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Abstract: In order to overcome the main mechanical drawbacks of GFRP profiles, 

namely their high deformability and proneness to instability phenomena, several GFRP-

concrete hybrid solutions comprising bonded connections with epoxy adhesive have been 

proposed. Although being able to provide almost full interaction at the GFRP-concrete 

interface(s) (at least in the short-term), there is very little information about the durability 

of such connection systems, which raises concerns about the long-term performance of 

hybrid structural solutions. This paper presents experimental and numerical investigations 

on the durability of adhesively bonded connections between pultruded GFRP profiles and 

steel fibre reinforced self-compacting concrete (SFRSCC). GFRP-SFRSCC specimens 

were first subjected to accelerated ageing, involving thermal and wet-dry cycles, and then 

subjected to push-out tests. The accelerated ageing did not have significant influence on 

the strength of the GFRP-SFRSCC connection; however, it had a very deleterious effect 
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on its stiffness. The numerical study included the development of finite element models 

of the specimens tested. Using bi-linear bond-slip laws, it was possible to simulate the 

test results with good accuracy. In the final part of the paper, the influence of the interface 

stiffness reduction on the deformability of a real hybrid structure (the São Silvestre 

footbridge) is analysed. Although the stiffness of the GFRP-SFRSCC interface is 

considerably reduced by the ageing processes, this results in a very small increase of the 

overall mid-span deflections of the footbridge. 

 

Keywords: GFRP, SFRSCC, hybrid structures, epoxy, bonded connections, ageing, 

push-out tests, FE models, bond-slip laws. 

 

1. INTRODUCTION 

Fibre reinforced polymer (FRP) materials are being increasingly considered as an 

alternative to traditional materials for civil engineering structural applications, due to their 

high strength, low self-weight, ease of installation, electromagnetic transparency and 

good chemical and corrosion resistance [1-3]. With low maintenance requirements, these 

materials offer a promising alternative for the development of more durable and 

sustainable structures [4]. 

Pultruded glass-fibre reinforced polymer (GFRP) profiles combine the above mentioned 

advantages with moderately low manufacturing costs. However, GFRP profiles present 

low elasticity and shear moduli, being relatively deformable and prone to instability 

phenomena. 

To overcome those limitations, several hybrid structural solutions have been proposed 

(e.g. [5-12]), combining GFRP profiles with concrete elements. In some hybrid solutions, 
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adhesively bonded (epoxy) connections are used to enhance the composite action, thus 

preventing the occurrence of interconnection slip at the GFRP-concrete interface(s) [10]. 

In some cases, adhesive bonding is complemented with mechanical connection systems, 

which generally provide a negligible contribution to the stiffness (e.g. [5-9]), but can act 

as a redundant (“backup”) connection in case of adhesive failure or long-term 

degradation. An example of such a hybrid system is the São Silvestre footbridge [13-18], 

which comprises two pultruded GFRP girders adhesively bonded (with epoxy) and bolted 

to a very thin deck made of steel-fibre reinforced self-compacting concrete (SFRSCC). 

Although adhesively bonded connections have been proved to provide virtually full 

interaction in the short-term, little is known about the durability of such connection 

systems, namely when subjected to environmental degradation agents, thus raising 

concerns about their long-term performance. This paper presents experimental and 

numerical investigations on the durability of adhesively bonded connections between 

GFRP pultruded profiles and SFRSCC slabs. The main goal was to assess the influence 

of (i) thermal cycles, likely to be found in outdoor applications, and (ii) wet-dry cycles, 

on the stiffness and strength of the GFRP-SFRSCC interface. To that end, GFRP-

SFRSCC specimens were subjected to thermal and wet-dry cycles for up to 32 weeks and 

then subjected to push-out tests. Alongside the experimental study, numerical models 

were developed in order to simulate the push-out tests, in particular to derive (calibrate) 

time-dependent bond-slip laws representative of the GFRP-SFRSCC connection and of 

its time-dependent degradation. In the final part of the paper, the effects of the interface 

degradation on the full-scale structural response of the São Silvestre footbridge are 

analysed. 

 



Gonilha, J.; Correia, J.; Branco, F.; Sena-Cruz, J. (2018) “Durability of GFRP-concrete adhesively 

bonded connections: experimental and numerical study.” Engineering Structures, 68:784–798. 

 

4 

2. LITERATURE REVIEW 

As mentioned, there are very few studies about the durability and long-term mechanical 

performance of adhesively bonded connections between pultruded GFRP profiles and 

concrete members, namely when subjected to thermal and wet-dry cycles. The literature 

review presented in this section summarizes the main findings reported in previous 

studies about the durability of (i) the constituent materials and (ii) GFRP-concrete 

(SFRSCC) interfaces subjected to those environmental agents. 

 

2.1. Constituent materials 

2.1.1. Effects of thermal cycles 

For the temperature range that is likely to be found in outdoor applications, previous 

studies have shown that thermal cycles have (very) limited deleterious effects on the 

mechanical properties of pultruded GFRP materials. Indeed, in spite of the differences 

between the thermal expansion coefficients of the fibres and the polymer matrix, thermal 

cycles may even lead to improvements in the material properties due to post-curing effects 

on the matrix. As an example, Sousa et al. [19] subjected pultruded glass-polyester 

profiles (similar to those used in the present study) to 190 dry thermal cycles between -5ºC 

and 40ºC. Relatively low changes were measured in the mechanical properties of the 

GFRP material, with maximum reductions of the longitudinal tensile strength and 

elasticity modulus of -13.1% and -14.7%, respectively. Grammatikos et al. [20] tested 

similar pultruded glass-polyester profiles exposed to 300 dry and wet (soaked) thermal 

cycles, between -10ºC and 20ºC. In this case, after dry thermal cycles the longitudinal 

tensile strength and modulus even increased by 12% and 10%, respectively; in opposition, 

for wet thermal cycles reductions of respectively -13% and -4% were reported and 
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attributed to a higher degree of induced microcracking within the matrix material, 

particularly at the fibre-matrix interface, caused by the additional expansion of the 

absorbed water during the formation of ice crystals. 

Regarding epoxy adhesive, Yagoubi et al. [21] subjected epoxy (used in aircraft 

applications) specimens up to 3000 thermal cycles between -40ºC and 70ºC with relative 

humidity (RH) ranging from ≈0% to 90%, for the lower and higher temperatures, 

respectively. The authors reported little effects of the accelerated ageing on the 

mechanical properties of the adhesive, namely on the indentation modulus and the 

hardness. On the other hand, the same authors reported a decrease in the glass transition 

temperature (Tg) after 250 cycles, which seemed to stabilize as the ageing process 

continued. Silva et al. [22] tested the tensile properties of the epoxy adhesive used in the 

current experiments after being subjected to 120 and 240 thermal cycles between -15ºC 

and 60ºC, each cycle lasting 24h; they reported increases in the strength and elasticity 

modulus up to 33% and 7%, respectively, after 240 cycles. These results are in accordance 

with the findings of Moussa et al. [23]: the authors heated epoxy adhesives to 

temperatures slightly above their glass transition temperature (Tg) and then cooled them 

to ambient temperature; although the epoxy specimens were not subjected to thermal 

cycles, their strength and stiffness increased and this was attributed to the post curing of 

the resin. 

