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Abstract 

When assessing the roof of existing buildings, engineers may be confronted with structural 

joints badly preserved, for instance the damaged Single Step Joint (SSJ) located at the foot of 

timber trusses. Since the early appearance of failure modes in this traditional carpentry 

connection may lead to the collapse of the whole timber truss, the retrofitting of damaged 

SSJ is then required as an economically-viable intervention to stabilize the roof structure. In 

consequence, the retrofitting of damaged SSJ with Self-Tapping Screws (STS) has been 

conducted through the Experimental Campaign in order to explore further different 

possibilities offered by this recent intervention technique (Sobra et al. (2016)). To this end, 

two strategies, noted R1 and R2, have been proposed to retrofit the SSJ specimens with STS, 

which had been previously damaged due to both failure modes, namely the crushing at the 

front-notch surface and the shear crack in the tie beam (Verbist et al. (2017)). Afterwards, 

the SSJ specimens retrofitted with STS have been tested under monotonic compression in 

the rafter in order to pull out their mechanical behaviour encompassing the failure modes, 

the force-displacement response, the stiffness of the connection, and the ultimate normal 

force in the rafter. By comparing the mechanical behaviour of retrofitted SSJ specimens with 

the initial ones from Verbist et al. (2017), the performances of both retrofitting strategies 

with STS have been discussed. Furthermore, the impact of the shear row splitting on the 

mechanical behaviour of retrofitted SSJ has been evaluated, by providing some warnings to 

engineers when intervening in existing timber trusses featuring natural damage such as the 

shrinkage splitting. 
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1. Introduction 

When assessing the roof of existing buildings, engineers may be confronted with timber 

trusses badly preserved, comprising damaged elements and/or joints. According to 

Valentin (2009), two main groups of damage may occur in the service life of timber 

trusses: natural and structural damage. Because they are conditioned by different 

environmental factors within the building envelope (e.g. ambient temperature, air 

relative humidity, moisture content...), natural damage stand for the wood deterioration 

due to the presence of biological, chemical and/or physical agents. Since Step Joints are 

traditional carpentry connections located at the foot of timber trusses, they are often 

exposed to recurrent humidity at the tie beam end in contact with wet masonry walls . As 

the most common Step Joint encountered on-site (Yeomans (2003)), the Single Step Joint 

(SSJ) may be subject to natural damage, such as timber shrinkage splitting, fungal decay 

or insect attacks (Teles et al. (2001), Shupe et al. (2008)), resulting in undermining 

severely the mechanical behaviour of the connection with the rushed appearance of 

failure modes. By opposition, structural damage are the result of a poor design at the 

global level of the whole carpentry or at the local level inside elements and joints. 

Because the loading conditions have been modified over several restoration stages in 

their service life, timber trusses may not work as efficiently as expected from their initial 

design, which leads to the emergence of failure modes threatening the structure 

integrity. In the case study of the SSJ, structural damage can be triggered by both failure 

modes (Verbist et al. (2017)): the crushing at the front-notch surface, and the shear crack 

in the tie beam. 

In order to hold steady damaged SSJ within timber trusses, the repair and/or retrofitting 

as on-site interventions are then required. The repair of damaged timber elements and 

connections consists in gaining back their initial mechanical behaviour (i.e. stiffness, 

load-bearing capacity, and force-displacement response) before the damage appearance. 
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Because this laborious intervention is only used for highly deteriorated timber structures 

as extreme case study (e.g. severe fungal decay of wood), the repair has been left out in 

the present research, by more focusing on the retrofitting techniques when dealing with 

structural damage. Similar to the repair, the retrofitting aims at stabilizing damaged 

timber elements and joints, but does not guarantee the regain of their initial mechanical 

behaviour. On the other hand, the reinforcement should be stated as a different 

intervention which implies strengthening sound timber elements or joints in order to 

enhance their initial mechanical behaviour. 

From the scientific literature (Yeomans (2003), Branco et al. (2015) and Tampone et al. 

(2016)), different techniques exist in order to intervene in existing timber trusses, since 

their use conditions mostly depend on the type and extent of damage inside timber 

elements or connections. With well-advanced development of fungal decay, severely 

damaged SSJ are cut and replaced by prosthesis from sound timber elements linked with 

resin as repair technique (Descamps et al. (2016)). As regards structural damage entailing 

the SSJ destabilization, several metal devices (e.g. stirrup, lateral bolts, binding strip, 

tension ties) have been used over time like traditional reinforcement and retrofitting 

techniques (Parisi et al. (2000)). As principles restoration (Yeomans et al.(2003), Croatto 

et al. (2014)), the reversibility and compatibility of intervention techniques chosen must 

be ensured to preserve the integrity of timber structure on-site. In other words, 

intervention techniques should cause as little damage as possible and not taint the initial 

mechanical behaviour of timber elements and connections. 

Conform with experimental works (Görlacher et al. (1991), Munafò et al. (2015) and 

Verbist et al. (2017)), the SSJ can be damaged due to both failure modes: the crushing at 

the front-notch surface, and the shear crack in the tie beam. While the former generates 

high deformation inside the traditional carpentry connection, the latter causes the 

collapse of the whole timber truss. Therefore, the damaged SSJ have to be retrofitted 

with Self-Tapping Screws (STS) since the efficiency and attractiveness of this modern 
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technique has recently stood out in timber engineering. According to Sobra et al. (2016), 

several reinforcement strategies with STS have been investigated through 

experimentations under monotonic compression tests in order to prevent the emergence 

of both failure modes in sound SSJ specimens. By comparing the mechanical behaviour 

from unreinforced SSJ specimens with that from strengthened ones with STS, the authors 

(Sobra et al. (2016) showed that the initial load-bearing capacity of the connection could 

be reached whereas the obtained stiffness dropped. Since the initial stiffness cannot be 

regained for the reinforcement, the intervention technique with STS should only be used 

to retrofit damaged timber elements and joints. Although the STS are intensively used as 

metallic fasteners in timber-to-timber connections in new building constructions (Blass 

et al. (2002), Tomasi et al. (2010), Bléron et al. (2015), Dietsch et al. (2015)), there is still 

a huge lack of knowledge about the strategies of STS positioning and about the 

retrofitting performance with STS when dealing with damaged timber structures on-site. 

In order to fulfil gaps from the literature, the present research aims at determining the 

efficient retrofitting strategies with STS for the SSJ previously damaged due to both failure 

modes. To this end, the Experimental Campaign on the retrofitting of damaged SSJ with STS 

has been carried on into several investigation steps. First of all, two retrofitting strategies 

with STS have been proposed for the SSJ damaged due to the crushing and the shear crack, 

by taking into account the restoration principles in existing timber structures (Yeomans 

(2003), Croatto et al. (2014)) and the mechanical performances of STS inside timber-to-

timber connections in single shear (Blass et al. (2002), Tomasi et al. (2010), Bléron et al. 

(2015), Dietsch et al. (2015)). Afterwards, several damaged SSJ specimens from Verbist et 

al. (2017) have been retrofitted with STS as per two strategies previously defined. Last 

but not least, the retrofitted SSJ specimens have been tested under monotonic 

compression in the rafter to pull out their mechanical behaviour (i.e. failure modes, 

ultimate force, stiffness, and force-displacement response). Based on these experimental 
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results, the performance of two retrofitting strategies with STS has been discussed for 

the damaged SSJ. 

