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Abstract: Malaria is one of the leading causes of death in underdeveloped regions. Thus, the development
of rapid, efficient, and competitive diagnostic techniques is essential. This work reports a study
of the deformability and velocity assessment of healthy and artificially impaired red blood cells
(RBCs), with the purpose of potentially mimicking malaria effects, in narrow polydimethylsiloxane
microchannels. To obtain impaired RBCs, their properties were modified by adding, to the RBCs,
different concentrations of glucose, glutaraldehyde, or diamide, in order to increase the cells’ rigidity.
The effects of the RBCs’ artificial stiffening were evaluated by combining image analysis techniques
with microchannels with a contraction width of 8 µm, making it possible to measure the cells’
deformability and velocity of both healthy and modified RBCs. The results showed that healthy
RBCs naturally deform when they cross the contractions and rapidly recover their original shape.
In contrast, for the modified samples with high concentration of chemicals, the same did not occur.
Additionally, for all the tested modification methods, the results have shown a decrease in the RBCs’
deformability and velocity as the cells’ rigidity increases, when compared to the behavior of healthy
RBCs samples. These results show the ability of the image analysis tools combined with microchannel
contractions to obtain crucial information on the pathological blood phenomena in microcirculation.
Particularly, it was possible to measure the deformability of the RBCs and their velocity, resulting in a
velocity/deformability relation in the microchannel. This correlation shows great potential to relate
the RBCs’ behavior with the various stages of malaria, helping to establish the development of new
diagnostic systems towards point-of-care devices.

Keywords: biomicrofluidics; red blood cells; deformability; velocity

1. Introduction

Malaria is a parasitic disease with more than half the world population at risk and around
500 thousand deaths per year, with 80% of infections occurring in children under 5 years old [1].
This disease is mainly widespread in underdeveloped regions, with lack of proper infrastructure
and living conditions, worsening the chances of infection for the population. The control, effective
treatment, and elimination of malaria require an early and accurate diagnosis. Currently, the malaria
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diagnosis is based on blood smear microscopy or rapid diagnostic tests (RDTs) [2,3], which have
limitations in the detection limit (only detect above 50 parasites/µL of blood). Additionally, microscopy
has limitations in the required time to perform the assays and in the need for specialized technicians
and/or laboratories, compromising the reduction of global incidence. To fulfill these needs, innovative
diagnosis based on molecular assays have been developed, with detection limits below 2 parasites/µL,
particularly using loop-mediated isothermal amplification [4] or more advanced portable devices
such as QuantuMDx/Q-POC [5]. However, these techniques require disposable reagents, technicians,
more than 30 min to get the test results, and imply aseptic conditions (hard to maintain in endemic
regions). Therefore, there is a huge need for fast, reagent-free, and low-cost malaria diagnostic systems,
without requiring special training and independent of the genetic variability of the parasite, and overall
the final ideal device should comprise all these concerns.

The malaria parasite lifecycle passes from the mosquito vector to the human host by entering the
liver cells where it matures, to further being released into the blood stream, invading the red blood
cells (RBCs). At this stage, the infected RBCs (iRBCs) suffer biochemical, optical, and morphological
changes [6,7], making these cells more rigid and thicker, resulting in a decrease of the cells velocity
(when the cells are infected with Plasmodium falciparum parasite) [8]. Hemodynamic studies help
to obtain information regarding the evolution of the disease. Particularly, the RBCs’ deformability
and the RBCs’ velocity when crossing a geometric contraction can work as relevant markers for
malaria diagnostics applications, since they are directly related to the changes that the parasite causes
throughout the evolution of the disease [9]. The literature reports different methods for assessment
of the RBCs’ deformability, including filtration [10], ektacytometry [11,12], optical tweezers [13,14],
micropipette aspiration [15], and microfluidic geometrical constrictions [16–22]. Some numerical
and experimental studies in the literature already report the relation between RBCs’ deformability
and hemodynamics [23,24], or between deformability and the individual RBCs’ velocities in specific
geometrical conditions [9,25–28]. This work will be focused on a microfluidic system to measure the
RBCs’ deformability and velocity, as well as to establish a relation between these properties when the
cells cross geometric microcontractions, with the expectation to, in the future, compare this correlation
with the real malaria effects in RBCs. The microfluidic systems are a potential alternative to the current
diagnostic methods, since they are able to mimic the hemodynamic phenomena that happens in blood
vessels and have advantages in terms of sample preparation and analysis (low volume of samples,
easy handling, low-cost, and fast processing), eliminating the need for specialized personnel [22].
Additionally, microfluidic devices enhance the possibility of creating a fully automated and portable
diagnostic device for malaria, when assembled in a microfluidic platform that includes microfluidic
handling, control and readout electronics, and data acquisition.