To the authors’ best knowledge there are no studies on the effects of thermal cycles on 

the mechanical properties of SFRSCC. Unlike polymeric materials, such as GFRP and 

epoxy adhesives, cementitious materials in general and self-compacting concrete (SCC) 

in particular do not seem to suffer significant deleterious effects caused by service 

temperatures [24-26]. In fact, studies on the high temperature behaviour of SCCs indicate 
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little degradation of their mechanical properties for temperatures up to 100ºC [25,27]. 

2.1.2. Effects of wet-dry cycles 

Thermosetting resins, including polyester (that comprises the matrix of the GFRP profiles 

used in this study) and epoxy, are susceptible to swelling, plasticization and hydrolysis 

when subjected to water [28,29]. These physical and chemical degradation phenomena, 

which can be either reversible or permanent and result from complex reaction/diffusion 

processes [30,31], are known to cause reductions in their stiffness, strength and toughness 

related properties [3,21,32]. 

Borges [33] tested the tensile properties of GFRP pultruded material (similar to that used 

in this study) in dry state after being subjected to water immersion at 20ºC for up to 

24 weeks, obtaining low variations in terms of strength (ranging from -7.3% to -7.5%) 

and elasticity modulus in tension (+1.1% to -4.5%). The author assessed also the effects 

of water immersion on the flexural and interlaminar shear properties of the material, and 

obtained variations of the same order of magnitude. In opposition, Cabral-Fonseca et 

al. [3] reported higher reductions on those mechanical properties, particularly regarding 

strength (in average -10.6% and -2.7%, for strength and elasticity modulus, respectively) 

when the same material was subjected to similar ageing conditions but tested in saturated 

conditions (highlighting the relevance of reversible degradation); in that regard, Quino et. 

al. [32] have shown that particular care must be taken when deriving material properties 

of wet composites due to non-uniform moisture absorption. 

Silva et al. [22] subjected specimens of epoxy adhesive (the same used in the current 

experiments) to 240 and 480 days of immersion in (i) pure water, (ii) salt water (3.5% 

NaCl) and (iii) wet-dry cycles in salt water (3.5% NaCl), testing their mechanical tensile 

properties afterwards. The three aging processes had a deleterious effect on the 
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mechanical response of the specimens with a degradation of the tensile strength ranging 

from -21% (wet-dry cycles) to -38% (pure water immersion). A similar effect was 

observed for the elasticity modulus with reductions ranging from -22% (wet-dry cycles) 

to -47% (pure water immersion). These results show the impact of the deleterious effects 

of plasticization and hydrolysis phenomena in the mechanical response of these resins. 

The exposure of steel fibre reinforced concrete (SFRC) to moisture may lead to fibre 

corrosion, potentially hindering its durability, a problem that has been addressed by 

several authors in the last few years. Balouch et al. [34] subjected SFRC to salt-fog/dry 

cycles (1 week wet and 1 week dry during 3 months), showing that for water-to-cement 

ratios (W/C) under 0.5 (similar to that used in the present study, cf. §3), the minimum 

cover to avoid corrosion of SFRC is under 0.2 mm. Granju et al. [35] exposed previously 

cracked SFRC to salt-fog/dry cycles up to 1 year, reporting light (or no) fibre corrosion 

for crack widths under 0.5 mm, except for the fibres within the first 2 to 3 mm of the 

concrete external surface. Furthermore, no deleterious effects were observed in the 

material strength, which actually increased after the accelerated ageing process, an effect 

the authors attributed to the roughening of the surface of the lightly corroded steel fibres, 

thus enhancing their bond to the concrete matrix. This phenomenon was confirmed by 

Frazão et al. [36], who performed fibre pull-out tests on SFRSCC specimens subjected to 

10 days of immersion in salt water, reporting an increase of the pull-out strength with the 

increase of fibre corrosion. 

 

2.2. Pultruded GFRP - concrete interfaces 

Although there are several studies on the durability of GFRP-concrete interfaces, they 

generally focus on GFRP fabrics for externally bonded reinforcement (e.g. [37,38]). In 
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fact, to the authors’ best knowledge, only a single study has been reported on the 

durability of pultruded GFRP-concrete interfaces by Mendes et al. [39]. The authors 

studied the influence of wet-dry cycles in salt-water (at 20-25ºC, 12 h of immersion 

followed by 12 h of drying per cycle) and thermal cycles (4 h-cycles ranging from -10ºC 

to 60ºC with target RHs of 10% and 80%, respectively) on the epoxy bonded connection 

between pultruded GFRP profiles and SFRSCC. After 100 cycles in each environment, 

GFRP-SFRSCC specimens were subjected to static and fatigue push-out tests. The wet-

dry cycles in salt water had little influence on the static strength of the connection (a 

reduction less than 1%); however, unlike what would be expected, the stiffness increased. 

The thermal-cycles, on the other hand, caused a 32% reduction in strength, as well as a 

reduction in stiffness. To some extent, the stiffness increase observed in the wet-dry 

cycles could be attributed to the reduced age of the SFRSCC, which may have further 

hardened due to the presence of water. However, given the relatively high increase of 

stiffness, it is possible that this behaviour may have resulted from some anomaly in the 

measurements of those particular specimens, with further investigations being needed to 

clarify these results. 

 

2.3. Research significance 

The present study aims at contributing to improve the knowledge on the durability of 

adhesively (epoxy) bonded connections between pultruded GFRP profiles and concrete 

elements and to clarify some of the questions raised about the previous studies. 

To that end, GFRP-SFRSCC epoxy bonded specimens, similar to those tested by Mendes 

et al. [39], were subjected to the effects of both (i) thermal and (ii) wet-dry cycles. The 

conditions of the first accelerated ageing process were similar to those used by Mendes 
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et al. [39], ranging from -15ºC to 60ºC with corresponding RHs of 0% and 95%, 

respectively. The duration of each cycle was increased in the present study to 24 h 

(instead of 4 h) to achieve a better agreement between the target temperature and RH 

curves and those effectively provided by the climatic chamber (cf. §3.3.1). In fact, the 

short duration of each cycle in the previous study might have prevent the specimens to 

fully reach the target temperatures. Furthermore, the ageing period used previously 

(100 cycles) was now largely extended in the present investigation (112 to 224 thermal 

cycles). 

Regarding the wet-dry cycles, the present study used fresh (tap) water, which is representative 

of more service environments than salt water (used in [39]) and known to have a more 

deleterious effect on polymeric materials [3]. Additionally, the duration of each cycle was 

increased from 24 h to 2 weeks in order to guarantee a significant water absorption and 

complete dryness of the specimens in each cycle (cf. §3.3.2). 