2. Experimetal Campaign 

The Experimental Campaign firstly aims at determining two retrofitting strategies with Self-

Tapping Screws (STS) for Single Step Joint (SSJ) specimens damaged due to the crushing at 

the front-notch surface, and the shear crack in the tie beam (Verbist et al. (2017)). Before 

focusing on the mechanical behaviour of retrofitted SSJ specimens, different geometrical 

configurations and related mechanical performances of STS must properly be understood in 

timber-to-timber connections. Meanwhile, a good compromise on the retrofitting strategies 

has to be reached in order to conciliate the mechanical performances and the restoration 

principles (Yeomans (2003), Croatto et al. (2014)) such as: the workability on-site, the 

reduced visual impact and the reversibility of the intervention technique. The next step of 

the Experimental Campaign consists of carrying out 26 SSJ specimens retrofitted with STS, as 

per two strategies thus defined, under monotonic compression in the rafter, in order to 

determine their mechanical behaviour (i.e. failure modes, ultimate force, stiffness, and 

force-displacement response). 

2.1. Materials 

2.1.1. Single Step Joint specimens 

From the work of Verbist et al. (2017), the Single Step Joint (SSJ) under monotonic 

compression in the rafter can be damaged due to both failure modes illustrated in Figure 1: 

the crushing at the front-notch surface, and the shear crack at the heel depth along the 

shear length in the tie beam. The emergence of both failure modes and the related load-

bearing capacities are highly conditioned by the SSJ geometrical parameters: i) the rafter 

skew angle 𝛽𝑟𝑎𝑓𝑡𝑒𝑟; ii) the inclination angle of the front-notch surface 𝛼𝑓𝑟𝑜𝑛𝑡 to the normal 
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of the tie beam grain; iii) the geometrical proportion between the shear length and the heel 

depth 𝑙𝑣 𝑡𝑣⁄ .  

In the previous Experimental Campaign (Verbist et al. (2017)), two repetitive tests for 13 

different SSJ geometrical configurations, or 26 sound SSJ specimens in total, had been 

performed under monotonic compression in the rafter, by modifying three geometrical 

parameters previously quoted. As detailed in Table 1, two values of the rafter skew angle 

𝛽𝑟𝑎𝑓𝑡𝑒𝑟 had been chosen: i) 30° for 20 SSJ specimens; ii) 45° for the other six ones. Besides, 

the geometrical parameter 𝛼𝑓𝑟𝑜𝑛𝑡 varies according to the three different SSJ families: the 

Geometrical Configuration Ideal Design (GCID) with 𝛼𝑓𝑟𝑜𝑛𝑡 = 𝛽𝑟𝑎𝑓𝑡𝑒𝑟 2⁄ , the Geometrical 

Configuration Perpendicular to the Rafter (GCPR) with 𝛼𝑓𝑟𝑜𝑛𝑡 = 𝛽𝑟𝑎𝑓𝑡𝑒𝑟, and the Geometrical 

Configuration Perpendicular to the Tie Beam (GCPTB) with 𝛼𝑓𝑟𝑜𝑛𝑡 = 0°. Regarding the 

geometrical proportion 𝑙𝑣 𝑡𝑣⁄  between the shear length and heel depth, four ratios had been 

chosen for 20 SSJ specimens characterized by 𝛽𝑟𝑎𝑓𝑡𝑒𝑟=30°: 240/25, 240/30, 240/40, and 

160/30 [mm/mm]. For the other six ones featuring 𝛽𝑟𝑎𝑓𝑡𝑒𝑟=45°, the geometrical parameter 

𝑙𝑣 𝑡𝑣⁄  had been settled to the ratio 240/30 [mm/mm]. Furthermore, the cross-section 

dimensions of timber SSJ elements are 100 x 100 mm for the rafter, and 100 x 160 mm for 

the tie beam respectively. 

These SSJ specimens made of Pinus sylvestris have been sorted out in the present 

Experimental Campaign as per their structural damage, namely into two main failure modes. 

The Table 1 informs about it, that 12 SSJ specimens were damaged due to the crushing at 

the front-notch surface while the 14 other ones failed due to the shear crack along the shear 

length at the heel depth in the tie beam. The classification of damaged SSJ specimens in 

respect with both failure modes is crucial for the establishment of different retrofitting 

strategies with Self-Tapping Screws in the next steps of the Experimental Campaign. 
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2.1.2. Self-Tapping Screws 

Among the intervention techniques used for the reinforcement and retrofitting of timber 

connections, Self-Tapping Screws (STS) have recently stood out from others in the field of 

timber engineering by their easy handling on-site, their low cost, their reduced visual impact, 

their easy visual inspection and their high degree of reversibility. As a reminder, an 

intervention technique is reversible if three conditions below are met (Yeomans (2003), 

Croatto et al. (2014)): 

- The intervention technique over its lifetime (i.e. handling, action time and removal) 

causes as little damage as possible inside structural elements or joints. 

- The intervention technique can easily be removed from the structure, facilitating 

future recoveries and other intervention strategies. 

- The removal of the intervention technique enables to get back to the original state 

(i.e. mechanical behaviour) of structural elements or joints non-retrofitted. 

Because wood is an orthotropic material featured by low tensile, compressive strength 

perpendicular to the grain as well as low shear strength parallel to the grain, timber 

elements and connections must be reinforced with STS in order to enhance their mechanical 

properties (Dietsch et al. (2015), Bléron et al. (2015)). Thanks to their fully or partially 

threaded shank, these screws provide to the timber joint elements: lateral shear strength, 

high tensile strength, and withdrawal strength. Moreover, the reinforcement with STS may 

induce a ductile failure mode inside the timber-to-timber connection according to Tomasi et 

al. (2010), by preventing the emergence of brittle failures such as the tensile crack 

perpendicular to the grain or shear crack parallel to the grain. Nevertheless, the stiffness of 

the joint reinforced with STS may have been changed too. For instance, Sobra et al. (2016) 

reported that the tested reinforcement strategies with STS, for one SSJ geometrical 

configuration against the crushing at the front-notch surface, could lead to decreasing 

significantly the stiffness while reaching the initial load-bearing capacity of the connection. 

In that context, STS have then been used as innovative intervention technique in the present 
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Experimental Campaign to retrofit SSJ specimens damaged due to the crushing at the front-

notch surface, and the shear crack in the tie beam.  

Different STS typologies exist, since they are featured by their own geometry (i.e. tip, head 

shape, and thread length), mechanical performances, and specific implementation within 

timber structures. As illustrated in Figure 2, two STS typologies are commonly used in timber 

engineering: FTS (Fully Threaded Screws), and PTS (Partly Threaded Screws). Because FTS 

provide higher axial strengths (𝑅𝑎𝑥,𝛼) than lateral ones (𝑅𝑙𝑎𝑡,𝛼) due to their complete thread 

length, those screws are then positioned under an inclination angle 𝛼 to the shear plane of 

tensile-shear timber-to-timber connections. Beside of ductile failures, this implementation 

could nevertheless entail brittle failure modes: either the FTS pull-out at the interface of 

timber joint elements with the threaded shank, or the tensile failure of the screws cross-

section. On the other hand, the second STS typology stated as PTS are characterized by their 

half-length threaded shank, by providing a significant lateral strength (𝑅𝑙𝑎𝑡,𝛼) for shear 

timber-to-timber connections. Therefore, PTS are positioned perpendicularly to the shear 

plane in order to bear the shear loading (𝑅𝑉) only. In addition to their easy-friendly 

implementation on-site, PTS may lead to ductile failure modes such as the plastic hinge of 

screws. 

