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ABSTRACT 

This paper addresses the durability of bond between concrete and carbon fibre reinforced polymer (CFRP) strips 

installed according to the near-surface mounted (NSM) technique (NSM CFRP-concrete systems) under the effects 

of two main groups of environmental conditions: (i) laboratory-based ageing conditions; (ii) real outdoor ageing 

conditions. The bond degradation was evaluated by carrying out direct pullout tests on aged specimens that were 

previously subjected to distinct environmental conditions for different periods of exposure. Moreover, the 

degradation of the mechanical properties of the involved materials was investigated. The digital image correlation 

(DIC) method was used to document the evolution of the deformation fields at the surface over the whole region 

of interest consisting of concrete and epoxy adhesive at the ligament region. This information supported the 

discussion about the evolution of the bond resistant mechanism developed in NSM CFRP-concrete specimens 

during testing, as well as the assessment of the bond quality of the system. In general, the results obtained from 

the durability tests conducted have shown that the different exposure environments, which may be considered as 

quite severe, did not result in significant damage on NSM CFRP-concrete system. The maximum decrease of about 

12% on bond strength was obtained for real outdoor environments. Conversely, a maximum increase of 8% on 

bond strength was obtained on the specimens exposed to the temperature cycles between –15 °C and +60 °C. DIC 

allowed to document the stress transfer mechanisms established between the CFRP and the concrete substrate, 

revealing the crack patterns and the influence widths of the CFRP reinforcement strips, which were shown to be 

important for avoiding group effect when using multiple parallel strengthening CFRP strips. 
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1 INTRODUCTION 

During the last fifteen years, the near-surface mounted (NSM) strengthening technique using fibre reinforced 

polymers (FRP) as reinforcing material has been considered as one of the most effective to increase the load 

carrying capacity of concrete members. In the NSM FRP strengthening system, FRP bars are inserted into pre-cut 

grooves opened in the concrete cover of the elements to be strengthened. The FRP reinforcement is bonded to 

concrete with an appropriate groove filler, which typically consists of an epoxy adhesive. Research to date has 

been mainly focused on the overall structural behaviour when these systems are employed, such as the flexural 

and shear strengthening effectiveness, energy dissipation capacity of beam-column joints and the various 

parameters that affect the bond performance of the available NSM systems [1-3]. Conversely, some other key 

issues, such as the durability and the long-term performance of NSM FRP systems, still remain insufficiently 

characterized and require further research. As the bond behaviour plays a key role in ensuring the effectiveness of 

the NSM FRP strengthened systems, a clear understanding of the durability and long-term performance is critical 

for designing the structural strengthening system considering their entire service life. 

The lack of a comprehensive, validated, and easily accessible database regarding the durability and long-term 

performance of FRP systems used in civil infrastructure applications has been identified as a critical obstacle to 

the widespread use of these systems/materials by civil/structural designers and practitioners [4]. Despite the 

successful use of FRP composites and epoxy adhesives in advanced industries such as aerospace, there are critical 

differences, since the corresponding environmental conditions, substrates and involved loads, as well as the type 

of materials and the manufacturing processes involved are clearly distinct [5]. Therefore, the available information 

based on the past experience of these industries cannot be directly applied to the case of FRP/epoxy systems used 

for the structural rehabilitation or civil infrastructure applications [6]. For these reasons, durability and life-cycle 

cost assessment of NSM systems in the context of civil engineering applications are regarded as critical to allow 

taking full advantage of this new technology and its uptake by the industry. 

In order to predict the long-term performance of FRP strengthening systems, it is critical to understand the factors 

that affect their durability, as well as the degradation mechanisms that occur both in each of the individual materials 

and the ones that result from the interaction between the FRP and the substrate, during service life. Several factors 

are known to affect the durability of the materials and of the strengthening techniques which involve the use of 

FRPs. Examples are the choice of the constituent materials, the method adopted to design the FRP strengthening 

system, the techniques employed to install and allow the curing of the FRPs, the existence of effective maintenance 
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plans and the environmental exposure conditions throughout their service life [4, 7, 8]. The rate and type of 

degradation can be quite different depending on the material, environmental conditions and exposure time [9]. 

Typically, most of the durability studies found in the literature were performed by using accelerated ageing tests 

in harsh environments at the laboratory [10] or, in some cases, in real exposure conditions. In fact, the adoption of 

real ageing conditions represents long testing periods, essentially equivalent to the expected service life of the 

material or system. Although more time consuming, the testing in real ageing conditions can provide unparalleled 

understanding of the real degradation phenomena [11]. The research related to this topic is still scarce, and the 

current state of knowledge in this regard is rather limited, as generally acknowledged [1]. 

The durability of FRP based strengthening systems is predominantly dependent on the bond behaviour. The 

existing knowledge on the bond durability of NSM FRP-concrete systems is limited. In fact, only a few works can 

be found in the literature. The effect of temperature (thermal and freeze-thaw cycles) on the durability has been 

investigated, e.g. [7, 12-15] through bond pullout tests. In general, these studies reported that the bond strength 

increased for temperatures below the glass transition temperature (Tg) of the adhesive (bonding agent) and 

decreased for temperatures equal to or beyond Tg. The results indicated also that the Tg of the epoxy adhesive had 

a significant influence on the failure modes obtained [12, 16]. The effect of moisture exposure through wet-dry 

cycles has been shown to lead to reductions of 12% on bond strength of the system [17], while negligible changes 

in load carrying capacity (ultimate bond strength) were found after the exposing the specimens to freeze-thaw 

cycles and water immersion [7]. The slight reduction on bond strength due to moisture environments exposure is 

attributed to water absorption (plasticization phenomenon), which affect the mechanical properties of the epoxy 

and the adhesion between materials (breakage of interfacial bonds) [18]. The temperature variation and moisture 

exposure are considered as important environmental degradation factors that can affect detrimentally the durability 

of RC structures, in the framework of strengthening systems with FRP materials. 

The vast majority of the existing research on the durability of FRP based strengthening systems is mostly dedicated 

to the study of the externally bonded reinforcement (EBR), e.g. [19-22]. Given the lack of numerous studies 

focussing NSM, an overall perspective of the degradation mechanisms and factors affecting the durability, as well 

as the strategies used to characterize it, may be found in the literature regarding EBR. For reference, Table 1 

summarizes the studies dedicated to the bond durability of EBR carbon FRP-concrete systems under different 

exposure conditions and for various times of exposure. Most of the studies report high degradation ratios of bond 

strength and changes in the failure modes after the exposure to different environments in comparison with control 

specimens. Depending on the exposure conditions, time of exposure, type of test configuration and mainly the type 
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of adhesive used, reductions of up to 70% the bond strength after exposure with respect to its initial value can be 

obtained. 

The comparison between the results reported in the literature for EBR and NSM techniques is not straightforward, 

if one considers that this comparison is strongly affected by variables actually considered in each study, such as 

the class of concrete, the type of FRP, characteristics/type of epoxy resin, the test configurations, the environmental 

conditions and time of exposure considered. Nevertheless, it seems reasonable to infer from the available results 

that the EBR FRP systems tend to be more vulnerable to ageing factors, presenting higher degradations ratios in 

comparison to NSM FRP systems.  

The main objective of the experimental research reported in this paper is to contribute to the knowledge on the 

durability of bond of carbon fibre reinforced polymer (CFRP) laminate strips used as strengthening of RC elements 

according to the NSM technique. The environmental conditions included both the exposure to accelerated 

degradations laboratory-based conditions that mimic harsh environments, and real-life environments that are 

prevalent at the coast and interior regions of the Portugal, for an exposure time that ranged between four and twenty 

four months. The bond damage evolution was evaluated through direct pullout bond tests in specimens after 

different periods of exposure to different environmental conditions. The bond length, the groove geometry and the 

concrete strength class were considered as fixed parameters. The changes in the bond behaviour were investigated 

in terms of bond strength (pullout force), slip and failure mode. In order to evaluate the influence of each 

component of the NSM CFRP-concrete system on the global bond response, samples of concrete, epoxy adhesive 

and CFRP were used to assess the changes in the material mechanical properties over the time after being exposed 

to different environmental conditions. The most widely used in-situ non-destructive testing methods for bond 

monitoring in FRP-strengthened elements are the visual inspection and hammer tapping [11]. However, there are 

other methods that are being applied and developed, such as digital image correlation (DIC), infrared (IR) 

thermography [23-25] and X-ray tomography [26, 27]. Regarding the IR thermography method the applications 

are mostly focused on the qualitative assessment and the localization of the defects, due to resolution limitations 

of this technique. On the other hand, X-ray tomography is the conventional technique to study an internal structure 

with high resolution and allows to document the damage in depth, beyond the specimen’s surface. However, it is 

not possible to use this technique to continuously document the damage evolution during the pullout test. In 

addition, X-ray tomography is expensive and time-consuming. Among these techniques, DIC has been selected as 

advanced and complementary measurement technique for monitoring the NSM pullout tests and contribute to 

assessing the bond damage evolution. 
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Given that the existence of durability studies of bond NSM FRP-concrete systems similar to the one presented in 

this paper is still scarce, it is considered as fundamental to assess the suitability of the proposed ageing tests 

protocols in order to include the greatest diversity of possible environmental exposure conditions. Thus, in this 

study a special effort was made to include the wide diversity of environmental exposure conditions that can have 

a relevant influence. These results are essential to support future investigations on analytical/numerical models to 

describe and simulate the durability of these systems. 

