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Abstract. Modal transition systems (MTS) is a well established formal-
ism used for specification and for abstract interpretation. We consider its
disjunctive extension (DMTS) and we provide algorithms showing that
refinement problems for DMTS are not harder than in the case of MTS.
There are two main results in the paper. Firstly, we identify an error in
a previous attempt at LTL model checking of MTS and provide algo-
rithms for LTL model checking of MTS and DMTS. Moreover, we show
how to apply this result to compositional verification and circumvent
the general incompleteness of the MTS composition. Secondly, we give
a solution to the common implementation and conjunctive composition
problems lowering the complexity from EXPTIME to PTIME.

1 Introduction

Specification and verification of programs is a fundamental part of theoretical
computer science and is nowadays regarded indispensable when designing and
implementing safety critical systems. Therefore, many specification formalisms
and verification methods have been introduced. There are two main approaches
to this issue. The behavioural approach exploits various equivalence or refinement
checking methods, provided the specifications are given in the same formalism
as implementations. The logical approach makes use of specifications given as
formulae of temporal or modal logics and relies on efficient model checking al-
gorithms. In this paper, we combine these two methods.

The specifications are rarely complete, either due to incapability of capturing
all the required behaviour in the early design phase, or due to leaving a bunch of
possibilities for the implementations, such as in e.g. product lines [1]. One thus
begins the design process with an underspecified system where some behaviour
is already prescribed and some may or may not be present. The specification is
then successively refined until a real implementation is obtained, where all the
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Fig. 1. An example of (a) a modal transition system (b) its implementation

behaviour is completely determined. Of course, we require that our formalism
allow for this stepwise refinement.

Furthermore, since supporting the component based design is becoming cru-
cial, we need to allow also for the compositional verification. To illustrate this,
let us consider a partial specification of a component that we design, and a third
party component that comes with some guarantees, such as a formula of a tempo-
ral logic describing the most important behaviour. Based on these underspecified
models of the systems we would like to prove that their interaction is correct,
no matter what the hidden details of the particular third party component are.
Also, we want to know if there is a way to implement our component specifica-
tion so that the composition fulfills the requirements. Moreover, we would like
to synthesize the respective implementation. We address all these problems.

Modal transition systems (MTS) is a specification formalism introduced by
Larsen and Thomsen [2, 3] allowing for stepwise refinement design of systems
and their composition. A considerable attention has been recently paid to MTS
due to many applications, e.g. component-based software development [4, 5],
interface theories [6, 7], or modal abstractions and program analysis [8–10], to
name just a few.

The MTS formalism is based on transparent and simple to understand model
of labelled transition systems (LTS). While LTS has only one labelled transition
relation between the states determining the behaviour of the system, MTS as
a specification formalism is equipped with two types of transitions: the must
transitions capture the required behaviour, which is present in all its imple-
mentations; the may transitions capture the allowed behaviour, which need not
be present in all implementations. Figure 1 depicts an MTS that has arisen as
a composition of three systems and specifies the following. A request from a client
may arrive. Then we can process it directly or make a query to a database where
we are guaranteed an answer. In both cases we send a response.

Such a system can be refined in two ways: a may transition is either imple-
mented (and becomes a must transition) or omitted (and disappears as a transi-
tion). On the right there is an implementation of the system where the processing
branch is implemented and the database query branch is omitted. Note that an
implementation with both branches realized is also possible. This may model
e.g. behaviour dependent on user input. Moreover, implementations may even
be non-deterministic, thus allowing for modelling e.g. unspecified environment.

On the one hand, specifying may transitions brings guarantees on safety. On
the other hand, liveness can be guaranteed to some extent using must transi-



tions. Nevertheless, at an early stage of design we may not know which of several
possible different ways to implement a particular functionality will later be cho-
sen, although we know at least one of them has to be present. We want to specify
e.g. that either processing or query will be implemented, otherwise we have no
guarantee on receiving response eventually. However, MTS has no way to specify
liveness in this setting. Therefore, disjunctive modal transition systems (DMTS)
(introduced in [11] as solutions to process equations) are the desirable extension
appropriate for specifying liveness. This has been advocated also in [12] where
a slight modification of DMTS is investigated under the name underspecified
transition systems. Instead of forcing a particular transition, the must transi-
tions in DMTS specify a whole set of transitions at least one of which must be
present. In our example, it would be the set consisting of processing and query
transitions. DMTS turn out to be capable of forcing any positive Boolean com-
bination of transitions, simply by turning it into the conjunctive normal form.
Another possible solution to this issue is offered in [13] where one-selecting MTS
are introduced with the property that exactly one transition from the set must
be present.