Since both screws typologies are called “self-tapping”, the specific shape of the tip and the 

partly/fully threaded shank make easier their implementation and maintenance over time 

inside timber joint elements, by using only a screwdriver as work tool. Furthermore, the 

predrilled holes and good spacing between screws (Eurocode 5 (2004), ETA-11/0030 (2012), 

Uibel et al. (2010)) ensure an accurate STS implementation, by reducing the appearance risk 

of shear row splitting inside timber joint elements at the headside screw. Meanwhile, the 

pre-drilling inside timber connections is required if at least one of both following conditions 

is met (Eurocode 5 (2004)): i) the characteristic wood density is greater than 500 kg/m³; ii) 

the screw diameter exceeds 6mm. 
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2.2. Single Step Joints retrofitted with STS 

Based on the mechanical performances of Self-Tapping Screws (STS) and the restoration 

principles, two retrofitting strategies with STS have then been established for the Single Step 

Joint (SSJ) damaged due to the crushing at the front-notch surface and the shear crack in the 

tie beam. As illustrated in Figures 3 and 4, the minimum distance and spacing of STS (𝑎1, , 𝑎2, 

𝑎3,𝑐, 𝑎3,𝑡, 𝑎4) as per two retrofitting strategies can be given by Eurocode 5 (2004), the 

recommendations from Uibel et al. (2010), or by the European Technical Approval ETA-

11/0030 (2012). 

2.2.1. Retrofitting strategy against the crushing 

The crushing at the front-notch surface is a ductile failure mode causing serious deformation 

of the SSJ, according to Verbist et al. (2017). In order to diminish the rafter thrust and the 

related crushing at the front-notch surface, the normal load in the rafter (𝑁𝑟𝑎𝑓𝑡𝑒𝑟,𝑅) has to 

be transferred mainly at the bottom-notch surface from the rafter to the tie beam. To this 

end, the first retrofitting strategy labelled R1, for the SSJ damaged due to the crushing, 

consists in positioning the Fully Threaded Screws (FTS) perpendicularly to the rafter edge at 

the bottom-notch surface as illustrated in Figure 3. Because they are inclined under an angle 

𝛼 to the normal of the bottom-notch surface, FTS can bear the tensile component from the 

rafter thrust with their withdrawal capacity (𝑅𝑎𝑥,𝛼), and the shear component with their 

lateral strength (𝑅𝑙𝑎𝑡,𝛼). In consequence, the load-bearing capacity (𝑅𝑉,𝑏𝑜𝑡𝑡) parallel to the 

bottom-notch surface is ensured by the FTS implementation in the rafter. 

Even if most of the internal forces go from the rafter to the tie beam through FTS at the 

bottom-notch surface, the front-notch surface may still be subject to a significant part of the 

rafter thrust. Therefore, the compressive strength at the front-notch surface may be taken 

into account when estimating the rafter load-bearing capacity (𝑁𝑟𝑎𝑓𝑡𝑒𝑟𝑅) for the retrofitted 

SSJ with STS. Since the shear crack occurs as the final failure mode in the SSJ (Verbist et al. 

(2017)), the shear strength along the shear length 𝑙𝑣 parallel to the grain, at the heel depth 
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𝑡𝑣 in the tie beam, may also be considered. Whatever the failure mode noticed, the 

retrofitting strategy R1 should then provide higher rafter load-bearing capacities than the 

initial ones from sound SSJ specimens before the crushing appearance. 

As the upper side of the rafter is hidden by the roof covering, there is no visual impact of the 

retrofitting with STS on the existing timber structure. Meanwhile, the retrofitting strategy R1 

beforehand requires the partial roof disassembly to make easier the accessibility to the SSJ 

when implementing FTS in the rafter. Due to the specific geometry of the SSJ heel, the rafter 

end characterized by a small thickness remains brittle. Therefore, the workers must pay 

attention not to position the screws too close to the front-notch surface in order to prevent 

timber row splitting in the rafter. Furthermore, the Table 2 and Figure 3 detail the STS 

implementation (i.e. distance, spacing, type and amount) for the retrofitting of 12 SSJ 

specimens damaged due to the crushing, as per the strategy R1. It should be noted that FTS 

are characterized by 9 mm diameter and 200 mm length. 

2.2.2. Retrofitting strategy against the shear crack 

When the shear crack occurs in the SSJ, the tie beam splits into two parts at the heel depth 

𝑡𝑣 along the shear length 𝑙𝑣 parallel to the grain. As a result, the upper part of the tie beam 

can freely move, leading to the collapse of the rafter and of the whole timber truss (Munafò 

et al. (2015) and Verbist et al. (2017)). Before retrofitting the damaged connection, 

engineers must reposition properly the upper part of the tie beam and the rafter in order to 

stabilize the timber truss as suggested Valentin (2009). As soon as both timber elements are 

hold steady, the second retrofitting strategy with STS labelled R2, for the SSJ damaged due 

to the shear crack, can be performed in order to prevent the free movement of the upper 

part of the tie beam along the shear plane.  

As shown in Figure 4, the second retrofitting strategy (R2) against the shear crack consists of 

implementing two STS typologies inside the SSJ: Fully Threaded Screws (FTS), and Partly 

Threaded Screws (PTS). Since they can bear tensile and shear components from the rafter 

thrust due to their complete thread of the shank, FTS are positioned perpendicularly to the 
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rafter edge at the bottom-notch surface, similarly to the first retrofitting strategy (R1). On 

the other hand, PTS are drilled perpendicularly to the grain from the upper part to bottom 

part of the tie beam, so that those screws only counteract lateral loadings directly from the 

rafter thrust. The tie beam and rafter retrofitted with STS then work together in order to 

counteract the rafter thrust inside the Single Step Joint. In contrast to the first retrofitting 

strategy (R1), the rafter load-bearing capacities (𝑁𝑟𝑎𝑓𝑡𝑒𝑟𝑅) for the second retrofitting 

strategy (R2) may not reach the initial ones from sound SSJ specimens before the shear crack 

appearance. 

Since the bottom side of the tie beam is supported by the masonry wall, this area is not 

directly accessible for the intervention techniques, without removing out the tie beam from 

the timber truss. Therefore, the retrofitting strategy R2 with STS is focused on the upper side 

of the tie beam and rafter, although the partial roof disassembly is still required for an easy 

accessibility to the SSJ. The Table 3 and Figure 4 give the STS implementation (i.e. distance, 

spacing, type and amount) for the retrofitting of 14 SSJ specimens damaged due to the shear 

crack, as per the strategy R2. Furthermore, FTS are characterized by 9 mm diameter and 200 

mm length whereas PTS are featured by 8 mm diameter and 140 mm length. 

2.3. Monotonic compression tests 

In order to simplify the experimental process and setup of the tests, only the permanent and 

long-term loads on the roof have been considered in the present Experimental Campaign. In 

consequence, monotonic compression tests have been carried out on the SSJ specimens 

retrofitted with STS as per both strategies R1 and R2 to pull out their mechanical behaviour 

(i.e. failure modes, ultimate force, stiffness, and force-displacement response). Similar to 

Verbist et al. (2017), the monotonic compression test consists in applying a vertical force 

parallel to the grain at the top of the rafter, noted 𝑁𝑟𝑎𝑓𝑡𝑒𝑟, as shown in Figure 5. 