 

2 EXPERIMENTAL PROGRAM 

The experimental study reported herein was devised to characterize the durability of bond between concrete 

substrate and NSM CFRP strips when exposed to different environmental conditions. Post-ageing tests were 

carried out after exposing the specimens to different environmental conditions, including the mechanical 

characterization of the materials and of the bond behaviour of the NSM CFRP-concrete system. The following 

sections describe the experimental program, specimen’s geometry and test configurations adopted to characterize 

the various materials (concrete, CFRP laminate and epoxy adhesive) and the bond behaviour. 

 

2.1 Description of the experimental program 

In order to assess the durability of the bond in the NSM CFRP-concrete system an experimental program composed 

by twenty three subseries of direct pullout tests (DPT) was carried out, where each subseries was composed by 

four specimens. Table 2 presents the environmental conditions and the corresponding specimen subseries included 

in the experimental program. The exposure time of the specimens ranged between four and twenty four months 

depending on the type of environmental exposure. After approximately one half of the time of exposure, for series 

TW, CW, WD, TCA and FT one half of the specimens was removed from the corresponding environmental 

exposure conditions and were monotonically tested up to failure, whereas the remaining specimens were kept 

exposed to the environmental conditions till the end. Reference series (non-aged specimens) were kept in 

laboratory environment and were also tested at the same time of aged specimens. 

The environmental exposure conditions were divided into two groups:  

1. Laboratory-based ageing conditions: 

a. specimens kept in the laboratory environment at an average temperature of 20 ºC and relative 

humidity (RH) of 56 ± 10%, being the minimum and maximum temperatures registered equal to, 

respectively, 9 ºC and 33 ºC, which correspond to the seasonal temperatures (series LE); 
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b. specimens immersed in tap water at an average temperature of 22 ºC, ranging between 17 ºC and 

26 ºC (series TW); 

c. specimens immersed in tap water with 3.5% concentration of NaCl at an average temperature of 

22 ºC, ranging between 17 ºC and 26 ºC (series CW) - the standard ASTM D1141-98 [28] 

recommends 24.53 g of NaCl per litre of water, which represents a concentration of 2.453% of NaCl 

and, according to this standard, is representative of seawater, however a concentration of 3.5% was 

adopted instead, in order to promote accelerated degradation; 

d. specimens exposed to wet-dry cycles in tap water with 3.5% concentration of NaCl at an average 

temperature of 22 ºC (series WD) - each wet-dry cycle consisted of full immersion for 3 days 

(wetting), followed by 4 days of drying; 

e. specimens exposed to temperature cycles between –15 °C and +60 °C (series TCA) and between 

+20 °C and +80 °C (series TCB) had a complete cycle duration of 24 hours (h). The range of 

temperatures adopted considered the need to investigate the bond damage induced by temperature 

cycles when the maximum temperature remains below (series TCA) or exceeds (series TCB) the 

glass transition temperature of the epoxy adhesive. According to the dynamic mechanical analysis 

(DMA) performed by Firmo et al. [29] the Tg of the epoxy used is in the range between 55 °C and 

62 °C, depending on the chosen heating rate during the test. In the exposure condition TCA the 

imposed temperature cycle program was defined based on EN 13687-3:2002 standard [30], with a 

12.5 h temperature plateau at –15 °C and a 10 h temperature plateau at +60 °C. The almost linear 

transition between these two temperature plateaus took 1.5 h. Despite of the RH was pre-set to a 

fixed value in the climatic chamber, a monotonic decrease from 55% to 20% was observed while the 

temperature was at 60 °C, and a monotonic increase from 20% to 85% occurred while the temperature 

was at –15 °C. The observed variation of RH occurred due to the technical limitations of the climatic 

chamber. In the case of the exposure condition TCB, two temperature plateaus were prescribed, at 

+20 °C and at +80 °C. In both cases these two temperature levels were kept constant for 11.5 h, and 

the almost linear transitions between the lower and the higher temperature plateaus took 0.5 h. The 

RH ranged between 5% and 55% during the cycles of series TCB; 

f. specimens exposed to freeze-thaw cycles (series FT) were subjected to a temperature of –18 °C for 

13 h, and to a temperature of +20 °C for 3 h. The transition from the negative to the positive 

temperature plateau lasted for 5 h, while the transition from the positive to the negative temperature 
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plateau took 3 h. The complete FT cycle, with a duration of 24 h, was defined based on CEN/TS 

12390-9:2006 standard [31]. The specimens were kept fully immersed in water during the plateau of 

positive temperature exposure. 

2. Real outdoor ageing conditions: 

a. specimens subjected to wet-dry cycles in marine environment (series RA), e.g. exposed to airborne 

salt (tidal and spray zones) in a warm Mediterranean/dry-summer subtropical environment (“Port of 

Leixões” situated in the north of Portugal). The temperature and RH measurements registered by the 

existing data station at “Port of Leixões” over the time of exposure (from July 2013 to August 2015) 

are plotted in Figure 1a. The minimum and maximum temperatures registered over the time of 

exposure were 3.8 °C and 36.6 °C, respectively; 

b. specimens exposed to warm and temperate environment (series RB) in outdoor conditions on the 

roof of a building. For this purpose the city of Guimarães - Campus of Azurém at the University of 

Minho -, located in the north of Portugal was selected. The temperature and RH measurements 

registered by the data station located very close to the roof of the building are plotted over the time 

of exposure (from January 2013 to May 2015) in Figure 1b. The minimum and maximum 

temperatures registered were –1.9 °C and 40 °C, respectively. 

The detailed description about environmental conditions considered in this study can be found in [32]. The test 

series were identified using alphanumeric characters, where the first string specifies the environmental condition 

(LE, TW, CW, WD, TCA, TCB, FT, RA and RB) and the last string indicates the time of exposure, i.e. the number 

of days during which the series’ specimens remained exposed to the environmental conditions (120, 180, 240, 480, 

and 720 days). For the case of the series TCA, TCB, FT, RA and RB, in addition to the aged series, corresponding 

reference (R) series' specimens were also tested at the same time. 

 

2.2 Materials 

A single concrete batch was used to cast all the specimens: concrete blocks for the DPT, as well as concrete 

cylindrical and cubic specimens for the concrete mechanical characterization. The concrete mixture was composed 

by 765.3 kg/m3 of coarse aggregate (maximum aggregate size of 12.5 mm), 125.8 kg/m3 of fine aggregate, 345.8 

kg/m3 of fine sand, 562.3 kg/m3 of coarse sand, 212.5 kg/m3 of cement 42.5 type II, 143 kg/m3 of fly ash, 124 l/m3 

of water, and 2.9 kg/m3 of plasticizer (Chrysoplast 820).  
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The mechanical characterization of the concrete was carried out using five cylindrical concrete specimens with 

150 mm of diameter and 300 mm height. The specimens were tested 28-days after casting in order to evaluate the 

elastic modulus and the compressive strength according to, respectively, LNEC E397-1993:1993 and 

NP EN 12390-3:2011 recommendations [33, 34]. Additionally, at the same age, three concrete cubic specimens 

of 150 mm of edge were also tested following the same standard [34]. The evolution of the compressive strength 

of the concrete was assessed over time, namely through compression tests performed on concrete cubic specimens 

at the same time as the direct pullout tests performed on aged specimens. 

The CFRP laminate strips used in the present experimental work, with a cross-sectional area of 10  1.4 mm2, and 

a trademark S&P Laminates CFK 150/2000, were produced by S&P® Clever Reinforcement Company. This 

laminate is prefabricated by pultrusion, is composed of unidirectional carbon fibres agglutinated by an epoxy 

vinylester resin, has a smooth external surface and its colour is black. The tensile properties of the CFRP laminate 

strips were assessed according to ISO 527-5:2009 [35]. A total of 72 CFRP laminate specimens were tested, 

divided in 12 series of six specimens. The specimens’ length was 250 mm, and tabs of 50 mm length were glued 

to the edges to avoid premature failure of the specimen due to stress concentrations introduced by the loading 

equipment fixtures. To evaluate the elastic modulus, a clip gauge with 50 mm of gage length was mounted at the 

central region of each specimen. The elastic modulus was determined, according to ISO 527-5:2009, as the slope 

of the linear trend line of the stress-strain response between strain values of 0.05% and 0.25%. 