As DMTS is a strict extension of MTS a question arises whether all funda-
mental problems decidable in the context of MTS remain decidable for DMTS,
and if so, whether their complexities remain unchanged. We show that this is
indeed the case. Therefore, using the more powerful DMTS is not more costly
than using MTS.

There is also another good reason to employ the greater power of DMTS
instead of using MTS. Often a set of requirements need to be satisfied at once.
Therefore, we are interested in the common implementation (CI) problem, where
one asks whether there is an implementation that refines all specifications in a
given set, i.e. whether the specifications are consistent. (In accordance with the
traditional usage, the states of (D)MTS specifications shall be called processes.)
Moreover, we also want to construct the most general process refining all pro-
cesses, i.e. the greatest lower bound with respect to the refinement. We call this
process a conjunction as this composition is the analog of logical and. We show
there may not be any process that is a conjunction of a given set of processes,
when only considering MTS processes. However, we also show that there is al-
ways a DMTS process that is a conjunction of a given set of (D)MTS processes.
This again shows that DMTS is a more appropriate framework than MTS.

As the first main result, we show a new perspective on these problems, namely
we give a simple co-inductive characterization yielding a straightforward fix-
point algorithm. This characterization unifies the view not only (i) in the MTS
vs. DMTS aspect, but also (ii) in the cases of number of specifications being fixed
or a part of the input, and most importantly (iii) establishes connection between
CI and the conjunction. Our new view provides a solution for DMTS and yields
algorithms for the aforementioned cases with the respective complexities being
the same as for CI over MTS as determined in [14, 15]. So far, conjunction has
been solved for MTS enriched with weights on transitions in [16], however, only
for the deterministic case. Previous results on conjunction over DMTS [11] yield



an algorithm that requires exponential time (even for only two processes on
input). Our algorithm runs in polynomial time both for conjunction and CI for
any fixed number of processes on input.

As the second main result, as already mentioned we would like to supplement
the refinement based framework of (D)MTS with model checking methods. Since
a specification induces a set of implementations, we apply the thorough approach
of generalized model checking of Kripke structures with partial valuations [17, 18]
in our setting. Thus a specification either satisfies a formula ϕ if all its implemen-
tations satisfy ϕ; or refutes it if all implementations refute it; or neither of the
previous holds, i.e. some of the implementations satisfy and some refute ϕ. This
classification has also been adopted in [3] for CTL model checking MTS. Sim-
ilarly, [19] provides a solution to LTL model checking over deadlock-free MTS,
which was implemented in the tool support for MTS [20]. However, we identify
an error in this LTL solution and provide correct model checking algorithms.
The erroneous algorithm for the deadlock-free MTS was running in PSPACE,
nevertheless, we show that this problem is 2-EXPTIME-complete by reduction
to and from LTL games. The generalized model checking problem is equivalent
to solving the problems (i) whether all implementations satisfy the given formula
and if they do not then (ii) whether there exists an implementation satisfying the
formula. We provide algorithms for both the universal and the existential case,
and moreover, for the cases of MTS, deadlock-free MTS and DMTS, providing
different complexities. Due to our reduction, the resulting algorithm can be also
used for synthesis, i.e. if there is a satisfying implementation, we automatically
receive it. Not only is the application in the specification area clear, but there is
also an important application to abstract interpretation. End-users are usually
more comfortable with linear time logic and the analysis of path properties re-
quires to work with abstractions capturing over- and under-approximation of a
system simultaneously. MTS are a perfect framework for this task, as may and
must transitions can capture over- and under-approximations, respectively [8].
Our results thus allow for LTL model-checking of system abstractions, including
counterexample generation.