The setup inclination on which the tie beam stands must be checked according to the rafter 

skew angles 𝛽𝑟𝑎𝑓𝑡𝑒𝑟, namely 30 and 45°, for each SSJ geometrical configuration. Whereas the 
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rafter bears the compression parallel to the grain within timber trusses under loads, the tie 

beam has to counteract tensile stress parallel to the grain due to the rafter thrust. As 

illustrated in Figure 5, the tie beam is simply supported with free end in front of the SSJ heel 

while the opposite end at the back side of the connection is anchored, leading to stretching 

the tie beam parallel to the grain when loading the rafter in compression from the actuator. 

Besides, two LVDT’s aided by the grid were used to measure the displacements of the front-

notch and bottom-notch surfaces at both sides of the SSJ retrofitted with STS. Moreover, 

one LVDT has been implemented under the shear crack to assess the movement of the 

upper side of the tie beam parallel to the grain. The loading velocity has been kept between 

0.01 and 0.03 mm/s during all the experiments. 

3. Results and Discussion 

After performing several monotonic compression tests in the rafter, the experimental results 

on the mechanical behaviour of Single Step Joint (SSJ) specimens retrofitted with Self-

Tapping Screws (STS) as per two strategies previously defined have been collected, by 

focusing more on the ultimate force, stiffness, force-displacement response, and failure 

modes. By comparing the mechanical behaviour between the sound SSJ specimens and the 

retrofitted ones with STS, the performance of both retrofitting strategies has then been 

discussed in respect with the initial failure modes, namely the crushing at the front-notch 

surface, and the shear crack in the tie beam. 

3.1. Mechanical behaviour of retrofitted Single Step Joints 

3.1.1. Ultimate force, stiffness and force-displacement response 

From the present Experimental Campaign, the collected results on the Single Step Joint (SSJ) 

specimens retrofitted with Self-Tapping Screws (STS) are gathered into two strategies: the 

SSJ retrofitting against the crushing at the front-notch surface (R1), and the SSJ retrofitting 
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against the shear crack in the tie beam (R2). As detailed in Table 4, experimental values of 

the ultimate normal forces in the rafter and of the stiffness at the front-notch surface, for 

the initial SSJ specimens and retrofitted ones (R) with STS, are respectively noted: Nrafter, 

NrafterR, 𝐾𝐹𝑁 and 𝐾𝐹𝑁,𝑅. The coefficients ∆𝒓𝒆𝒍,𝑵= 100. (𝑁𝑟𝑎𝑓𝑡𝑒𝑟𝑅 − 𝑁𝑟𝑎𝑓𝑡𝑒𝑟) 𝑁𝑟𝑎𝑓𝑡𝑒𝑟⁄  [%] and 

∆𝒓𝒆𝒍,𝑲= 100. (𝐾𝐹𝑁,𝑅 − 𝐾𝐹𝑁) 𝐾𝐹𝑁⁄  [%] are respectively the relative variation of the ultimate 

normal forces in the rafter and the relative variation of the stiffness at the front-notch 

surface, between the initial SSJ specimens and the retrofitted ones with STS. 

As regards the first strategy (R1) given in Table 4, the ultimate normal forces in the rafter 

from the SSJ specimens retrofitted with STS are from 11 to 141% superior to the ultimate 

normal forces in the rafter from the initial SSJ specimens tested. However, the stiffness from 

the retrofitted SSJ specimens is from 38 to 86% inferior to the stiffness from the initial SSJ 

specimens. By comparing the retrofitted SSJ specimens, it seems that both the inclination 

angle 𝛼𝑓𝑟𝑜𝑛𝑡 of the front-notch surface and the geometrical proportion 𝑙𝑣 𝑡𝑣⁄  between the 

shear length and heel depth do not significantly influence the ultimate force in the rafter. On 

the other hand, the latter highly depends on the rafter skew angle 𝛽𝑟𝑎𝑓𝑡𝑒𝑟 and above all on 

the amount of Full Threaded Screws (FTS) implemented in the rafter. It is then obvious that 

positioning a greater amount of FTS in the rafter, which can be for low rafter skew angles 

𝛽𝑟𝑎𝑓𝑡𝑒𝑟 ≤30°, will provide higher strength to the retrofitted SSJ specimens. 

The force-displacement responses shown in Figure 6 have been plotted for three initial SSJ 

specimens and three retrofitted ones with STS as per the first strategy (R1). The geometrical 

configurations of six SSJ specimens are characterized by a rafter skew angle 𝛽𝑟𝑎𝑓𝑡𝑒𝑟=45° and 

a geometrical proportion between the shear length and heel depth 𝑙𝑣 𝑡𝑣⁄ =240/30 [mm/mm]. 

Contrarily to the initial SSJ specimens, the force-displacement responses from the retrofitted 

SSJ specimens are quite similar, and do not depend on the inclination angle 𝛼𝑓𝑟𝑜𝑛𝑡 of the 

front-notch surface. Besides, they feature a linear compressive deformation at the front-

notch surface until reaching the ultimate normal force in the rafter.  
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At this point, the post-peak response, illustrated in Figure 6 (GCPTB_45°_tv30_240SL_1_R1), 

is usually equated to a plateau, due to the yielding of the FTS implemented in the rafter. 

Nevertheless, the normal force in the rafter may slightly decrease according to high 

displacement of the front-notch surface (GCPR_45°_tv30_240SL_2_R1), when the shear row 

splitting appears in the rafter after reaching the ultimate force. In the case where the shear 

row splitting occurs earlier (GCID_45°_tv30_240SL_1_R1), the normal force in the rafter still 

keeps rising but slowly, as long as the yielding of FTS has not started yet. In other cases, the 

shear crack may emerge in the tie beam as the final failure mode 

(GCPR_45°_tv30_240SL_2_R1 and GCPTB_45°_tv30_240SL_1_R1), resulting in the drop of 

the normal force in the rafter after reaching the ultimate value. Concerning the second 

strategy (R2) detailed in Table 4, the ultimate normal forces in the rafter from the SSJ 

specimens retrofitted with STS can be up to 91% higher than the ultimate normal forces in 

the rafter from the initial SSJ specimens tested. For two retrofitted SSJ specimens (i.e. 

GCPR_30°_tv30_160SL_2_R2 and GCPR_30°_tv30_240SL_2_R2), they however decrease up 

to 5 and 16% respectively from their initial values. Besides, the stiffness from all the 

retrofitted SSJ specimens as per the second strategy (R2) is from 35 to 88% inferior to the 

stiffness from the initial ones. Since the shear row splitting may occur before the yielding of 

STS in the tie beam and rafter, a significant variation of the ultimate normal forces in the 

rafter can be obtained for a same SSJ geometrical configuration, which makes very difficult 

to establish strong relationships with the SSJ geometrical parameters. From the retrofitted 

SSJ specimens featured by the rafter skew angle 𝛽𝑟𝑎𝑓𝑡𝑒𝑟=30°, the ultimate normal forces in 

the rafter can nonetheless be influenced by the shear length 𝑙𝑣 and thus by the amount of 

Partly Threaded Screws (PTS) implemented in the tie beam. Higher the shear length and 

amount of PTS, higher the ultimate force in the rafter. 