In order to develop and evaluate those microfluidic methods for the deformability and velocity
assessment, it is essential to synthetically impair the RBCs for mimicking malaria behavior, for testing
the method’s efficiency and reproducibility, without the constant need for parasites or infected samples,
improving laboratorial safety, when testing, and decreasing the costs. For that purpose, glutaraldehyde,
diamide, and glucose will be used for increasing the rigidity of the RBCs and, their effect in narrow
constrictions will be compared [29–32]. When exposed to these chemicals, the RBCs will be rigidified
and their dynamic behavior in narrow constrictions, relative to deformability and velocity, will be
compared to healthy RBCs. The evaluation of the RBCs’ velocity and deformability will be performed
in a set of microchannels with abrupt constrictions, followed by abrupt expansions [25]. This approach
takes advantage of the potential of these sudden geometrical contractions to deform the cells due to
shear and extensional flows. The cells’ behavior will be captured by a setup comprising a high-speed
camera and a microscope, and the obtained images will be processed in two software tools (ImageJ and
PIVLab) for determining both the RBCs’ deformability and the RBCs’ velocities, as well as determining
the relationship between those properties.
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2. Materials and Methods

This section presents the materials and samples used to perform the experimental assays, as
well as the description of the microchannel fabrication method, experimental setup, and image
processing techniques. In brief, RBC samples with low concentration (low hematocrit) will be
exposed to glutaraldehyde, diamide, or glucose and will be tested in polydimethylsiloxane (PDMS)
microchannels that comprise 8 µm widths abrupt contractions. The ability of the RBCs to flow through
the microchannels contractions will be assessed.

2.1. Microchannels Fabrication

A polydimethylsiloxane (PDMS) microfluidic device was microfabricated by soft lithography
techniques, using SU-8 molds (SU-8 purchased from Microchem Corporation, Westborough, MA,
USA) [33,34]. PDMS (Sylgard 184 Silicone Elastomer kit obtained from Dow Corning, Midland, MI,
USA) was chosen due to its transparency that is required for microscope visualization, easy fabrication,
and low-cost for prototypes. The PDMS microchannels have a 25 µm height in order to reduce the
flow volume and the number of RBCs within the microchannels, also making it easier to observe the
RBCs. Each microchannel is composed by a linear transition zone followed by an abrupt contraction
(at a 90◦ angle) with 8 µm width and 780 µm length (seen in Figure 1), designed to force the RBCs to
deform and gain velocity when crossing it. The width of the contractions mimics capillary vessels with
the same average dimensions of the RBCs (around 8 µm).
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Figure 1. (a) 2D masks for microchannel fabrication. The narrow contractions in the central region of
the microchannels have 8 µm width; (b) polydimethylsiloxane (PDMS) microchannels with a 12.8 mm
total length; (c) Detail of the entrance of the 8 µm width contraction of the PDMS microchannel;
(d) Detail of the outlet of the 8 µm width contraction of the PDMS microchannel. Magnification: 40×.

2.2. Samples

For the in vitro assays, samples containing human RBCs (hematocrit = 0.5%) in Dextran40
(Dx40) were used. Human RBCs have a biconcave shape and typical diameters in the 6–8 µm range,
being highly deformable.

The healthy human whole blood samples were taken from a female volunteer and provided
by Instituto Politécnico de Bragança (Bragança, Portugal). All procedures for the blood collection,
transport, and in vitro experiments were carried out in compliance with the EU directives 2004/23/CE,
2006/17/CE, and 2006/86/CE and approved by the Unidade Local de Saúde do Nordeste (Bragança,
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Portugal). In order to evaluate the RBCs’ deformability and velocity in the microchannels, the RBCs
were separated from the other blood constituents through centrifugation (15 min, 2000 rpm, at room
temperature). After that, RBCs were re-suspended and washed twice in a physiological solution
(PSS) (from B. Braun Medical, Melsungen, Germany) with a NaCl concentration of 0.9%. The Dx40
solution, where the RBCs were suspended, was used as a plasma-volume expander to prevent RBC
sedimentation and maintain the ideal osmotic physiological conditions for the RBCs. This solution
was synthetically produced by mixing 68 µL of CaCl2 with 201 µL of KC, 7.35 mL of NaCl, and 5 g of
Dx40 (for 1 M solution) (all reagents purchased from Sigma-Aldrich, St. Louis, MO, USA). The 0.5%
hematocrit, representing a 0.5% volume of RBCs in 5 mL of Dx40, was considered in order to assure
that the RBCs are isolated when crossing the microchannel contraction. Although the 0.5% hematocrit
is significantly lower than the physiological one, it was decided to study diluted samples, to improve
the visualizations and measurements of each individual RBC and, as a result, to avoid effects such as
interactions and aggregation of RBCs. Preliminary tests performed with hematocrit values ranging
from 0.5% up to 2% have shown that as the concentration of RBCs was increased, it was difficult to
individually follow the RBCs and, consequently, to measure the RBCs’ velocity and deformation index.
Hence, the current study was performed with a hematocrit of 0.5%.

