model, which is a simple
model to approximate the image processing. This model assumes that all points of an object
possess sufficient amount of illumination, and radiate light rays to the small openings
of pin-hole. Pin-hole only allows small amount of light to pass through, requiring long
exposure time compared to larger holes, which allows more light but cause blurry images.
The camera model uses lens instead of pin-hole, which controls lens aperture opening and
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accordingly the amount of light that passes through. The same projection system as pin-
hole camera is applicable; the lights pass through centre-of-point (COP) of the camera and
focuses on the image plane. The image projected on the image plane is upside down as
the radiated ray pass through. For convenience, the virtual image plane is placed in front
of COP; hence, the image projected is not inverted.

Mapping 3D world into 2D world can be accomplished by the following equation in
homogeneous coordinates [33]

p =

pupv
1

 = γ
[
R t

]
P =

fu α pu0
0 fv pv0
0 0 1

[R t
]

px
py
pz
1

 (2.6)

where P =
[
px, py, pz, 1

]T
is the homogeneous vector of the 3D world point relative to the

camera reference frame and p = [pu, pv, 1]T is the homogeneous vector of the projection
point on the image plane. The skew parameter α is for non-rectangular pixels. Most of
the current cameras have rectangular pixels, for which α = 0. γ is the intrinsic camera
parameter matrix, fu and fv are focal lengths, and pu0 and pv0 are the center points in x
and y direction on the image plane, respectively. Normally the focal lengths, fu and fv are
assumed equal; hence, throughout the chapter they will be denoted as f. Rotation matrix
R ∈ SO(3) and translation vector t ∈ R3x1 map 3D world into camera frame.

The knowledge of the camera parameters, and transformation matrix allow the estima-
tion of points from the real world to the image. This is only possible when the image is on
focus. In real life, cameras have distortion which is caused by imperfection of lenses espe-
cially when the rays pass through the edges of the lens. In addition, images are exposed to
noise. More comprehensive discussions and techniques on such problems and models can
be found in [33, 49].

Triangulation

Obtaining depth and features from 3D point to 2D from image is often required to use the
camera data for vision based localization. This is usually accomplished via triangulation of
two images. Given correspondence pairs, the simplest method to implement triangulation
is through stereo normal case. The stereo normal case assumes that the images are fixed
and share the same baseline, ξ, as shown in Figure 2.3.

The 3D points can be determined by the intersection of the projected rays as shown in
Figure 2.3. The epioplar plane cuts through the image plane and forms an epipolar line
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Figure 2.3: Triangulation of stereo vision.

on the image plane. The same point on the left image plane and right image plane must
pass through the epipolar line. This justifies the simplicity of the parallel alignment of
the camera compared to other geometries; the epipolar line is horizontal, whereas if the
cameras are not horizontally aligned, the epipolar line may not be horizontal.

Using the intercept theorem, the depth of a 3D point, P =
[
px, py, pz, 1

]T
is given by

pz =
fξ

δ
(2.7)

where f is the focal length, ξ is the length of epipolar axis, δ denotes the disparity, the
difference between a point in x direction from left to the right image (δ = puL − puR). This
shows that the depth is inversely proportional to the disparity. Then, triangle similarity
allows to map the 3D real-world points into 2D image, using the following equations:

px =
pz
f
uL, py =

pz
f
vL (2.8)

where (puL , pvL) is the corresponding 2D point on the left image plane.

Epipolar Geometry

To estimate the motion of a camera using features, the essential step is to find the corre-
sponding features from one image to another. The simple naive way to solve this problem
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is to fully search the entire image. Using the epipolar geometry [49, 33] the search space re-
duces from 2D (full image) to 1D (a line). Epipolar geometry describes geometric relations
in image pairs as shown in Figure 2.4. A point, P , observed by two different image planes
through projection center, ci is shown. For each correspondence in the images, there is an
epipolar plane, which is a plane that contains P , c1 and c2. Within the epipolar plane,
there is an epipolar axis, ξ, which is a line connecting two projection centers, c1, and c2.
Epipole, e, is the projection center of one image that is projected on another image. For
instance, e1 is the projection of c2 on image 1. The line connects the projection center to
the corresponding point in one image, projected onto another image is epipolar line; l1 is
the projected ray of Pc2 onto left image. The line contains every parts of a ray from a
point, P , to the projection center ci of one image, and is projected on the second image.

Figure 2.4: Epipolar geometry and epipolar constraint.

Using the epipolar geometry, the epipolar constraint is [49, 33]

pT2Ep1 = 0 (2.9)

where p1 = [pu, pv, 1]T is a normalized projection point, P , in the first image, p2 is its
normalized correspondence in the second image, and E is the essential matrix. Essential
matrix describes the rotation and unknown scale translation of images. There is an overall
scale ambiguity; the true scale of the observed scene is unknown unless additional infor-
mation is available. The essential matrix with multiplicative scalar denoted by the symbol
' is:

E ' t̂R (2.10)
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where R is the rotation matrix and t̂ is a skew-symmetric matrix of the form

t̂ =

 0 −tz ty
tz 0 −tx
−ty tx 0

 (2.11)

where tx, ty, tz denote translations in corresponding directions. Note that essential matrix
is used for calibrated cases only. Essential matrix has five degrees of freedom; two for
translation and three for rotation. Fundamental matrix, which contains seven degrees of
freedom, is used for non-calibrated case [49, 33].

The matrix E computed from a set of epipolar constraint, (2.9), in general is not
an essential matrix. Calculation of the actual essential matrix, Ê, involves non-linear
constrained optimization. A simpler and faster approach, which is discussed in this chapter,
projects the estimated E to the essential space. This approach minimizes the Frobenius
norm ‖Ê − E‖f [?]. Using the singular value decomposition (SVD), E can be factorized
in the form

E = Udiag{s1, s2, s3}V T (2.12)

where s1 ≥ s2 ≥ s3 ≥ 0 are the singular values of E (square roots of the eigenvalues of
ETE), U and V are unitary matrices of eigenvectors of EET and ETE, respectively. Then
Ê that minimizes the Frobenius norm is given by [?]

Ê = Udiag{σ, σ, 0}V T (2.13)

where σ = s1+s2
2

. Often σ in (2.13) is normalized to 1, to project onto the normalized
essential space [49].

Image Similarity

Finding similarities between images or aligning images can be accomplished by searching
the full or parts of an image that correspond from one image to the next in a sequence of
images. Image-to-image correspondence is often accomplished at the pixel level of images,
using the luminous (light) intensity information on each pixel. In practice, a full search
of the image is time consuming, instead, part of an image from one image, referred to as
template, is used. Usually, the size of templates is much smaller compared to the original
image or the image that is being compared. With the small template, a method referred
to as template matching, finds the matching point on one image, image 1, with image
matrix g1 to the next image, image 2, with image matrix g2, by finding a motion vector
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tg =
[
ug, vg

]T
between these two images. Here, the image matrix gj is a matrix function

mapping each pixel index to the value of a certain image quantity, e.g., the intensity Ij.
The motion vector tg maps each point (pu, pv) on image 1 to a similar point (pu′ , pv′) on
image 2, that maximizes similarities of the corresponding image matrix value. Finding the
similarity of points across image 1 and 2 is defined as[

pu′
pv′

]
=

[
ug
vg

]
+

[
pu
pv

]
(2.14)

where [pu, pv]
T and [pu′ , pv′ ]

T are points on images 1 and 2, respectively, assuming the
pixel mapping from image 1 to image 2 is linear. To measure the similarity of images, a
particular error matrix is minimized. Some common error matrices include sum of squared
difference (SSD) defined as [49]

SSD(tg) =
∑
pu,pv

(g1(pu, pv)− g2(pu + ug, pv + vg))
2 (2.15)

and sum of absolute differences (SAD) defined as [49]

SAD(tg) =
∑
pu,pv

|g1(pu, pv)− g2(pu + ug, pv + vg)| (2.16)

Another similarity measure, which is desired to be maximized, is the sum of cross correla-
tion coefficients over all possible locations that is defined as [49]

CC(tg) = −
∑
pu,pv

g1(pu, pv)g2(pu + ug, pv + vg) (2.17)

Measuring the similarities using (2.15), (2.16), or (2.17) is limited by the fact that these
measures are not invariant to the changes in the environment conditions, e.g., illumination.
This issue can be solved by normalization, e.g. of the cross correlation coefficients as [49]

NCC(tg) =
−
∑

pu,pv

(
g1(pu, pv)− ḡ1

)(
g2(pu + ug, pv + vg)− ḡ2

)√∑
pu,pv

(
g1(pu, pv)− ḡ1

)2∑
pu,pv

(
g2(pu + ug, pv + vg)− ḡ2

)2 (2.18)

where ḡ1 and ḡ2 are the mean intensities in each image.

The template matching can be implemented via exhaustive search of the entire image. A
more efficient implementation is accomplished by constructing pyramid of images [3]. Using
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an image, the pyramid is constructed by subsampling, often by a factors of 2, as shown in
Figure 2.5. A popular method of subsampling incorporates a Gaussian filter. An image
in the lower level of the pyramid contains more information compared to its immediate
upper level image. The template match using the pyramid is firstly implemented on the
highest level on the pyramid. This enables initialization for its immediate lower level and
the procedure repeats to the original image. Whether it is an exhaustive search or image
pyramid method, template method is not invariant to scaling or rotation because both
approaches are implemented at a pixel level. The template matching is a practical method
for scenarios where there are two images with variations in translation and illumination
such as stereo vision cameras.

Figure 2.5: Pyramid of Images.

Another frequency domain using Fourier transform. Similar to exhaustive search and a
pyramid of images, this method has been mostly implemented for translational shift of the
point of interest, but rotations and scales using such technique have also been proposed
[12]. Another popular method for finding the motion vector involves optical flow, and is
discussed in the following section.
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Motion Field and Optical Flow:

Motion field describes the real world motion and assigns 3D velocity vector to every point
in an image. Optical flow describes the changes in the intensity of the pixels in 2D image.
The goal of the optical flow is to approximate the motion field. The motion field and
optical flow do not always correspond to each other, but the rest of the thesis treats them
as similar.

In 1981, two famous works that pioneered optical flow estimation were proposed by
Horn and Schunck [35], and Lucas and Kanade [48]. Both techniques assume small mo-
tion between the two images, and brightness constancy between corresponding points in
consecutive images, referred to as brightness constancy assumption:

I(pu, pv, t) ≈ I(pu + ẋdt, pv + ẏdt, t+ dt) (2.19)

where I(pu, pv, t) is the intensity value at points (pu, pv) at time instant t and the same

point after t + dt with displacement
[
ug, vg

]T
= [ẋdt, ẏdt]T . This assumption can be

approximated by Taylor series and further simplified to a result that is often referred to as
optical flow constraint and corresponds to [35, 48]

Iuẋ+ Ivẏ + It ≈ 0 (2.20)

where Iu = ∂I
∂pu

, Iv = ∂I
∂pv

, and It = ∂I
∂t

, and ẋ = dpu
dt

, ẏ = dpv
dt

are optical flows. This
constraint leads to an equation with two unknowns, ẋ and ẏ. To solve for the unknowns, the
two tehcniques in [35, 48] employ different approahces. Horn and Schunck imposed further
constraint assuming that flow will be smooth for all pixels [35]. The assumption formulates
the flow as an energy function that needs minimization. Using techniques adopted from
variational calculus to the energy function leads to [35]

(Iuẋ+ Ivẏ + It)Iu + Λ∆2ẋ = 0,

(Iuẋ+ Ivẏ + It)Iv + Λ∆2ẏ = 0
(2.21)

where Λ is a Lagrange multiplier used to enforce the constraints, ∆2ẋ = ∂2ẋ
∂u2

+ ∂2ẋ
∂v2

and

∆2ẏ = ∂2ẏ
∂u2

+ ∂2ẏ
∂v2

. This method iteratively finds ẋ and ẏ and results in dense optical flow, i.e.,
intensity variations in almost all the pixels in the image. In reality, the assumption proposed
for dense optical flow is not valid, especially, when there are objects moving in different
directions. Instead, Lucas and Kanade assume constant motion in a neighbourhood [48]
and producing sparse flow, i.e., intensity variations in only certain pixels of the image. The
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flow is computed using least squares fit that corresponds to [48][ ∑
pui ,pvi

I2ui
∑

pui ,pvi
IuiIvi∑

pui ,pvi
IuiIvi

∑
pui ,pvi

I2vi

][
ẋ
ẏ

]
=

[
−
∑

pui ,pvi
IuiIti

−
∑

pui ,pvi
IviIti

]
(2.22)

The sparse algorithm usually requires feature extraction steps to compute sparse points
that need to be tracked. It is challenging to say which method performs better. In practice,
the assumptions on both methods are violated; hence, the performance depends on the
application.