 

3. EXPERIMENTAL PROGRAMME 

3.1. Materials  

The experimental tests were carried out using I-shaped GFRP profiles 

(200×100(×15) mm2) made of E-glass fibres and an isophthalic polyester resin matrix, 

produced by ALTO, Perfis Pultrudidos, Lda. Small-scale material characterization tests 

were performed in coupons extracted from the flanges and webs of the GFRP profiles, 

allowing to determine their main mechanical properties (Table 1): (i) the longitudinal 

elasticity modulus (Et,L) and strength (ftu,L) in tension (EN ISO 527 [40]); (ii) the transverse 

elasticity modulus (Ec,T) and strength (fcu,T) in compression (ASTM D 695 [41]); and 
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(iii) the in-plane shear modulus (GLT) and strength (τu,LT) (based on 10º off-axis tensile tests 

[42]). 

The SFRSCC was developed by the company CiviTest and incorporated 45 kg/m3 of 

hooked end steel fibres with length of 35 mm and diameter of 0.55 mm. The mix 

composition, comprising a W/C ratio of 0.33, is presented in Table 2. Material 

characterization tests were performed in SFRSCC cubes and cylinders, at 28 days, 

allowing the determination of (i) the elasticity modulus (Ec,28 = 36.97 ± 1.94 GPa) and 

the Poisson ratio ( = 0.33 ± 0.03) in compression (LNEC E 397 [43]); (ii) the splitting 

tensile strength (fcr = 9.42 ± 1.63 MPa, EN 12390-6 [44]); and (iii) the compressive 

strength (fcm = 80.65 ± 2.07 GPa, EN 12390-3 [45]). Tests were also performed at the age 

of 905 days, representative of the age of the SFRSCC when the push-out tests were 

performed: Ec = 40.88 ± 1.53 GPa; fcr = 11.19 ± 1.08 MPa; and fcm = 93.01 ± 7.42 GPa. 

The adhesive connection between the GFRP and the SFRSCC was provided by an epoxy 

adhesive, S&P Resin 220 [46], which was thoroughly characterized by Silva et al. [22], 

namely regarding its elasticity modulus (Ea = 7.15 ± 0.27 GPa) and strength 

(fau = 22.0 ± 1.0 MPa) in tension. Firmo et. al. [47] reported a glass transition temperature 

(Tg) for this adhesive of 47ºC (based on the onset of the storage modulus decay from 

DMA tests in a dual cantilever setup) while Roquette [48] reported a shear strength of 

(τau) 25.1 ± 1.5 MPa and a shear modulus (Ga) of 4.61 ± 0.57 MPa, obtained from V-

notch beam tests. 

 

3.2. Geometry and preparation of test specimens 

The experimental programme comprised push-out tests in GFRP-SFRSCC specimens 

made of a pultruded GFRP profile segment connected with epoxy adhesive to two 
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SFRSCC slabs. The geometry of the specimens (Figure 1) followed the recommendations 

provided in Annex B of Eurocode 4 [49]. 

The preparation of the specimens began with the roughening of the SFRSCC surfaces, 

using a needle scaler (as shown in Figure 2a), in order to enhance the quality of the 

adhesive bonding. The morphology of the SFRSCC surface was not measured; however, 

in a previous study [50] conducted in similar slabs made of concrete type MC (0.40) 

(according to EN 1766 [51]), the same surface preparation procedure led to a surface 

roughness index of 0.164 mm, according to the sand test described in [51]. The SFRSCC 

surfaces were then dusted with compressed air and the GFRP surfaces were cleaned with 

acetone. The epoxy adhesive was prepared according to the manufacturer’s 

recommendations [46] and applied to the SFRSCC surface, as depicted in Figure 2b. The 

GFRP profiles were positioned on the top of the slab and a weight was placed over them 

in order to squeeze the excessive adhesive, which was then removed. The 2 mm epoxy 

adhesive layer was guaranteed by gluing small plastic spacers onto the GFRP flanges. 

After a 24-hour period defined for the epoxy adhesive to set, the process was repeated in 

order to connect the second SFRSCC slab to the specimens, as shown in Figure 2c. 

 

3.3. Ageing processes and test series 

Table 3 lists the number of specimens subjected to each ageing process and exposure 

period, as well as the experimental results for each series, discussed in the following 

sections. In total, 16 specimens were subjected to thermal cycles and 9 specimens were 

subjected to wet-dry cycles. Before being subjected to the ageing processes, specimens 

were kept in the laboratory environment (average temperature of ~20ºC, not controlled) 

for a period of 1 month, to guarantee the curing of the adhesive. After removal from the 
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ageing chambers, specimens were stored in the laboratory environment for a minimum 

period of 1 month to guarantee that they were tested in a dry state. In addition, as a 

reference, 4 control specimens were also kept in the laboratory environment for a period 

of 1 month, to guarantee the curing of the adhesive, before being tested. 

3.3.1. Thermal cycles 

The thermal cycles were defined based on EN 13687-3 [52] standard. For each 24-hour 

cycle, temperatures ranged from -15ºC to 60ºC (Figure 3), while the RH was planned to 

vary from 0% to 95% (Figure 4). This ageing process was conducted in a climate 

chamber, from Aralab, model Fitoclima 6400. Although the temperature protocol was 

fairly well reproduced (cf. Figure 3), the climate chamber was not able to follow the target 

RH curve - as shown in Figure 4, the RH ranged from ~10% to ~50-60%. 

It is worth noting that there are no standardized protocols for testing GFRP-concrete 

connection systems, nor any requirements in the literature for the number of cycles to be 

performed. Existing standards for other construction materials or systems define the 

number of thermal cycles, which typically range from 5 to 50. Given that GFRP based 

structures are generally designed for relatively long service life periods (between 50 and 

100 years), the maximum number of thermal cycles was set as 200. 

 

3.3.2. Wet-dry cycles 

The wet-dry cycles were performed using a large scale wet chamber (often used to cure 

concrete specimens), which permanently maintained the RH over 95%. Each cycle lasted 

two weeks, with specimens remaining inside the wet chamber (set at 20ºC) for one week 

and outside the chamber (in the laboratory indoor dry environment at ~20ºC and RH 

varying from 50% to 65% (not monitored) for the remaining week. As for the thermal 
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cycles, there are no specific test protocols defining the maximum number or duration of 

wet-dry cycles for GFRP-concrete connection systems. On one hand, the duration of the 

cycles was defined to achieve a significant level of water absorption. Recent studies have 

shown that for water immersion at 20ºC, the weight change of an epoxy adhesive (similar 

to that used in this study) is around 1.0% after 1 week, whereas the saturation level (after 

over 250 weeks) is around 2.1% [53,54]. Thereafter, an exposure period of 168 h (wet 

part of the cycle) was deemed as sufficient to induce significant water absorption on the 

adhesive of the push-out specimen. On the other hand, in order to enable a comparison of 

the effects of the wet-dry and thermal cycles, it was decided that the ageing period of the 

wet-dry cycles should match that of the thermal cycles. 