As shown in Figure 7, the force-displacement responses are to reflect three initial SSJ 

specimens and three retrofitted ones with STS as per the second strategy (R2). The 

geometrical configurations of six SSJ specimens are characterized by a rafter skew angle 
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𝛽𝑟𝑎𝑓𝑡𝑒𝑟=30° and a geometrical proportion between the shear length and heel depth 

𝑙𝑣 𝑡𝑣⁄ =160/30 [mm/mm]. Although they feature a linear compressive deformation at the 

front-notch surface until reaching the ultimate normal force in the rafter, the respective 

force-displacement responses are slightly different, due to the emergence conditions of 

shear row splitting inside timber joint elements. For instance, the shear row splitting in the 

tie beam occurs earlier for the specimen GCPTB_30°_tv30_160SL_1_R2, causing a slowdown 

in increasing the normal load in the rafter as well as a significant reduction of the ultimate 

force. When yielding the FTS in the rafter, the post-peak response is featured by a plateau, 

but it may go down with the quick appearance and development of shear row splitting in the 

rafter (GCID_30°_tv30_160SL_2_R2). Being characterized by a similar post-peak response, 

the third retrofitted SSJ specimen (GCPR_30°_tv30_160SL_2_R2) is quite particular, 

featuring a lower ultimate force in the rafter and a lower stiffness than those from the other 

two ones. These results come from a bad implementation of PTS in the tie beam, triggering 

the early emergence of partial shear row splitting in the timber element long before the 

monotonic compression test has started. 

Through modifying the geometrical proportions between the shear length and heel depth 

𝑙𝑣 𝑡𝑣⁄ , six force-displacement responses are plotted in Figure 8 for three initial SSJ specimens 

and three retrofitted ones with STS as per the second strategy (R2). The SSJ geometrical 

configurations are then characterized by three values of the geometrical parameter 𝑙𝑣 𝑡𝑣⁄ : 

240/25, 240/40, and 160/30 [mm/mm]. The force-displacement responses of those three 

retrofitted SSJ specimens can be interpreted in the same way than the previous ones shown 

in the Figure 7, based on the concomitance mechanism between the shear row splitting and 

the yielding of STS in both timber joint elements. Although their respective stiffness are 

equivalent, the ultimate forces in the rafter significantly vary according to the heel depth 𝑡𝑣, 

namely the thickness of the upper part of the tie beam (Figure 4). When considering the 

same amount of PTS screws (or same shear length 𝑙𝑣) in the tie beam, the ultimate force in 

the rafter illustrated in Figure 8 is higher for 𝑡𝑣=25mm than that for 𝑡𝑣=40mm. This 
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phenomenon can be related to the “rope effect”, which consists of increasing the friction 

forces on the shear plane, and thus the load-bearing capacity of the joint, by pulling the 

timber members together when yielding the STS. Although this type of friction forces should 

rise with the thickness of the timber connection member at the headside of screws 

(Eurocode 5 (2004), Blass et al. (2002), ETA-11/0030 (2012)), the “rope effect” is still notable 

for very low heel depth 𝑡𝑣 ≤25mm, thanks to the countersunk flat head of PTS which 

tightens further the upper and bottom parts of the tie beam together during the yielding 

step. In addition, the “rope effect” stunts the emergence and development of shear row 

splitting in the tie beam. 

3.1.2. Failure modes 

From the tested specimens of Single Step Joint (SSJ) retrofitted with Self-Tapping Screws 

(STS) as per both strategies R1 and R2, different failure modes have been noticed during the 

Experimental Campaign and then classified into two groups as detailed in Table 5: i) Overall 

failure modes of the retrofitted SSJ specimens; ii) Local failure modes of STS implemented 

inside the tie beam and rafter. The former group encompasses both failure modes from the 

SSJ, namely the crushing at the front-notch surface and the shear crack in the tie beam, plus 

the shear row splitting in the retrofitted rafter and tie beam at the headside of screws. The 

latter group includes different failure modes of timber-to-timber connections in single shear 

with metallic fasteners provided by Eurocode 5 (2004), such as the crushing inside timber 

joint members due to the STS embedment, the single or double plastic hinges of STS. It 

should be mentioned that the plastic hinges of STS are always preferred when designing 

efficient timber connections since these ductile failure modes provide a safe force-

displacement response featured by a plateau after reaching the ultimate force. 

Regarding the SSJ specimens retrofitted according to the first strategy (R1), the single and 

double plastic hinges of Fully Threaded Screws (FTS) implemented in the rafter have been 

observed, as illustrated in Figure 9 and Table 5. Since the stiffness of the front-notch surface 

is higher than that from the bottom-notch connection retrofitted with FTS, the maximal 
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compressive strength of the former or the maximal shear strength in the tie beam can be 

reached before the maximal load-bearing capacity 𝑅𝑉,𝑏𝑜𝑡𝑡 does (Figure 3). Therefore, the 

plastic hinges of FTS may be not fully achieved after ending the monotonic compression 

tests. Another explanation may come from the late appearance of shear row splitting in the 

rafter, which slows down the yielding of FTS. Although it causes minor damage in the rafter, 

the shear row splitting should nevertheless be prevented or delayed as much as possible in 

order to avoid any reduction of the ultimate force in the rafter and provide better the ductile 

force-displacement response. In addition to the crushing at the front-notch surface, the 

shear crack may emerge in the tie beam as the final failure mode in the retrofitted SSJ 

specimens, causing the drop of the normal load in the rafter after reaching the ultimate 

force. In fact, the shear crack may occur for the SSJ specimens if the tie beam has not been 

retrofitted with Partly Threaded Screws (PTS) beforehand as shown in Figure 10. 

As a reminder, the shear crack in the tie beam is a brittle failure mode leading to the collapse 

of the SSJ and thus the whole timber truss. By recovering from the shear crack, the second 

strategy (R2) also provides a ductile behaviour to the retrofitted SSJ specimens, thanks to 

the emergence of plastic hinges within STS, as given in Table 5. It should be stated that only 

single plastic hinges have been noticed for the PTS in the tie beam while single and double 

plastic hinges illustrated in Figure 11 arise for the FTS in the rafter. Being featured by high 

deformation of the joint according to maximal normal loads in the rafter, ductile failures will 

always be appreciated for their safety when retrofitting existing timber trusses. 

Nevertheless, the shear row splitting shown in Figure 12 may occur as a rushed brittle failure 

mode in the upper part of the tie beam along the PTS rows, resulting in reducing the 

ultimate normal force in the rafter. During the ductile post-peak response, the shear row 

splitting also appears in the rafter along the FTS rows, featuring greater damage than those 

observed for the SSJ specimens retrofitted as per the first strategy (R1). 

Since it causes irreversible damage in both tie beam and rafter, the shear row splitting must 

then be carefully prevented by checking the geometrical recommendations about minimum 
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spacing and distance of STS in respect with the minimum thickness of timber joint elements 

(Eurocode 5 (2004), Uibel et al. (2010), ETA-11/0030 (2012)). In the case where these 

recommendations are not met, the SSJ retrofitting with STS as per both strategies R1 and R2 

could be considered as an irreversible intervention technique, entering into conflict with the 

restoration principles (Yeomans (2003), Croatto et al. (2014)). Nonetheless, the shear row 

splitting might still occur even if those geometrical recommendations are checked, since the 

front-notch surface is highly stressed in compression at the rafter and tie beam sides due to 

the significant rafter thrust for the SSJ characterized by low rafter skew angles 𝛽𝑟𝑎𝑓𝑡𝑒𝑟 ≤45°. 

3.2. Performance of retrofitting strategies 

From the experimental results, the mechanical behaviour (i.e. ultimate force, stiffness, force-

displacement response, and failure modes) has been compared, between the specimens of 

Single Step Joint (SSJ) retrofitted with Self-Tapping Screws (STS) and the initial ones from 

Verbist et al. (2017). Based on these interpretations, the performances of two different 

retrofitting strategies R1 and R2 can be discussed in the present research.  