The RBC samples were then modified with glucose (COPAN Diagnostics Inc., Murrieta, CA,
USA), glutaraldehyde (Sigma-Aldrich Corporation, St. Louis, MO, USA), and diamide (Sigma-Aldrich
Corporation, St. Louis, MO, USA) solutions, in order to rigidify the cells at different levels.
These chemicals were selected since they are commonly used to perform deformability studies,
are accessible, and have simple preparation protocols, as well as they allow one to rigidify the
cells at different levels, according to the added concentration. To modify the RBCs with glucose,
four different concentrations of glucose were considered: 2%, 5%, 10%, and 20% (v/v). First, glucose
(powder) was diluted in a phosphate buffered saline solution (PBS: pH 7.4). Then, the RBCs (already
separated from the other blood constituents and suspended in Dx40) were incubated for 20 min, at
room temperature, at each of the referred glucose concentrations. The cells were then washed in PSS
to remove the excess of glucose from the samples and re-suspended in Dx40. To modify the cells
with glutaraldehyde, at 0.00625%, 0.0125%, 0.025%, and 0.08% glutaraldehyde concentrations (v/v),
the RBCs (already separated from the other blood constituents and suspended in Dx40) were incubated
for 10 min at each of the referred concentrations, washed in PSS, re-suspended in Dx40, and used right
away. The RBCs were also modified with diamide, at 0.00625%, 0.0125%, 0.025%, 0.08%, 0.32%, and 1%
diamide concentrations (v/v), using the same protocol: Incubation for 10 min at each of the referred
concentrations, washing in PSS, and re-suspension in Dx40.

2.3. Experimental Setup

The cells’ deformability and velocity assays were performed with an experimental setup
comprising the microfluidic device placed on the stage of an inverted microscope (IX71; Olympus
Corporation, Tokyo, Japan). A flow rate of 5 µL/min was controlled using a syringe pump system
(KD Scientific Inc., Holliston, MA, USA). For selecting the ideal flow rate, preliminarily studies were
performed for four different flow rates (0.1, 1, 3, and 5 µL/min) and no significant differences were
observed in the cells’ deformability. Additionally, it was observed that the syringe pump system
presented more stability for the highest tested flow rate, i.e., the 5 µL/min. The images of the RBCs
were captured using a high-speed camera (Fastcam SA3, Photron, Motion Engineering Company,
Westfield, IN, USA) at a 2000 frames/s rate and exported to a computer to be analyzed. Each assay
was repeated 3 times.

2.4. Image Processing and Analysis Techniques

The images exported from the high-speed camera to the computer were analyzed using two
software tools: ImageJ [35] and PIVLab [36,37]. For each assay, a sequence of 10,000 frames was
considered. ImageJ was used to perform the pre-treatment of the acquired frames, in order to remove
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the noise and image artifacts, as well as convert them into binary images. Initially, the image sequence
was imported and the crop function was executed to define the region of interest (ROI) as a rectangle
with 308 µm × 332 µm dimension (Figure 2a). Then, by using the Z-Project function, the selected
frames were stacked to determine an average of the frames. This averaged frame was subtracted
from all the frames under analysis, eliminating all static objects, which resulted in frames comprising
only the visible RBCs, without any additional information. Finally, by using a threshold function,
the images were converted into binary images. The ImageJ software was also used to measure the cells
size in order to calculate the RBCs’ deformation index (DI). Using the ROI Manager and the Measure
functions, it was possible to follow both the healthy and the impaired RBCs (example in Figure 2b)
and calculate their DI along the microchannel, using the expression: DI = (X − Y)/(X + Y), where X
and Y represent the largest (X) and the smallest (Y) axis of the ellipse correspondent to the RBC under
analysis. Typically, the RBCs’ DI varies between 0 and 0.8, where 0 represents non-deformed cells
and 0.8 represents cells at maximum elongation. For each assay, a group of RBCs was followed at the
entrance and at the outlet of the contraction to measure their DI and determine an averaged value.
Figure 2c presents the area at the entrance and at the outlet of the microchannel contraction (the areas
inside the dashed lines in Figure 2c), where the deformability of the RBCs is measured. These areas
were chosen after performing preliminary observations of the RBC flows. For the entrance of the
contraction, a 121 µm × 237 µm region of interest was selected, since it is in this area that the RBCs
experience the highest extensional flow and consequently start to deform to enter the narrowing.
For the outlet, in the region immediately after exiting the contraction, the RBCs are at maximum
deformation, and outside that region, the cells start to recover their original shape. Then, for assuring a
standard area at the outlet for all assays, an 86 µm × 142 µm region of interest was selected. It should
be noted that the evaluation area at the outlet of the contraction is significantly smaller than at the
entrance. This difference is explained by the authors’ intention, in future devices and prototypes,
of integrating micro-sensors in the outlet of the contraction (occupying the smallest area possible)
and, therefore, in this work it was expected to obtain relevant data from a small area of evaluation in
the outlet.