3.4. Procedure and instrumentation of push-out tests 

Figure 5 shows the setup used in the push-out tests. The load was applied to the specimens 

with a hydraulic press from Enerpac, with a capacity of 3000 kN. Specimens were placed 

on the bottom (moving) plate of the press over a thin plaster embedment. The load was 

measured with a load cell from Microtest, with a capacity of 3000 kN. A sphere was 

placed in-between the load cell and the top plate allowing the rotation of the latter. The 

relative displacements between the bottom and top surfaces of the specimens were 

measured with four displacement transducers from TML, with a stroke of 25 mm and 

precision of 0.01 mm. One displacement transducer was placed on the bottom plate, while 

the three remaining ones were placed on the top plate (to detect eventual rotations). 

In order to reduce the deformations resulting from the settlement of the test setup (not 

related with the bonding mechanism under study), the specimens were first subjected to 

a loading/unloading cycle up to approximately 10% of their expected failure load, which 

was determined based on preliminary tests [13]. The specimens were then monotonically 



Gonilha, J.; Correia, J.; Branco, F.; Sena-Cruz, J. (2018) “Durability of GFRP-concrete adhesively 

bonded connections: experimental and numerical study.” Engineering Structures, 68:784–798. 

 

14 

loaded up to failure, under displacement control of the bottom test plate, at a rate of 

approximately 0.5 mm/min. 

 

4. EXPERIMENTAL RESULTS 

Figure 6 depicts the load-relative displacement (between the top and bottom surfaces of the 

specimens) curves obtained for a representative specimen from each series and exposure 

period. In addition to the average failure load (Fu) and stiffness (K) for each series, the 

results obtained for all specimens are summarized in Table 3. It should be mentioned that 

the stiffness (K) was computed by the slope of the load-relative displacement curves, 

within their linear branch, typically between 200 kN and 250 kN. Note that such 

displacement curves account for the interface slip and the axial deformation of the GFRP 

profile and SFRSCC slabs. The influence of the latter deformation on the overall relative 

displacement is estimated to range between 9% and 21%, for the experimental series with 

lower and higher stiffness (cf. Table 3), respectively. 

Before testing, all specimens subjected to wet-dry cycles presented exterior signs of ageing, 

namely scattered corrosion of exposed steel fibres. On the other hand, for the thermal cycles 

exposure, these signs of damage were only visible in specimens subjected to 224 cycles. 

Regarding the load-relative displacement behaviour, specimens of all series presented an 

initial linear behaviour up to a peak load, which corresponded to the failure initiation of the 

GFRP-SFRSCC interfaces. The values of the stiffness and of the peak load were the most 

significant differences observed in these curves (cf. Figure 6). 

Three different governing failure modes were observed (Table 3), two at the GFRP-

SFRSCC connection: (i) cohesive failure on the SFRSCC (a thin layer of concrete in 

contact with the adhesive, hereon simply referred to as cohesive, cf. Figure 7a); and 
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(ii) adhesive failure at the interface between the epoxy adhesive and the GFRP (from now 

on referred to as adhesive, cf. Figure 7b). A third failure mode was observed, caused by the 

rupture of the web-flange junction of the profiles (cf. Figure 7c). Furthermore, for some 

specimens, after the occurrence of the first failure mode (in one of the sides of the 

specimen), a second failure mode was observed, typically on the opposite side, leading to 

the collapse of the specimens. 

Specimens of the control series presented the general behavior discussed earlier, exhibiting 

cohesive failure of the interface (on the SFRSCC material, Figure 7a) followed by web-

flange junction rupture on the opposite side (Figure 7b). 

 

4.1. Influence of thermal cycles 

All specimens subjected to 112 thermal cycles (Th-t1) failed due to the cohesive failure of 

the GFRP-SFRSCC interface (Figure 7a). Specimens of series Th-t2 (168 thermal cycles) 

failed also due to cohesive debonding at the interface (Figure 7a), with one of the specimens 

(Th-t2-2) presenting web-flange junction rupture (on the opposite side) as secondary failure 

mode (Figure 7c). Finally, specimens subjected to 224 thermal cycles (Th-t3) presented 

visible debonding on both interfaces and failed due to the complete debonding at one of the 

sides, with the exception of specimen Th-t3-5, which presented complete debonding at both 

interfaces. Unlike the previous series, the (mainly) cohesive failure presented localized 

debonding patches in the epoxy adhesive itself. 

Figures 8 and 9 show the evolution of the ultimate load and of the stiffness, respectively, 

with the number/duration of thermal cycles, together with the numerical results to be 

discussed later. It can be seen that the ultimate load presented a slightly increasing general 

trend with the number of thermal cycles, with a strength increase of 19% at the end of 
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exposure period. Most likely this increasing trend, which contrasts with the reduction 

reported by Mendes et al. [39] after 100 cycles, is due to the post-curing effect of the 

thermal cycles on the epoxy resin. The difference between these results may be related to 

the different ages of the SFRSCC used in the experiments (under 5 months for Mendes et 

al. [39] and over 3 years in the present study); indeed, younger SFRSCC may be more 

prone to deleterious effects under exposure to thermal cycles. In opposition, the thermal 

cycles caused a general decrease of the average stiffness (consistent with the data reported 

by Mendes et al. [39]), which was particularly steep for the last exposure period, with a 

reduction of -48% after 224 cycles. The remarkable stiffness reduction observed from 168 

to 224 cycles is consistent with the damage observed in specimens from series Th-t3, in 

which failure was not exclusively cohesive on the SFRSCC, with failure patches being 

easily identified on the epoxy adhesive. This seems to indicate that the cumulative effects 

of the thermal cycles were the cause of such debonding patches at the interface, possibly 

due to thermal fatigue owing to the internal stresses associated with the different 

coefficients of thermal expansion (CTE) of the materials involved. In fact, for concrete a 

CTE of 10×10-6/ºC is generally assumed [55], Klamer [56] reports a CTE of 26×10 6/ºC 

for a similar epoxy adhesive, while for GFRP CTEs of 6.7×10-6/ºC and 22×10 6/ºC for the 

longitudinal and transverse directions, respectively, have been reported [57,58]. It is worth 

mentioning that the interface failure is generally governed by shear and peeling stress peaks, 

which usually develop at the extremities of the connection, with the bonded interface being 

able to present some stress redistribution. This may explain why those failure patches in the 

adhesive affected the stiffness but yet did not cause a strength reduction (further discussion 

on this aspect is provided in Section 5). 
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4.2. Influence of wet-dry cycles 

Specimens subjected to 8 wet-dry cycles (WD-t1) failed due to the debonding of the GFRP-