2.2.2 Feature-based Method

Currently, the feature based methods are the dominant practical solution for VO and VS-
LAM methods. Instead of using all of the pixels, the motion of the camera is computed
by analysing the displacement of the features in feature based methods. Features have
properties that make them distinctive from their surroundings in terms of luminous inten-
sity, color, texture or any other characteristics that make them different. A feature can be
as simple as a point, line, edge, or a corner, and can be more distinctive such as a trees,
buildings, or other vehicles. To use features for VSLAM, the features must be invariant to
translation, rotation, scaling, and luminous intensity. Using the features, the feature-based
SLAM is to minimize reprojection error which is denoted as:

eproj = pi − πm(RPi + t) (2.23)

where πm is a projection function that maps 3D point in world coordinates to 2D point in
camera coordinates, and pi is a projection of 3D point Pi.

Feature Detector

To estimate the motion of a robot from the images, frame by frame changes of the vehicle
over point of interest, referred to as features, should be determined. The robot must detect
such features, usually via a low level image processing operation. Feature detectors search
for salient keypoints with respect to local neighbourhood [74]. Some desired properties
of feature detector include robustness, invariance under geometric transformation, precise
localization of the features and sometimes support of image interpretation. Many feature
detectors in VO field have been proposed including corner detectors (Moravec[52], Harris
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[31], Shi-Tomasi [73] and FAST [69]) and blob detectors (SIFT [46], and SURF [2]). De-
pending on the environment conditions and the primary goal, one detector can outperform
the other.

In general, the corner detectors are computationally faster than blob detectors. The
corner detector introduced by Moravec calculates the variation in the gradient in x and y
directions by shifting the rectanguar windows [52, 53]. This can be expressed as [52, 53]

S(tg) =
∑
pu,pv

w(pu, pv)[I(pu + ug, pv + vg)− I(pu, pv)]
2 (2.24)

where w is the rectangular window function. The displacement in x and y directions
is expressed by ug and vg, respectively. Intuitively, S(tg) in (2.24) would be close to 0
in constant areas, while the value would be large in distinctive areas such as corners.
Moravec’s corner detector works reasonably well under certain conditions, but it suffers
from many problems such as noisy and anisotropic response. In 1988, Harris and Stephen
improved upon the Moravecs’s corner detector, producing one of the most well known
corner detectors in current days, and is still being widely used [31]. Instead of shifting the
rectangular window function, Harris detector uses a Gaussian as window function. Discrete
shift is avoided by considering the partial derivatives using the Taylor expansion. It can
be shown that (2.24) can be expressed as [31]

S(tg) ≈
[
ug vg

]
ν

[
ug
vg

]
(2.25)

where

ν =
∑
pu,pv

w(pu, pv)

[
I2u IuIv
IuIv I2v

]
, (2.26)

Iu and Iv represent the image derivatives. The eigenvalues λ1, λ2 of ν distinguish the
region as flat, edge, or corner. Small λ1, λ2 implies no interesting feature, one large λj is
an edge, which implies one dominant direction of an image gradient, and large λ1, λ2 is a
corner, which implies two dominant directions. The popular region of interest for Harris
detector are edges and corners. The computation of eigenvalues requires relatively high
computation power. Harris detector instead computes traces and determinants, which are
less expensive. This allows fast computation and high repeatability. The measure of the
features are calculated by [31]:

D(pu, pv) = det ν − κ tr2(ν) (2.27)
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where κ is an empirically determined constant. D(pu, pv) is measured for each (pu, pv) in
the image coordinates and depends only on the eigenvalues of ν. If the value of D is large,
it implies that the selected area is a corner. If it is negative with large magnitude, it is
an edge, and small |D| represents a flat region. Harris detector is rotation and partially
intensity invariant. The major drawback of Harris detector is that it is not invariant to
image scale. For example, a feature which is classified as an edge can be classified as a
corner, when the image is zoomed out.

A very similar method to Harris detector was proposed in 1994 by Shi-Tomasi [73].
Instead of using (2.27) to measure corner, Shi-Tomasi detector (also referred to as Kanade-
Tomasi detector) evaluates corner by [73]

D(pu, pv) = min(λ1, λ2) (2.28)

If D(pu, pv) is smaller than a threshold, it is considered a corner. Similar to Harris detector,
it is invariant to rotation but not invariant to image scale.

Blob detectors are slower compared to corner detectors but are more distinctive. In
2004, David Lowe proposed a method that is scale and rotation invariant and partial
invariant to illumination changes [46]. The proposed method is known as Scale-Invariant
Feature Transform (SIFT) not only detects the features but also describes them. This was
the continuation of his previous work on invariant feature detection [45]. The detector and
descriptor in SIFT have distinctive roles.

In the feature detection stage, SIFT smooths the original image using different sizes of
Gaussian filters, which yields different levels of blurred images. The blurred images are
subtracted from one another for which the result is referred to as Difference of Gaussian
(DoG) images. The parts of the image that are plain will not be much different among
different levels of blurred images. On the other hand, the regions that are more distinctive
will have changes in the intensity values. This process is repeated on different scales of
images, which are subsampled from the original image, often by a factor of 2. The potential
interest points are searched by finding local maxima or minima at different scales. This
task is implemented by comparing the nearest 8 neighboring pixels on the selected scale
image and 9 neighbors on its immediate adjacently scaled images. These locally distinct
features include edges, corners, and blobs. Among the features, edges can be problematic.
Given an image, an edge can be easily localized in one direction but can be difficult to find
in other directions. Hence, the last step of SIFT detector performs extremum suppression
on points which cannot be localized well. Because of this step, SIFT, in general, performs
better in blob rich regions rather than corner rich regions.

The discussed feature extraction methods are good, but these are not fast enough for
real-time applications with limited computational power. In 2006, Edward Rosten proposed
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one solution to the problem known as Features from Accelerated Segment Test (FAST)
[69]. FAST is well known for its computational efficiency. For each point p = (pu, pv)
on image, FAST considers points around p by radius of n, 3 for the example in Figure
(2.6). The contiguous pixels in the circle provides information whether they are brighter
or darker than I(pu, pv) plus a threshold t.

Figure 2.6: Example of FAST for an interest point p. The pixels on the circle with a radius
of 3 are considered [69].

For high-speed test, only the pixels at 1, 9, 5, 13 are examined. p cannot be a corner
unless at least three of the pixels are brighter or darker than the I(pu, pv) ± t. If it
is, the full test is applied to the all pixels in the circle. The detector upto this points
exhibits high performance, but there are weaknesses [69]. The weaknesses are improved
by machine learned approach, and non-maximal suppression. This thesis does not uses
machine learned approach in [69]. One weakness to the detector at this point is it may
detect multiple features adjacent locations and is solved by non-maximal suppression. This
step first computes a score for each detected corner, denoted to as V . Then the non-
maximal suppression step removes any corners with V value lower than adjacent V . The
FAST detector in comparison to other detector is very fast. However, it is not robust to
high levels of noise and is dependant on a threshold [69].

The feature descriptor is used to uniquely describe a point of interest. Most of the
feature descriptors including SIFT are based on building histograms around the point of
interest. SIFT uses 16 x 16 window of image gradient at the selected scale. This window
is divided into 4 x 4 subblocks as shown in Figure 2.7. Each subblock encodes gradient
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and orientation as a histogram with 8 bins which describes 8 orientations. These values
describe the feature and are saved as a vector. Hence, each key point contains 4 x 4 x
8 = 128 dimensions describing the feature. The vector is further processed to make the
descriptor rotation invariant, and to reduce the effects of linear and non-linear illumination
changes.

Figure 2.7: Image gradient and key descriptor of SIFT.

SIFT by far is the most robust and have become a popular method in different appli-
cations. However, SIFT is very slow. In 2006 faster version that is comparable to SIFT
named Speeded Up Robust Features (SURF) was proposed by Bay et al. [2]. The SURF
still works on the same principle as SIFT. It builds different levels of images and have
detector, and descriptor pairs. However, instead of using DoG, it is approximated with
box filters and works based on Haar wavelet responses. This makes SURF more computa-
tionally feasible but at the cost of robustness.

Another descriptor which is computationally efficient and can be performed in a real-
time application was proposed in 2010 by Calonder [9]. Binary Robust Independent Ele-
mentary Features (BRIEF) uses simple binary tests between pixels in a smoothed image
patch to describe features. Being a 128-vector for SIFT and 64-vector for SURF, these
descriptors requires good storage when it requires to describe a cluster of features. In con-
trast, BRIEF builds short descriptor requiring only 256 bits, or even 128 bits to produce
a comparable result.

The BRIEF descriptor is defined as a vector of n binary tests [9]:

fn(P) =
∑

1≥i≥n

2i−1τ(P ; I(px), I(py)) (2.29)
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where fn is a feature descriptor, P is an image patch of size S x S pixels, and I(px)
is an intensity of a pixel in a smoothed version of P at x = (u, v)T . The binary test
τ(P ; I(px), I(py)) is as follow [9]:

τ(P ; I(px), I(py)) =

{
1 if I(px) < I(py)

0 otherwise
(2.30)

Choosing the right test points (I(px), I(py)) for the BRIEF descriptor is an important
step. Different approaches chooses the test locations. One example is shown in Figure
(2.8), which are sampled from an isotropic Gaussian distribution.

Figure 2.8: Example of choosing the test locations (px, py) where (X, Y ) ∼ i.i.d
Gaussian(0, 1

25
S2) [9]

Feature Matching and Tracking

Correctly identifying corresponding features is the critical task in VSLAM and this allows
accurate motion estimation of the vehicle. This task can be categorized into two: feature
matching and feature tracking. The feature matching method finds the features from one
image and matches them to the next image based on certain criteria, whereas the second
feature tracking method tracks certain identified features.

In the absence of feature descriptors, the corresponding features can be found by com-
paring the similarity of pixel information as discussed in Section 2.2.1. If the descriptors of
the features are available, feature matching can be accomplished by comparing the similar-
ity of these feature descriptors. The simple descriptor matching eventually uses the same
similarity measures or their variants as highlighted in Section 2.2.1. For SIFT or SURF
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descriptors this would minimize or maximize different metrics such as Euclidean distance,
depending on the method.

Finding the corresponding feature that has minimum distance among the feature de-
scriptors is called the nearest neighbour method. This method finds the most similar
descriptor, and hence, the most alike feature. However, the method could result in false
correspondences, which can be mitigated by thresholding.

Thresholding would claim the features correspond, only if the similarity measure is
under certain threshold. This yields more accurate feature matching. However, if the sur-
rounding of the robot has many repetitive features such as a building with many windows,
false matches are still unavoidable. The distinctive matching can be computed by com-
paring the ratio of the closest and second closest features. This ratio will be close to 1,
if the first and second features are similar. The corresponding feature will be accepted, if
the ratio is within predefined threshold. The exhaustive search with the descriptors can be
computationally heavy, especially for scenes that are rich with features. Various methods
for efficient matching such as hashing [25], and its variants [84] have been proposed.