In order to determine the average of the velocity values of the RBCs at the entrance and at the
outlet of each contraction, the sequence of frames was analyzed using the PIVLab image analysis
toolbox, integrated in MATLAB. First, the pre-treated images were imported into the software and
calibrated (relatively to their dimensions and time between frames), and a ROI mask was applied to
remove the areas where there are no RBCs. Following, the motion of the particles between the frames
was analyzed and the instantaneous velocities were calculated by the variation of the distance traveled
by the RBCs between each time step. Then, the average velocity vectors (Ux and Uy) were calculated
in the x and y directions and the velocity field of each sample (Uxy) was determined based on the
equation: |Uxy| = sqrt (Ux

2 + Uy
2). Finally, a filter was applied to smooth the images and remove

the high frequencies, which could indicate spikes of velocity without physical significance. Figure 2d
presents an example of the velocity field distribution at the entrance of the contraction. It is possible
to observe that the velocity of the RBCs is significantly higher in the zone of the narrowing entrance,
reasoning that the abrupt transition causes an increase of the velocity of the RBCs. Note that, due
to limitations of the available equipment, it was not possible to acquire frames with RBCs moving
at high velocity in the interior of the microchannel contraction. As a result, almost no cells were
registered in that region, explaining the 0 velocity in the interior of the contraction in the PIVLab
image (Figure 2d), this way the results section will approach and compare the DI and velocity of the
RBCs at the entrance and outlet of the contractions, neglecting the study of cells inside the contraction
regions. Note that both RBC deformability and velocity are measured in the same area (as defined in
Figure 2c, left and right) in order to establish a relation between the RBCs’ deformability and their
velocity. After obtaining the velocity distribution immediately before the entrance and after the outlet
of the contraction, a criterion for determining the RBCs’ velocity was defined (as presented in the
Results Section 3): From the region of interest (Figure 2c, left and right), where the velocities are higher,
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the 100 pixels with highest velocity (obtained in PIVLab) were selected and those velocities were
averaged, neglecting the surrounding areas with lowest velocities.

Additional details on the ImageJ and PIVLab procedures for the determination of RBC
deformability and velocity can be found in [25].Micromachines 2018, 9, x FOR PEER REVIEW  6 of 16 
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Figure 2. (a) Example of a cut-off of a transfer zone (308 µm × 332 µm) in the entrance of the
microchannel contraction, using the crop function of ImageJ; (b) Example of a tracked red blood
cell (RBC) at the outlet of the microchannel contraction, using ImageJ, where the dashed line
represents a region where the RBCs expand after the outlet (relaxation area); (c) Definition of the
areas (inside the dashed lines) for measuring the RBCs’ deformability and velocity at the entrance
(left—121 µm × 237 µm region) and at the outlet (right—86 µm × 142 µm region) of the microchannel
contraction (Magnification: 40×); (d) Example of the velocity distribution, obtained with PIVLab,
of healthy RBCs (non-modified) at the entrance of the microchannel contraction (the arrows indicate
the flow direction in each frame). Note that, due to limitations of the available equipment (frame rate
acquisition), it was not possible to acquire frames with RBCs moving at high velocity in the interior of
the microchannel contraction and, as a result, no cells were registered in that region, explaining the
0 velocity in the image.