SFRSCC interface. Failure was observed mainly in the epoxy adhesive, although cohesive 

failure patches were also identified (Figure 7b). Unlike the previous series, all specimens 

subjected to 12 wet-dry cycles (WD-t2) presented different failure modes: (i) WD-t2-1 

failed at both web-flange junctions (Figure 7c), although it also presented signs of 

debonding at the top of one of the interfaces; (ii) WD-t2-2 presented web-flange junction 

failure at one of the sides of the specimen, which was followed by the complete adhesive 

debonding of the interface on the other side; and (iii) WD-t2-3 failed due to the complete 

debonding of one of the GFRP-SFRSCC interfaces. Again, the debonding of the last two 

specimens was observed mainly in the epoxy adhesive (Figure 7b), although cohesive 

failure patches were also identified. Regarding specimens aged with 16 wet-dry cycles 

(WD-t3), for two of the specimens the first failure mode was the rupture of the web-flange 

junction (Figure 7c), which was followed by the adhesive debonding of the interface on the 

opposite side; the remaining specimen failed due to the complete debonding of one of the 

interfaces. In both cases, the debonding occurred mainly in the adhesive with patches of 

cohesive failure (Figure 7b). 

For the specimens that presented web-flange junction failure as the primary or unique 

failure mode it should be mentioned that it was not always possible to determine the level 

of damage (if any) on the interface prior to failure, although it is very likely to have 

occurred. 

Figures 10 and 11 show the evolution of the ultimate load and of the stiffness, respectively, 

with the number/duration of wet-dry cycles, together with numerical results to be discussed 

later. The results obtained indicate that the wet-dry cycles did not influence the strength of 
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the GFRP-SFRSCC connection – the relative variations for all cycles are very small 

(maximum of 5%), well within the experimental scatter. On the other hand, the stiffness of 

the GFRP-SFRSCC connection was very significantly affected by this type of ageing, with 

reductions from -53% already after 8 cycles to -58% after 16 cycles. This degradation 

occurred mostly during the earlier stages of the exposure period (before 16 weeks) and then 

tended to stabilize. Therefore, it seems that the degradation was mostly caused by the water 

absorption of the epoxy adhesive (Cabral-Fonseca [59] reported a water absorption of 

1.03% for a similar adhesive at 23ºC) and the GFRP profile (cf. §3.3.2) and the consequent 

plasticization and hydrolysis phenomena underwent by their polymeric constituents (cf. 

§2.1.2), and not by the wetting and drying cycles per se. In spite of such significant stiffness 

decrease, as mentioned the strength was not significantly affected; this is attributed to the 

effect of ageing on the adhesive, which became softer and therefore led to a smoother stress 

distribution at the interface; further discussion is provided in the numerical analysis (cf. 

§5.2). 

The above mentioned influence of wet dry cycles in interfacial strength is consistent with 

the data presented by Mendes et al. [39], who also reported no strength degradation due 

to this type of exposure; however, in their study, the stiffness of aged specimens exhibited 

an unexpected increase – our results present and opposite (and logical) trend, which seems 

to confirm that the stiffness data obtained in that study were somehow anomalous. 

 

5. NUMERICAL SIMULATION 

5.1. Objectives and model description 

The numerical study comprised the development of three-dimensional finite element (FE) 

models of the push-out tests. The objectives were two-fold: (i) to improve the 
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understanding about the mechanical behaviour of adhesively bonded connections between 

GFRP profiles and SFRSCC elements; and (ii) to assess the feasibility of using bond-slip 

laws (Figure 12) to numerically simulate the behaviour of those bonded connections and of 

their environmental degradation. Those laws were calibrated based on the load-relative 

displacement behaviour observed in the experimental tests, and aimed at predicting the 

failure load and the most typical failure mode observed. 

The FE models of the push-out tests were developed with the commercial package 

ABAQUS [60]. In order to reduce the computational costs, only a quarter of the specimens 

was modelled using symmetry boundary conditions (Figure 13). The models comprised 4 

sets of elements: (i) the GFRP profile and (ii) the SFRSCC, which were modelled with 8-

node brick elements (C3D8), with three degrees of freedom per node (translations); (iii) the 

joint GFRP/SFRSCC interface was modelled by means of a stiffness uncoupled bi-linear 

bond-slip law (cf. Figure 12); and (iv) boundary linear springs, in the vertical direction (Y, 

cf. Figure 1), which simulated the contact between the bottom surface of the SFRSCC slab 

and the plaster layer over the press plate (these springs were adopted in order to avoid the 

influence of the initial setting of the specimens in the calibration of the aforementioned slip 

law, in particular on its stiffness). Generally, a regular mesh was adopted with 5 mm side 

cubic elements. Near the interface, in the SFRSCC slab and in the GFRP flange, the mesh 

was refined in the through-thickness direction, by adopting a 1 mm size followed by two 

consecutive 2 mm layers. The analyses were performed by applying an imposed vertical 

deformation at the top surface of the GFRP profile. 

The materials were modelled with the elastic and strength properties derived from testing 

(cf. §3.1). The elastic constant introduced in the models are given in Table 5, where 1, 2 

and 3 stand for the longitudinal, transverse and through-thickness direction. For the 
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SFRSCC, given its isotropic nature, only one elasticity modulus (E1) and Poisson ratio (υ12) 

are given. The GFRP was modelled as orthotropic and with linear-elastic behaviour. For 

the SFRSCC, the Concrete Damaged Plasticity built-in material model was adopted, 

considering a 30º dilatation angle. In compression, the SFRSCC behaviour was considered 

perfectly plastic at fcm (80.65 MPa, although this stress level was never reached), while in 

tension the behaviour was considered elastic up to fcr (9.42 MPa) with brittle failure, 

thereafter. This definition of damage behaviour did not result from an experimental 

characterization of the fracture behaviour of the SFRSCC; however, as discussed in the 

next section, the models presented only residual concrete damage levels (in accordance 

with the experimental results) and, therefore, the damage model was not relevant for the 

analysis and the calibration of its parameters for the SFRSCC, particularly the introduction 

of a tensile fracture energy, was not pursued. The properties of the GFRP and SFRSCC 

materials were considered to be unaffected by the ageing processes owing to the relatively 

small degradation of those individual materials reported in the literature (cf. §2.1) for the 

type of ageing used in the experiments. In other words, in the numerical analysis only the 

degradation of the interface was considered, by changing the parameters of the bond-slip 

law (as explained below). With this respect, it should be mentioned that concentrating the 

aging effects in the bond-slip law, any local degradation of the substrates – the GFRP and 

the SFRSCC – is reflected on the parameters of those laws, albeit this method does not 

differentiate the failure modes within the interface (i.e. adhesive or cohesive). 