A two-component epoxy resin-based adhesive was used, with a trademark S&P Resin 220 epoxy adhesive®, 

produced by the same supplier of CFRP laminates. This epoxy adhesive is a solvent-free, thixotropic, grey material 

that has been specially developed for bonding carbon fibre laminates to concrete substrates (S&P laminates CFK). 

Epoxy dog-bone shaped specimens, according to geometry "type 1A" as defined by EN ISO 527-2:2012 [36], were 

tested in direct tension according the same standard [36], after being subjected to the environmental conditions 

previously described (see Table 2). Four batches were prepared to cast a total of 78 specimens, divided in 13 series 

of six specimens. A strain gauge (type: BFLA-5-3-3L by TML; measuring length: 5 mm; gauge factor: 2.08 ±1%) 

was installed at the top surface of each specimen, at mid-length, to measure its longitudinal strain. The elastic 

modulus was calculated according to EN ISO 527-1:2012 [37] as the slope of the secant line of the stress-strain 

response between 0.05% and 0.25% strain on the curve. Further details about the test procedures and the results 

obtained may be found elsewhere [32]. 
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2.3 Pullout tests: specimen’s geometry and test configuration 

Direct pullout tests (DPT) were carried out using concrete cubic blocks of 200 mm of edge, as shown in Figure 2. 

CFRP laminate strips 1.4 mm thick and 10 mm wide were embedded in these concrete blocks and inserted in 5 mm 

thick and 15 mm deep grooves performed at the surface of the concrete blocks.  

The bond length adopted in the present work was obtained through a preliminary sequence of tests. The 

development (or effective) bond length is defined as the bonded length required to achieve the bond strength of a 

reinforcement at a critical section [38]. For this purpose, an experimental program composed of nine DPT tests 

was prepared. Bond lengths of 60, 80 and 100 mm were considered for assessing the development bond length. 

The age of the bond specimens at the date of testing was about five months. Figure 4 shows the influence of the 

bond length on the maximum pullout resistance. As shown the development length is around to 80 mm, which is 

the minimum bond length which leads to the rupture of the FRP. In this context, a constant bond length of 60 mm 

filled with the epoxy adhesive was adopted, based on the following premises:  

(i) the bond length must be large enough to be representative of the system and to make negligible the 

unavoidable end effects;  

(ii) the failure of the FRP reinforcement during testing should be avoided. 

The preparation of the strengthened specimens required several steps, mainly: (i) opening the grooves; (ii) cleaning 

the grooves and the CFRP laminates; (iii) filling the groove with epoxy adhesive and applying epoxy on the lateral 

surfaces of the laminate; (iv) introducing carefully the laminate into the centre of the groove; (v) level the surface. 

The application of the NSM CFRP strips at the surface of the concrete blocks was carried out at about 3 months 

after concrete casting, and 2 months after making the grooves. The epoxy samples were manufactured 

simultaneously to the bond specimens. These procedures were performed under laboratory conditions with an 

average temperature of about 25 ºC and 42% of RH. After being strengthened, all the specimens (including 

materials samples) were kept in the laboratory environment before being moved to the corresponding 

environmental exposure conditions. The main tasks and the sequence of procedures performed during this work 

are shown in Figure 3. Detailed description about the specimen geometry, configuration of the DPT test, specimen 

preparation and ageing test procedures can be found elsewhere [32]. 

The pullout tests were performed by using a closed steel frame equipped with a servo-controlled loading 

equipment. A linear variable differential transducer, LVDT (range 2.5 mm and linearity error of 0.05% F.S.) 

was used to measure the slip at the loaded end, sl. The applied load, F, was registered by a load cell placed between 

the grip and the actuator, with a static load carrying capacity of 200 kN (linearity error of 0.05% F.S.). The 
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monotonic tests were performed under force control at a loading rate of 0.013 kN/s up to 10 kN, and then under 

displacement control by using the displacement measured by a LVDT positioned at the loaded end section as 

control variable, at a rate of 2 μm/s. 

The DPT tests were also monitored using Digital Image Correlation (DIC) technique. The ARAMIS DIC-2D v6.02 

software by GOM was used in this work [39, 40]. The measurement system was equipped with an 8-bit Charged-

Coupled Device (CCD) Baumer Optronic FWX20 camera coupled with a Nikon AF Zoom-Nikkor 28-105mm 

f/3.5-4.5D IF lens. The adopted working distance (defined as the distance between the external face of the camera 

and the target surface) was 654 mm leading to a conversion factor of 0.05 mm/pixel. The lens aperture was set to 

f/11 for enhancing depth of field and avoiding diffraction effects (smallest apertures) during the test. Lighting 

intensity and shutter time were adjusted in order to obtain a uniform illumination, avoid pixel saturation and 

prevent motion blur in the images during exposure. The shutter time was set to 4.5 ms. Images were recorded with 

an acquisition frequency of 0.1 Hz, allowing the monitoring of the specimen’s surface deformation during the 

entire test. A subset size of 15×15 pixels2, a subset step of 13×13 pixels2, and a strain gauge length of 5 subsets 

were selected. For this strain length, a strain resolution of around 0.0135% was obtained, which is still suitable for 

measuring the strains of the used materials. The DPT specimens monitored with DIC were prepared by applying 

a speckle pattern on the region of interest (ROI). Firstly, the surface of the ROI was previously smoothed by 

applying a thin layer of plaster (repair cementitious past), in order to fill the voids, and polished afterwards by 

using sandpaper with different grit sizes. Then, a thin coating of a white matt paint was applied, followed by a 

spread distribution of black dots using spray paint over a polished region of interest. In order to prove and clarify 

the obtained results with DIC method a single DPT test (RA720R_3) was carried out with a high resolution camera 

in order to visually document the cracks possibly forming during the loading. For this purpose, a single-lens reflex 

(SLR) camera with a full frame sensor (24 mm × 36 mm) and 36 MP coupled with a Nikon macro lens (1:1) with 

105 mm of focal distance and f/2.8 of maximum aperture, was used. Taking to account the symmetry of the NSM 

CFRP-concrete specimen and the field of view of the high resolution camera, it was decided to monitor only half 

of the ROI, assuming that the behaviour of the specimen can be considered approximately symmetric with regard 

to the centreline of the loading. Furthermore, this configuration allowed to measure the crack length with respect 

to the longitudinal axis of the CFRP, as well as the area of influence (effective width of the NSM reinforcement 

that is mobilized during the test) on the NSM CFRP-concrete system. 
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3 RESULTS AND DISCUSSION 

3.1 Materials 

3.1.1 Concrete 

The results obtained in the compression tests at 28-days of concrete age indicated: (i) an average compressive 

strength in cylinders, fcm, of 36.0 MPa, with a coefficient of variation (CoV) of 3.9%; (ii) an average compressive 

strength in cubes, fcm,cube, of 43.1 MPa (CoV = 5.1%); and (iii) an average elastic modulus, Ecm, of 28.4 GPa 

(CoV = 5.8%). The evolution of the compressive strength in cylinders over the time for the specimens with or 

without ageing is shown in Figure 5a. These values are obtained by extrapolation of the cubic compressive strength 

over the time, based on a relation between compressive strength obtained from cylinder and cubic specimens at 

28-days of concrete age. The ratio of strengths obtained is in agreement with Eurocode 2 [41]. As previously 

stated, it is important to highlight that the reference compression tests were performed at the same curing time of 

the aged cubic specimens exposed to different environmental conditions. 

The results obtained for the compressive strength showed that the maximum compressive strength was achieved 

after approximately one year after casting (see Figure 5a). This result is explained by the considerable amount of 

fly ash added to the concrete composition (the fraction of fly ash was 40% of the total binder content). The fly ash 

has a delayed contribution for the maturation and strength gain in concrete, therefore after 28-days of maturation 

the concrete compressive strength continues to increase significantly, at least until it reaches one year of age [42, 

43]. 

Figure 5b shows the compressive strength evolution for concrete specimens subjected to the distinct environmental 

conditions. In this Figure, the variation of concrete compressive strength was defined as the ratio (fcm,Series - fcm,LE) 

/ fcm,LE, being fcm,Series the average value of the concrete compressive strength of the series to be analysed and fcm,LE  

the average concrete compressive strength, obtained by averaging the compressive test results of all the specimens 

of series LE tested between 370 and 1184 days after casting. In general, all the environmental conditions studied 

did not cause remarkable variations on the concrete compressive strength. The temperature cycles with 

temperatures ranging between +20 °C and +80 °C (TCB180) led to a maximum decrease on the compressive 

strength of about 15%. Similar behaviour was also observed and reported by previous research works, see e.g. 