Another method to match features is to keep track of the features from one frame
to another. This approach involves an optical flow estimation with an assumption that
sequential images are taken from nearby points. Often the tracking is implemented by
Kanade-Lucas-Tomasi (KLT) tracker, which is highly efficient and can be processed in
real-time on CPU [48]. The basis of the optical flow is discussed in Section 2.2.1. The KLT
tracker aims to find features on the first frame, and then keeps the track of the features
from frame to frame. If the error exceeds certain threshold, the tracking of the feature is
complete, and if there are not enough features to track, it reinitializes the new features.

Given a set of samples, it is essential to correctly identify correspondences and remove
outliers. Determining corresponding features using feature descriptor or feature tracking
results in reasonable matches between the samples. However, the points could be exposed
to noise and the result could contain mismatched samples. In 1981, Fischler and Bolles
proposed a technique to robustly reject outliers, referred to as RANdom SAmple Consensus
(RANSAC) [19]. RANSAC is an iterative approach for finding the outliers. The RANSAC
samples s number from the data points to estimate the model, such as essential matrix,
E. Using the sampled points, model parameters such as R and t are computed assuming
the chosen samples are correct points. With the estimated model parameters, the rest of
the samples are further processed by classifying it as inliers or outliers by checking if other
matches agreed with the chosen samples within certain threshold. The process is recursively
applied to find the best model with the highest consensus. To guarantee convergence to
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the correct solution, the number of iterations, N , required can be calculated by [19]

N =
log(1− pgood)

log(1− (1− pfail)s)
(2.31)

where s is the number of corresponding samples needed, pfail is the probability that a point
is an outlier and pgood is the desired probability to identify inliers correctly. According to
the (2.31), the number of trials, N , is greatly influenced by s. The algorithm that requires
lower number of s is more feasible and computationally efficient.

Motion Estimation

The main goal of the motion estimation is to find camera motion Tk,k−1 ∈ SE(3) between
the two sequential images gk, gk−1. The transformation contains rotation matrix, Rk,k−1 ∈
SO(3) , and translation vector, tk,k−1 ∈ R3x1 and can be represented by [33, 49, 72]

Tk,k−1 =

[
Rk,k−1 tk,k−1

0 1

]
(2.32)

The transformation computes the transformation of the camera poses from one view, Ck−1,
to the next, Ck, using Ck = Ck−1Tk,k−1. The final goal is to recover the trajectory of
the vehicle using the transformation matrix T1:n = {T1,0, . . . , Tn,n−1}. For convenience of
notation, the rest of the chapter denotes Tk,k−1, Rk,k−1, tk,k−1 as Tk, Rk, tk, respectively.
There are three different methods to estimate the motion: 2D to 2D, 3D to 2D, and 3D to
3D. The 2D to 2D estimates the poses of the camera using the points, p = [pu, pv, 1]T from

the images, while 3D to 2D uses the points information in 3D, P =
[
px, py, pz, 1

]T
, and 2D

points. The 3D to 3D uses only the points in 3D to estimate the poses.

2D to 2D Method: This method estimates the motion using n features and its corre-
spondences from two images g1 and g2. There are many famous solutions for this set up,
such as 8-point algorithm [43], and 5-point algorithm [60]. For simplicity, 8-point algorithm
is explained in this section.

2D to 2D Method incorporates epipolar constraint discussed in Section 2.2.1. Expand-
ing (2.9) yields [33, 49]

pu1pu2e11 + pv1pu2e12 + pu2e13+

pu1pv2e21 + pv1pv2e22 + pv2e23+

pu1e31 + pv1e32 + 1e33 = 0

(2.33)
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where (pui , pvi) is a normalized point on each image plane, and eii is each element in essential
matrix, E. Defining the two vectors, a = [pu1pu2 , pv1pu2 , . . . , 1]T , E(:) = [e11, e12, . . . , e33]

T ∈
R9, (2.33) corresponds to:

aTE(:) = 0 (2.34)

This is one linear equation for one correspondence in image pairs. With n multiple corre-
spondences for the same image pairs results in n linear equations which can be expressed
as

χTE(:) = 0 (2.35)

where χ = [a1, a2, · · · , an]. The first correspondence is aT1E = 0, second is aT2E = 0 and
so on. For 8-point algorithm (2.35) is unique (up to a scaling factor), if there are at least
n ≥ 8 correspondences [43]. By solving the system (2.35) through different techniques such
as via singular value decomposition (SVD), E can be computed.

The second part of the algorithm involves retrieving the rotation and translation parts
of the images from the estimated E. Unless additional information such as information
about absolute distance of any part in the image is available, the recovered translation
is only up to scale. The rotation and translation that can be decomposed from essential
matrix is [49, 72] :

R = ±UW TV ∗,

t̂ = ±UWdiag{1, 1, 0}UT ,

W T ∈

{ 0 1 0
−1 0 0
0 0 1

 ,
0 −1 0

1 0 0
0 0 1

} (2.36)

where U, V ∗ are from SVD as discussed in 2.2.1. The sign of E cannot be recovered. In
principal, each E yields two possible assignments of R and t̂ as shown in (2.36). Therefore,
there are four possible solutions for R and t̂. The correct solution can be identified by
selecting the two solutions with detR = 1, then triangulating the points, and selecting the
solution with largest number of points in front of the camera.

3D to 2D Method: This method estimates the pose from features in 3D, Pk−1, and
its correspondences 2D points, pk. The goal of 3D to 2D motion estimation is to find
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transformation, Tk, that minimizes the image reprojection error, i.e., [72, 20]

argmin
Tk

∑
i

‖pik − p̂ik−1‖2 (2.37)

where p̂ik−1 is the reprojection point of Pk−1 into image gk with transformation Tk and pk
is its correspondence 2D point in image gk. This problem is often known as Perspective-
n-Point Problem (PnP). There are many PnP solvers such as direct least squares [34],
nonlinear minimization using levenberg-Marquadrt optimization [70], and minimal case
invovling three correspondences known as P3P [38]. P3P solution is a robust and performs
well with RANSAC outlier rejection [19]. This involves a large number of elimination steps.
For simplicity, P6P is presented in this section (works with n ≥ 6). 6 point correspondence
results in a linear system of equation in LT ′ = 0 form of [9] :

0 −P T
1 pv1P

T
1

P T
1 0 −pu1P T

1
...

...
...

0 −P T
6 pv1P

T
6

P T
6 0 −pu1P T

6


T ′T1T ′T2
T ′T3

 = 0 (2.38)

where Pi =
[
pxi , pyi , pzi

]T
, and (pui , pvi) are 3D and 2D points of feature i respectively,

and T ′ =
[
R | t

]
. T ′Tj is the jth row of T ′ matrix. The elements of T ′ can be found by

computing the nullvectors of L. The rotation matrix R, and translation vector t can be
retrieved from T ′.

The 3D to 2D Method works both on monocular and stereo vision. For monocular
vision, triangulation technique is required to observe 3D points. This approach requires
three views to compute motion estimation. The transformation of correspondences are
first estimated by 2D to 2D Method using two views then followed by 3D to 2D Method.

3D to 3D Method: As opposed to 3D to 2D Method which minimizes the reprojection
error to estimate the motion, 3D to 3D Method estimate the motion by minimizing the 3D
feature position errors, i.e., [72, 62]

argmin
Tk

∑
i

‖P i
k − TkP i

k−1‖ (2.39)

where Pk, Pk−1 are the 3D points of a feature and its correspondence, and Tk is the trans-
formation matrix. The method is mostly used for stereo vision as the depth can be easily
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observed by triangulation of features at each instant. The same method can also used for
LiDAR data and its point cloud sets.

Similar to other two methods, many solutions have been investigated to estimate the
poses using 3D points. A famous approach considers when number of correspondences is
n ≥ 3 [1, 72]. One approach is to estimate the translation of points as [1, 72]

tk = P̄k −RP̄k−1 (2.40)

where P̄k, P̄k−1 are the centroid of the features in the feature set, and R is the rotation
matrix. The rotation matrix can be computed by SVD as [1, 72]

(Pk−1 − P̄k−1)(Pk − P̄k)T = USV ∗

Rk = V UT
(2.41)

Place Recognition

The advancement in computational power and recognition of computer vision in recent
years allowed improvements and contributions to place recognition field in recent years.
Place recognition allows loop closure, which separates VSLAM from pure VO. The recog-
nition of previously seen place reduces the uncertainty, drift and error. A popular method
of place recognition for feature-based method is via BoW.

BoW is a method which represents an image with sparse numerical vector. Bow uses
local descriptors as a training dataset and clusters the feature descriptors. These clusters
are referred to as “words“ in BoW. Different descriptors and clustering methods can quan-
tize the words differently. One popular approach is using k − mean, which clusters the
descriptors into k words. Each word represents the centroids of each cluster. For com-
parison, all the descriptors are compared with the centroids to find the nearest neighbor.
Using these words, each image can be represented with the histogram of the words.

2.2.3 Direct Method

The appearance based (also referred to as direct or featureless method) have recently gained
interest from the field of VO as opposed to feature based method. This method eliminates
preprocessing steps such as feature extraction described in the previous section. Instead,
it uses displacement of every pixel intensity from sub or full image to recover the pose by
minimizing an error called photometric error. This process is more robust and accurate
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in low textured environment. Direct method that utilize all pixels on the image results in
dense map [58]. There are other approaches such as considering only a subset of data such
as pixels with high gradients to build semi-dense map [17]. Even smaller set of pixels can
be utilized in direct method to results in sparse maps [16].

The direct method requires depth estimates associated with each pixel. This requires
minimizing photometric error which can be formulated as :

ephoto = Ii(p)− Ij(πm(p,D(p), Tij)) (2.42)

where πm is a warp function which projects 2D point from an image with its corresponding
inverse depth value, D(p), into a new image by the transformation of the camera Tij

While high computational power is required to build dense map and estimating camera
motion, real time application has been done in spatially dense reconstructions. One of the
first real time dense reconstruction was proposed in [57], which estimates depth map by
minimizing an error function which is denoted as :

min
d

n∑
i=1

‖I1(p)− Ii(πm(p,D(p), Tij)‖dp+ λ

∫
‖∇d‖dp (2.43)

where d is the depth map, p is homogeneous coordinates, Ti ∈ SE(3) is the rigid body
motion of the camera between frame 1 to frame i, and λ is a regularization parameter.
A similar idea was carried out in Direct Tracking and Mapping (DTAM) algorithm [58].
DTAM uses monocular camera to estimates motion and builds dense map by minimizing
photometric error of intensity. The trajectory of the camera is tracked by aligning images.
The DTAM algorithm works well in real time but is very computationally expensive as it
relies on GPU.

A method that works in real time using CPU became promising with approach that uses
semi-dense formulation. A popular state of the art for semi-dense method is Large Scale
Direct (LSD) SLAM [17]. LSD SLAM is designed to work in large scale environments, and
builds semi-dense map based on certain keyframes. The algorithm select keyframes and
estimates depth over pixels that have sufficient intensity gradients.The motion estimation
of camera is done using direct image alignment and geometry is estimated using semi-
dense depth maps. The tracking and depth map estimation both involves keyframes. The
information on keyframes are updated with frames that are not keyframes. New keyframe
is promoted as a keyframe when there are not enough information to be compared.