The first retrofitting strategy (R1) with Fully Threaded Screws (FTS) in the rafter is very 

efficient for the SSJ damaged due to the crushing at the front-notch surface. Indeed, it 

provides much higher ultimate normal loads in the rafter, in addition to a ductile mechanical 

behaviour through the yielding of FTS. However, the shear crack may occur as the final 

failure mode at the heel depth 𝑡𝑣 in the tie beam due to high crushing of the grain at the 

front-notch surface (Verbist et al. (2017)). Although the shear crack entails the drop of the 

normal load in the rafter, the retrofitted SSJ does not collapse thanks to the presence of FTS 

in the rafter. Nevertheless, the shear crack should be prevented by implementing 

beforehand Partly Threaded Screws (PTS) perpendicularly to the grain in the tie beam, alike 

the second retrofitting strategy (R2) shown in Figure 4. 

By implementing PTS in the tie beam and FTS in the rafter, the second retrofitting strategy 

(R2) for the SSJ damaged due to the shear crack is efficient because it enables to reach easily 
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the ultimate forces from the initial SSJ specimens. Similar to the first retrofitting strategy 

(R1), the ductile mechanical behaviour is also ensured through the yielding of PTS and FTS, 

but it is not optimal due to the early appearance of shear row splitting in the tie beam 

followed by the rafter. In order to investigate the impact of shear row splitting on the ductile 

force-displacement response from SSJ specimens retrofitted with STS, the geometrical 

recommendations (Eurocode 5 (2004), Uibel et al. (2010), ETA-11/0030 (2012)) about the 

minimum spacing and distance of STS in respect with the minimum thickness of timber joint 

elements have not been checked properly . Hence, the shear row splitting always occurs in 

the tie beam retrofitted with PTS due to the small thickness of the upper part, which is 

conditioned by the heel depth 𝑡𝑣 as illustrated in Figure 4. 

Because the shear row splitting causes the decrease of the ultimate normal force in the 

rafter as well as irreversible damage in the timber joint elements, both retrofitting strategies 

R1 and R2 may enter into conflict with restoration principles. In order to guarantee the 

reversibility of these retrofitting strategies, the shear row splitting should be prevented 

through a balanced compromise between the mechanical performances of the SSJ 

retrofitted with STS and the geometrical recommendations about the STS positioning. 

Nonetheless, the impact of the shear row splitting on the mechanical behaviour of the SSJ 

retrofitted with STS is an interesting study which should warn off engineers when 

intervening in existing timber trusses including the presence of natural damage such as the 

shrinkage splitting. For instance, the shear row splitting is more likely to occur in both tie 

beam and rafter featuring any drying cracks, when retrofitting the SSJ with STS on-site, 

although the geometrical recommendations on the spacing and distances between screws 

are checked. 

On the other hand, the stiffness of the retrofitted SSJ has dropped when comparing with 

those from the initial ones. If the SSJ retrofitted with STS is subject to significant normal 

loads in the rafter, high deformation of the connection may then occur with added 
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eccentricity forces within the whole timber truss, leading to the reduction of their 

mechanical performances. 

4. Conclusion 

When assessing the Single Step Joint (SSJ) in existing timber roof structures, two types of 

structural damage (namely failure modes) can be encountered: (i) Crushing at the front-

notch surface; (ii) Shear crack in the tie beam. Being a recent technique commonly used in 

timber engineering for new buildings construction, the Self-Tapping Screws (STS) have then 

been selected to retrofit the SSJ damaged due to both failure modes. By taking into account 

the restoration principles and the mechanical performances of STS within timber-to-timber 

connections in single shear, two retrofitting strategies have been proposed in the 

Experimental Campaign. Afterwards, several damaged SSJ specimens have been retrofitted 

as per both strategies and then tested under monotonic compression in the rafter. By 

comparing the mechanical behaviour (i.e. ultimate force, stiffness, force-displacement 

response, and failure modes) between the retrofitted SSJ specimens and the initial ones 

from Verbist et al. (2017), the performances of both retrofitting strategies with STS have 

been discussed. 

It has been concluded that both retrofitting strategies R1 and R2 are efficient since they 

provide higher rafter load-bearing capacities as well as a ductile post-peak response thanks 

to the yielding of STS implemented in the rafter and tie beam. Because the shear crack may 

still occur as the final failure mode for the SSJ retrofitted according to the first strategy R1, 

this brittle failure mode should then be prevented by positioning added STS perpendicularly 

to the grain in the tie beam, alike the second retrofitting strategy R2. Nonetheless, the 

stiffness of SSJ specimens retrofitted in respect with both strategies is lower than those of 

the initial ones. As a result, higher deformation in the retrofitted SSJ may then occur with 
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added eccentricity forces within the whole timber truss, which leads to the reduction of their 

mechanical performances. 

Furthermore, the shear row splitting may occur in the tie beam and rafter for the sound SSJ 

retrofitted as per both strategies if the geometrical recommendations on the spacing and 

distance between STS are not checked. Meanwhile, this failure mode might still emerge for 

the retrofitted SSJ featuring by natural damage such as drying cracks in the tie beam and 

rafter, which can often be noticed in the assessment of existing timber trusses, even if those 

geometrical recommendations are met. Since the shear row splitting causes severe damage 

in the timber joint elements, both retrofitting strategies with STS may become an 

irreversible intervention technique by entering into conflict with the restoration principles. 

In order to prevent the shear row splitting, a compromise should be found between the 

recommended minimum spacing of STS and the optimal load-bearing capacity from the 

retrofitted SSJ. The predrilled holes could also be a good alternative to stunt the emergence 

of the shear row splitting.  

Although both retrofitting strategies R1 and R2 are efficient, they should be improved by 

considering better the restoration principles, especially the reversibility of the intervention 

technique. If future experimental contributions aims at performing a greater amount of 

retrofitted SSJ specimens for some geometrical configurations and at establishing reliable 

design models afterwards, both strategies R1 and R2 can then be used to retrofit with STS 

the SSJ damaged due to the crushing and shear crack. As prevention measures against both 

failure modes when designing new timber trusses, some strategies for the SSJ reinforcement 

with STS should also be investigated in the future, based on the retrofitting strategies R1 and 

R2 developed for the damaged SSJ in the present paper. 
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Fig. 3 First retrofitting strategy with STS (R1) for the SSJ damaged due to the crushing, and 
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Fig. 4 Second retrofitting strategy with STS (R2) for the SSJ damaged due to the shear crack. 
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Tables: 

Table 1 Labelling, geometrical parameters (Fig. 1) and failure modes of initial SSJ specimens 

from Verbist et al. (2017). 