To calibrate the stiffness of the linear springs simulating the contact between the SFRSCC 

and the plaster layer a preliminary linear-elastic model of the Control series was developed, 

where the epoxy adhesive layer at the interface was explicitly modelled with four layers of 

solid elements (C3D8). For these elements, a regular mesh was also adopted 
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(5×5×0.5 mm3). The stiffness of the equivalent area spring governing the SFRSCC-plaster 

interface was set as 39270 (kN/mm)/m2, which was used in the remaining models (i.e., 

those in which the interface was modelled with a bond-slip law). 

For the sake of simplicity, and given the limited data retrieved from the experimental tests, 

the bi-linear bond-slip laws were calibrated considering the same behaviour on the three 

relevant directions, i.e. in the normal direction (mode I – direction n) and in the two 

orthogonal tangential directions (mode II – direction t1; mode III – direction t2). In this 

regard, it should be mentioned that, due to the test setup, the response of the specimens is 

governed by the in-plane shear XY response (mode II) – cf. Figure 1. This was confirmed 

by testing also bi-linear laws in which the maximum normal interfacial stress (𝜎𝑚𝑎𝑥) was 

much higher (>150 times) than the maximum tangential interfacial stress (𝜏𝑚𝑎𝑥). The 

results obtained with both sets of laws are coincident except for the very last stages of the 

post-peak behaviour (not very relevant in these analyses), showing deviations under 3% in 

force, thus validating the simplifying assumption considered. The failure initiation criterion 

was the maximum nominal stress in each direction, following Eq. (1). 

 max {
〈𝜎〉

𝜎𝑚𝑎𝑥
,

𝜏1

𝜏𝑚𝑎𝑥
,

𝜏2

𝜏𝑚𝑎𝑥

} ≤ 1.0 (1) 

where, 𝜎, 𝜏1 and 𝜏2 are the normal (direction n) and shear (directions t1 and t2) stresses at 

the interface, respectively, 〈 〉 represents the Macaulay bracket and 𝜎𝑚𝑎𝑥 and 𝜏𝑚𝑎𝑥 are the 

normal and shear “pure” strengths (cf. Figure 12). The damage evolution then follows the 

bi-linear bond-slip law (cf. Figure 12), with stresses being expressed as follows, 

 𝜎 = {
(1 − 𝐷)𝜎̅, 𝜎 ≥ 0

𝜎, 𝜎 < 0
 𝜏1 = (1 − 𝐷)𝜏1̅ 𝜏2 = (1 − 𝐷)𝜏2̅ 

(2a), (2b) 

and (2c) 

where, 𝜎, 𝜏1̅and 𝜏2̅ are the normal and shear (directions t1 and t2) stresses at the interface 

predicted without damage and 𝐷 is the scalar damage variable (automatically computed by 
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the software during the analysis), given by Eq. (3). 

 𝐷 =
𝑑𝑢

𝑚(𝑑𝑚𝑎𝑥
𝑚 − 𝑑𝑐𝑟

𝑚 )

𝑑𝑚𝑎𝑥
𝑚 (𝑑𝑢

𝑚 − 𝑑𝑐𝑟
𝑚 )

 (3) 

where, 𝑑𝑢 is the ultimate slip, 𝑑𝑐𝑟 is the critical slip (𝑑𝑐𝑟 = (𝜏𝑚𝑎𝑥 𝑜𝑟 𝜎𝑚𝑎𝑥) 𝑘⁄ , cf. 

Figure 12) and 𝑑𝑚𝑎𝑥 is the maximum slip during the loading history (to avoid healing). The 

superscript m denotes the effective slip under combined normal and shear stresses, 

expressed in Eq. (4). 

 𝑑𝑚 = √〈𝑑𝑛〉2 + 𝑑𝑡1

2 + 𝑑𝑡2

2  (4) 

where, 𝑑𝑛, 𝑑𝑡1
 and 𝑑𝑡2

 represent the separation under normal (direction n) and shear 

(directions t1 and t2) stresses, respectively. 

Thereafter, the calibration was performed in a sequential process. The interface stiffness 

was initially calibrated by adjusting the parameter k. Next, parameters 𝜏𝑚𝑎𝑥 and 𝜎𝑚𝑎𝑥, 

which, together with the softening slip1 (𝑑𝑠𝑜𝑓𝑡, for modes II and III), representing the 

difference between the ultimate slip (𝑑𝑢) and the critical slip (𝑑𝑐𝑟), govern the strength of 

the interface, were adjusted in order to obtain ultimate loads (𝐹𝑢) similar to those measured 

in the experiments. It should be mentioned that the latter parameter (𝑑𝑠𝑜𝑓𝑡) was adjusted 

for the Control series, providing a similar post-peak behaviour to that observed in the 

experiments and maintained constant (at 0.5 mm) for the remaining series (as they 

presented a similar post-peak behaviour). In this regard, it shoud be mentioned that 𝑑𝑠𝑜𝑓𝑡 

is the main parameter governing the post-peak behaviour, which was a less relevant concern 

for the present numerical analysis; in the experiments, that stage of the behaviour may have 

been influenced by the existence of two interfaces per specimen and the inherent 

                                                 

1 For mode I, such displacement corresponds to the opening of the interface. 
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asymmetries caused by their non-simultaneous failure initiation and propagation. The 

simplifying assumption of a constant 𝑑𝑠𝑜𝑓𝑡 parameter allowed for a direct comparison of 

the maximum strength parameters (𝜏𝑚𝑎𝑥 and 𝜎𝑚𝑎𝑥) between the different series. The 

stiffness and strength parameters were calibrated with minimum steps of 0.5 MPa/mm and 

0.5 MPa, respectively. For each case, the iteration that presented the lowest deviations 

between experimental and numerical results regarding failure load (Fu) and global stiffness 

(K) was chosen, with minimum relative difference of ~5% being considered acceptable for 

the calibration procedure. 

The possibility of occurrence of damage initiation in the GFRP material was also assessed 

by computing the Tsai-Hill failure initiation index, which may be expressed as follows for 

plane stress elements [61], 

 
𝜎1

2

𝑋2
−

𝜎1𝜎2

𝑋2
+

𝜎2
2

𝑌2
+

𝜏12
2

𝑆2
≤ 1.0 (5) 

where, 𝜎1 and 𝜎2 are the stresses in the principal directions 1 and 2, respectively, 𝜏12 is the 

shear stress in the plane defined by those directions, X and Y are the strengths in the principal 

directions and S is the in-plane shear strength. Applying Eq. (5) to the present case study, 

the principal directions 1 and 2 may be taken as the longitudinal and transverse directions, 

replacing 𝜎1, 𝜎2 and 𝜏12 by 𝜎𝐿, 𝜎𝑇 and 𝜏𝐿𝑇 , respectively, and X, Y and S by ftu,L, fcu,T and 

τu,LT, respectively (cf. Table 1). 

 

5.2. Results 

Table 4 summarizes the parameters of the bond-slip laws calibrated for each series and the 

corresponding numerical results, as well as the comparison with the experimental 

counterparts, while Figures 14 and 15 illustrate the evolution of the calibration parameters. 