3. Results and Discussion

This section presents the deformability and velocity results (obtained as in Section 2.4) of
the comparison between healthy and chemically modified RBCs with glucose, glutaraldehyde,
and diamide. All the presented results are an average of three assays. For each assay, a sequence
of 10,000 frames was considered and around 10 RBCs were followed to measure their DI. Figure 3
shows examples of RBCs from different assays at the entrance and at the outlet of the contraction
in the PDMS microchannel, for different percentages of glucose, considering a 5 µL/min flow rate,
and for a healthy RBC sample (for control—0% glucose). From Figure 3a, it is possible to detect a
difference between RBC deformability as the glucose percentage increases, i.e., the RBCs change from
a deformed/stretched shape to a non-deformed shape, as the cells have more difficulties to deform
and tend to keep their original shape.
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Figure 3. (a) Examples of healthy RBCs and RBCs modified with different glucose percentages at the 
entrance and at the outlet of the microchannel contraction, extracted from three assays; (b) Healthy 
RBCs (red arrow, left) deforming at the entrance of the contraction (green arrow, left), leaving the 
contraction still deformed (green arrow, right), and recovering their original shape following the 
outlet on an expansion area (red arrow, right); (c) 10% glucose-modified RBCs (red arrow, left) with 
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Figure 3. (a) Examples of healthy RBCs and RBCs modified with different glucose percentages at the
entrance and at the outlet of the microchannel contraction, extracted from three assays; (b) Healthy
RBCs (red arrow, left) deforming at the entrance of the contraction (green arrow, left), leaving the
contraction still deformed (green arrow, right), and recovering their original shape following the
outlet on an expansion area (red arrow, right); (c) 10% glucose-modified RBCs (red arrow, left) with
almost no deformation at the entrance of the contraction (green arrow, left) and leaving the contraction
(green arrow, right), recovering their original shape on an expansion area (red arrow, right). The black
arrows indicate the flow direction.
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These results suggest that the glucose concentration affects the RBCs’ deformability, in agreement
with several past studies regarding the influence of glucose over RBC deformability [31,32].
The increase of glucose (hyperglycemia) in RBCs causes damage in the RBCs’ membranes and increases
the blood viscosity, also increasing the cells’ aggregation, which leads to a significant decrease on the
RBCs’ DI. When the RBCs were modified with glutaraldehyde or diamide, the results were similar
to the ones observed for glucose (shown in Figure 3), and, therefore, only the glucose images are
presented. Following the outlet of the microchannel contraction, the RBCs start to recover their shape,
again decreasing their deformation index, as shown in Figure 3b,c, for an assay with healthy RBCs and
one assay with 10% glucose-modified RBCs.

Figure 4 presents the DI for healthy and modified RBCs (with glucose, glutaraldehyde,
and diamide), at the entrance and at the outlet of the microchannel 8 µm contraction, as well as
at the relaxation area (see Figure 2b), for the 5 µL/min flow rate.

The results show that, as the percentage of glucose, glutaraldehyde, or diamide increases, the cells
tend to become more rigid, decreasing their DI [29]. While the healthy cells deformed at the entrance of
the contraction to pass throughout the contraction and then recovered their initial shape after reaching
the microchannel expansion area, the modified RBCs did not deform and some aggregation of the
cells was observed, increasing the difficulty to cross the contraction. At the outlet of the contraction,
where the deformability was measured, the RBCs tend to start to recover their original shape, which is
verified in Figure 4: The RBCs at the outlet have lower DI than at the entrance of the contraction.
As the rigidity of the cells increases, the difference between the DI at entrance and at the outlet of the
contraction decreases. Since the evaluation regions at entrance and at the outlet have a different total
area (as defined in Figure 2c), it may also help to explain the hysteresis in the results between entrance
and outlet (the entrance evaluation area is larger than the outlet evaluation area).

Table 1 presents the differences between the averaged RBC deformability at the entrance of
the contraction and at the relaxation area, for all the tested conditions. This allows us to observe
the cells’ maximum deformability, passing from their deformed shape entering the contraction,
until their recovered shape after relaxation. The results show that, as the rigidity of the cells increases,
the difference in the deformability between the entrance and the relaxation area (∆DI) decreases,
and this behavior is similar for the three chemicals tested: Glucose, glutaraldehyde, and diamide.

Micromachines 2018, 9, x FOR PEER REVIEW  8 of 16 

 

These results suggest that the glucose concentration affects the RBCs’ deformability, in 
agreement with several past studies regarding the influence of glucose over RBC deformability 
[31,32]. The increase of glucose (hyperglycemia) in RBCs causes damage in the RBCs’ membranes 
and increases the blood viscosity, also increasing the cells’ aggregation, which leads to a significant 
decrease on the RBCs’ DI. When the RBCs were modified with glutaraldehyde or diamide, the results 
were similar to the ones observed for glucose (shown in Figure 3), and, therefore, only the glucose 
images are presented. Following the outlet of the microchannel contraction, the RBCs start to recover 
their shape, again decreasing their deformation index, as shown in Figure 3b,c, for an assay with 
healthy RBCs and one assay with 10% glucose-modified RBCs. 