The main limitation of dense and semi-dense approaches compared to a sparse direct
approach is the computational complexity that forbids to jointly optimize in real-time
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structure and cameras, which reduce the achievable accuracy of these methods. In general
direct optimizations only work if the initial seed for the optimization is close to the optimal,
due to the nature of the photometric error. The reprojection of a pixel has to be close to the
optimal projection so that the intensity gradients on the image can guide the optimization
to its true location. To mitigate this problem, direct methods use image pyramids, but
still the basin of convergence is narrower than for feature-based methods. This makes
these methods more sensitive to rolling shutter or low frame-rate. Finally direct methods
cannot provide initial solutions to geometry problems and rely on features to detect loops,
compute the associated drift, or relocalize the camera.

2.2.4 Graph Optimization

The VSLAM allows not only the transformation between the consecutive frames, but as
well as transformation between any time step if the frames share commonly observed points.
With these information, the pose graph of the VSLAM can be improved.

Pose-Graph Optimization

The pose graph’s vertices represent camera poses from the VSLAM and its edges are
the constraints between the poses. The error function about edge constraints can be
represented by: ∑

eij

‖Ci − TeijCj‖ (2.44)

where eij and Teij represents edges and transformation between frame i and j respectively.
The optimization involves finding camera poses that minimizes the cost function. Since
the error term contains rotation components, this involves non-linear optimization, such
as levenberg-Marquadrt optimization [70].

Bundle Adjustment

Bundle Adjustment is similar to pose-graph optimization but it considers not only the pose
parameters but as well as landmark, or map points as well. It is the core optimization for
modern feature-based SLAM. The error function to be minimized for bundle adjustment
is: ∑

i,k

‖pik − w(P i, Ck)‖ (2.45)
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where pik is the ith image point of 3D point P on image i. The point could be landmark,
or feature points on the ith image. w is a warp function which projects 3D points accord-
ing to the camera pose Ck. Similar to pose-graph optimization, this involves non-linear
optimization.

2.3 Image Recognition

The field of object detection prior to 2012 is quite different from what is observed today.
The image recognition used to be done in two steps: feature extraction followed by feature
classifier. The object to be detected had to be accurately represented as a vector of features,
then was used to train a classifier. For multiple object detection, a more general feature
which fit different object had to be found. Determining features was a complex process
and the result produced was unsatisfactory accuracy.

With improved graphics cards and interfaces, the work presented in 2012 ImageNet
competition started a new era in image recognition field. The work presented by Krizhevsky
proved potential of Convolution Neural Network (CNN) in image object detection [39].
Unlike previous attempts, powerful GPU with sufficient training dataset became a new
prominent solution in the classification problem. Much previous work was revised to fit
image classification problem. From 2012 to 2014, the focus of CNN in object detection was
on locating the object within the image and classifying it. In 2014, the research shifted
towards multiple object detection.

2.3.1 Artificial Neural Network (ANN)

ANN is an information processing paradigm which is primarily inspired by the biological
neural networks. Unlike conventional problems, the goal of ANN is to solve a problem
as human brains do. An ANN is based on a collection of artificial neurons. An artificial
neuron receives many signals, process them and then signal the output to other connected
neurons. The inputs are real numbers and are weighted by wi , the output is computed by
some non-linear functions of the inputs. The weights signify the strength of the signals.
ANN learns to adjust these weights from the training.

An ANN usually consists of multiple layers. The first and last layer is the input and
output layer respectively. The layers between the first and last are referred to as hidden
layers. Each layer consists of many neurons, and in general ANN network is fully connected.
The information is passed between the layers as the output of the previous layer becomes
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the input of the preceding layers. As the information propagates, each layer makes smarter
decisions. ANN trains the weights using the errors between the prediction and the truth.
A cost function defines the error, and during the training process, the errors are gradually
decreased.

2.3.2 Convolution Neural Network (CNN)

Convolution Neural Network (CNN) is one type of deep neural network which is most
powerful in image processing tasks. CNN takes an image as an input and its layers process
visual information. Two traits that distinct CNN from traditional neural network are its
partial connectivity and pooling operation.

Unlike other neural networks, it is impractical to utilize fully connected layers in image
classification. The fully connected layers do not account for the spatial context of layers.
A pixel on the image has more meaningful information if its neighboring pixel information
is also available. This is where CNN comes into action with its partial connectivity.

There exist different kinds of layers in CNN, one of them being a convolution layer.
Instead of having fully connected neurons as an input, in convolution layer, the input is 2D
neurons in a rectangular or square shape. The input to the first layer is the pixel intensities
in an image. A feature filter slides down on an image vertically and horizontally to produce
a feature map. Each connection from the first layer to the hidden layer corresponds to
weight, and bias. These weights and bias are learned to detect the features. During the
training process, the filters search for a specific pattern while the testing stage checks to
see if the patterns exist within the image. Different filter extracts different filters. Hence
in practice, many feature filters are used to learn different patterns.

Following the convolution operation, the spatial context of feature maps is reduced by
an operation called pooling. The output of feature maps is condensed during the pooling
process. Two common pooling methods are average and max-pooling. Using a filter,
average pooling outputs the average value inside the filter. Equivalently, the output of the
max-pooling is the maximum value from the pooling field.

The result of several convolution layer detects different features and as proceeds CNN
detects more complex features. From recognizing a single line to picking up dogs and
bicycles, CNN is able to classify objects. This classification happens in a fully connected
layer.

Since 2012, CNN became one of the major keys for image classification problem. The
solution introduced by Krizhevsky known, as AlexNet outperformed other previously pro-
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posed algorithms. It classified 1.2 million images into 1000 different classes with 16% error
using 5 convolution layers and 3 fully connected layers [39].

A team from Google also participated in ImageNet 2014 challenge which introduced
GoogLeNet [79] and later improved version referred to as Inception v4 model [78]. This
model involved a layer setup called an inception module, which involved much fewer pa-
rameters compared to AlexNet with better accuracy. However, it is a very complex model
to understand and even harder to modify and tune. The runner up of 2014 challenge was
VGGNET [75], which is an extension of AlexNet but more efficient and deeper. It is known
for its simplicity to understand and modify. It uses a 3x3 convolution layer with max pool-
ing methods for feature extraction. VGGNet is often more preferred method compared to
GoogLeNet due to its more straightforward structure.

General Object Detection

There are different approaches to how CNN is used for classification. One method is to
generate possible regions of object locations then running a classification solution. Region-
based CNN (R-CNN) [27] with its variants proposes independent candidate regions. It is
structured with a fixed size neural network. R-CNN first extracts 2000 class independent
regions from the input images and the candidates are sent to CNN to detect classes as
shown in Figure 2.9. In terms of classification, R-CNN performed well, but there can be
some localization errors. The main limitation of R-CNN is its slow processing time. Speed
up version of R-CNN known as Fast R-CNN was proposed and increased its performance
by a factor of 10 [26]. Instead of computing features for every region, Fast R-CNN com-
putes feature maps once to use it to classify different regions. Even with great success in
increasing the performance, Fast R-CNN still could not be run in real time. Faster R-CNN
saw the weakness of Fast R-CNN for creating region candidates [66]. Faster R-CNN uses
region proposal networks to solve the problem and the detection time reduced up to 7
frames per second with powerful GPU [66].

Unlike R-CNN method, there is a method which detects objects and classifies them at
one time. You Only Look Once (YOLO) [64], and Single Shot Multibox Detection [42] are
two known methods that can detect objects in real time. Both approaches predict the fixed
size of objects and only the estimates with high confidence are returned. The slow process
of region proposals then classification are avoided which greatly speed up the process.
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Figure 2.9: Overview of R-CNN [27]

2.4 Path Planning

Finding a path for a robot is one of the most important aspects in mobile robot navigation
research. Starting from a prescribed start location, the path planning task is to find a
route to the desired goal while fulfilling certain optimization criteria. Depending on the
application and what is available to the robot, the planning problem can be categorized into
(1) closed-loop planning and (2) open-loop planning. The robot senses the environment and
takes appropriate actions based on what is observed in the closed-loop planning problem.
On the other hand, the robots with the open-loop problems do not plan base on the sensors,
but with the map of the environment. The thesis is focused on the open-loop path planning
and the discussion throughout the rest of the thesis will be only on the open-loop path
planning.

2.4.1 Graphs

Graphs are widely used in a variety field of applications such as to describe transportation
networks, communication networks, electric circuit, and many more. A graph, G, consists
of a set of nodes (also referred to as vertices), V , and a set of edges, E. If a node u and a
node v is linked, then u and v are neighbors of each other and the edge can be represented
as {u, v}. A graph can be denoted as G = (V,E). The edges can be directed or undirected,
and also single criterion or multiple criteria.

Different problems can be solved using graph theories. Among them, the shortest path
problem is one of the common problems which is to find the shortest path from the start
to the goal node. A path is a sequence of nodes such that the all the nodes in the sequence
are connected. The shortest path between two nodes is a path with the minimum lengths
between them. The shortest path problem is not limited to just the distance but could
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imitate different problems such as a path with the lowest amount of fuel, or the least
amount of time to travel etc.

2.4.2 Single-criterion Shortest Path Problem

Currently, a single-criterion shortest path algorithms are used widely in a range of appli-
cations. There are many proposed solutions and yet it is still a popular research topic in
robotics, networks, artificial intelligence studies and many more.

The Breadth-First Search (BFS) Algorithm

The BFS algorithm is one of the simplest algorithms for the shortest path problem. The
algorithm visits the neighbors of each node layer by layer until there are no unvisited
neighbors as shown in Figure 2.10. To efficiently implement BFS, a queue, denoted as
Q is used. The algorithm initializes the parents of each node denoted as par[] to NONE
except for the start where the parent is itself. Q initially contains start node only and
gets retrieved at the beginning of each iteration. For each new layer visited, the unvisited
nodes are marked as visited by denoting its parents’ node as the node it visited from. The
new visited nodes are added into the Q and its parent is updated in par[]. When the node
reached is the goal, the path is reconstructed. The pseudocode of the algorithm is shown
in Algorithm 1.

Figure 2.10: An example of the BFS algorithm in an unweighted graph. [7]
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Algorithm 1 The Breadth-First Search Algorithm

Input: G: a graph, start: start node, goal: goal node
Output: P: a path from start to goal if it exists, otherwise a failure notice
1: Q = {start}
2: for each node v in G do
3: par[v] = NONE
4: end for
5: par[start] = SELF
6: while ! Q = Ø do
7: current = retrieve[Q]
8: for each neighbor of current do
9: if parent[neighbor] == NONE: then
10: par[neighbor] = current
11: Q = Q ∪ {current}
12: end if
13: if current == goal : then
14: extract-path to compute the path from start to goal
15: return success and the path from start to goal
16: end if
17: end for
18: end while
19: return failure notice along with par[ ]
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Dijkstras Algorithm

Dijkstra’s algorithm and its variations are one of the most commonly used algorithms as
a single source shortest path algorithm. Both the directed and undirected graphs can be
used in the algorithm to find the shortest path and it will find the shortest path from the
start node to all other nodes in the graphs. To compute the shortest path, the algorithm
initially sets all the par [v] = undefined. It also sets the distances which are denoted as
dist to dist[v] = inf except for the start which is set to zero and sets all the. The queue, Q,
initially contains all the vertices but gets removed whenever the node is visited. The node
to visit is selected according to the minimum distance to visit. The node’s neighbors get
checked if the new shortest path which is the summation of the current distance traveled
dist[u] and the weights between the nodes w(u, v). If it is shorter than previously stored
dist[u], set the update the par and dist value to the new value. The algorithm terminates
when Q is empty and returns dist and par. The pseudocode of the algorithm is shown in
Algorithm 2.