Finally, we show how the model checking approach can help us getting around
the fundamental problem with the parallel composition. There are MTS pro-
cesses S and T , where the composed process S ‖ T contains more implemen-
tations than what can be obtained by composing implementations of S and T .
Hence the composition is not complete with respect to the semantic view. Some
conditions to overcome this difficulty were identified in [15]. Here we show the
general completeness of the composition with respect to the LTL formulae sat-
isfaction, and generally to all linear time properties.

The rest of the paper is organized as follows. We provide basic definitions
and results on refinements in Section 2. The results on LTL model checking and
its relation to the parallel composition can be found in Section 3. The “logical
and” composition is investigated in Section 4. Section 5 concludes and discusses
future work. Due to space limitations the proofs are omitted and can be found
in [21].



2 Preliminaries

In this section we define the specification formalism of disjunctive modal transi-
tion systems (DMTS). A DMTS can be gradually refined until we get a labelled
transition system (LTS) where all the behaviour is fully determined. The seman-
tics of a DMTS will thus be the set of its refining LTSs. The following definition
is a slight modification of the original definition in [11].

Definition 2.1. A disjunctive modal transition system (DMTS) over an action
alphabet Σ and a set of propositions Ap is a tuple (P, 99K,−→, ν) where P is
a set of processes, 99K ⊆ P ×Σ × P and −→ ⊆ P × 2Σ×P are may and must
transition relations, respectively, and ν : P → 2Ap is a valuation. We write

S
a

99K T meaning (S, a, T ) ∈ 99K, and S −→ T meaning (S, T ) ∈ −→. We
require that whenever S −→ T then (i) T 6= ∅ and (ii) for all (a, T ) ∈ T we also

have S
a

99K T .

The original definition of DMTS does not include the two requirements, thus
allowing for inconsistent DMTS, which have no implementations. Due to the
requirements, our DMTS guarantee that all must obligations can be fulfilled.
Hence, we do not have to expensively check for consistency? when working with
our DMTS. And there is yet another difference to the original definition. Since
one of our aims is model checking state and action based LTL, we not only have
labelled transitions, but we also equip DMTS with a valuation over states.

Clearly, the must transitions of DMTS can be seen as a positive boolean
formula in conjunctive normal form. Arbitrary requirements expressible as pos-
itive boolean formulae can be thus represented by DMTS, albeit at the cost of
possible exponential blowup, as commented on in [22].

Example 2.2. Figure 2 depicts three DMTSs. The may transitions are drawn
as dashed arrows, while each must transition of the form (S, T ) is drawn as
a solid arrow from S branching to all elements in T . Due to requirement (ii) it
is redundant to draw the dashed arrow when there is a solid arrow and we never
depict it explicitly.

While in DMTS we can specify that at least one of the selected transitions
has to be present, in modal transition systems (MTS) we can only specify that
a particular transition has to be present, i.e. we need to know from the begin-
ning which one. Thus MTS is a special case of DMTS. Further, when the may
and must transition relations coincide, we get labelled transition systems (with
valuation).

Definition 2.3. A DMTS S = (P, 99K,−→, ν) is an MTS (with valuation) if

S −→ T implies that T is a singleton. We then write S
a−→ T for T = {(a, T )}.

? Checking consistency is an EXPTIME-complete problem. It is polynomial [11] only
under an assumption that all “conjunctions” of processes are also present in the
given DMTS which is very artificial in our setting. For more details, see [21].



If moreover S
a

99K T implies S
a−→ T , then S is an LTS. Processes of an LTS

are called implementations.
A DMTS S = (P, 99K,−→, ν) is deterministic if for every process S and

action a there is at most one process T with S
a

99K T .

For the sake of readable notation, when speaking of a process, we often omit
the underlying DMTS if it is clear from the context. Moreover, we say that S
is deterministic (an MTS etc.) meaning that the DMTS on processes reachable
from S is deterministic (MTS etc.). Further, when analyzing the complexity we
assume we are given finite DMTSs.

SMI

e$

C ≤m

e$ coffee tea coffeecoffeecoffeee$ coffee

Fig. 2. An implementation I, a process M of an MTS, and a process S of a DMTS
such that I CM ≤m S

When refining a process, we need to satisfy two conditions: (1) the respective
refining process cannot allow any new behaviour not allowed earlier; and (2) if
there is a requirement to implement an action by choosing among several options,
the refining process can only have more restrictive set of these options.