Figure 4 presents the DI for healthy and modified RBCs (with glucose, glutaraldehyde, and 
diamide), at the entrance and at the outlet of the microchannel 8 µm contraction, as well as at the 
relaxation area (see Figure 2b), for the 5 µL/min flow rate.  

The results show that, as the percentage of glucose, glutaraldehyde, or diamide increases, the 
cells tend to become more rigid, decreasing their DI [29]. While the healthy cells deformed at the 
entrance of the contraction to pass throughout the contraction and then recovered their initial shape 
after reaching the microchannel expansion area, the modified RBCs did not deform and some 
aggregation of the cells was observed, increasing the difficulty to cross the contraction. At the outlet 
of the contraction, where the deformability was measured, the RBCs tend to start to recover their 
original shape, which is verified in Figure 4: The RBCs at the outlet have lower DI than at the entrance 
of the contraction. As the rigidity of the cells increases, the difference between the DI at entrance and 
at the outlet of the contraction decreases. Since the evaluation regions at entrance and at the outlet 
have a different total area (as defined in Figure 2c), it may also help to explain the hysteresis in the 
results between entrance and outlet (the entrance evaluation area is larger than the outlet evaluation 
area).  

Table 1 presents the differences between the averaged RBC deformability at the entrance of the 
contraction and at the relaxation area, for all the tested conditions. This allows us to observe the cells’ 
maximum deformability, passing from their deformed shape entering the contraction, until their 
recovered shape after relaxation. The results show that, as the rigidity of the cells increases, the 
difference in the deformability between the entrance and the relaxation area (ΔDI) decreases, and this 
behavior is similar for the three chemicals tested: Glucose, glutaraldehyde, and diamide. 

 
(a) 

Figure 4. Cont.



Micromachines 2018, 9, 384 9 of 16
Micromachines 2018, 9, x FOR PEER REVIEW  9 of 16 

 

 
(b) 

 
(c) 

Figure 4. Deformation index (DI) and error bars for healthy and (a) glucose-, (b) glutaraldehyde-, and 
(c) diamide-modified RBCs, at the entrance (blue series), at the outlet (orange series) and at the 
relaxation area (green series) of the microchannel contraction and trend lines. In (b), the X represents 
the clogging of the microchannel, with no deformability or velocity data. Each point of the plots is the 
average of 30 RBCs (three assays for each condition and 10 RBCs followed in each assay). 

Table 1. Difference of the deformation index (ΔDI) between red blood cell (RBC) deformability at the 
entrance of the contraction (Figure 2c, left) and at the relaxation area (Figure 2b) for all the tested 
conditions, obtained from the data presented in Figure 4. 

Sample Concentration (%) ΔDI 
Healthy RBCs 0 0.479 

RBCs + Glucose 

2 0.463 
5 0.410 
10 0.139 
20 0.041 

RBCs + Glutaraldehyde 

0.00625 0.196 
0.0125 0.074 
0.025 0.034 
0.08 X 

RBCs + Diamide 

0.00625 0.493 
0.0125 0.482 
0.025 0.464 
0.08 0.396 
0.32 0.267 

1 0.068 

Figure 4. Deformation index (DI) and error bars for healthy and (a) glucose-, (b) glutaraldehyde-,
and (c) diamide-modified RBCs, at the entrance (blue series), at the outlet (orange series) and at the
relaxation area (green series) of the microchannel contraction and trend lines. In (b), the X represents
the clogging of the microchannel, with no deformability or velocity data. Each point of the plots is the
average of 30 RBCs (three assays for each condition and 10 RBCs followed in each assay).

Table 1. Difference of the deformation index (∆DI) between red blood cell (RBC) deformability at
the entrance of the contraction (Figure 2c, left) and at the relaxation area (Figure 2b) for all the tested
conditions, obtained from the data presented in Figure 4.