A* Algorithm

A* is another popular pathfinding algorithm due to its performance and accuracy [32].
Instead of visiting all the nodes, A* expands by considering the nodes that appear to leads
to the solution quicker and terminates when it reaches the goal. The selection is based on
the node that minimizes fScore which is computed as

fScore(n) = gScore(n) + hScore(n) (2.46)

where n is the last node on the path, gScore(n) is the cost of the path from start to node
n and hScore is the heuristic cost estimates of the cheapest cost from node n to goal. The
heuristic function should be admissible and is problem specific. The algorithm initializes
and computes the gScore, hScore, and fScore value of start node. It also initializes two sets
referred to as openSet and closedSet. The openSet contains a set of nodes that are visited
but not evaluated whereas the closedSet contains a set of nodes that are already evaluated.
At each iteration, the current node is selected by picking the nodes in the openSet with the
cheapest value of fScore. If current node is the goal, the algorithm returns the path and
terminates. If it is not goal, the current node gets removed from the openSet and added
into the closedSet. Then each neighbor of current nodes get evaluated by calculating the
tentative gScore of the neighbor. If the neighbor is not already in the openSet, it is added
into the openSet. If it is already in the openSet but its tentative gScore is higher than
already computed gScore for the node, it is not the better path. The algorithm continues

39



Algorithm 2 Dijkstras Algorithm

Input: G: a graph, start: start node, goal: goal node
Output: P: a path from start to goal if it exists, otherwise a failure notice
1: for each node v in G do
2: dist[v] = ∞
3: par[v] = undefined
4: end for
5: dist[start] = 0
6: while ! Q = Ø do
7: current = min (dist[ ], Q)
8: Q = Q - {current}
9: for each neighbor of current do
10: alt := dist(neighbor) + w(neighbor, start)
11: if alt < dist(neighbor) then
12: dist(neighbor) := alt
13: par(neighbor) := current
14: end if
15: end for
16: end while
17: if dist[goal]! =∞ then
18: return success and the dist[ ] and par[ ]
19: else
20: return failure notice along with the par[ ]
21: end if
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to the next iteration. If it is a better path or it just got added into the openSet, the gScore,
fScore gets updated. Also to retrieve the path, par gets updated. The pseudocode of the
algorithm is shown in Algorithm 3.

Algorithm 3 A* Algorithm

Input: G: a graph, start: start node, goal: goal node
Output: P: a path from start to goal if it exists, otherwise a failure notice
1: openSet = { start }
2: closedSet = { }
3: gScore[start] = 0
4: hScore[start] = heuristicCostEstimate (start, goal)
5: fScore[start] = gScore[start] + hScore[start]
6: par = undefined
7: while ! openSet = Ø do
8: current = min (fScore[ ], openSet)
9: if current == goal then
10: extract-path to compute the path from start to goal
11: return success and the path from start to goal
12: end if
13: openSet = openSet - {current}
14: closedSet = closedSet ∪current
15: tentativegScore := gScore[current] + w(current, neighbor)
16: if neighbor not in openSet then
17: openSet ∪{neighbor}
18: else if tentativegScore ≥ gScore[neighbor] then
19: continue
20: end if
21: par[neighbor] = current
22: gScore[neighbor] = tentativegScore
23: fScore[neighbor] = gScore[neighbor] + heuristicCostEstimate(neighbor, goal)
24: end while
25: return failure notice

2.4.3 Multi-criteria Shortest Path Problem

Until now, the algorithms discussed are the solutions for the single criteria path planning
problem. In real life applications, the mobile robot path planning is not only on path
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efficiency but with multiple parameters such as time, distance, energy, etc. This is referred
to as Multi-Objective Optimization (MOO) problem. In mathematical terms, it is to
minimize a scalar objective function, C(x), with m−dimensional size denoted as:

C(x) = [c1(x), c2(x), . . . , cm−1(x), cm(x)]T (2.47)

In general, the optimal solution to MOO problem would not be a single solution. Instead,
there may be any number of different solutions that are better according to one objective
function but worse in another. One way to describe the solution is in terms of Pareto-
optimality. A solution x is said to dominate a solution y, denoted as x � y, if and only
if all of its objective functions are good or better and at least one objective function is
strictly better. This can be expressed as :

x � y ≡ ∀i(ci(x) ≥ fi(y)) ∧ ∃j(cj(x) ≥ fj(y)) (2.48)

A path, path∗, is said to be Pareto-optimal if and only if there does not exist another
path in the solution space that dominates the path. There can be a set of Pareto-optimal
solutions, Pareto set. One path can be better in one way compared to another path from
the Pareto set, but neither of the solutions should dominate each other.

Reduction to a Single Objective

Combining a multiple constraints into a single objective with weighting factors on each
objective function according to the priorities is a one approach to solve the problem. Each
objective function with the weights can be summed together to become one numerical value.
This type of approach is called a weighted sum approach. The weighted sum approach can
then be treated as a single-criteria path problem and can be solved as a single-objective
optimizing algorithm. This approach tends to be very sensitive to the weighting factors
and it is hard to justify the chosen weights [67].

Evolutionary Algorithm

The evolutionary algorithm, inspired by evolution in nature, is a population-based op-
timization algorithm. The algorithm iteratively finds the solution by crossing a set of
solutions. In an evolutionary algorithm, a word “chromosome” directly or indirectly is
referred to as a solution. Genotype is the information stored in a chromosome and the
solution it encodes is a phenotype. A set of chromosomes form a population. Evaluation
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and iteration of the population is called a generation. The evolution from one generation
to the next is done by evolutionary operators.

The algorithm selectively picks parents for reproduction. A “child” from the parent is
reproduced until a prefixed number of offspring are created. The intermediate population
is selected based on some survival selection method. The main challenge in applying the
evolutionary algorithm for MOO problem is on selecting the child and maintaining a good
population. The selection method is usually based on the fitness evaluation function. The
function provides information about how good the candidates are, and usually, this is the
function to optimize. Through the evolution, the generations are evaluated, selected and
reproduced. The algorithm terminates when the acceptable solution is found. The varied
and near Pareto-optimal solutions can be returned if the algorithm ensures that solutions
that are far from other solutions in objective space survive.
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Chapter 3

Overall Design

This chapter explains the overall system architecture, which is composed of VSLAM, ob-
ject detection, and path planning. The VSLAM algorithm produces a map along with
a pose graph which contains vertices as keyframes and edges as the constraints between
the keyframes. The object detection module uses convolution neural network to recognize
trained objects given an image. The results of VSLAM and object detection algorithms are
combined to generate multi-weighted graph. The multi-weighted graph contains informa-
tion about the distance travelled between the nodes and the number of object between the
nodes. The multi-objective path planning algorithm optimizes multi-criteria and proposes
path for navigation. The detailed architecture is shown in Figure 3.1. Each of the three
modules in this architecture are briefly explained next. Further details are provided in
Chapters 4,5, and 6.

3.1 VSLAM

VSLAM module assigns the the center of the first keyframe as the origin (0, 0, 0). The
tracking thread tracks the movement relative to the latest keyframe. A new keyframe
is inserted when there are not enough information to be tracked. The pose of the new
frame is estimated each time the tracking thread receives new information. Using the pose
estimate, the distance travelled from the previous frame to the new frame is calculated by
the Euclidean distance as

d(Ck, Ck−1) =
√

(xk − xk−1)2 + (yk − yk−1)2 + (zk − zk−1)2 (3.1)

44



Figure 3.1: The detailed system architecture

where Ck = (xk, yk, zk) and Ck−1 = (xk−1, yk−1, zk−1) are the 3D point of a center of the
frame at k and k− 1 step correspondingly. The distance is accumulated until the the next
new keyframe is assigned which will set the distance to zero and begin over calculating
the distance. When a new frame is promoted as a new keyframe, VSLAM publishes a flag
referred to as newKeyFrame and updates the distance information between the nodes as
well as the adjacency matrix of the graph. The adjacency matrix is a square matrix used
to represent whether the pairs of nodes are connected or not in the graph. The current
and previous keyframe should be connected, and the relationships can be indicated as

Adj(G) =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 (3.2)

where 1 in the matrix imply the corresponding nodes are connected otherwise not.

When required to start path planning, pathP lanning flag from path planning node will
be promoted. Then the VSLAM will optimize the pose graph for the last time and shifts
the first frame to origin if it was shifted during the progress. The pose of the optimized
keyframe graphs are published to path planning node.
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Figure 3.2: Example of graph with 4 vertices

3.2 Object Detection

Image recognition part of the node detects predefined and trained objects on each frame it
receives. The predefined objects to recognize in the thesis are truck and car. The objects
that are detected within each frame have certainty of 30% or higher for each objects. The
detected objects among the frames are stored. When the newKeyFrame flag is detected,
the object detection node assigns the number of detected objects between the keyframe
as the maximum number of the object detected for each objects. Similar to VSLAM, the
object detection node publishes all the edge information gathered during the process if
pathP lanning flag is notified.

3.3 Multi-Objective Path Planning

When one expects paths, the user initiates path planning and defines the start and the goal
node. The pathP lanning flag will trigger two other nodes to publish necessary informa-
tions, and path planning node will subscribe to them. The pose graph from the VLSAM
produces a graph with no cycles. The path planned based on this graph will be a single
path as there are no other ways to reach from start to the goal. To make it as a cycle, the
path planning will insert an additional edge between the last node from the graph to the
closest node in the graph. This new edge information needs to be updated in adjacency
matrix, as well as other weights information. The distance between the two nodes are
calculated the same way as (3.1). Since it is the closest point between the two nodes, it is
assumed that the object detected in the edges are zero. Once all the weight information
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are updated, path planning nodes finds all the Pareto-optimal paths and shows the found
paths.
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Chapter 4

VSLAM Design

The following chapter discusses in-depth about a popular VSLAM method utilized in this
thesis: ORB SLAM. The technique is one of the most popular approaches in feature-based
SLAM.

The feature-based can be explained in two processes: (1) front-end process, and (2)
back-end process. The front-end process interprets sensor data and constructs the graph by
defining nodes and edges. Depending on the types of sensors available, different algorithms
are used in the front-end process. A camera is a sensor utilized in the thesis. With visual
sensors, the motions of the robot is estimated between frame to frame via VO. The front-
end process also recognizes if the scenery has appeared before and performs loop closure.
The back-end process performs inference on the graph by optimizing it.

4.1 Problem Definition

Given a sequence of images g1, g2, ..., gn by vision sensor, the goal of VSLAM is to generate
a pose graph of the robot, G = (V,E). This is done by minimizing reprojection error for
feature-based SLAM. Given a 3D point of a feature Pk, and its corresponding 2D point
pk−1, the reprojection error is formulated as:

eproj = pk−1 − π(RkPk + tk) (4.1)

where Rk,k−1 ∈ SO(3) and tk ∈ R3x1 are rotation matrix and translation vector. With the
pose estimates of the camera Ck, SLAM module is to update the pose graph and the edges.
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4.2 ORB SLAM

ORB SLAM is a feature-based SLAM which generates keyframe based graph using ORB
feature descriptor. Map points in ORB SLAM are in world coordinates and store informa-
tion about the keyframe the point was observed from. In addition to observed features, the
keyframe stores camera parameters and poses. The map points and keyframes generate a
graph called covisibility graph. The nodes in the covisbility graph are the keyframes and
the edges between the node exist if the two nodes share at least 15 map points. Two other
graphs referred to as a spanning tree and an essential graph is also generated. A spanning
tree connects the nodes with most map point observations. The edges in the essential
graph are only for the edges that have a high covisibility and loop closures. which allows
faster optimization.

As shown from Figure 4.1, ORB SLAM performs with three main components: track-
ing, local mapping and loop closing. The rest of the chapter elaborates the three main
components based on work presented by [55].