Definition 2.4 (Modal refinement). Let (P, 99K,−→, ν) be a DMTS. Then
R ⊆ P × P is called a modal refinement relation if for all (A,B) ∈ R

– ν(A) = ν(B), and

– whenever A
a

99K A′ then B
a

99K B′ for some B′ with (A′, B′) ∈ R, and
– whenever B −→ B′ then A −→ A′ for some A′ such that for all (a,A′) ∈ A′

there is (a,B′) ∈ B′ with (A′, B′) ∈ R.

We say that S modally refines T , denoted by S ≤m T , if there exists a modal
refinement relation R with (S, T ) ∈ R.

Note that since a union of modal refinement relations is a modal refinement
relation, the relation ≤m is the greatest modal refinement relation. Also note
that on implementations the modal refinement coincides with bisimulation.

We now define the semantics of a process as a set of implementations that are
refining it. The defined notion of thorough refinement is a semantic counterpart
to the syntactic notion of modal refinement.

Definition 2.5 (Thorough refinement). Let I, S, T be processes. We say that
I is an implementation of S, denoted by I C S, if I is an implementation and
I ≤m S. We say that S thoroughly refines T , denoted by S ≤t T , if J C S
implies J C T for every implementation J .

While the syntactic characterization is sound, it is not complete since it is incom-
plete already for MTS. However, completeness can be achieved on a reasonable
subclass.



Proposition 2.6. Let S and T be processes. Then S ≤m T implies S ≤t T . If
T is deterministic then S ≤t T implies S ≤m T .

Next we show that both refinement problems are not harder for DMTS than for
MTS. This allows for using more powerful DMTS instead of MTS. The following
is proven similarly as in [15]. In order to prove the last claim significantly involved
modifications of the approach of [23] are needed.

Theorem 2.7. Deciding ≤m is PTIME-complete. Deciding ≤m when restricted
to the refined (i.e. right-hand-side) process being deterministic is NLOGSPACE-
complete. Deciding ≤t is EXPTIME-complete.

3 LTL Model Checking

This section discusses the model checking problem for linear temporal logic
(LTL) [24] and its application on compositional verification. The following defi-
nition of state and action based LTL is equivalent to that of [25], with a slight
difference in syntax.

Definition 3.1 (LTL syntax). The formulae of state and action based LTL
(LTL in the following) are defined as follows.

ϕ ::= tt | p | ¬ϕ | ϕ ∧ ϕ | ϕU ϕ | Xϕ | Xa ϕ

where p ranges over Ap and a ranges over Σ.

We use the standard derived operators, such as Fϕ = ttUϕ and Gϕ = ¬F¬ϕ.

Definition 3.2 (LTL semantics). Let I be an implementation. A run of I is
a maximal (finite or infinite) alternating sequence of state valuations and actions

π = ν(I0), a0, ν(I1), a1, . . . such that I0 = I and Ii−1
ai−1−→ Ii for all i > 0. If a run

π is finite, we denote by |π| the number of state valuations in π, we set |π| =∞
if π is infinite. We also define the ith subrun of π as πi = ν(Ii), ai, ν(Ii+1), . . .
Note that this definition only makes sense when i < |π|. The set of all runs of I
is denoted by R∞(I), the set of all infinite runs is denoted by Rω(I).

The semantics of LTL on π = ν0, a0, ν1, a1, . . . is then defined as follows:

π |= tt always

π |= p ⇐⇒ p ∈ ν0
π |= ¬ϕ ⇐⇒ π 6|= ϕ

π |= ϕ ∧ ψ ⇐⇒ π |= ϕ and π |= ψ

π |= ϕU ψ ⇐⇒ ∃ 0 ≤ k < |π| : πk |= ψ and ∀ 0 ≤ j < k : πj |= ϕ

π |= Xϕ ⇐⇒ |π| > 1 and π1 |= ϕ

π |= Xa ϕ ⇐⇒ |π| > 1, a0 = a and π1 |= ϕ

We say that an implementation I satisfies ϕ on infinite runs, denoted as I |=ω ϕ,
if for all π ∈ Rω(I), π |= ϕ. We say that an implementation I satisfies ϕ on all
runs, denoted as I |=∞ ϕ, if for all π ∈ R∞(I), π |= ϕ.