Specimen labelling 
𝛼𝑓𝑟𝑜𝑛𝑡 𝛽𝑟𝑎𝑓𝑡𝑒𝑟 𝑡𝑣 𝑙𝑣 Failure 

[°] [°] [mm] [mm] modes 

GCID_30°_tv25_240SL_1 15 30 25 240 SC 

GCID_30°_tv25_240SL_2 15 30 25 240 CFN 

GCID_30°_tv30_160SL_1 15 30 30 160 SC 

GCID_30°_tv30_160SL_2 15 30 30 160 SC 

GCID_30°_tv30_240SL_1 15 30 30 240 CFN 

GCID_30°_tv30_240SL_2 15 30 30 240 CFN 

GCID_45°_tv30_240SL_1 22.5 45 30 240 CFN 

GCID_45°_tv30_240SL_2 22.5 45 30 240 CFN 

GCPR_30°_tv25_240SL_1 30 30 25 240 CFN 

GCPR_30°_tv25_240SL_2 30 30 25 240 CFN 

GCPR_30°_tv30_160SL_1 30 30 30 160 SC 

GCPR_30°_tv30_160SL_2 30 30 30 160 SC 

GCPR_30°_tv30_240SL_1 30 30 30 240 CFN 

GCPR_30°_tv30_240SL_2 30 30 30 240 SC 

GCPR_30°_tv40_240SL_1 30 30 40 240 CFN 

GCPR_30°_tv40_240SL_2 30 30 40 240 SC 

GCPR_45°_tv30_240SL_1 45 45 30 240 SC 

GCPR_45°_tv30_240SL_2 45 45 30 240 CFN 

GCPTB_30°_tv25_240SL_1 0 30 25 240 SC 

GCPTB_30°_tv25_240SL_2 0 30 25 240 SC 

GCPTB_30°_tv30_160SL_1 0 30 30 160 SC 

GCPTB_30°_tv30_160SL_2 0 30 30 160 SC 

GCPTB_30°_tv40_240SL_1 0 30 40 240 SC 

GCPTB_30°_tv40_240SL_2 0 30 40 240 SC 

GCPTB_45°_tv30_240SL_1 0 45 30 240 CFN 

GCPTB_45°_tv30_240SL_2 0 45 30 240 CFN 

Legend: 
GCID – Geometrical Configuration Ideal Design; GCPR – Geometrical Configuration Perpendicular to 
the Rafter; GCPTB – Geometrical Configuration Perpendicular to the Tie beam; 𝛼𝑓𝑟𝑜𝑛𝑡  – Inclination 

angle of the front-notch surface; 𝛽𝑟𝑎𝑓𝑡𝑒𝑟  – Rafter skew angle; 𝑡𝑣 – Heel depth; 𝑙𝑣 – Shear length; CFN – 

Crushing at the front-notch surface; SC – Shear crack in the tie beam. 
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Table 2 STS implementation for the first retrofitting strategy (R1) in the SSJ specimens 

damaged due to the crushing (Fig. 3). 

Specimen labelling 
STS inventory in 𝑎1 𝑎2 𝑎3,𝑐 𝑎4 

the SSJ elements [mm] [mm] [mm] [mm] 

GCID_30°_tv25_240SL_2 Rafter 6 x FTS 50 40 50 30 

GCID_30°_tv30_240SL_1 Rafter 6 x FTS 50 40 50 30 

GCID_30°_tv30_240SL_2 Rafter 6 x FTS 50 40 50 30 

GCID_45°_tv30_240SL_1 Rafter 4 x FTS 45 40 45 30 

GCID_45°_tv30_240SL_2 Rafter 4 x FTS 45 40 45 30 

GCPR_30°_tv25_240SL_1 Rafter 6 x FTS 50 40 50 30 

GCPR_30°_tv25_240SL_2 Rafter 6 x FTS 50 40 50 30 

GCPR_30°_tv30_240SL_1 Rafter 6 x FTS 50 40 50 30 

GCPR_30°_tv40_240SL_1 Rafter 6 x FTS 50 40 50 30 

GCPR_45°_tv30_240SL_2 Rafter 4 x FTS 45 40 45 30 

GCPTB_45°_tv30_240SL_1 Rafter 4 x FTS 45 40 45 30 

GCPTB_45°_tv30_240SL_2 Rafter 4 x FTS 45 40 45 30 

Legend: 
FTS – Fully Threaded Screws; PTS – Partly Threaded Screws; 𝑎1 – Spacing, parallel to the grain, of 
screws within one row; 𝑎2 – Spacing, perpendicular to the grain, between rows of screws; 𝑎3,𝑐  – 

Distance between screw and unloaded end of the SSJ element; 𝑎4 – Distance between screw and edge 
of the SSJ element. 
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Table 3 STS implementation for the second retrofitting strategy (R2) in the SSJ specimens 

damaged due to the shear crack (Fig. 4). 

Specimen labelling 
STS inventory in 𝑎1 𝑎2 𝑎3,𝑐 𝑎3,𝑡 𝑎4 

the SSJ elements [mm] [mm] [mm] [mm] [mm] 

GCID_30°_tv25_240SL_1 
Tie beam 

Rafter 

6 x PTS 

6 x FTS 

50 

50 

40 

40 

70 

50 

70 

------ 

30 

30 

GCID_30°_tv30_160SL_1 
Tie beam 

Rafter 

4 x PTS 

6 x FTS 

50 

50 

40 

40 

50 

50 

60 

------ 

30 

30 

GCID_30°_tv30_160SL_2 
Tie beam 

Rafter 

4 x PTS 

6 x FTS 

50 

50 

40 

40 

50 

50 

60 

------ 

30 

30 

GCPR_30°_tv30_160SL_1 
Tie beam 

Rafter 

4 x PTS 

6 x FTS 

50 

50 

40 

40 

50 

50 

60 

------ 

30 

30 

GCPR_30°_tv30_160SL_2 
Tie beam 

Rafter 

4 x PTS 

6 x FTS 

50 

50 

40 

40 

50 

50 

60 

------ 

30 

30 

GCPR_30°_tv30_240SL_2 
Tie beam 

Rafter 

6 x PTS 

6 x FTS 

50 

50 

40 

40 

70 

50 

70 

------ 

30 

30 

GCPR_30°_tv40_240SL_2 
Tie beam 

Rafter 

6 x PTS  

6 x FTS 

50 

50 

40 

40 

70 

50 

70 

------ 

30 

30 

GCPR_45°_tv30_240SL_1 
Tie beam 

Rafter 

6 x PTS 

4 x FTS 

50 

45 

40 

40 

70 

45 

70 

------ 

30 

30 

GCPTB_30°_tv25_240SL_1 
Tie beam 

Rafter 

6 x PTS 

6 x FTS 

50 

50 

40 

40 

70 

50 

70 

------ 

30 

30 

GCPTB_30°_tv25_240SL_2 
Tie beam 

Rafter 

6 x PTS  

6 x FTS 

50 

50 

40 

40 

70 

50 

70 

------ 

30 

30 

GCPTB_30°_tv30_160SL_1 
Tie beam 

Rafter 

4 x PTS 

6 x FTS 

50 

50 

40 

40 

50 

50 

60 

------ 

30 

30 

GCPTB_30°_tv30_160SL_2 
Tie beam 

Rafter 

4 x PTS 

6 x FTS 

50 

50 

40 

40 

50 

50 

60 

------ 

30 

30 

GCPTB_30°_tv40_240SL_1 
Tie beam 

Rafter 

6 x PTS 

6 x FTS 

50 

50 

40 

40 

70 

50 

70 

------ 

30 

30 

GCPTB_30°_tv40_240SL_2 
Tie beam 

Rafter 

6 x PTS 

6 x FTS 

50 

50 

40 

40 

70 

50 

70 

------ 

30 

30 

Legend: 
FTS – Fully Threaded Screws; PTS – Partly Threaded Screws; 𝑎1 – Spacing, parallel to the grain, of 
screws within one row; 𝑎2 – Spacing, perpendicular to the grain, between rows of screws; 𝑎3,𝑐  – 

Distance between screw and unloaded end of the SSJ element; 𝑎3,𝑡 – Distance between screw and 

loaded end of the SSJ element; 𝑎4 – Distance between screw and edge of the SSJ element. 
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Table 4 Comparison of ultimate forces and stiffness between the initial SSJ specimens and 

retrofitted ones with STS. 