4.2.1 Feature Extraction

ORB SLAM uses Oriented FAST and Rotated Brief, (ORB), for feature extraction [71].
The first step in feature extraction of ORB SLAM is to build 8 levels of image pyramid
with a scale factor of 1.2 [55]. The image in each level of the pyramid is divided into regions
of 30 x 30 pixels for FAST corner detection. Within each region, FAST detection is applied
with tinit = 20 then tinit = 7 if initial threshold fails to detect any corner. As explained in
Section 2.2.2, FAST itself is a lot faster detector compared to other detectors and allows
wide baselines matches. Building the image of the pyramid allows multi-scale features and
prevents missing features on a single level of scale. After finding any corner, the algorithm
divides the image into 4 cells. Each cell is further divided into four subcells. The process
detects the corners until the cells contain at least one corner or maximum amount of desired
corners are detected. The ORB improved upon FAST detector by considering orientation
component. ORB measure corner orientation by using intensity centroid, which defines
the moments of an image patch as [68]:

mab =
∑
pu,pv

paup
b
vg(pu, pv) (4.2)
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Figure 4.1: The detailed system architecture of ORB SLAM.

where I(pu, pv) is the intensity at p(u, v). Using the moment, the centroid, C, can be
computed as

Cen =
(m10

m00

,
m01

m00

)
(4.3)

Using the centroid, the vector from the corner’s center, O is computed as OC and the
orientation is defined as:

θ = atan2(m01,m10) (4.4)

The ORB SLAM uses BRIEF descriptor. As discussed in Section 2.2.2, BRIEF is a
vector of n binary tests and it is is set as n = 256, S = 31 [71]. To allow in-plane rotation of
BRIEF, ORB introduces rotation-aware BRIEF (rBRIEF), which picks tests points from
learned step that maximizes variance and minimizes correlation.
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4.2.2 Map Initialization

After finding sufficient correspondences, ORB SLAM in parallel computes two geometric
models: a homography, H, and a fundamental matrix, F . A homography and fundamental
matrix fulfill:

p1 = Hp2 (4.5)

pT1 Fp2 = 0 (4.6)

where p1, p2 are 2D points in image 1 and 2 respectively. Usually, frame 1 and 2 are referred
to as the reference frame, and the current frame correspondingly. Both geometries are
computed using normalized DLT and 8-point algorithm respectively from the techniques
explained in [33]. The number of iterations for both models are prefixed and are the same.
The points used for homography are 4 and fundamental matrix are 8.

Whether to use homography or fundamental matrix for pose recovery depends on the
motion. If the scene is nearly planar, the motion is better explained by the homography
matrix, whereas the non-planar scene is preferred by the fundamental matrix. ORB SLAM
approaches this problem using the heuristic method, which is defined by:

RH =
SH

SH + SF
(4.7)

where RH is a decision heuristic, SH is a homography score, and SF is a fundamental
matrix score. If RH > 0.45 homography is selected for pose recovery, else fundamental
matrix. Eight motion hypothesis are recovered using a method from [18] for homography.
For the fundamental matrix, it is converted to an essential matrix, E, using the calibration
matrix. Then the hypothesis is recovered using the method from [33]. The final step for
map initialization is to perform full bundle adjustment. If the map points initialized at
this stage do not contain at least 100 points, the initialization is rejected and the algorithm
reinitializes the map.

4.2.3 Tracking

After the initialization, tracking thread estimates the camera motion from frame to frame
and promotes frames as a keyframes, Ki, whenever necessary. Each keyframe consists of
camera intrinsic parameters, and all ORB features and relative camera pose Ci. Depending
on the availability of the motion model, ORB SLAM tracks the new frames differently.
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Initial Pose Estimation from Previous Frame

When the tracking is successful from the previous frame, the algorithm assumes the camera
will move in the similar way. The estimates of the camera pose is searched with prediction
based on observations from the previous frame and constant velocity motion model. De-
pending on which level the features were found from the pyramid, the search area varies.
If the matches found are not sufficient enough, wider area is searched then the pose is
optimized with the correspondences.

Initial Pose Estimation via Global Relocalization

If tracking is lost, global relocalization is done via BoW place recognition. ORB SLAM
is based on DBoW [24], which builds a vocabulary tree using ORB features. The words
are built offline using a large set of images. The system builds a hierarchical database of
vocabulary tree, where the nodes represent the cluster of feature vectors. All the feature
descriptors are stored in the root node. Each level in the tree is clustered using k mean
clustering method based on Hamming distance. Every word in DBoW stores information
about which image the word was found and the weight for word in the image. Well trained
DBoW can be applied to different scenarios. Approximately 100000 images were used to
train the dataset and about one million words were created [56].

With lost tracking, feature descriptors in the lost frame are compared with the database
to recognize keyframes for global relocalization. This is done by comparing BoW vectors,
vt, which shows how often the words appear in the image. The vectors are compared as:

s(v1, v2) = 1− 1

2

∣∣∣∣ v1|v1| − v2
|v2|

∣∣∣∣ (4.8)

Then RANSAC iterations for each keyframe are performed.

Track Local Map

After initial pose estimation, the map points on each keyframe are projected on to the map.
To reduce the complexity, the algorithm projects local map only. The local map consists
of a set of keyframes, K1 which share the same map points with the current frame and a
set of keyframes, K2 which are direct keyframes to K1. Within the sets, K1 a keyframe
that shares the most map points to the current frame is used as a reference frame. The
optimization of the camera pose using the local map are done as follows:
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1. Compute the map points projection into the current frame. If the points are out of
the frame bound, discard.

2. Compute the angle between the current viewing ray, v, and the map point mean
viewing direction, n. If v · n < cos 60 discard the points.

3. Compute the distance from the map point to the camera center. Discard if d 6∈
[dmin, dmax]

4. Compute the scale of the frame as d
dmin

5. With any left unmatched features in the current frame, compare the descriptor of
the map points, at the predicted scale. Associate the map points with the best match.

New Keyframe Decision

Promoting a current frame as a new keyframe requires some conditions. The correctly
inserted frame allows more robust tracking, especially for complex camera movements.
The frame is decided as a new keyframe if all of the following conditions are satisfied:

1. The last global relocalization occurred more than 20 frames ago

2. Local mapping is idle or last new keyframe was promoted more than 20 frames ago

3. The current frame tracks at least 50 points

4. Less than 90% of the points are tracked in the current frame from the last keyframe

The pose estimate of the new keyframe is temporarily stored as a reference to calculate
the edges between the nodes.

4.2.4 Mapping

As mentioned in the tracking section, ORB SLAM keeps track of local maps. Mapping
thread updates the map points by adding and removing keyframes and optimizing them.

The new keyframe is firstly added on the covisibility graph and spanning tree, the edges
on the graphs are updated by checking the shared map points. For triangulation purposes,
BoW representation features are computed on the newly inserted keyframe. To be retained
in the local map, the map points must:

1. The points must be trackable more than 25% of the frames in predicted frames

2. After map point creation, the points should be observed in at least three keyframes
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If the map points fulfill both conditions, the points can only be discarded if the points
do not appear in three keyframes or local bundle adjustment considers them as an outlier.

The triangulation of ORB features using the covisibility graph allows generation of
new map points. The unmatched ORB points in keyframes are compared with others via
BoW. Any points that do not satisfy the epipolar constraint is discarded. The matched
points are triangulated then checked for positive depth, parallax, reprojection error, and
scale consistency. Then the points are projected to other keyframes and are tracked as
explained in 4.2.3.

Through local bundle adjustment, currently connected keyframes in the covisibility
graph and its corresponding map points are optimized. The rest keyframes are also involved
with optimization but do not go through changes.

4.2.5 Loop Closing

Loop closing thread checks if there are a possibility of closing the loops. When a new
keyframe is inserted, this process first checks the candidates for loop closure detection.
The similarity of the keyframe is computed using the BoW vectors in the covisibility graph
(θmin = 30). The lowest score of the similarity, smin is used to check other keyframes
that have common BoW vectors. The keyframes that score less than smin are discarded.
If at least three loop candidates are detected consecutively and consistently, similarity
transformation is computed.
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Chapter 5

Object Detection

The following chapter discusses a unified object detection approach utilized in the thesis:
YOLO. Many proposed multiple object detection method involves a combination of region
proposals and classification which achieves high accuracy, but very time-consuming. YOLO
is a recent object detection approach which predicts and classify an object at one time [64].

5.1 Problem Definition

Given an image, g1, the goal of object detection thread is to detect instances of objects
with its confidence level.

5.2 Unified Detection Design

YOLO is a unified detection method that localizes an object with regression. This solution
returns a bounding box from the algorithm. Each bounding box contains five elements:
(w, h, x, y) and box confidence. The width, w, and height,h are relative to the size of
the image and the center coordinates of the box (x, y). There are similar previous works
such as R-CNN [27], Fast R-CNN [26], Faster R-CNN [66] and SSD [42] which returns
bounding box as the solution. However, YOLO is a much faster solution compared to
other solutions and its accuracy is also comparable or even superior. For implementation,
faster version referred to as Tiny YOLO is used. Tiny YOLO contains 9 convolution layers
(original YOLO has 24), and the class size to detect are C = 4 (car, truck, stop and yield

55



sign). Other than the size of the network, the training and testing parameters are the same
(S = 7, B = 2) and the details of the parameters are explained in the following section.

5.2.1 YOLO

YOLO proposes to solve object detection problem using a single neural network to predict
the location as well as classification. Unlike other approaches where the same region is
potentially checked for several thousand times, YOLO only looks at the part of the image
once. This is firstly done by evenly dividing an input image into S x S grids as shown
in Figure 5.1. Each grid predicts B bounding boxes where the center is the grid. Each
bounding box estimates the probability of containing an object as P (Object). YOLO also
predicts the C conditional class probabilities as P (Classi|Object), where C is the number
of objects on each grid. As each bounding box is centered on the individual grid, it assumes
that the object in the grid is the same as the object in the cell. The predictions are encoded
as S x S x (B x 5 + C) tensors as shown in Figure 5.1.

During the testing stage, YOLO predicts the class-specific probability for each grid as:

P (Classi) = P (Classi|Object)P (Object) (5.1)

where P (Classi) is the probability of i th class. This gives how well the predicted box fits
the object and the probability of the class appearing in the box. To eliminate unsatisfactory
predictions, any P (Classi) ≤ Pthreshold is rejected. The algorithm also computes class-
specific confidence which is defined as:

P (Classi)IOUtruth
pred (5.2)

where IOU is intersection over union between the predicted box and the ground truth.

The overall process of YOLO is shown in 5.2. As discussed in 2.3.2, YOLO’s convolution
layer extracts features. Inspired by GoogLeNet [79], YOLO has 24 convolution layers for
feature extraction and 2 fully connected layers to predict bounding boxes with class scores
as shown in Figure 5.2. The input images are resized to 448 x 448 with RGB channels.
The first convolution layer involves 7x7x64 filter with a stride of 2 resulting in output with
dimensions of 224x224x64. Then 2x2 max pooling reduces the size to 112x112x64. Some
of the proceeding layers have filters with the size of 3 x 3 or 1 x 1 to reduce the depth
of the feature maps. In total there are 24 convolution layers for YOLO. The paper uses
Pascal VOC dataset, where the parameters are set as S = 7, B = 2 and C = 20, resulting
in final feature map of 7x7x(2x5+20)=1470 tensor predictions.
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Figure 5.1: Structure of YOLO design showing its even grid, bounding boxes, confidence
and class probabilities [64].

Cost Function

During the training of YOLO, the cost function to be minimized consists of three different
costs: localization loss, confidence loss, and classification loss.

The localization loss penalizes the location and size of the predicted bounding box as:

λcoord

S2∑
i=0

B∑
j=0

1
obj
ij (xi−x̂i)2+(yi−ŷi)2+λcoord

S2∑
i=0

B∑
j=0

1
obj
ij (
√
wi−

√
ŵi)

2+(
√
hi−

√
ĥi)

2 (5.3)

where (w, h, x, y) are the predicted bounding box and (ŵ, ĥ, x̂, ŷ) are true size and locations
from the training data. The size deviations are relative to the true size of the bounding
box. This is partially accounted by squaring width and height. λcoord is multiplied to
emphasize on bounding box accuracy.