The use of symbols ω and ∞ to distinguish between using only infinite runs or
all runs is in accordance with standard usage in the field of infinite words.

It is common to define LTL over infinite runs only. In that respect, our
definition of |=ω matches the standard definition. In the following, we shall first
talk about this satisfaction relation only, and comment on |=∞ afterwards.

The generalized LTL model checking problem for DMTS can be split into two
subproblems – deciding whether all implementations satisfy a given formula, and
deciding whether at least one implementation does. We therefore introduce the
following notation: we write S |=ω

∀ ϕ to mean ∀I C S : I |=ω ϕ and S |=ω
∃ ϕ to

mean ∃I C S : I |=ω ϕ ; similarly for |=∞.
Note that |=ω

∃ contains a hidden alternation [26] of quantifiers, as it actually
means ∃I C S : ∀π ∈ Rω(I) : I |=ω ϕ. No alternation is present in |=ω

∀ . This
observation hints that the problem of deciding |=ω

∀ is easier than deciding |=ω
∃ .

Our first two results show that indeed, deciding |=ω
∀ is not harder than the

standard LTL model checking whereas deciding |=ω
∃ is 2-EXPTIME-complete.

The only known correct result on LTL model checking of MTS is that deciding
MTS |=ω

∀ over MTS is PSPACE-complete [19]. This holds also for DMTS.

Theorem 3.3. The problem of deciding |=ω
∀ over DMTS is PSPACE-complete.

Proof (Sketch). All implementations of S satisfy ϕ if and only if the may struc-
ture of S satisfies ϕ. ut

In [18] the generalized model checking of LTL over partial Kripke structures
(PKS) is shown to be 2-EXPTIME-hard. Further, [27] describes a reduction
from generalized model checking of µ-calculus over PKS to µ-calculus over MTS.
However, the hardness for LTL over MTS does not follow since the encoding of
an LTL formula into µ-calculus includes an exponential blowup. There is thus no
straightforward way to use the result of [27] to provide a polynomial reduction.
Therefore, we prove the following theorem directly.

Theorem 3.4. The problem of deciding |=ω
∃ over DMTS is 2-EXPTIME-complete.

Proof (Sketch). We show the reduction to and from the 2-EXPTIME-complete
problem of deciding existence of a winning strategy in an LTL game [28]. An LTL
game is a two player positional game over a finite Kripke structure. The winning
condition is the set of all infinite plays (sequences of states) satisfying a given
LTL formula.

Thus, an LTL game may be seen as a special kind of DMTS over unary
action alphabet. Here the processes are the states of the Kripke structure, the
may structure is the transition relation of the Kripke structure, and the must
structure is built as follows. Every process corresponding to a state of Player I
has one must transition spanning all may-successors; every process corresponding
to a state of Player II has several must transitions, one to each may-successor.
The implementations of such DMTS now correspond to strategies of Player I in
the original LTL game. Thus follows the hardness part of the theorem.

For the containment part, we provide an algorithm that transforms the given
DMTS into a Kripke structure with states assigned to the two players. This



construction bears some similarities to the construction transforming Kripke
MTS into alternating tree automata in [29].

S

T U V W

a

b c

d

S

SU

U V

SW

W

τ τ

b c d

(S,−)

(SU , τ) (SW , τ)

(U, b) (V, c) (W,d)

Fig. 3. Transformation from DMTS into a two player game

The transformation from a DMTS into a two player game proceeds as follows.
We first eliminate all may transitions that are not covered by any must transi-
tions. We then modify the must transitions. For each S −→ U we create a unique
new process SU and set S

τ−→ SU and SU
a−→ T for all (a, T ) ∈ U . We thus now

have a labelled transition system, possibly with valuation. We then eliminate
actions by encoding them into their target state, thus obtaining a Kripke struc-
ture. States that were created from processes of the original DMTS belong to
Player II, states created from must transitions belong to Player I. The construc-
tion is illustrated in Fig. 3. We then modify the LTL formula in two steps. First,
we add the possibility of a τ action in every odd step. Second, we transform
the state-and-action LTL formula into a purely state-based one. The resulting
game over the Kripke structure together with the modified LTL formula form
the desired LTL game. ut

There are constructive algorithms for solving LTL games, i.e. not only do
they decide whether a winning strategy exists, but they can also synthesize such
a strategy. Furthermore, our reduction effectively transforms a winning strategy
into an implementation satisfying the given formula. We can thus synthesize an
implementation of a given DMTS satisfying a given formula in 2-EXPTIME.