[44]. According to Bulletin No. 38 of fib [45] the chemical structure of the hardened cement paste does not change 

below 80 °C; therefore, the change in strength may be attributed to changes in the van der Waals cohesive forces, 

porosity, surface energy or micro-cracking due to thermal incompatibility between aggregate particles and 

hardened cement paste. In general, a slight increase of the compressive strength (less than 8%) was verified for 
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the specimens immersed in tap water (series TW240 and TW480), immersed in water with chlorides (series 

CW240 and CW480), exposed to wet/dry cycles in tap water with chlorides (series WD240) and freeze and thaw 

cycles (series FT240), excluding series WD480 that present an opposite trend. These small improvements may be 

related to the post-hydration of non-hydrated fly-ash and/or cement within the concrete [46-48]. The temperature 

cycles between –15 °C and +60 °C (TCA120 and TCA240) changed marginally the concrete strength. 

 

3.1.2 CFRP laminate 

The variation of the tensile strength, ffu, and elastic modulus, Ef, of CFRP specimens when subjected to different 

environmental conditions are shown in Figure 6. The results show the average of results obtained from six tested 

samples for each environmental condition. In general, in each series reduced scatter of results were found, 

expressed by coefficients of variation (CoV) of less than 3% for ffu and less than 5% for Ef, which are reasonable 

values considering the materials tested [49]. For all CFRP specimens, the failure modes showed very fast 

propagation of damage due to the progressive rupture of the individual fibres at mid-height of the specimen. 

In general, the CFRP specimens seemed to have endured the ageing tests without great losses on their mechanical 

properties (see Figure 6). The results show a maximum decrease on the tensile strength of about 7% for the series 

CW480 and WD480 (when compared to the control series, LE0). The maximum reduction observed on the elastic 

modulus and on the ultimate strain were 2.6% (series WD240) and 6% (series CW480), respectively. The effects 

of temperature cycles and freeze-thaw cycles on the mechanical properties of CFRP were shown to be negligible. 

Previous studies which considered similar exposure environments, such as immersion in demineralised water and 

immersion in salt water at room temperature, elevated temperatures and freeze-thaw cycles, have reported similar 

results [50, 51]. 

 

3.1.3 Epoxy adhesive 

After being exposed to the environmental conditions, the specimens of epoxy adhesive were stored in a plastic 

hermetic box and kept in the climatic chamber at 20 ºC prior being tested, as detailed in Figure 3. The main results 

in terms of the average tensile strength, fau, and elastic modulus, Ea, obtained from the tensile tests on epoxy 

adhesive aged and non-aged specimens are presented in Figure 7. The mechanical properties of the epoxy adhesive 

obtained in the specimens submitted to the different environmental conditions show different ratios of degradation 

or improvement in terms of the elastic modulus and tensile strength. These variations have been also observed 

with similar trends by other researchers, e.g. [52-56]. The mechanical properties obtained for both reference series 
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(LE0 and LE480) presented a slightly higher than expected dispersion of results. These differences can be related 

to the fact that the specimens have been made from different mixes of the epoxy resin, even though the same 

container was used and the same curing conditions were adopted [57, 58]. 

In general, a strong reduction on mechanical properties was observed for the series exposed to environments TW, 

CW, WD, FT (up to 47% and 38% for elastic modulus and tensile strength, respectively). These reductions of the 

average mechanical properties were explained by the existence of water in the exposure environments. Epoxy 

adhesives absorb water and, as a consequence, they suffer plasticization, increasing their volume and decreasing 

their mechanical properties, namely the stiffness, the tensile strength and the glass transition temperature [59, 60]. 

The water uptake was not assessed for epoxy adhesive used. However, according to the existing literature, epoxy 

adhesive maximum water uptake is about 3 to 4% and is reached approximately one year after immersion, e.g. 

[55]. 

On the other hand, significant increases on the mechanical properties of the epoxy adhesive (up to 33% and 58% 

for elastic modulus and tensile strength, respectively) were observed for the series exposed to the temperature 

cycles TCA (temperature cycles from –15 °C to +60 °C) and TCB (temperature cycles from 20 °C to +80 °C). 

These improvements on mechanical properties are due to a post-curing phase caused by the temperature cycles 

[61, 62]. The post-curing process on this type of material occurs when temperatures higher than the ones 

experienced at the first curing are attained. Additional details about the results obtain with the epoxy adhesive can 

be found in [63]. 

 

3.2 NSM CFRP-concrete system 

3.2.1 Assessment by digital image correlation 

Digital Image Correlation method was used to document the evolution of the bond resistant mechanisms at the 

surface of the concrete elements where the NSM CFRP strips were installed. This method allows to derive the full-

field deformation over the whole region of interest consisting of concrete and epoxy adhesive over the ligament 

region. In regard to the NSM technique, since the FRP material is embedded in the concrete substrate (concrete 

cover), it is no possible to measure the strains directly in the CFRP laminate. Additionally, the imaging of the 

external surface of the ligament region and the subsequent extraction of the deformation fields in this region 

provide relevant overall information about the NSM system global behaviour. The experimental program including 

imaging and DIC entailed the monitoring of two specimens per series, in the following series: FT120, LE240, 

LE480, TW240, TW480, CW240, CW480, WD240 and WD480. Comparisons between aged and unaged 
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specimens were performed. No differences with significance were found. Thus, for the sake of simplicity, the 

overall discussion will be supported on specimen LE480_3. Figure 8 shows the region of interest (ROI) of 60  

45 mm2 used as the basis for performing the DIC analysis. This ROI was defined as a compromise between spatial 

resolution and accuracy, taking into account the bonded length of the specimens and the expected influence area 

due to the loading effects. Consequently, the analysis was focused on the surface deformations and strain fields 

obtained for concrete and epoxy adhesive along the bonded length for both directions x and y (see Figure 8), being 

x the direction of the pullout force which is applied at the right hand side of the picture. 

The typical pullout force-loaded end slip response (Fl−sl) obtained for the reference specimen LE480_3 is shown 

in Figure 9. Analysing the Fl−sl relationship, the following three branches can be distinguished: 

(i) an initial almost linear branch that results from the chemical bond existing between the three materials: 

adhesive, concrete and CFRP; 

(ii) after an initial short linear branch the response becomes nonlinear up to the peak load, justified by the 

nonlinear behaviour of the epoxy adhesive, as well as, by the chemical bond degradation at the 

concrete/adhesive and adhesive/CFRP interfaces - the debonding process begins mainly at the 

laminate/adhesive interface;  

(iii) after the peak load, a post-peak descending branch is observed, characterized by a significant decay of 

the pullout force due to the further degradation of the bond mechanisms at the interfaces and probably 

due to adhesive cracking. After this phase the bond resistance is mainly governed by frictional forces at 

the adhesive/CFRP interface. When the debonding process starts near the loaded end section, the 

maximum shear stress regions move towards the free end section direction, while the frictional 

mechanisms are activated in the previous regions. Thus, the friction component also contributes to the 

bond resistance. 

The evolution of maximum principal strains (tensile strains) over the ROI for different load levels of the pullout 

force obtained from the DIC measurements is also presented in Figure 9. The strains fields, obtained using DIC, 

are a physical evidence of the resisting mechanism reported by Sena-Cruz and Barros [64]. The maximum principal 

strain maps obtained reveal that diagonal compressive forces, or struts, are developed in the adhesive and then 

transferred to the concrete substrate, producing a “fish-spine” crack pattern. 

The bond resisting mechanism of the NSM CFRP-concrete system is composed of two distinct resisting 

mechanisms which are active in different stages: firstly the adhesion mechanisms prevail [65, 66] through chemical 

bond/adhesion between materials (concrete/adhesive and adhesive/CFRP), which for the case of the pure 
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interfacial failure is critical for bars with a smoother surface [3]; in a second phase friction mechanisms at both the 

CFRP/adhesive and concrete/adhesive interfaces prevail, due to the degradation of the adhesion mechanisms at 

these interfaces. In fact, the smooth surface of CFRP strips is not sufficient to provide mechanical interlocking 

between the laminate and the adhesive and, since the rougher surface of the concrete leads to better bonding with 

the adhesive, the bond resistance relies primarily on chemical adhesion between the strip and the epoxy. The 

evolution of the cracking on the concrete surface can essentially be followed using the DIC technique, see strain 

maps in Figure 9. The first cracks appear near the loaded end section, and with the increase of the load, the cracks 

continue to form and develop towards the free end region. 