The confidence loss is associated with the confidence of each bounding box. The loss
term is denoted as:

S2∑
i=0

B∑
j=0

1
obj
ij (Ci − Ĉi)2 + λnoobj

S2∑
i=0

B∑
j=0

1
noobj
ij (Ci − Ĉi)2 (5.4)
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Figure 5.2: The overall architecture of YOLO [64].

where C is the confidence score and Ĉ predicted confidence score. 1objij and 1
noobj
ij are com-

plements of each other, where 1objij = 1 if an object appears in the cell, 0 otherwise. λnoobj
is used to increase model stability; usually λcoord > λnoobj to penalize less for predictions
with no object.

The classification loss is computed as:

S2∑
i=0

1
obj
1

∑
c∈classes

Pi(c)− P̂i(c) (5.5)

where Pi(c), P̂i denotes the conditional and predicted conditional class probability for class
c in cell i respectively. 1obj1 is 1 if an object appears in the grid, 0 otherwise. The 1obj1 term
ensures that there is no penalty for classification error if no object is presented in the cell.

5.2.2 YOLO V2

Faster and more accurate version of YOLO referred to as YOLO V2 [65] was proposed in
2017. This thesis utilized YOLO V2 for object detection and this section highlights some
of the major differences between YOLO and YOLO V2.
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Convolution with Anchor Boxes

During the training stage, YOLO predicts the arbitrary size of bounding boxes using fully
connected layers in the last phase. This method works sufficiently well for some types of
objects, but not all. YOLO V2 removes these fully connected layers and improves upon
the arbitrary dimensions by accounting the fact that the objects have approximately the
same aspect ratio for the same type of objects. The arbitrary bounding boxes are replaced
with 5 anchor boxes with offset values. The class-specific probability is computed at the
boundary box level instead of grid level.

Dimension Clusters

During the training, YOLO V2 learns to find the appropriate anchor box sizes. To de-
termine the reasonable anchor boxes to start with, the algorithm uses k-mean clustering
method on the training data. Standard Euclidean distance clustering method does not
reflect true clusters since the data are boundary boxes and not points. The distance for
clustering of anchor box is defined as :

d(box, centroid) = 1− IOU(box, centroid) (5.6)

this leads to good IOU scores that are independent of the sizes of the box. Various values
of k are tested on VOC and COCO dataset and its average IOU with the closest centroid
is shown in Figure 5.3. YOLO V2 choose k = 5 as the good value for anchor boxes. The
5 clustering method performs similar to 9 hand-picked anchor boxes. The thesis also used
5 anchor boxes with COCO model which has a greater variation in size than VOC for
trading.

Direct Location Prediction

During the training, the anchor box requires prediction of where the box should be located.
The estimates include 5 parameters, (tx, ty, tw, th and to), and are predicted relative to
the location of the grid cell. The prediction involves sigma function to constrain and is
computed as:

bx = σ(tx) + cx (5.7)

by = σ(ty) + cy (5.8)
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Figure 5.3: Clustering box dimensions on VOC and COCO dataset [65].

bw = pw exp(tw) (5.9)

bh = ph exp(th) (5.10)

P (Object)IOU(b, Object) = σ(to) (5.11)

where bx, by, bw, bh are the predicted boundary box, cx, cy are the top left corner of the
anchor, and cw, ch are width and height of the anchors. Figure 5.4 visualizes how the
estimates are computed. This allows initial training to be more stable.

Multi-Scale Training

The exclusion of fully connected layers allows YOLO V2 to resize the images flexibly.
YOLO V2 incorporates this to train the images of different sizes which makes the overall
algorithm to be robust on various sizes. YOLO V2 takes an images of size with 320x320,
352x352, · · · and 608 x 608 (steps of 32). On every 10 batches, the network randomly selects
any sizes sizes from {320, 352, · · · , 608} to train. This allows the same trained model to
perform similarly with different resolutions and allows a trade-off between accuracy and
speed. For testing, the input image is resized to 416 x 416.
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Figure 5.4: Boudning box prediction where the blue box is predicted boundary box and
dotted box is the anchor [65].
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Chapter 6

Multi-objective Path Planning with
Pose SLAM

The combination of the previous two chapters, Chapter 4 and, 5 generates a pose graph
of the system with multiple edge information. The adopted VSLAM generates the pose
graph with edge information on the distance it traveled from one node to another node
while the object detection algorithm determines the number of cars, trucks, stop signs,
and, yield signs detected between the nodes. Using the graph, this chapter presents the
proposed multi-objective route planning algorithm.

6.1 Problem Definition

The objective of multi-objective path planning is to find all efficient paths from start to
goal that minimizes path cost. A pose graph is denoted as G = (V,E), where V represents
the set of nodes, and E represents the set of undirected links. Let n = |V | and m = |E|,
where n and m represent the numbers of nodes and edges, respectively. Each link Euv
from node u to v is associated with weights c1(u, v), c2(u, v), ... , cm(u, v). The multiple
criteria are not limited to any number, however, for this thesis only three are considered.
First weight c1(u, v) represents a distance from node u to node v, c2(u, v) and c3(u, v)
can represent any arbitrary criteria such as safety, cost, energy consumed etc. For this
thesis, c2(u, v), c3(u, v) is the number of cars, and trucks the agent passes from one node
to another node respectively.

The efficient paths P (s, g) from start node s to goal node g can be represented as
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P (s, g) : s = v1, v2, ..., vk = g (6.1)

where v1, v2, ..., vk are sequences of node numbers that path visits. Each given path can be
evaluated with a cost vector C where

C(P (s, g)) =


∑k

i=2 c1(vi−1, vi)∑k
i=2 c2(vi−1, vi)

...∑k
i=2 cm(vi−1, vi)

 (6.2)

The efficiency of path can be evaluated by analyzing the cost vector of each path. A path
P (u, v) dominates another path Q(u, v) if the cost vector C(P (u, v)) dominates C(Q(u, v))
as

C(P (u, v)) ≤ C(Q(u, v)) (6.3)

The path P (s, g) is a Pareto-optimal path if there is no other path Q(s, g) that dom-
inates P (s, g). The goal of multi-objective path planning is to find the set of all efficient
paths from a start node s to g.

6.2 Multi-Objective Path Planning Algorithm

To find Pareto-optimal paths from a start node s, to a goal node g, a path is evaluated
on steps whenever it branches to another node. Every time a node is visited, e.g., node z,
the node will be given a label θ1(z), θ2(z), . . . If the node z is reached for the kth time, the
node will consist of the following information:

θk(z) = [xi, αk(z)] (6.4)

where x is the parent node of z and αk(z) is an objective vector, which is computed as:

αk(z) = αi(x) + c(x, z), (6.5)

where αi(x) is the objective vector associated with ith label of node x.

Some parameters need to be calculated beforehand for the main algorithm to work.
Given an edge (x, y) and a path Puv define h(x, y), h(Puv), and h∗(u, v) as

h(x, y) = c1(x, y) + c2(x, y) + . . . cm(x, y) = C(x, y), (6.6)

63



h(Puv) = c1(Puv) + c2(Puv) + . . . cm(Puv) = C(Pu,v), (6.7)

h∗(u, v) = minh(Puv) (6.8)

The minimum weights on each cost c1, c2, . . . cm are also defined as

qj(u, v) = min cj(Puv), (6.9)

Each minimum weight is computed by considering all the paths from u to v. This can be
determined using Dijkstra’s algorithm discussed in Section 2.4.2. With the computation
and initialization of the parameters, the main algorithm evaluates the path as:

ek(z) = αk(z) + h∗(z, g) (6.10)

If z = g, the objective vector, αk(z), is directly compared with already found efficient
vectors to determine whether the path is Pareto-optimal path or not. If it is, the objective
vector is added into efficient vector sets, zΓ, which are associated with each Pareto-optimal
paths. If z = g, consider the neighboring nodes of z. Reject the neighboring nodes if it is
already on the path tip, or if the following condition is true:

αk(z) + c(z, x) + q(x, g) ≥ Γ (6.11)

For the remaining neighboring nodes, assign a tentative label; if k − 1 tentative θk(z)

6.3 Verification of the algorithm

The algorithm performs an exhaustive search by examining all possible paths when ex-
tending from a parent node. The algorithm will find all Pareto-optimal paths, as long as
there is a path from the starting node to the goal node [83].

Starting from a prescribed source node s, the algorithm considers and evaluates all
the neighboring nodes. Following the evaluation, the next step involves considering all the
temporary evaluated paths and extending the paths to the best-estimated paths (the paths
with the lowest ek(z) according to (6.10)). The path that is evaluated as the best path
becomes and remains as permanent. The algorithm makes sure the paths are loopless and
any of the proceeding paths that is exceeding found efficient vector is rejected from the
rejection rule (6.11).

The goal reached will be given the label θv(g) = [xk, αv(g)] , and is a loopless path.
The path is added in the Pareto-optimal path set, only if the path’s objective vector, αv(g)
does not dominate any of the objective vectors in the Γ as expressed in (6.3).
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Algorithm 4 Multi criteria Pareto-optimal Path Algorithm

Input: G: the graph computed by SLAM and object detection, s: start pose, g: goal pose
Output: P: Pareto-optimal path , Γ : efficient objective vector
1: for i = 1 to m do
2: qi(z, t) = Dijkstra’s algorithm (G(V, ci), z, g) where z ∈ V
3: end for
4: h∗(z, t) = min(C(P (z, g))) where z ∈ V
5: θ1(s) = [−, α1(s)]
6: e1(s) = h∗(s, g)
7: Ltemp = [θ1(s)]
8: Lperm = Ø
9: Γ = Ø
10: path = Ø
11: while ! Ltemp = Ø do
12: θv(x) = min(Ltemp)
13: Lperm = Lperm ∪ θv(x)
14: Ltemp = Ltemp − θv(x)
15: path = trace back the path
16: if x == g then
17: if αv(x) is efficient then
18: Γ = [Γ, αv(x)]
19: ParetoPath = [ParetoPath, path]
20: end if
21: else
22: for each neighbors of x do
23: z = neighbor of x
24: if z ∈ path or αk(x) + c(x, z) + q(z, g) ≥ Γ then
25: reject the neighbor
26: end if
27: assign label θk(z) = [xv;αk(z)] if k − 1 labels have been given to z previously
28: ek(z) = αk(z) + h∗(z, g)
29: Ltemp := Ltemp ∪ {θk(z)}
30: end for
31: end if
32: end while
33: return ParetoPath,Γ
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The evaluation step of the algorithm involves summing up the objective functions (6.10).
The weights on the edges can be different. Hence, each of the weights is normalized prior
to the algorithm.
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Chapter 7

Simulation and Experimental Tests

This chapter presents the results from individual components of the proposed design and
the results from the overall design. The VSLAM module, object detection module, and
the overall scheme are tested using odometry benchmark KITTI dataset [23] . The multi-
objective path planning scheme is tested using randomly generated data from MATLAB.
The design is implemented on Intel Core i7-7700HQ (4 cores @ 2.80GHz) processor and
8Gb RAM.