Although the general complexity of the problem is very high, various sub-
classes of LTL have been identified in [30] for which the problem is computa-
tionally easier. These complexity results can be easily carried over to generalized
model checking of DMTS.

Interestingly enough, deciding |=ω
∃ is much easier over MTS.

Theorem 3.5. The problem of deciding |=ω
∃ over MTS is PSPACE-complete.

Proof (Sketch). The proof is similar to the proof of Theorem 3.3, only instead
of checking the may structure of S, we check the must structure of S. ut

However, despite its lower complexity, |=ω
∃ over MTS is not a very useful

satisfaction relation. As we only considered infinite runs, an MTS may (and



frequently will) possess trivial implementations without infinite runs. The state-
ment S |=ω

∃ ϕ then holds vacuously for all ϕ. Two natural ways to cope with
this issue are (a) using |=∞∃ (see below) and (b) considering only deadlock-free
implementations, i.e. with infinite runs only.

S
a

a

b

Fig. 4. No deadlock-free implementation of S satisfies GXa tt

The deadlock-free approach has been studied in [19] and the proposed solu-
tion was implemented in the tool MTSA [20]. However, the solution given in [19]
is incorrect. In particular, existence of a deadlock-free implementation satisfying
a given formula is claimed even in some cases where no such implementation
exists. A simple counterexample is given in Fig. 4. Clearly, S has no deadlock-
free implementation with action a only, i.e. satisfying G Xa tt. Yet the method
of [19] as well as the tool [20] claim that such an implementation exists.

Furthermore, there is no chance that the approach of [19] could be easily fixed
to provide correct results. The reason is that this approach leads to a PSPACE
algorithm, whereas we prove again by reduction from LTL games that finding
a deadlock-free implementation of a given MTS is 2-EXPTIME-hard. For more
details see [21]. The containment in 2-EXPTIME is then proved by reduction to
the problem of deciding |=ω

∃ for DMTS. The basic idea is to modify all processes
without must transitions, enhancing them with one must transition spanning all
may-successors.

Proposition 3.6. The problem of deciding the existence of a deadlock-free im-
plementation of a given MTS satisfying a given LTL formula, is 2-EXPTIME-
complete.

We now turn our attention to the (a) option, i.e. all (possibly finite) runs, and
investigate the |=∞ satisfaction. Checking properties even on finite runs is indeed
desirable when considering (D)MTS used for modelling non-reactive systems. We
show that deciding |=∞∃ and |=∞∀ over DMTS has the same complexity as deciding
|=ω
∃ and |=ω

∀ over DMTS, respectively. We also show that contrary to the case of
infinite runs, the problem of deciding |=∞∃ remains 2-EXPTIME-hard even for
standard MTS.

Theorem 3.7. The problem of deciding |=∞∃ over (D)MTS is 2-EXPTIME-
complete, the problem of deciding |=∞∀ over (D)MTS is PSPACE-complete.

Although we have so far considered the more general state and action based
LTL, this costs no extra overhead when compared to state-based or action-
based LTL.



Table 1. Complexities of generalized LTL model checking

|=∀ |=∃

MTS |=ω PSPACE-complete PSPACE-complete

MTS |=df PSPACE-complete 2-EXPTIME-complete

MTS |=∞ PSPACE-complete 2-EXPTIME-complete

DMTS PSPACE-complete 2-EXPTIME-complete

Proposition 3.8. The complexity of deciding |=?
∃ and |=?

∀ for ? ∈ {ω,∞} re-
mains the same if the formula ϕ is a purely state-based or a purely action-based
formula.

The results of this section are summed up in Table 1. We use |=df to de-
note that only deadlock-free implementations are considered. Recall that the
surprising result for |=ω

∃ over MTS is due to the fact that the formula may hold
vacuously.