In order to better understand the NSM CFRP-concrete bond resisting mechanism, two strain profiles were plotted 

in both directions. The locations of the longitudinal (P1) and transverse (P2) strains profiles in the ROI are 

illustrated in Figure 8. The longitudinal strains, εx along both profiles are shown in Figure 10. Strain profiles at the 

post peak regime were not included since at this stage, in some specimens, detachment of concrete occurred over 

the ROI making the used DIC inaccurate. Analysing the evolution of εx in profile P1, it can be observed that for 

load levels of up to 20 kN the epoxy adhesive is in tension along the bond length (see Figure 10a). When the 

maximum pullout force (Flmax) is reached, approximately 60% of the bond length is in compression, being the 

remaining part of the bond length in tension. This behaviour can be explained by the debonding process. The 

debonding process starts in zones close to the loaded end and, with the increase of the pullout force, the maximum 

shear stresses moved towards the free end. As a consequence, diagonal compressive forces start to develop in the 

region of the adhesive which is closer to the loaded end, thus justifying that part of the adhesive along the bond 

length is in compression. From the analysis of the profile P2 (see Figure 10b) it is possible to conclude that the 

effective width of the NSM reinforcement at the level of the specimen surface is approximately 20 mm apart from 

the longitudinal axis of the CFRP. The effective width of the NSM reinforcement was defined as the width 

(transverse distance with respect to the NSM reinforcement longitudinal axis) along which the stresses are fully 

transferred from the FRP composite to the surrounding concrete, i.e. the area of concrete mobilized (plane view) 

during the test. After this length, the stress state at the concrete is not locally affected by the reinforcement. This 

information is very important to define a minimum value for the spacing between grooves, in order to avoid group 

effect between neighbour FRP reinforcements. The effective width of 20 mm is approximately 4/3 of the groove’s 

depth (hg). Consequently, a minimum value for the spacing between grooves (ag) of 2.7hg  groove width is 

suggested. According to the literature [38, 67], the groove spacing for quadrangular FRP bar cross-section 

(rectangular or square) should be greater than twice the depth of the NSM groove (ag  2hg). These observations 



Fernandes, P.; Sena-Cruz, J.; Xavier, J.; Silva, P.; Pereira, E.; Cruz, J.R. (2018) “Durability of bond in NSM CFRP-concrete systems under 

different environmental conditions.” Composites Part B, 138: 19–34. 

17 

confirm experimentally the three-dimensional nature of the debonding phenomenon [68, 69], which is commonly 

neglected in design procedures and in the discussion of experimental results [70]. However, the results presented 

are an initial step forward in the entire understanding of this phenomenon, and further studies are required to fully 

characterize the three-dimensional nature of the bond behaviour in NSM CFRP-concrete systems. 

After testing all specimens were visually inspected. From this inspection, in general, no cracks were visible by 

naked eye. In fact, the cracks monitored and observed by DIC can be considered as micro-cracks because they are 

not easily identified without resourcing to optical tools. However, using a camera with higher resolution and the 

appropriate optics (see Section 2.3) these micro-cracks can be captured during the loading. The appearance and 

evolution of the observed cracks at the concrete surface and at different load levels are shown in Figure 11. The 

crack first identified was located close to the loaded end of the bond length for a pullout force of 15 kN. From this 

point onwards several other cracks have formed, at increasing load levels. The first cracks appeared near the loaded 

end and then the additional cracks were forming towards the free end section of the bond length, as already 

observed in DIC results. The crack tip opening displacement was measured at different load levels and the 

maximum value was 32 μm at Fl,max = 28.46 kN. These measurements were performed in images taken by the SLR 

camera, through the open source software ImageJ [71]. 

 

3.2.2 Influence of environmental conditions 

The changes on the bond behaviour of the NSM CFRP-concrete system due to the exposure to different 

environmental conditions were analysed through the results of the post-ageing monotonic direct pullout tests, 

including visual inspection. Table 3 summarizes the main results obtained, which include the following parameters 

obtained: the maximum pullout force, Flmax; the slip at the loaded end for Flmax, slmax; the average bond strength at 

the CFRP-epoxy interface, max, that is evaluated by the expression Flmax/(Pf Lb), where Pf (= 2  wf + 2  tf) is the 

perimeter of the CFRP cross-section in contact with the adhesive, being wf and tf the width and the thickness of 

the CFRP and Lb is the bond length. Although in general the tangential stresses along the bond length are expected 

to be non-constant for different load levels, at Flmax the bond shear stresses along this length are approximately 

constant [72]. As a result, for Flmax and the range of dimensions adopted the effective length should be always 

approximately the same as the bond length (60 mm).  

The typical average pullout force versus loaded end slip relationships (Fl−sl) obtained after the post-ageing tests 

with the specimens immersed in tap water and exposed to real environment A are shown in Figure 12. The 

corresponding average responses obtained for the reference series (LE480 and RA720R, respectively) were also 



Fernandes, P.; Sena-Cruz, J.; Xavier, J.; Silva, P.; Pereira, E.; Cruz, J.R. (2018) “Durability of bond in NSM CFRP-concrete systems under 

different environmental conditions.” Composites Part B, 138: 19–34. 

18 

included. It should be remarked that each single average curve is the result of four tested specimens. The 

experimental responses in terms of Fl−sl for each single specimen can be found in [32]. By comparing the results 

obtained for aged and non-aged specimens (control specimens) tested at the same time, it can be observed that the 

overall shape of the Fl−sl responses is similar. However, it is possible to observe the slight decrease of the bond 

stiffness, which should likely be due to the reduction of the adhesion strength at the CFRP/adhesive interface, 

which results in a slight reduction of the maximum pullout force (see Figure 12b). 

The evolution in time of the maximum pullout force of the reference series (LE, TCA120R, TCA240R, TCB180R, 

FT120R, FT240R, RA720R and RB720R) is presented in Figure 13. Some scatter is found in the results which is 

typical to this type of test e.g. [73, 74], which resulted for Flmax in a maximum coefficient of variation (CoV) of 

6.8% (see Table 3). It can be observed that the maximum pullout force of the control specimens stabilises 

approximately nine months after installing the NSM CFRP strips. Between 9 months and 3 years of age an average 

value of Flmax equal to 27.9 kN is obtained. Moreover, for 86% of the tested reference specimens the main failure 

mode observed was pure debonding at the interface adhesive/laminate. The age after which the Flmax value may be 

considered as stable coincided with the stabilization of both the mechanical properties of concrete and the adhesion 

properties between materials. In fact, the change of the average pullout force obtained in the subseries LE0 of 

series LE, about six months after installing the NSM CFRP strips, is relatively lower (13% in terms of average 

values) than the remaining series. This fact can be justified by the slight increase of the compressive strength of 

concrete (up to 5%) and the improvement of the adhesion properties between materials along the time which was 

observed for all series with the exception of LE0. 

The changes in the maximum pullout force due to the effect of the different environmental conditions are presented 

in Figure 14. These effects are expressed in terms of the variation of the mean values of Flmax obtained for the aged 

series with respect to the corresponding control series, tested at the same age. Four major observations can be 

pointed out:  

(i) the maximum decrease on Flmax was registered for the real ageing conditions/environments RA and RB;  

(ii) temperature cycles between –15 °C and +60 °C resulted in the improvement of the bond behaviour; 

(iii) the effect of the exposure time is clearly revealed by the degradation of the bond properties, being greater 

on the specimens that aged for longer periods; 

(iv) the significant decrease of the tensile strength and elastic modulus of the epoxy resin did not have 

correspondence on the global bond behaviour of the NSM CFRP-concrete system, as shown in Figure 15.  
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In general, the observed changes in the mechanical properties of the epoxy adhesive, namely tensile strength and 

elastic modulus, do not have a directly quantifiable effect on the bond resistance of the NSM CFRP-concrete 

system. This may be due to the following reasons: 

 The characterization of the mechanical behaviour of the epoxy is restricted to the tensile strength and elastic 

modulus; probably these may not be sufficient to fully characterize the epoxy behaviour in the context of the 

loading process in NSM CFRP-concrete system, particularly when shear or adhesive failures are concerned. 

Up to the peak load, the bond resisting mechanism is governed essentially by the chemical adhesion between 

materials, and although some degradation of the mechanical properties of the epoxy resin may exist (in a 

context where the other materials’ degradation may be considered as marginal), it continues to be sufficiently 

high to ensure the bond; 

 The maximum pullout force is limited by the type of failure mode. Since in most of the cases the failure occurs 

by debonding at adhesive/laminate interface, it means that the weakest component is the bond at 

adhesive/laminate interface (adhesion strength). Thus, the tensile strength of the epoxy adhesive is not directly 

comparable with adhesion strength at the interface between adhesive and laminate; 

 The boundary conditions during ageing in the direct pullout specimens are different from the ones adopted in 

tensile tests to characterize the epoxy resin. For the case of the direct pullout specimens, the interface where 

the failure occurs (adhesive/laminate interface) is more protected from the environmental conditions, while 

the epoxy samples are directly exposed to these conditions. 

The changes in the Flmax due to the effects of tap water immersion (TW),  water with chlorides immersion (CW) 

and wet/dry cycles in tap water with chlorides (WD) were shown to be negligible (e.g. a decrease of 1.4% for the 

series WD480 and an increase of 4.9% for the series CW240). These small variations are in the range of the CoVs 

found for DPT tests for all environmental conditions (0.5% to 6.8%). These results seem to indicate that the NSM 

CFRP system is not significantly vulnerable to these environmental conditions, considering the exposure times 

adopted.  