Specimen labelling 
NrafterR 

[kN] 
Nrafter 

[kN] 
∆𝑟𝑒𝑙,𝑁 

[%] 
𝐾𝐹𝑁,𝑅 

[kN/mm] 
𝐾𝐹𝑁 

[kN/mm] 
∆𝑟𝑒𝑙,𝐾 

[%] 

GCID_30°_tv25_240SL_1_R2 105 55 91 17 26 - 35 

GCID_30°_tv25_240SL_2_R1  130 65 100 16 26 - 38 

GCID_30°_tv30_160SL_1_R2  102 78 31 15 50 - 70 

GCID_30°_tv30_160SL_2_R2 87 69 26 15 26 - 42 

GCID_30°_tv30_240SL_1_R1  120 53 126 8 26 - 69 

GCID_30°_tv30_240SL_2_R1  130 69 88 9 33 - 73 

GCID_45°_tv30_240SL_1_R1   103 69 49 8 34 - 76 

GCID_45°_tv30_240SL_2_R1   92 83 11 11 41 - 73 

GCPR_30°_tv25_240SL_1_R1  108 59 83 13 22 - 41 

GCPR_30°_tv25_240SL_2_R1 130 54 141 9 28 - 68 

GCPR_30°_tv30_160SL_1_R2 90 60 50 14 86 - 84 

GCPR_30°_tv30_160SL_2_R2 74 78 - 5 9 33 - 73 

GCPR_30°_tv30_240SL_1_R1 126 88 43 16 61 - 74 

GCPR_30°_tv30_240SL_2_R2 76 91 - 16 17 47 - 64 

GCPR_30°_tv40_240SL_1_R1 133 93 43 16 42 - 62 

GCPR_30°_tv40_240SL_2_R2 88 79 11 16 65 - 75 

GCPR_45°_tv30_240SL_1_R2 100 96 4 14 90 - 84 

GCPR_45°_tv30_240SL_2_R1 106 80 32 8 32 -75 

GCPTB_30°_tv25_240SL_1_R2 109 72 51 13 52 - 75 

GCPTB_30°_tv25_240SL_2_R2 102 64 59 19 33 - 42 

GCPTB_30°_tv30_160SL_1_R2  80 65 23 20 57 - 65 

GCPTB_30°_tv30_160SL_2_R2   85 70 21 20 86 - 77 

GCPTB_30°_tv40_240SL_1_R2   90 82 10 11 89 - 88 

GCPTB_30°_tv40_240SL_2_R2   92 70 31 17 60 - 72 

GCPTB_45°_tv30_240SL_1_R1   109 90 21 12 89 - 86 

GCPTB_45°_tv30_240SL_2_R1   110 69 59 11 54 - 80 

Legend: 
R1 – First retrofitting strategy (Figure 3); R2 – Second retrofitting strategy (Figure 4); NrafterR – 
Ultimate normal force in the rafter from retrofitted SSJ specimens; Nrafter - Ultimate normal force in 
the rafter from initial SSJ specimens; ∆𝑟𝑒𝑙,𝑁  – Relative variation of ultimate normal forces in the rafter 

between the initial SSJ specimens and the retrofitted ones with STS; 𝐾𝐹𝑁,𝑅 – Stiffness at the front-

notch surface from retrofitted SSJ specimens; 𝐾𝐹𝑁  – Stiffness at the front-notch surface from initial SSJ 
specimens; ∆𝑟𝑒𝑙,𝐾 – Relative variation of the stiffness at the front-notch surfaces between the initial 

SSJ specimens and the retrofitted ones with STS. 
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Table 5 Overall failure modes of the retrofitted SSJ specimens and local failure modes of STS 

implemented inside the tie beam and rafter. 

Specimen labelling Retrofitted SSJ 
Tie beam Rafter 

CE SPH SPH DPH 

GCID_30°_tv25_240SL_1_R2 SRS 6 x PTS ------ 6 x FTS ------ 

GCID_30°_tv25_240SL_2_R1  SC / SRS ------ ------ 6 x FTS ------ 

GCID_30°_tv30_160SL_1_R2  SRS ------ 4 x PTS 6 x FTS ------ 

GCID_30°_tv30_160SL_2_R2 SRS ------ 4 x PTS 6 x FTS ------ 

GCID_30°_tv30_240SL_1_R1  SC ------ ------ 2 x FTS 4 x FTS 

GCID_30°_tv30_240SL_2_R1  SC /SRS ------ ------ 4 x FTS 2 x FTS 

GCID_45°_tv30_240SL_1_R1   CFN / SRS ------ ------ 2 x FTS 2 x FTS 

GCID_45°_tv30_240SL_2_R1   CFN / SRS ------ ------ 2 x FTS 2 x FTS 

GCPR_30°_tv25_240SL_1_R1  CFN /SRS ------ ------ 4 x FTS 2 x FTS 

GCPR_30°_tv25_240SL_2_R1 CFN ------ ------ 4 x FTS 2 x FTS 

GCPR_30°_tv30_160SL_1_R2 SRS ------ 4 x PTS 4 x FTS 2 x FTS 

GCPR_30°_tv30_160SL_2_R2 SRS ------ 4 x PTS 6 x FTS ------ 

GCPR_30°_tv30_240SL_1_R1 CFN /SRS ------ ------ 4 x FTS 2 x FTS 

GCPR_30°_tv30_240SL_2_R2 SRS ------ 6 x PTS 4 x FTS 2 x FTS 

GCPR_30°_tv40_240SL_1_R1 SC ------ ------ 2 x FTS 4 x FTS 

GCPR_30°_tv40_240SL_2_R2 SRS ------ 6 x PTS 6 x FTS ------ 

GCPR_45°_tv30_240SL_1_R2 SRS 6 x PTS ------ 4 x FTS ------ 

GCPR_45°_tv30_240SL_2_R1 SC / SRS ------ ------ 4 x FTS ------ 

GCPTB_30°_tv25_240SL_1_R2 SRS ------ 6 x PTS 4 x FTS 2 x FTS 

GCPTB_30°_tv25_240SL_2_R2 SRS ------ 6 x PTS 4 x FTS 2 x FTS 

GCPTB_30°_tv30_160SL_1_R2  SRS ------ 4 x PTS 6 x FTS ------ 

GCPTB_30°_tv30_160SL_2_R2   SRS ------ 4 x PTS 6 x FTS ------ 

GCPTB_30°_tv40_240SL_1_R2   SRS ------ 6 x PTS 4 x FTS 2 x FTS 

GCPTB_30°_tv40_240SL_2_R2   SRS ------ 6 x PTS 4 x FTS 2 x FTS 

GCPTB_45°_tv30_240SL_1_R1   SC / SRS ------ ------ 4 x FTS ------ 

GCPTB_45°_tv30_240SL_2_R1   CFN / SRS ------ ------ 2 x FTS 2 x FTS 

Legend: 
R1 – First retrofitting strategy (Figure 3); R2 – Second retrofitting strategy (Figure 4); CFN – Crushing at 
the front-notch surface; SC – Shear Crack in the tie beam; SRS – Shear row splitting; FTS – Fully 
Threaded Screws; PTS – Partly Threaded Screws; CE – Crushing inside timber due to STS embedment; 
SPH – Single plastic hinge of STS; DPH – Double plastic hinge of STS. 

 