The best known time complexity bounds with respect to the size of system |S|
and the size of LTL formula |ϕ| are the following. In all PSPACE-complete cases
the time complexity is O(|S| · 2|ϕ|); in all 2-EXPTIME-complete cases the time

complexity is |S|2O(|ϕ|) ·22O(|ϕ| log|ϕ|)
. The latter upper bound is achieved by trans-

lating the LTL formula into a deterministic Rabin automaton of size 22
O(|ϕ| log|ϕ|)

with 2O(|ϕ|) accepting pairs, thus changing the LTL game into a Rabin game.
State of the art algorithm for solving Rabin games can be found e.g. in [31].

3.1 Parallel Composition

We conclude this section with an application to compositional verification. In [3]
the composition of MTS is shown to be incomplete, i.e. there are processes
S1, S2 such that their composition S1 ‖ S2 has an implementation I that does
not arise as a composition I1 ‖ I2 of any two implementations I1 C S1, I2 C S2.
Completeness can be achieved only under some restrictive conditions [15]. Here
we show that composition is sound and complete with respect to every logic of
linear time, i.e. it preserves and reflects all linear time properties.

For the sake of readability, we present the results on MTS only. Nevertheless,
the same holds for the straightforward extension of ‖ to DMTS, see [21].

The composition operator used is based on synchronous message passing,
since it is the most general one. Indeed, it encompasses the synchronous product
as well as interleaving. It is defined as follows. Let Γ ⊆ Σ be a synchronizing
alphabet. Then

– for a ∈ Γ , we set S1 ‖ S2
a

99K S′1 ‖ S′2 whenever S1
a

99K S′1 and S2
a

99K S′2;

– for a ∈ Σ \ Γ , we set S1 ‖ S2
a

99K S′1 ‖ S2 whenever S1
a

99K S′1, and similarly

S1 ‖ S2
a

99K S1 ‖ S′2 whenever S2
a

99K S′2;

and analogously for the must transition relation. As for valuations, we can con-
sider any function f : 2Ap × 2Ap → 2Ap to define ν(S1 ‖ S2) = f(ν(S1), ν(S2)),
such as e.g. union.



The completeness of composition with respect to linear time logics holds for
all discussed cases: both for MTS and DMTS, both for infinite and all runs, and
both universally and existentially. We do not define linear properties formally
here, see e.g. [32]. As a special case, one may consider LTL formulae.

Theorem 3.9. Let S1, S2 be processes, ϕ a linear time property, and ? ∈ {ω,∞}.
Then S1 ‖ S2 |=?

∀ ϕ if and only if I1 ‖ I2 |=? ϕ for all I1 C S1 and I2 C S2.

Theorem 3.10. Let S1, S2 be processes, ϕ a linear time property, and ? ∈
{ω,∞}. Then S1 ‖ S2 |=?

∃ ϕ if and only if there exist I1 C S1 and I2 C S2

such that I1 ‖ I2 |=? ϕ.

The idea of the proof is that the minimal (w.r.t. the set of runs) implemen-
tations of S1 ‖ S2 are decomposable, i.e. they can be written as I1 ‖ I2 where
I1 C S1 and I2 C S2. The same holds for the maximal implementations of
S1 ‖ S2. The results imply that although the composition is incomplete with
respect to thorough refinement no new behaviour arises in the composition.

4 Common Implementation Problem and Conjunction

In the following, we study composing (D)MTS in the sense of logical conjunc-
tion. The common implementation problem (CI) is to decide whether there is
an implementation refining all processes from a given set. Furthermore, we also
want to construct the conjunction, i.e. the process that is the greatest lower
bound for a given set of processes w.r.t. the modal refinement, if it exists. We
show that although MTSs may not have an MTS conjunction, there is always
a conjunction expressible as a DMTS. The complexity depends on the number
of the input processes. We examine the complexity both for the case when it is
fixed and when it is a part of the input.

Theorem 4.1. For the number of input processes being a part of the input, the
CI problem is EXPTIME-complete and conjunction can be computed in expo-
nential time. For any fixed number of input processes, CI is PTIME-complete
and conjunction can be computed in polynomial time.

We first give a coinductive syntactic characterization of the problem and
proceed by constructing the greatest lower bound.