For the case of series TCA120 and TCA240, the effect produced by the temperature cycles with temperatures 

ranging between –15 °C and +60 °C resulted in the improvement of the bond properties, with higher values 

obtained for Flmax, max and slmax, when compared to the reference specimens. The maximum increase of Flmax was 

8% after 240 days of ageing, which is in line with the improvement observed in the mechanical properties of the 

adhesive after being subjected to the same temperature cycles (see Section 3.1.3). However, despite a significant 

increase in mechanical properties of the epoxy adhesive (up to 31% and 15% in tensile strength and elastic 
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modulus, respectively), the influence on NSM CFRP-concrete system was much lower. Thus, the slight increase 

on the Flmax observed for series TCA240 is justified by the improvement of the chemical adhesion between the 

CFRP laminate and the epoxy, mostly as a result of the improvement on mechanical properties of the epoxy itself. 

As a consequence, also higher friction resistance is expected. The failure mode was still governed by debonding 

at adhesive/laminate interface, comparing to the reference series (TCA240R), meaning that the weakest component 

of the system continues to be the adhesive strength at adhesive/laminate interface. As a result, the improvement 

on the mechanical properties of the epoxy is not fully translated in an equivalent improvement of the bond 

mechanisms. 

For the specimens exposed to temperature cycles during 180 days, with temperatures ranging from +20 °C and 

+80 °C (series TCB180), the variation of the Flmax was negligible. Therefore in this case the temperature cycles 

did not change the bond behaviour of the system, despite the significant improvement of the tensile properties of 

the epoxy. This result is not consistent with the results obtained for the Flmax of series TCA120 and TCA240. In 

fact, for the series TCB180 it was expected a slight increase in Flmax, taking to account the range of the temperatures 

applied and the results obtained after the epoxy tensile testing. However, at the same time a reduction of about 

15% on concrete compressive strength was observed. Therefore, probably for series TCB180 the reduction of the 

compressive strength of concrete in time was somewhat balanced by the improvements on mechanical properties 

of the epoxy adhesive. 

Regarding the series FT, the ageing effect produced by the freeze and thaw cycles on the maximum pullout force 

is practically negligible, leading to a slight increase of 7% of Flmax for the series FT120 and a small reduction 

(about 4.8%) for series FT240 (see Figure 14.). In the first case, the slight increase can be justified by the results 

obtained in the corresponding reference series (FT120R), which showed lower resistance in comparison to the 

average of all Flmax values obtained from all reference series (see Figure 13 and Table 3). Despite the tensile 

strength of epoxy the adhesive has decreased (approximately 17%) the Flmax of the system CFRP-adhesive-concrete 

was not significantly affected by freeze-thaw cycles. However, a change on the failure mode from debonding at 

the CFRP/adhesive interface to cohesive failure on concrete was observed for the specimens subjected to 120 

freeze-thaw cycles (series FT120) in comparison to control series (FT120R). For the specimens subjected to 240 

freeze-thaw cycles (series FT240) the failure mode changed from debonding at the CFRP/adhesive interface to 

debonding failure at the adhesive/concrete interface, in comparison to control series (FT240R). Detailed 

explanation about the changes in the failure modes are presented in the next section. 
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Regarding to the real environments (RA and RB), the maximum pullout force decreased 11.5% and 11.6% for the 

specimens submitted to wet-dry cycles in marine environment (series RA720) and outdoor environment (series 

RB720), respectively (see Figure 14). In fact, the effect of real exposure conditions has shown to be more 

aggressive than laboratory ageing conditions. In both real environments, the specimens were directly exposed to 

ultraviolet (UV) radiations. According to the literature the effect of UV radiation exposure on epoxy resin/polymer 

matrix could lead to the decrease of mechanical properties, and changes on physical properties and chemical 

structure that results in material degradation [75, 76]. Ferdous et al. [76] studied the effect of UV radiations 

exposure on the physical properties of epoxy resin based polymer matrix. The epoxy specimens were subjected to 

2000 hours of UV radiation by Xenon 2200 watt air cooled lamp in the sunset XLS chamber. The results have 

shown that the maximum depth affected by UV exposure was 4.5 mm for epoxy resin containing 20% of filler. 

Consequently, these changes in physical and mechanical properties can reflect a loss of adhesion strength at the 

interface between adhesive and laminate of the present study. However, further research is needed to confirm and 

support the explanations above described. 

Comparing all the environmental conditions, it becomes clear that the real ageing conditions induced higher 

degradation ratios on the global behaviour of the NSM system, see Figure 14. Furthermore, the effect of the 

exposure time also contributed significantly to the degradation of the bond properties, showing the specimens that 

aged for longer periods the higher degradations, as it was the case of the specimens subjected to real environments. 

Three different types of failure modes were observed in the specimens, as follows: (i) debonding at the interface 

FRP/adhesive (I-FA); (ii) debonding at the interface adhesive/concrete (I-AC); and (iii) cohesive shear debonding 

in concrete (C-C), as shown in Figure 16. Besides the three main failure modes above described, some specimens 

also included one (or more) of the following damages: concrete splitting (CS), concrete cracking (CC), and 

adhesive cracking (AC). Table 3 also provides information about the failure mode identified during the 

experiments. 

The types of failure modes observed in each series are included in Table 3. As this table shows, the prevailing 

failure mode was the debonding at the interface CRFP/adhesive (I-FA), except for the specimens exposed to freeze-

thaw cycles. In fact, the effectiveness of NSM strengthening technique critically depends on the superficial 

concrete resistance [3], which is normally the most degraded concrete part in the structure due to its greater 

exposure to environment conditions. Thus, the changes in the failure mode of the specimens exposed to freeze-

thaw cycles can be justified by: (i) the reduction on the mechanical properties of the concrete cover substrate, 

although this reduction was not observed in concrete mechanical characterization through compression tests; 
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(ii) the decrease of the tensile strength of the adhesive after the exposure to the FT cycles; (iii) the deterioration of 

the adhesion between the epoxy adhesive and the concrete. As a consequence, cohesive shear failure on concrete 

(C-C) occurred in all the specimens exposed to 120 freeze-thaw cycles (FT120 series), confirming the low 

mechanical properties of superficial concrete (see Figure 16e). Furthermore, by increasing the number of FT cycles 

from 120 to 240, the specimens failed by debonding at the interface adhesive/concrete (FT240 series), as shown 

in Figure 16f. 

As stated in the previous point (i), the compressive tests carried out using specimens exposed to similar freeze-

thaw conditions may have led to an overestimation of the compressive strength of the concrete volume involved 

in the DPT tests, since the concrete at the surface is more prone to higher and faster deterioration due to exposure 

conditions.  

In general, debonding failure at the CRFP/adhesive interface occurred without visible cracking in the concrete 

and/or in adhesive by naked eye (see Figures 16a and 16b). However, through a careful analysis using a high 

resolution camera, cracking of the epoxy cover and of the concrete surface were observed, as reported in 

Section 3.2.1. Additionally, in some specimens, besides the debonding failure at the interface CRFP/adhesive, 

concrete cracking or concrete splitting were also observed (see Figures 16c and 16d). The concrete splitting is 

characterized by a large area of detached concrete surrounding the bonded region. Cohesive failure within the 

concrete (C-C) depends on the degree of transverse confinement and on the mechanical properties of concrete 

[67]. Splitting may be caused when the concrete surrounding the reinforcement becomes the weakest material due 

to the environmental conditions (see Figure 16e). 

 

3.2.3 NSM versus EBR CFRP-concrete systems 

The results available in the literature for EBR CFRP-concrete systems have in general shown higher degradations 

ratios in comparison to the ones presented in this work using NSM CFRP systems. Despite the difficulty in 

performing a direct comparison, some aspects can be evidenced: (i) in terms of effect of moisture exposure, the 

results have shown significant degradation of bond strength for EBR (up to 68% when considering the reduction 

of the strength), whereas in the case of NSM systems a marginal degradation was registered (of about 1.4%); (ii) 

for freeze-thaw exposure conditions the bond strength reduction of 25% and 5% were observed for EBR and NSM 

systems, respectively; (iii) on the other hand, for real environments (outdoor exposure) similar degradation ratios 

were obtained (15% and 12% for EBR and NSM systems, respectively). In order to confirm these observed trends, 
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further research involving both FRP systems (NSM and EBR) is necessary to complement the comparison of the 

durability performance between NSM and EBR systems. 

 

4 CONCLUSIONS 

This paper presented an experimental investigation for evaluating the durability of bond behaviour of NSM CFRP-

concrete systems under different environmental conditions. For this purpose, concrete elements with embedded 

NSM CFRP strips were subjected to accelerated ageing tests at laboratory and tests in real outdoor environmental 

conditions. The main conclusions of the study can be summarized as follows: 

1. In general, a slight increase on compressive strength of concrete (less than 8%) was verified for the concrete 

samples submerged in tap water, in water with chlorides, subjected to wet/dry cycles and subjected to freeze 

and thaw cycles. This small increase on compressive strength of concrete may be related with the post-

hydration of non-hydrated fly-ash and/or cement within the concrete. The ageing effect produced by the 

temperature cycles with temperatures ranging between +20 °C and +80 °C led to a maximum decrease of 15% 

of the compressive strength of concrete.  