Sample Concentration (%) ∆DI

Healthy RBCs 0 0.479

RBCs + Glucose

2 0.463
5 0.410

10 0.139
20 0.041

RBCs + Glutaraldehyde

0.00625 0.196
0.0125 0.074
0.025 0.034
0.08 X

RBCs + Diamide

0.00625 0.493
0.0125 0.482
0.025 0.464
0.08 0.396
0.32 0.267

1 0.068
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It was also observed that, for 0.08% (v/v) glutaraldehyde-modified RBCs, the rigidified cells
clogged the entrance of the contraction and no deformability or velocity data could be extracted (this is
represented by X in Figure 4b). Therefore, for a high concentration of glutaraldehyde, it was unable to
measure the transiting velocity of the cells. Figure 5 presents an example of clogging at the entrance of
the contraction, when the RBCs were modified with a 0.08% (v/v) concentration of glutaraldehyde.
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Figure 5. Detail of clogging at the entrance of the 8 µm contraction when the RBCs were modified with
a 0.08% (v/v) concentration of glutaraldehyde.

Elevated blood glucose in the RBCs alters RBC membrane proteins through glycosylation and
oxidation. Glutaraldehyde penetrates into cell membranes and non-specifically cross-links the cytosol,
the cytoskeletal, and the transmembrane proteins, acting on all components of the cell and increasing
the effective viscosity of the cytoplasm and lipid membrane. Diamide is a spectrin-specific cross-linker,
oxidizing thiol groups while forming disulfide bonds within the structural region [30]. The obtained
results indicate that viscous effects in the cytoplasm and/or lipid membrane are a dominant factor
when dictating dynamic responses of RBCs in pressure-driven flows, explaining the higher effect of
the glutaraldehyde in damaging the RBCs and the microchannel clogging, when compared to diamide
and glucose [30].

Figure 6 presents the average cell velocity for healthy and modified RBCs (with glucose,
glutaraldehyde, and diamide), at the entrance and at the outlet of the microchannel 8 µm contraction,
for the 5 µL/min flow rate.

Overall, the results agree with those of deformability. When the average velocity at the
high velocity regions was evaluated, it was found that the impaired RBCs (by adding glucose,
glutaraldehyde, or diamide) presented lower velocities than healthy RBCs, indicating that the increase
of the RBCs’ rigidity causes the non-deformed cells to follow streamlines that on average have lower
velocity, while the stretched and healthy RBCs follow streamlines that on average have higher velocity.
Supplementary material videos show how the cells gain velocity when entering the contraction,
explaining the higher velocity immediately at the outlet of the contraction (when compared to the
velocity at the entrance), before starting to relax and recover their original shape. Similarly to the
deformability results, for 0.08% (v/v) glutaraldehyde-modified RBCs, the rigidified cells clogged at the
entrance of the contraction and, as a result, no velocity data could be extracted (this is represented by
X in Figure 6b).

Additionally, it would be interesting to quantitatively study the relation between deformation
index and velocity inside the microchannel contraction, besides the data presented at entrance and
outlet (Figures 4 and 6). However, due to technical limitations of the high speed acquisition system,
it was not possible to acquire an enough number of RBCs with high quality contrast to perform
the measurements of RBC deformability and velocity with the software tools referred in Section 2.
Despite that limitation, some RBCs could still be observed within the contraction. Examples of RBCs
(healthy, with 0.025% diamide, and with 10% glucose) flowing within the contraction are shown in
Figure 7.
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Figure 6. Velocity (mm/s) and error bars for healthy and (a) glucose-, (b) glutaraldehyde-, and (c)
diamide-modified RBCs, at the entrance (blue series) and at the outlet (orange series) of the
microchannel contraction and trend lines. In (b), the X represents the clogging of the microchannel,
with no deformability or velocity data.
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Figure 7. Examples of healthy RBCs, RBCs modified with 0.025% diamide, and RBCs modified with
10% glucose inside the 8 µm width microchannel contraction, at different areas (entrance and outlet of
the contraction).

A qualitative analysis of the presented results shows that healthy RBCs cross the microchannel
contraction in a more deformed shape than the 0.025% diamide and 10% glucose samples, and the
10% glucose samples are less deformable than the 0.025% diamide ones, which corroborates the
quantitative results (before the entrance and after the outlet) presented in Figure 6. Supplementary
material presents videos of healthy and modified RBCs flowing at the entrance and at the outlet of
the contraction, allowing a better observation of the RBCs’ behavior at the different regions of the
microchannel contraction.