Definition 4.2 (Consistency relation). Let (P, 99K,−→, ν) be a DMTS and
n ≥ 2. Then C ⊆ Pn is called a consistency relation if for all (A1, . . . , An) ∈ C

– ν(A1) = ν(A2) = . . . = ν(An), and
– whenever there exists i such that Ai −→ Bi, then there is some (a,Bi) ∈ Bi

such that there exist Bj for all j 6= i with Aj
a

99K Bj and (B1, . . . , Bn) ∈ C.

In the following, we will assume an arbitrary, but fixed n. Clearly, arbitrary
union of consistency relations is also a consistency relation, we may thus assume
the existence of the greatest consistency relation for a given DMTS. We now
show how to use this relation to construct a DMTS that is the greatest lower
bound with regard to modal refinement (taken as a preorder).



Definition 4.3. Let S = (P, 99K,−→, ν) be a DMTS and Con its greatest con-
sistency relation. We define a new DMTS SCon = (Con, 99KCon,−→Con, νCon),
where

– νCon((A1, . . . , An)) = ν(A1),

– (A1, . . . , An)
a

99KCon (B1, . . . , Bn) whenever ∀i : Ai
a

99K Bi, and
– whenever ∃j : Aj −→ Bj, then (A1, . . . , An) −→Con B where

B = {(a, (B1, . . . , Bn)) | (a,Bj) ∈ Bj and (A1, . . . , An)
a

99KCon (B1, . . . , Bn)}.

Clearly, the definition gives a correct DMTS due to the properties of Con, no-
tably, B is never empty. The following two theorems state the results about the
CI problem and conjunction construction, respectively. The second theorem also
states that the actual result is stronger than originally intended.

Theorem 4.4. Let S1, . . . , Sn be processes. Then S1, . . . , Sn have a common
implementation if and only if (S1, . . . , Sn) ∈ Con.

Theorem 4.5. Let (S1, . . . , Sn) ∈ Con. Then the set of all implementations
of (S1, . . . , Sn) is exactly the intersection of the sets of all implementations of
all Si. In other words, I C (S1, . . . , Sn) if and only if I C Si for all i. Therefore,
(S1, . . . , Sn) as a process of SCon is the greatest lower bound of S1, . . . , Sn with
regard to the modal as well as the thorough refinement.

The greatest consistency relation can be computed using standard greatest
fixed point computation, i.e. we start with all ntuples of processes and eliminate
those that violate the conditions. One elimination step can clearly be done in
polynomial time. As the number of all ntuples is at most |P|n, this means that
the common implementation problem may be solved in PTIME, if n is fixed; and
in EXPTIME, if n is a part of the input. The problem is also PTIME/EXPTIME-
hard, which follows from (a) PTIME-hardness of bisimulation of two LTSs and
(b) EXPTIME-hardness of the common implementation problem for ordinary
MTS [14]. The statement of Theorem 4.1 thus follows.

Note that even if S1, . . . , Sn are MTSs, (S1, . . . , Sn) may not be an MTS.
Indeed, there exist MTSs without a greatest lower bound that is also an MTS;
there may only be several maximal lower bounds, see Fig. 5. This gives another
justification for using DMTS instead of MTS. However, if the MTSs are moreover
deterministic, then the greatest lower bound is—as our algorithm computes it—
also a deterministic MTS [16].

5 Conclusion and Future Work

Our generalization of the known algorithms has shown that refinement prob-
lems on DMTS are not harder than for MTS. As the first main result, we have
solved the LTL model checking and synthesis problems and shown how the model
checking approach helps overcoming difficulties with the parallel composition.

We have implemented the algorithm in
−→=⇒99K
MoTraS, our prototype tool available



S1 S2 (S1, S2)

a
a

b, c

a a

b c b c

M1 M2

a a a a

b c b c

Fig. 5. MTSs S1, S2, their greatest lower bound (S1, S2), and their two maximal MTS
lower bounds M1, M2

at http://anna.fi.muni.cz/~xbenes3/MoTraS/ (the site includes further de-
tails about the tool and its functionality). As the second main result, we have
given a general solution to the common implementation problem and conjunctive
composition.

There are several possible extensions of DMTS such as the mixed variant
(where must transition need not be syntactically under the may transitions)
or systems with partial valuation on states [3]. Yet another modification adds
weights on transitions [16]. It is not clear whether all results of this paper can
be extended to these systems and whether the respective complexities remain
the same.
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