2. In general, the CFRP specimens presented small reductions of the tensile properties, with a maximum decrease 

of the tensile strength of about 7% for the series CW480 and WD480 and a maximum reduction on the elastic 

modulus of about 3% for the series WD240. Thus, the CFRP material has shown very low vulnerability to the 

aggressive environments studied. 

3. From the tensile tests performed on epoxy specimens, an increase of up to 58% and 33% on the ultimate 

tensile strength and elastic modulus were observed, respectively, for the series subjected to temperature cycles 

between –15 °C and +60 °C and between +20 °C and +80 °C. A post-curing phase occurred in the epoxy due 

to the temperatures imposed in temperature cycles. A generalized decrease on the ultimate tensile strength and 

elastic modulus for series TW, CW and WD up to 38% and 47%, respectively, was observed. These reductions 

were likely due to water absorption (water uptake) by the epoxy during time. 

4. The strain fields, determined with the DIC procedure, allowed to trace the resisting mechanism developed in 

the concrete surrounding the NSM CFRP application. These results revealed that the diagonal compressive 

forces (struts) are developed in the adhesive and then transferred to the surrounding concrete, producing a 

“fish-spine” crack pattern. 

5. Taking into account the premises adopted in the present study, DIC results allowed to conclude that the 

influence area of the NSM CFRP-concrete bonded region extends for approximately 20 mm in the transverse 
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direction to each side of the CFRP laminate. This value is approximately 4/3 of the groove’s depth (hg). 

Consequently, in order to avoid group effect between consecutive FRP reinforcements, the groove spacing 

(ag) should be higher than 2.7hg  groove width, for current cases. 

6. In general, the results obtained from the durability tests conducted have shown that the effects of 

environmental conditions imposed, which may be considered as quite severe, did not result in significant 

damage on NSM CFRP-concrete system. The maximum decrease of about 12% on bond strength occurred 

under real outdoor environments (RA and RB). Conversely, a maximum increase of 8% on bond strength was 

observed on bond specimens exposed to the temperature cycles between –15 °C and +60 °C. 

7. The changes in the bond strength of the NSM CFRP-concrete system due to the effects of immersion in tap 

water (TW), immersion in water with chlorides (CW) and wet/dry cycles in tap water with chlorides (WD) 

were negligible (with a maximum reduction of 1.4% for the series WD480 and a maximum increase of 4.9% 

for the series CW240). 

8. The predominant failure mode on bond pullout tests occurred by debonding at the interface CRFP/adhesive, 

except for the specimens exposed to freeze-thaw cycles. 

9. The bond strength of the NSM CFRP-concrete system was not affected by freeze-thaw cycles. However, a 

change on the failure mode from debonding at the CFRP/adhesive interface to cohesive failure on concrete 

and to debonding failure at the interface adhesive/concrete was observed in the specimens subjected to 120 

and 240 freeze-thaw cycles, respectively. 

10. The strong reduction on the tensile stiffness and strength of the epoxy adhesive cannot be directly correlated 

with the global behaviour of the NSM CFRP-concrete system, since the variations of the mechanical properties 

observed in both types of specimens were not proportional. 

11. The geometries of the specimens and the exposure conditions studied, as well as the reinforcement ratios 

adopted, have been devised having in mind their representativeness and their resemblance to common 

strengthening scenarios, therefore the conclusions are reasonably general. However, considering that the 

durability studies on NSM CFRP–concrete systems are still scarce, further studies with a significant ageing 

time (e.g. 10 years) are necessary to confirm these conclusions and to complement the collected data. 

Finally, a comparison between the durability of studied NSM CFRP system and results available in the literature 

mostly for EBR CFRP-concrete systems have been carried out, since the number of studies reported using NSM 

are still limited. Although a direct comparison between the two systems is not straightforward, in general NSM 

CFRP systems seem to be more durable than the counterpart EBR CFRP systems. 
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Figure 15: Comparison between the variations of the fau of the epoxy and Flmax of the NSM CFRP-concrete system 

for distinct environmental conditions. 

Figure 16: Observed failure modes: (a) and (b) I-FA: debonding at the interface CFRP/adhesive; (c) I-FA+CC: 

debonding at the interface CFRP/adhesive with concrete cracking; (d) I-FA+CS: debonding at the interface 

CFRP/adhesive with concrete splitting; (e) C-C: cohesive failure in concrete; (f) I-AC+CS: debonding at the 

interface adhesive/concrete with concrete splitting. 
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Table 1: Summary of existing studies on bond durability of EBR CFRP-concrete systems. 

Reference FRP system Environmental conditions Test method 

Results 

Bond strength variation in 

comparison with control specimens 
Failure mode (FM) 

[77] 

CFRP strip 

and epoxy 

adhesive 

Water immersion up to 8 weeks at 

23 °C and 50 °C 

Peel test 
Bond strength decreases up to 60% 

in peel fracture toughness 
Debonding mode by concrete 

delamination for the dry 

specimens changes to debonding 

at the interface epoxy/concrete for 

the wet specimens 
Shear test 

Bond strength decreases 10% and 

50% in shear fracture toughness for 

23 °C and 50 °C, respectively 

[78] 

CFRP strip 

and epoxy 

adhesive 

Moisture cycles (each cycle: 24h 

with RH ranging between 20% and 

90%) and salt fog cycles (each cycle: 

16 h of drying, followed by 8h of fog 

at 35 °C) up to 10,000 h and 6000 h 

of ageing, respectively 

Four-point bending test 

Bond strength decreases up to 

around 19% for both exposure 

conditions 

Moisture cycles no change the 

FM (failure in the concrete 

substrate), while for salt fog 

cycles the FM changed from the 

concrete to the debonding at the 

interface concrete/adhesive 

[79] 

CFRP sheet 

with two 

types of 

adhesives 

Wet-dry cycles in sea water at 60 °C 

during 8, 14 and 24 months(each 

cycle: 4 days of wetting and 3 days of 

drying) 

Four-point bending test 

Flexural strength decreases up to 

20% and increases up to 35% for 

normal and flexible adhesives, 

respectively 

Debonding at the interface  

primer/concrete (almost no 

concrete was attached to the 

peeled off FRP) 

[80] 

CFRP sheet 

and strip with 

epoxy 

adhesive 

Constant hydrothermal conditions at 

a temperature of 40 °C and RH of 

95% over a period of 13 months 

Shear test 

No significant evolution on the 

maximum shear load was observed 

(10-15% increase in shear strength) 

Changes from a cohesive FM in 

concrete to a cohesive failure 

within the epoxy joint for CFRP 

strips and to interfacial 

concrete/adhesive failure for 

CFRP sheets 

[81] 

CFRP sheet 

and strip with 

different 

adhesives 

Immersion in: tap water at 30, 40, 50 

and 60 °C; chloride and alkali 

solution at 50 °C; UV/water at 50 °C; 

salty water in outdoor exposure, 

during 6, 12, and 18 months 

Three-point bending test 
Flexural strength decreases up to 

68% 

The FM changed from adhesive 

in the control specimens to 

interlaminar composite failure in 

the exposed specimens 

[82] 

CFRP strip 

and epoxy 

adhesive 

Wet/dry cycles (1 week wetting and 1 

week drying), temperature cycles 
Shear test 

Bond strength increases 12% and 

10% for WD and TC cycles, 

respectively; bond strength 

No significant changes on the FM 

for TC cycles; the failure mode 

changed from cohesive in 
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(30 °C to 40 °C) and outdoor 

environment for up 18 months 

decreases 15% for outdoor 

environment 

concrete to cohesive in adhesive 

with thinner layer of concrete or 

no concrete attached to debonded 

CFRP for WD cycles and outdoor 

environment 

[83] 

CFRP sheet 

and epoxy 

adhesive 

Water immersion and wet-dry cycles 

for a maximum period of up to 24 

and 18 months, respectively 

Shear test 

Bond strength decreases up to 32 

and 12% for high-strength and 

normal-strength concrete 

substrates, respectively, after 

continuous immersion 

The FM changed from cohesive 

in concrete to primer-concrete 

mixed failure for normal-strength 

concrete, whereas in case of high-

strength concrete the failure 

shifted from primer-concrete 

mixed failure to complete 

adhesion failure 

[7] 

CFRP sheet 

and strip with 

epoxy 

adhesive 

Salted water immersion and freeze-

thaw cycles (16 h of freezing at –18 

°C and 8 h of thawing at +15 °C) 

during 120 and 300 days, 

respectively 

Four-point bending test 

Bond strength had a significant 

reduction of 25% after 300 freeze-

thaw cycles for both CFRP sheet 

and strip; specimens strengthened 

with CFRP sheet immersed in salt 

water had a significant decrease of 

48%, while for CFRP strip a slight 

increase of 4.6% was observed 

No changes on the FM for freeze-

thaw cycles, while for both CFRP 

sheet and strip specimens the FM 

changed from cohesive in 

concrete to debonding at the 

interface concrete/adhesive 

[84] 