7.1 VSLAM

The KITTI dataset is captured by driving around the mid-size city of Karlsruhe, in rural
areas and on highways. The dataset includes 22 stereo sequences in grayscale and color
images and laser data. There are 11 ground truth and 11 test trajectories included for
evaluation. This thesis is not intended to evaluate the accuracy of the ORB SLAM, the
detailed comparison and accuracy of different trajectories are in [55]. From the stereo
dataset, the right color image with a resolution of 1382 x 512 pixels is used. Figures 7.1
and 7.2, respectively, show an example map and feature extraction generated by ORB
SLAM with sequence 00. The example is captured when the ORB SLAM closes the loop
for the first time in sequence 00. The blue frames are keyframe estimates, black and red
points are map points. The points in the current local map are visualized as red dots.
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Figure 7.1: A map created and visualized by ORB SLAM with sequence 00. The blue
frames indicate the estimated camera poses for keyframes. The map points are visualized
with black and red dots. The red points belong to the current local map.

7.2 Object Detection

Figure 7.3 shows an example of cars and trucks detected by Tiny YOLO with confidence
of 20% or higher. The object detected with confidence of 20% or higher is counted as a
valid object in the proposed design. Figure 7.4 and 7.5 show comparison of the scenes
with different thresholds. As confidence decreases, there tends to be more misclassifica-
tion. Higher confidence avoids the misclassification but causes decrease in detection rate.
Depending on priority and preference between avoidance of misclassification and avoidance
of misdetection, the confidence level can be selected. This thesis adopted confidence value
of 20%.

The object detection module detects objects that are trained to detect in images. Given
a sequence of images, this module finds objects each time. Figure 7.6 shows time elapse
comparison with the original frame (a) after (b) 3 and (c)10 frames passed relative to
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Figure 7.2: A feature extraction on an image by ORB SLAM.

Figure 7.3: Object detection prediction on an image by YOLO.

(a). If the objects are not tracked well, the same object can be counted multiple times.
The KITTI dataset is captured approximately at 10 frames per second. The detection
rate when three nodes are performing in parallel is approximately 1 frame per second.
Therefore, in the proposed scheme, multi-counting error in the graph would appear similar
to image (a) to (c). A different dataset with different frame rate would result in different
misclassification rate.

7.3 Multi-objective Path Planning

The pareto-optimal path algorithm discussed in Chapter 6 utilized in the thesis is verified
with two examples. Figure 7.7 illustrates 5 nodes with 3 weights on each edges and the
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(a) (b)

(c) (d)

(e) (f)

Figure 7.4: Comparison of object detection with a confidence of (a)10%, (b)15%, (c)20%,
(d)25%, (e)30%, and (f)40%.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.5: Comparison of object detection with a confidence of (a)10%, (b)15%, (c)20%,
(d)25%, (e)30%, and (f)40%.
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(a)

(b)

(c)

Figure 7.6: Time elapse comparison with the original frame (a) after (b)3 frames (c)10
frames.
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proposed paths from the algorithm are shown in Figure 7.8. The qi(z, g) and h∗(z, g) for
i = 1, 2, 3 and z ∈ N are shown in Table 7.1. The initialization of Figure 7.7 are computed
as shown in Table 7.1. Figure 7.9 shows a 40 node examples and the weight information
is presented in Table 7.2. The pareto-optimal paths with efficient vectors for 40 nodes
example are presented in Figure 7.10.

7.3.1 5 Nodes Example

Figure 7.7: 5 nodes multicriteria graph.

Table 7.1: 5 Nodes Initialization Table

z s 1 2 3 t
q1(z, g) 8 2 4 1 0
q2(z, g) 10 1 2 9 0
q3(z, g) 5 1 4 3 0
h∗(z, g) 26 4 12 19 0

As presented in Figure 7.8, there are four pareto-optimal paths with different efficient
vectors. Comparing the efficient vector, (8,12,6) for path 1, (8,18,5) for path 3, the second
criteria is superior by path 1, but the third criteria is superior in path 3. The efficient
vectors for path 2,4 is inferior to those for path 1,3 for the first criteria. However, path
2 and 4 dominate other efficient vectors for criteria three and two respectively. All of the
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(a) Path 1: s→ 1→ g , (8,12,6) (b) Path 2: s→ 2→ g , (13,11,5)

(c) Path 3: s→ 3→ g , (8,18,5) (d) Path 4: s→ 2→ 1→ g , (12,10,10)

Figure 7.8: 5 nodes multicriteria Pareto-optimal paths with its efficient vectors.
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paths found are pareto-optimal paths since none of the efficient vectors are dominated by
others.

7.3.2 40 Nodes Example

More complex example using 40 nodes and the results are presented in Figures 7.9 and
7.10.

Figure 7.9: 40 nodes multicriteria graph.

7.4 Multi-objective Path Planning using Visual SLAM

and Object Detection

The combined proposed scheme is tested with sequence 00, 05, 06, and 07, which are
sequences that ORB SLAM correctly detects and closes the loop. Due to computational
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(a) Path1: 2 → 7 → 23 → 17 → 22 → 18 →
3→ 37 , (149,235,232)

(b) Path2: 2 → 1 → 4 → 9 → 10 → 14 →
19→ 30→ 3→ 37 , (253,210,254)

(c) Path3: 2 → 1 → 4 → 9 → 10 → 14 →
28→ 30→ 3→ 37 (291, 192, 257)

(d) Path4: 2 → 1 → 4 → 9 → 10 → 23 → 17 →
22→ 18→ 3→ 37 , (271,271,210)

(e) Path5: 2 → 34 → 12 → 23 → 17 → 22 →
18→ 3→ 37 , (249,289,218)

(f) Path6: 2 → 7 → 23 → 10 → 14 → 19 →
30→ 3→ 37 , (201,232,348)
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(a) Path7: 2 → 7 → 23 → 10 → 14 → 28 →
30→ 3→ 37 , (239,214,351)

(b) Path8: 2 → 1 → 4 → 9 → 31 → 10 →
23→ 17→ 22→ 18→ 3→ 37 , (321,328,208)

(c) Path9: 2 → 1 → 4 → 9 → 10 → 14 →
28→ 30→ 8→ 40→ 37 , (437,184,309)

Figure 7.10: 40 nodes multi-criteria Pareto-optimal paths with its efficient vectors.

77



(a) Pose SLAM map built with ORB SLAM (b) Pose graph with nodes, where red and blue node in-
dicates start and goal respectively

(c) Path 1, (41.545,394,422) (d) Path 2, (31.977,498,301)

Figure 7.11: multi-criteria Pareto-optimal paths with its efficient vectors for KITTI dataset
sequence 00.

limitation, sequences 00 and 05 are only partially tested. The start node is chosen as the
first node from the graph, the goal node is particularly selected as a node that provides
two pareto-optimal paths to present the result. Figures 7.11, 7.12, 7.13, and 7.14 show the
two pareto-optimal path in the sequences.

7.5 Discussion

The object detection module was originally trained to detect cars, trucks, stop and yield
signs. The appearance of the stop and yield sign from KITTI dataset is once or none from
different sequences tested. Hence, the proposed design is tested only with the number of
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(a) Pose SLAM map built with ORB SLAM (b) Pose graph with nodes, where red and blue node in-
dicates start and goal respectively

(c) Path 1, (33.484,498,410) (d) Path 2, (38.236,496,485)

Figure 7.12: multi-criteria Pareto-optimal paths with its efficient vectors for KITTI dataset
sequence 05.
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(a) Pose SLAM map built with ORB SLAM (b) Pose graph with nodes, where red and blue node in-
dicates start and goal respectively

(c) Path 1, (59.066,226,138) (d) Path 2, (47.443,218,228)

Figure 7.13: multi-criteria Pareto-optimal paths with its efficient vectors for KITTI dataset
sequence 06.
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(a) Pose SLAM map built with ORB SLAM (b) Pose graph with nodes, where red and blue node in-
dicates start and goal respectively

(c) Path 1, (35.558,235,193) (d) Path 2, (56.304,217,232)

Figure 7.14: multi-criteria Pareto-optimal paths with its efficient vectors for KITTI dataset
sequence 07.
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cars and trucks. The result presents pareto-optimal paths with different sequences.
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Table 7.2: 40 Nodes Edge Information Table

node1 node2 weights node1 node2 weights
1 2 (8,5,10) 1 4 (1,1,8)
1 33 (21,2,23) 2 33 (13,8,6)
2 34 (15,8,41) 2 7 (51,17,63)
2 6 (41,82,98) 4 9 (59,8,10)
9 33 (10,57,52) 6 38 (21,27,26)
34 7 (45,18,73) 12 34 (62,20,9)
12 20 (83,80,5) 12 23 (90,84,74)
12 25 (27,23,76) 20 25 (35,41,32)
25 21 (10,55,53) 25 16 (96,72,76)
25 6 (59,11,82) 31 16 (28,5,33)
7 23 (16,41,75) 23 38 (20,79,36)
38 39 (88,37,23) 9 10 (86,51,52)
9 31 (37,36,34) 4 31 (36,85,49)
23 10 (35,29,36) 23 14 (57,73,13)
10 14 (32,10,89) 14 31 (30,26,75)
10 31 (99,72,16) 14 26 (1, 58, 2)
23 17 (45,39,32) 17 22 (9,44,8)
20 27 (62,77,84) 22 18 (20,10,11)
22 13 (32,13,65) 21 29 (90,75,53)
17 24 (15,54,63) 26 13 (20,79,36)
14 19 (1,37,16) 26 19 (4,36,70)
14 28 (2,26,7) 26 15 (3,24,9)
19 24 (51,41,74) 15 24 (30,43,5)
19 30 (57,29,30) 18 35 (42,49,39)
30 28 (94,22,42) 15 29 (82,56,22)
29 24 (11,8,38) 27 28 (33,82,89)
27 11 (40,58,53) 27 36 (92,1,49)
18 3 (7,54,10) 32 3 (32,13,65)
3 35 (61,8,39) 36 40 (1,61,1)
3 37 (1,30,33) 3 30 (8,39,6)
29 30 (63, 30,45) 29 5 (56,74,47)
30 5 (49,72,65) 5 8 (51,71,47)
30 8 (20,7,20) 8 40 (40,1,10)
5 37 (79,60,23) 37 40 (95,53,61)
40 11 (91,3,69) 35 40 (45,59,11)
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Chapter 8

Conclusion and Future Work

This thesis has proposed a multi-objective path planning scheme integrating VSLAM and
object detection for autonomous robots. The objective of the scheme is to to minimize dis-
tance and number of predefined objects that are traversed during the path. The proposed
approach has application in different fields where a robot is initially guided for exploration
and path planning of the same place is needed. While the robot manoeuvres, VSLAM
module builds the map and trajectory graph. In parallel to the VSLAM module, object
detection module detects cars, trucks, stop and yield signs. The combined information
is used to find a path with minimal distance, and minimal number of objects passed by.
The proposed design is tested with KITTI dataset (sequences 00, 05, 06, and 07) [23] and
the results demonstrate the high performance of the design. However, the stop and yield
sign on KITTI dataset appeared only once or none in the tested sequences. Hence, the
multi-objective path planning scheme has only considered the number of cars and trucks.
The results show pareto-optimal paths and its efficient vectors from different sequences.
The efficient vectors show how one path travels more distance compared to another path
but passes fewer cars or trucks.

When the robot traverses the areas that were seen before, the current setup continually
adds new nodes, which requires memory and computation. For long-term applications,
and to reduce the computational complexity for path planning module, the node reduction
of trajectory graph can be considered.

Currently, the proposed design does not keep track of detected objects. This sometimes
results in multiple counting of the same objects, which causes misleading information on
the graph. For the future work, the detected objects should be tracked for few frames to
reduce miscounting. Another potential improvement is to speed up the object detection in
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CPU. The implemented process is not fast enough to provide information on the number
of objects on every edge: sometimes the number of objects detected is zero due to the
computational limitation. The object detection module implemented is state-of-art on
CPU. With the availability of faster version, the proposed design can be improved. The
proposed design can be tested with an experimental set-up and can be applied for different
scenarios, including disaster and the terrain environment.
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