Since one of the main objectives of this work was to establish a relation between the RBCs’
deformability and their velocity, Figure 8 presents the velocity vs DI calibration curves for glucose-,
glutaraldehyde-, and diamide-modified RBCs at the entrance and at the outlet of the microchannel
contraction. This figure purpose is to show the dispersion that occurs between the cells. Therefore,
instead of presenting all RBCs averaged together (as in Figures 4 and 6), it is intended to evaluate
how each small group of cells fits the deformability vs velocity curve, in order to understand their
individualized behavior. Therefore, from the performed assays, the RBCs were gathered in groups of
three cells measured under the same conditions and their average was calculated (each blue dot of the
plots). Consequently, each plot of Figure 8 gathers data from a high number of RBCs (three RBCs ×
number of dots in each plot, leading to a range of RBCs between 3 × 16 = 48 in Figure 8d and
3 × 28 = 84 in Figure 8e), measured in the areas defined in Figure 2.

Based on the results, it is observed that, overall and as expected, for all synthetically modified
RBCs, an increase of cell deformation index leads to an increase of the cells’ velocity, both at the entrance
and at the outlet of a microchannel contraction. When comparing the velocity with the deformability
correlation at entrance and at outlet, it is clear, for all the tested methods, that the results at the outlet
present a better fitting to the linear tendency curve than at the entrance (based on the R2 values).
Therefore, in the future, when advancing for a diagnostic tool, the analysis must be performed at the
outlet of the contraction (the place to integrate a sensor), where the RBCs’ behavior is more reliable.
Additionally, our results indicate that diamide is the most interesting approach for mimicking the
malaria effects on RBCs with the intention of exploring sensor applications, as the velocity vs DI results
show a better fitting to the linear tendency curve (R2 = 0.89) and, consequently, it is easier to control
the velocity vs deformability curve. These results are a promising step to help the development of
integrated sensors in microfluidic devices that allow the design of an autonomous malaria detection
system of high sensitivity, precise, low-cost, portable, and with low energy consumption.
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Figure 8. Velocity (mm/s) vs. deformability (a.u.) curve, measured at the entrance and at the outlet
of the 8 µm contraction, for the RBC samples modified with (a) at entrance; glucose, (b) at outlet;
glucose (c) at entrance; glutaraldehyde; (d) at outlet; glutaraldehyde, (e) at entrance; diamide, and (f)
at outlet; diamide.

4. Future Perspectives

Future works will include an increase in cell quantity in order to define the average property
of the entire cell population with higher accuracy, since the physical properties of individual RBCs
within the same RBC population can vary significantly [38]. Additionally, since the ultimate goal
is to develop a clinical tool, more blood samples from different donors will be assessed to increase
the RBCs’ variability and to include more independent data. It is also planned to improve our high
speed video microsystem, allowing the capture of good enough quality images to quantitatively
measure both velocity and deformability of the RBCs flowing across the microchannel contraction.
This improvement will allow to develop an improved association between RBC deformability and
transiting velocity through the narrow constrictions. Finally, after obtaining an improved correlation
with synthetically modified samples, it is intended to test real parasite-affected RBC samples [39] to
measure their deformability and velocity, compare disease and artificially impaired RBCs, establish
target values, and fully validate the proposed approach. This improved correlation will be used to
relate the RBCs’ behavior according to the various stages of malaria and to develop integrated sensors
in microfluidic devices for RBC velocity measurements.
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5. Conclusions

This work has investigated the deformability and the velocity of healthy and chemically
modified RBCs, attempting to mimic the effect of malaria in RBCs and to establish a relation
between RBCs’ velocity and deformability. The glucose, glutaraldehyde, and diamide effect in the
RBCs was compared using PDMS microchannels with 8 µm narrow contractions that forced the
RBCs to undergo deformation when they passed through them. It was concluded that, by adding
glucose, glutaraldehyde, or diamide, the RBC membrane tends to become stiffer, decreasing the cell’s
deformability and, consequently, decreasing the cell shape recovery capacity. Additionally, when the
RBCs’ rigidity increased, the RBCs’ velocity decreased.

When the relation between deformability and velocity was evaluated, it was concluded that,
for all synthetically modified RBCs, an increase of the cells’ deformation index led to an increase
of the cells’ velocity. It was also verified that diamide was the most interesting approach to impair
the cells and mimic the malaria effects on RBCs, as the velocity vs deformation index results have
showed the best fitting to the linear tendency curve and, consequently, it would be easier to control the
deformability and velocity of the cells based on this method.

Despite still being a challenge, this work will be a valuable contribution to help establishing
the development of simple, reagent-free, inexpensive, and accurate new malaria diagnostic systems
towards point-of-care devices.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-666X/9/8/384/s1,
Video S1: 10% glucose RBCs at the entrance of the contraction, Video S2: 10% glucose RBCs at the outlet of the
contraction, Video S3: Healthy RBCs at the entrance of the contraction, Video S4: Healthy RBCs at the outlet of
the contraction.
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