CFRP sheet 

and strip with 

epoxy 

adhesive 

100 and 200 freeze–thaw cycles from 

–18 to +4 °C with a duration of about 

5 h each 

Shear test 

Freeze–thaw cycles did not yield to 

noticeably degradation on the bond 

strength 

No changes on the FM was 

observed. The failure was 

cohesive in concrete with a 

uniform concrete layer attached to 

the CFRP reinforcement 

[85] 

CFRP strip or 

sheet and 

epoxy 

adhesive 

Steady-state conditions at different 

testing temperatures: 20, 50, 65 and 

80 °C 

Shear test 

For CFRP sheets the bond strength 

increase up to 65 ºC (24% increase 

at 50 ºC and 7% at 65 ºC), whereas 

at 80 ºC a 11% reduction was 

observed; for CFRP strips the bond 

strength decrease 42% at 50 ºC and 

25% at 80 ºC 

In the case of the CFRP laminates 

no changes on the FM were 

observed. In the case of the CFRP 

sheets the type of failure changed 

with increasing test temperature: 

cohesion failure within the 

concrete at 50 ºC and adhesion 

failure at the interface between 

adhesive and FRP at 80 ºC 
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[86] 

CFRP strip 

and epoxy 

adhesive 

Steady-state conditions at different 

testing temperatures: 20, 55, 90 and 

120 °C; transient conditions up to 

25%, 50% or 75% of their ambient 

temperature strength 

Shear test 

For both steady state and transient 

conditions, increasing temperature 

caused a consistent reduction of 

bond strength, with bond strength 

retention at 120 ºC being 23% 

With increasing temperature the 

FM changed from cohesive 

within the concrete to adhesive 

failure at the concrete–adhesive 

interface 
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Table 2: Experimental program conditions for environmental tests. 

Series Environmental conditions Subseries denomination 

LE 
Laboratory environment (Reference) (average temperature of 

20 °C and relative humidity of 56 ± 10%) 

LE0 

LE240 

LE480 

TW Tap water immersion (22 ± 2a °C) 
TW240 

TW480 

CW Tap water immersion (22 ± 2a °C) with 3.5% of NaCl 
CW240 

CW480 

WD Wet/dry cycles in tap water (22 ± 2a °C) with 3.5% of NaCl 
WD240 

WD480 

TCA 
Temperature cycles A: temperatures ranged between –15 °C and 

+60 °C 

TCA120 

TCA120Rb 

TCA240 

TCA240Rb 

TCB 
Temperature cycles B: temperatures ranged between +20 °C and 

+80 °C 

TCB180 

TCB180Rb 

FT 
Freeze-thaw cycles: temperature ranged between –18 °C and 

+20 °C 

FT120 

FT120Rb 

FT240 

FT240Rb 

RA 

Real environment A: exposed to airborne salt (tidal and spray 

zones) - warm mediterranean/dry-summer subtropical 

environment (Port of Leixões) 

RA720 

RA720Rb 

RB 
Real environment B: exposed to warm and temperate 

environment (Guimarães city) 

RB720 

RB720Rb 

a These values are the standard deviation of the corresponding temperature. 
b Reference series (kept in laboratory environment) tested at the same time of the corresponding aged series. 
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Table 3: Main results obtained in the environmental tests (average values obtained from four specimens per 

series). 

Series Flmax [kN] slmax [mm] τmax [MPa] Failure mode 

LE0 24.25 (1.6%) 0.55 (11.1%) 17.73 (1.6%) I-FA(3)* 

TCA120R 28.24 (6.8%) 0.69 (21.4%) 20.65 (6.8%) I-FA(2)*; I-FA+CS(1)* 

TCA240R 27.48 (3.4%) 0.70 (2.7%) 20.08 (3.4%) I-FA(4)* 

LE240 

FT120R 
26.71 (3.2%) 0.70 (3.9%) 19.52 (3.2%) I-FA(4)* 

FT240R 28.77 (3.3%) 0.79 (5.5%) 21.03 (3.3%) I-FA(3)*; I-FA+CC(1)* 

LE480 26.72 (4.5%) 0.58 (12.0%) 19.53 (4.5%) I-FA(2)*; I-FA+CC(1)* 

TCB180R 28.59 (3.3%) 0.69 (6.2%) 20.90 (3.3%) I-FA(3)*; C-C(1)* 

RA720R 

RB720R 
28.63 (1.9%) 0.59 (9.4%) 20.93 (1.9%) I-FA(4)* 

TW240 26.93 (0.5%) 0.69 (9.2%) 19.68 (0.5%) 
I-FA+CS(1)*; C-C(1)*; 

I-FA+CC(1)*; I-FA(1)* 

TW480 26.94 (1.2%) 0.66 (10.1%) 19.69 (1.2%) I-FA(3)*; I-FA+CC(1)* 

CW240 28.01 (3.9%) 0.70 (11.2%) 20.48 (3.9%) I-FA+CC(3)*; I-FA(1)* 

CW480 27.58 (3.7%) 0.73 (13.5%) 20.16 (3.7%) I-FA(2)*; I-FA+CC(2)* 

WD240 27.93 (3.6%) 0.70 (4.4%) 20.41 (3.6%) 
I-FA+CS(2)*; C-C(1)*; 

I-FA+CC(1)* 

WD480 26.34 (3.0%) 0.66 (6.5%) 19.25 (3.0%) I-FA(3)*; I-FA+CC(1)* 

TCA120 29.88 (1.6%) 0.75 (7.6%) 21.84 (1.6%) I-FA+CS(2)*; I-FA(2)* 

TCA240 29.75 (1.9%) 0.76 (7.3%) 21.75 (1.9%) I-FA+CC(2)*; I-FA(2)* 

TCB180 28.64 (4.0%) 0.71 (10.7%) 20.94 (4.0%) I-FA(4)* 

FT120 28.63 (1.7%) 0.79 (5.5%) 20.92 (1.7%) C-C(4)* 

FT240 27.40 (5.2%) 0.72 (11.5%) 20.03 (5.2%) I-AC+CS(3)*; I-FA+CS(1)* 

RA720 25.34 (4.6%) 0.56 (10.9%) 18.52 (4.6%) I-FA(3)*; I-FA+CC(1)* 

RB720 25.31 (1.0%) 0.56 (9.2%) 18.50 (1%) I-FA(4)* 

Notes: the percentages values between parentheses are the corresponding coefficients of variation; *the value 

between parentheses is the number of specimens with this type of failure mode. 
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(a) (b) 

Figure 1: Temperatures and RH registered over the time of exposure under real environments: (a) “Port of 

Leixões” (RA); (b) University of Minho – Guimarães (RB). 
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(a) (b) 

Figure 2: Direct pullout test (DPT): (a) specimen’s geometry and test configuration [units: mm]; (b) photo. 
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Figure 3: Timetable of developed experimental programme. 
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Figure 4: Development bond length: maximum pullout force versus bond length. 
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(a) (b) 

Figure 5: (a) Evolution of concrete compressive strength along the time; (b) Compressive strength variation of 

concrete. 
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(a) (b) 

Figure 6: Tensile properties of the CFRP laminate: (a) tensile strength; (b) elastic modulus. 
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(a) (b) 

Figure 7: Tensile properties of the epoxy adhesive: (a) tensile strength; (b) elastic modulus. 
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Figure 8: Region of interest (ROI) of DPT tests coupled with DIC technique. 
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Figure 9: Pullout force-loaded end slip behaviour and strain fields in the ROI of NSM CFRP-concrete specimen 

(LE480_3). 
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(a) (b) 

Figure 10: Longitudinal strains (εx) in specimen LE480_3 for different load levels (A–F in Figure 9): 

(a) longitudinal profile P1; (b) transverse profile P2. 
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Figure 11: Crack pattern at different load levels up to the peak pullout force for the specimen RA720R_3. 
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(a) (b) 

Figure 12: Typical average pullout force versus loaded end slip responses of specimens subjected to: (a) tap 

water; (b) real environment A. 
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Figure 13: Evolution of the maximum pullout force for reference series throughout the exposure time. 
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Figure 14: Maximum pullout force variation due to the effect of different environmental conditions. 
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Figure 15: Comparison between the variations of the fau of the epoxy and Flmax of the NSM CFRP-concrete 

system for distinct environmental conditions. 
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Figure 16: Observed failure modes: (a) and (b) I-FA: debonding at the interface CFRP/adhesive; (c) I-FA+CC: 

debonding at the interface CFRP/adhesive with concrete cracking; (d) I-FA+CS: debonding at the interface 

CFRP/adhesive with concrete splitting; (e) C-C: cohesive failure in concrete; (f) I-AC+CS: debonding at the 

interface adhesive/concrete with concrete splitting. 

 

 


