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A B S T R A C T

In the last years, Salmonella has been extensively studied not only due to its importance as a pathogen, but also as
a host to produce pharmaceutical compounds. However, the full exploitation of Salmonella as a platform for
bioproduct delivery has been hampered by the lack of information about its metabolism. Genome-scale meta-
bolic models can be valuable tools to delineate metabolic engineering strategies as long as they closely represent
the actual metabolism of the target organism. In the present study, a 13C-MFA approach was applied to map the
fluxes at the central carbon pathways of S. typhimurium LT2 growing at glucose-limited chemostat cultures. The
experiments were carried out in a 2L bioreactor, using defined medium enriched with 20% 13C-labeled glucose.
Metabolic flux distributions in central carbon pathways of S. typhimurium LT2 were estimated using OpenFLUX2
based on the labeling pattern of biomass protein hydrolysates together with biomass composition. The results
suggested that pentose phosphate is used to catabolize glucose, with minor fluxes through glycolysis. In silico
simulations, using Optflux and pFBA as simulation method, allowed to study the performance of the genome-
scale metabolic model. In general, the accuracy of in silico simulations was improved by the superimposition of
estimated intracellular fluxes to the existing genome-scale metabolic model, showing a better fitting to the
experimental extracellular fluxes, whereas the intracellular fluxes of pentose phosphate and anaplerotic reac-
tions were poorly described.

1. Introduction

Salmonella enterica serovar Typhimurium (S. typhimurium) is an in-
tracellular mammalian pathogen that belongs to the Enterobacteriaceae
family. Several studies addressing virulence, pathogenicity, host-mi-
crobe interactions, and genetics of S. typhimurium have been published
(Dandekar et al., 2012, 2015; Kaufmann et al., 2001). Besides the re-
cognized importance as a pathogen itself, in the last years, Salmonella
has gained increasing attention in the biotechnological area as a po-
tential host to produce several pharmaceutical compounds (Silva et al.,
2014). Among the products that can be produced with Salmonella ty-
phimurium are flagellin, capsular polysaccharide Vi, lipopolysacchar-
ides, and vaccines, with applications in human and veterinary medicine
(Braga et al., 2010; Kong et al., 2013; Kothari et al., 2014; Oliveira
et al., 2011). Attenuated strains of Salmonella are being used as Live
Bacterial Vectors (LBV), for immunization against itself or to deliver

heterologous antigens (Silva et al., 2014). In addition, promising results
have been obtained with the utilization of Salmonella in treatment and
vaccination against non-infectious diseases, such as several types of
cancer, including melanoma, and breast, prostate, pancreatic and cervix
cancers (Bolhassani and Zahedifard, 2012; Forbes, 2010; Heimann and
Rosenberg, 2003).

Metabolic engineering has been applied, with success, in genetic
improvement of a variety of organisms. Through the rational selection
of gene targets to be manipulated, it is possible, for instance, to improve
the production of a given molecule or to reduce the secretion of an
undesirable metabolite (Stephanopoulos et al., 1998). To this end,
genome-scale metabolic models are important tools that allow pre-
dicting phenotypes under different conditions, supporting the devel-
opment of metabolic engineering strategies. Another important appli-
cation of genome-scale metabolic models is the identification of
metabolic drug targets, with a possible relevant contribution in fighting
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Salmonella infections (Hartman et al., 2014). To achieve these goals, the
simulations obtained with metabolic models must have high accuracy,
which is only possible through the knowledge and understanding of the
organism's metabolism.

For S. typhimurium LT2 there are four genome-scale metabolic
models available in the literature (Abuon et al., 2009; Raghunathan
et al., 2009; Thiele et al., 2011; Hartman et al., 2014). However, all
present a low degree of experimental validation, due to the lack of
experimental data for Salmonella typhimurium LT2 obtained under
controlled and reproducible conditions.

Metabolic flux analysis (MFA) is one of the most efficient tools to
analyze metabolic pathways, providing essential information on the
biological system under study. The application of metabolic flux ana-
lysis using isotopically labeled substrates has been widely used to es-
timate the internal metabolic fluxes of a variety of organisms (Dauner
and Sauer, 2001; Dauner et al., 2002; Kiefer et al., 2004; Jahn et al.,
2013; Jeong et al., 2014; Kildegaard et al., 2016). In this approach,
after the isotopic steady state is achieved, free metabolites can be
analyzed or proteinogenic amino acids can be measured after biomass
hydrolysis, allowing to infer about active metabolic pathways and
carbon flow (Wittmann, 2007).

Studies using metabolic flux analysis and labeling experiments to
assess Salmonella metabolism are very scarce. Xie et al. (2001) studied
the impact of pyruvate carboxylase, if present in S. typhimurium, in
oxaloacetate synthesis, cell growth, and metabolism, using MFA to
quantify those effects. In another published study, 13C-MFA was em-
ployed to analyze the carbon distribution in amino acids of the biomass
of S. typhimurium growing inside mammalian cells (Gotz et al., 2010).
Enos-Berlage and Downs (1999) studied the incorporation of glycine
and formate into the pyrimidine moiety of thiamine pyrophosphate
using 13C-glycine and 13C-formate.