Numerical and experimental results are in very good agreement, with maximum relative 
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differences of 5.4% regarding the ultimate load and 5.7% regarding the stiffness, well 

within the experimental scatter (cf. Figures 8 and 9 for the thermal cycles, and Figures 10 

and 11 for the wet-dry cycles series). 

Figures 16 and 17 compare for the thermal and wet-cry cycles, respectively, the 

experimental load-relative displacement curves representative of each series with those 

retrieved by the FE models. For the experimental curves presented in these Figures, it 

should be noted that, unlike the curves presented in Figure 6, the initial non-linear 

behaviour, attributed to the settlement of the specimens, was linearized in order to provide 

a more meaningful comparison with the numerical results. Again, a general good agreement 

is obtained. 

Concerning the failure modes, for all durations and types of exposure the FE models predicted 

failure to occur at the interface. This is also consistent with the experiments, as failure 

generally started at the interface. Figures 18 and 19 plot the numerical load-relative 

displacement curves together with the evolution of the (maximum value of the) Tsai-Hill 

failure initiation index at the web-flange junction, for the thermal and wet-dry cycles series, 

respectively. These figures show that for all series the peak loads (𝐹𝑢), corresponding to 

failure initiation, occurred when the Tsai-Hill failure initiation indexes were lower than 1.0, 

confirming that in general failure started at the interface and not in the GFRP profiles. After 

the peak loads are attained, the stiffer models (for Control, Th-t1 and Th-t2 series) presented 

a softening stage and the Tsai-Hill failure initiation indexes considerably increase, exceeding 

1.0, which is also consistent with the experimental observations, namely regarding the failure 

in the web-flange junction of the GFRP profile that followed the interfacial failure. Moreover, 

these results indicate that the specimens that presented the first failure at the web-flange 

junction (WD-t2 and WD-t3 series) are likely to have suffered (undetected) damage at the 
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interface before such failure occurred, as suggested earlier (cf. §4.3) 

Regarding the SFRSCC, although some tensile damage was locally observed in the models, 

as exemplified by Figure 20 for the control series, its value was very low (< 0.02 in a scale 

from 0 to 1). In fact, if the SFRSCC is considered linear-elastic the load-relative displacement 

curves match those obtained considering the plasticity model. In other words, even following 

a conservative approach in the definition of fracture properties, this material is largely kept 

within its elastic branch of behaviour, both in tension and compression. 

Another interesting result derived from the models is the evolution of the shear stress 

distribution along the interface. Figure 21 compares the shear stress distribution at the 

interface obtained with the calibration parameters of the Control series to those obtained 

with the calibration parameters of the least stiff series Th-t3 and WD-t3. In the aged series, 

the steep reduction of the interfacial stiffness led to an almost uniform shear stress 

distribution along the interface, considerably reducing the stress peak values that occur in 

the Control series. Such a smoother shear stress distribution has contributed to delay the 

failure triggering in the aged series, explaining why the failure load did not decrease in both 

aged experimental series. Additionally, it is interesting to notice that, in the transverse 

direction, the shear stresses are higher at the side of the GFRP web (right hand side of the 

models in Figure 21), indicating that the added out-of-plane stiffness provided by the web 

allows the development of higher in-plane (shear) stresses. 

 

6. EFFECTS OF AGEING ON THE STRUCTURAL PERFORMANCE 

The experimental results have shown that both types of ageing have a deleterious effect on 

the stiffness of the GFRP-SFRSCC bonded interface. Since the design of GFRP based 

structures is often governed by serviceability requirements (deflection limits), it seems 
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relevant to assess the influence of the interface degradation on the overall deformations of 

hybrid structural members. As discussed in [10], these deformations comprise the 

contribution of both bending and shear deformations, making it necessary to use 

Timoshenko beam theory (instead of Euler-Bernoulli beam theory). Regarding the 

contribution of shear to the overall deformation of GFRP-concrete hybrid beams, as 

discussed in [10,17,18], the shear stiffness is largely governed by the GFRP webs. 

In what concerns the contribution of bending to the deformation of a simply supported 

hybrid beam, the ratio between the midspan deflection considering full (𝛿𝑓) and partial (𝛿𝑝) 

shear interaction is given by Eq. (6) [62], 

 
𝛿𝑝

𝛿𝑓
= 1 + (

𝐸𝐼𝑐𝑜𝑚𝑝

∑ 𝐸𝐼𝑝𝑎𝑟𝑡
− 1) × 𝛽 (6) 

where, 𝐸𝐼𝑐𝑜𝑚𝑝 is the flexural stiffness of the hybrid beam, 𝐸𝐼𝑝𝑎𝑟𝑡 is the individual flexural 

stiffness of each component (in this case, GFRP and SFRSCC) and 𝛽 is a non-

dimensional stiffness parameter given by, 

 𝛽 = [
1

cosh (
𝛼𝐿
2 )

+
1

8
(𝛼𝐿)2 − 1] ×

384

5(𝛼𝐿)4
 (7) 

and 

 𝛼 = 𝐾 [∑ (
1

𝐸𝐼𝑝𝑎𝑟𝑡
) +

𝑟2

∑ 𝐸𝐼𝑝𝑎𝑟𝑡
] (8) 

where, 𝐿 is the span of the structure, K is the shear stiffness of the connection and r is the 

distance between the neutral axis of each component of the section. 

Thereafter, in order to assess the structural consequences of the interfacial stiffness 

degradation, the above-mentioned formulae were applied to the São Silvestre footbridge 

(cf. Figure 22), a 10.5 m span simply supported hybrid bridge comprising two GFRP 

girders (I400×200×15 mm2) and a very thin SFRSCC deck (37.5 mm thick, 2000 mm wide) 
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connected by a 2 mm epoxy adhesive layer [18]. The stiffness of the interface was taken 

directly from the tests2, since the adhesive area is the same: 2 (flanges) × (100×2) mm2 in 

the push-out specimens and 200×2 mm2 per girder of the bridge. Figure 23 presents the 

variation of the (𝛿𝑝 𝛿𝑓⁄ ) ratio with the interface stiffness, indicating the ratio for the average 

stiffness obtained in each series of the experimental tests. The results show that although 

there is a considerable reduction in the shear connection stiffness (up to ~60%), the effects 

at the full-scale structural level of the ageing processes are not significant, causing a 

maximum increase of only 5% in the predicted flexural elastic deflection, as predicted using 

Eq. (6). 

 

7. CONCLUSIONS 

This paper presented an experimental and numerical study about the mechanical behaviour 

of adhesively bonded connections between GFRP pultruded profiles and SFRSCC slabs 

subjected to two accelerated ageing protocols: (i) thermal cycles and (ii) wet-dry cycles. 

For the test conditions used in the study, the thermal cycles did not have a deleterious effect 

on the interfacial strength; in fact, after 224 cycles, the strength increased by 19%. On the 

other hand, the stiffness presented a significant reduction of -48%. 

The wet-dry cycles did not affect the strength of the interface, which presented marginal 

variations during the exposure period. Yet, as for the thermal cycles, the stiffness was 

markedly affected, presenting a sharp reduction already for the earlier periods of ageing, 

                                                 

2 As mentioned earlier (cf. §4), the stiffness measured in the experiments also accounts for the 

axial deformability of the GFRP and SFRSCC (contribution to overall deformability ranging from 

9% to 21%). Using these values in the present analysis is a conservative simplifying assumption 

with reduced influence in the final results. 
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with a maximum stiffness reduction of -58% after 16 cycles. 

In the numerical study, bi-linear bond-slip laws representative of the changes underwent by 

the bonded interfaces were calibrated. The models were able to capture the mechanical 

responses observed in the experiments, including the effects of the accelerated ageing – the 

models accurately predicted the load vs. relative displacement responses and also the failure 

mechanisms. The models also showed that for lower interface stiffness the shear stress 

distribution is more uniform and the stress peaks are lower, which to some extent explains 

why the interfacial strength did not decrease in the push-out experiments. 

In the final part of the paper, the consequences of the interface stiffness degradation were 

assessed at the full-scale structural level. To that purpose, taking the São Silvestre footbridge 

as an example, it was concluded that the very significant bond stiffness reduction causes an 

increase of the mid-span elastic deflection of only 5%. This means that although thermal and 

wet-dry cycles considerably reduce the stiffness of the GFRP-epoxy-SFRSCC interface, this 

does not seem to significantly influence the structural safety at service limit states. 
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Figures captions 

 

Figure 1 – Geometry of the test specimens. 

Figure 2 – Specimen preparation: a) roughening of the SFRSCC surface; b) application 

of the epoxy adhesive; and c) final aspect of the specimens. 

Figure 3 – Thermal cycle ageing: target and achieved (measured in the chamber) 

temperature curves. 

Figure 4 – Thermal cycle ageing: target and achieved (measured in the chamber) RH 

curves. 

Figure 5 – Test setup. 

Figure 6 – Load vs. relative displacement curves representative of each test series. 

Figure 7 – Typical failure modes: a) debonding on the SFRSCC (cohesive failure); 

b) debonding on the epoxy (adhesive failure); and c) web-flange junction rupture. 

Figure 8 – Failure load vs. duration of thermal cycles ageing: experimental and 

numerical results. 

Figure 9 – Stiffness vs. duration of thermal cycles ageing: experimental and numerical 

results. 

Figure 10 – Failure load vs. duration of wet-dry cycles ageing: experimental and 

numerical results. 

Figure 11 – Stiffness vs. duration of wet-dry cycles ageing: experimental and numerical 

results. 

Figure 12 – Bi-linear shear bond-slip law adopted. 

Figure 13 – Overview of the finite element models. 

Figure 14 – Evolution of the calibration parameters τmax and dsoft with the number of 
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ageing cycles. 

Figure 15 – Evolution of the calibration parameter K with the number of ageing cycles. 

Figure 16– Thermal cycles series load vs. relative displacement curves: experimental 

and numerical results. 

Figure 17 – Wet-dry cycles series load vs. relative displacement curves: experimental 

and numerical results. 

Figure 18 – Thermal cycles series load and Tsai-Hill (TS) index vs. relative 

displacement curves obtained with the FE model. 

Figure 19 – Wet-dry cycles series load and Tsai-Hill (TS) index vs. relative 

displacement curves obtained with the FE model. 

Figure 20 – SFRSCC tensile damage in the FE model for the Control series (unitless). 

Figure 21 – Shear distribution at the interface: comparison between FE models with 

calibration parameters for Control, Th-t3 and WD-t3 series (in MPa). 

Figure 22 – São Silvestre Bridge (Pontalumis project), Ovar, Portugal. 

Figure 23 – Evolution of the partial to full shear interaction mid-span deflections with 

the shear interface stiffness. 
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Tables captions 

 

Table 1 - Main mechanical properties of the GFRP pultruded profiles. 

Table 2 – SFRSCC mix composition (kg/m3). 

Table 3 – Experimental series: ageing process, period, number of cycles, number of 

specimens, failure load (Fu), stiffness (K) and failure mode. 

Table 4 – Summary of the calibration of the bond-slip law parameters, numerical results 

and relative difference to experimental data (). 

Table 5 – Elastic properties of the materials used in the FE models. 
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Figures 

 

 

Figure 1 – Geometry of the test specimens. 

 

Figure 2 – Specimen preparation: a) roughening of the SFRSCC surface; b) application 

of the epoxy adhesive; and c) final aspect of the specimens. 
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Figure 3 – Thermal cycle ageing: target and achieved (measured in the chamber) 

temperature curves. 

 

 

Figure 4 – Thermal cycle ageing: target and achieved (measured in the chamber) RH 

curves. 
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Figure 5 – Test setup. 
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Figure 6 – Load vs. relative displacement curves representative of each test series. 

 

Figure 7 – Typical failure modes: a) debonding on the SFRSCC (cohesive failure); 

b) debonding on the epoxy (adhesive failure); and c) web-flange junction rupture. 
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Figure 8 – Failure load vs. duration of thermal cycles ageing: experimental and 

numerical results. 

 

 

Figure 9 – Stiffness vs. duration of thermal cycles ageing: experimental and numerical 

results. 
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Figure 10 – Failure load vs. duration of wet-dry cycles ageing: experimental and 

numerical results. 

 

Figure 11 – Stiffness vs. duration of wet-dry cycles ageing: experimental and numerical 

results. 
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Figure 12 – Bi-linear shear bond-slip law adopted. 

 

 

Figure 13 – Overview of the finite element models. 
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Figure 14 – Evolution of the calibration parameters τmax and dsoft with the number of 

ageing cycles. 

 

 

Figure 15 – Evolution of the calibration parameter K with the number of ageing cycles. 
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Figure 16– Thermal cycles series load vs. relative displacement curves: experimental 

and numerical results. 

 

 

Figure 17 – Wet-dry cycles series load vs. relative displacement curves: experimental 

and numerical results. 
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Figure 18 – Thermal cycles series load and Tsai-Hill (TS) index vs. relative 

displacement curves obtained with the FE model. 

 

 

Figure 19 – Wet-dry cycles series load and Tsai-Hill (TS) index vs. relative 

displacement curves obtained with the FE model. 
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Figure 20 – SFRSCC tensile damage in the FE model for the Control series (unitless). 
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Figure 21 – Shear distribution at the interface: comparison between FE models with 

calibration parameters for Control, Th-t3 and WD-t3 series (in MPa). 
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Figure 22 – São Silvestre Bridge (Pontalumis project), Ovar, Portugal. 

 

Figure 23 – Evolution of the partial to full shear interaction mid-span deflections with 

the shear interface stiffness. 