Therefore, to broad the knowledge of S. typhimurium LT2 metabo-
lism, and obtain experimental data under controlled conditions that can
be used to improve the accuracy of metabolic model simulations, a 13C
MFA approach was applied to study the effect of growth rate on in-
tracellular fluxes of Salmonella typhimurium LT2 growing in aerobic
glucose-limited continuous cultures at two different dilution rates. The
superimposition of the obtained flux distributions into the genome-
scale metabolic model allowed evaluating the accuracy of the predic-
tions made with this type of models.

In general, the improved knowledge of S. typhimurium metabolism
will be essential not only to delineate strategies to fight Salmonella in-
fections, but also for the development of metabolic engineering and
cultivation strategies, to improve the production of biotechnological
products using this host.

2. Materials and methods

Continuous cultures of S. typhimurium LT2 were conducted on glu-
cose labeled with 13C. The growth parameters, data on labeling of
biomass protein hydrolysates and biomass composition were de-
termined and used to generate metabolic flux distributions in central
carbon pathways of S. typhimurium LT2. Subsequently, the experimental
data were compared with simulations obtained using the existing
genome-scale metabolic model, applying flux balance analysis (Fig. 1).
The experimental procedures applied are detailed next.

2.1. S. typhimurium cultivation

Salmonella typhimurium LT2 was obtained from the Salmonella
Genetic Stock Centre (University of Calgary, Canada). Inoculum pre-
paration is detailed at Supplementary material 1.

Aerobic continuous cultivations were carried out in a 2 L bioreactor
(Biostat B Plus, Sartorius, Germany), with a working volume of 800mL,
using M9 modified medium (composition available at Supplementary
material 1).

An agitation speed of 750 rpm and an air flow rate of 1.25 SLPM,
ensured that dissolved oxygen concentrations remained above 20% of
saturation. The pH was controlled at 7.0 by automatic addition of
NH4OH (5%, v/v).

The medium was continuously fed to the bioreactor at a given di-
lution rate (D) (0.26 and 0.52 h−1). The CO2 concentration in the ex-
haust gas was analyzed using a carbon dioxide sensor (BCP-CO2,
BlueSens, Germany).

The steady state was inferred by tracking the optical density and the
mole fraction of carbon dioxide in the exhaust gas, and it was con-
sidered to have been reached when these variables remained constant
for at least two residence times. After the steady state was achieved,
naturally labeled glucose in feed medium was replaced by 20% [U-13C]
glucose (99%, Omicron Bio) plus 80% (w/w) naturally labeled glucose,
and the mixture was fed to the bioreactor for one residence time.
Samples of cells were collected to analyze amino acids from cell pro-
tein. During the cultivation, samples were also collected to evaluate
cellular growth, by-products production, and substrate consumption.

2.2. Dry cell weight and extracellular metabolite analysis

Cellular growth was followed by measuring the optical density of
the culture at 600 nm (OD600 nm), using an ELISA microplate reader
(TECAN Sunrise, Switzerland), and by determining the cellular dry
weight (DW) (Smart et al., 2010).

The concentrations of glucose and extracellular metabolites
(acetate, formate, lactate and succinate) were determined by HPLC
(Jasco, Canada), using a Metacarb 87H column (300×7.8mm, Varian,
USA) and 5mM sulfuric acid solution as the mobile phase (at a flow rate
of 0.6mLmin−1). The column temperature was 60 °C. Organic acids
were detected using a UV detector at 210 nm (Jasco, Canada), while
glucose was measured with a refractive index detector (Jasco, Canada).
Acetate was also determined enzymatically with an acetic acid UV kit
(R-Biopharm AG, Germany) according to the manufacturer's instruc-
tion.

2.3. 13C labeling analysis

Gas Chromatography–Mass Spectrometry (GC-MS) of biomass pro-
tein hydrolysates was used for labeling analysis of proteinogenic amino
acids of S. typhimurium. Briefly, 5mL samples (in triplicate) were har-
vested from the culture, and the biomass protein was hydrolyzed. Then,
samples were lyophilized for 24 h and the amino acids derivatized with
methyl chloroformate (MCF) prior to GC-MS analysis (Villas-Bôas et al.,
2003; Smart et al., 2010). GC-MS analysis is detailed at Supplementary
material 1.

Mass isotopomer distributions (MIDs) of amino acid derivatives
were calculated and corrected for the contribution of naturally abun-
dant isotopes using IsoCor (Millard et al., 2012). An additional biomass
correction was also applied, according to Nanchen et al. (2007), since
the labeled substrate was fed to bioreactor only for one residence time
and not all biomass became labeled with 13C.

The fractional labeling was determined also according to Nanchen
et al. (2007). The amino acids fragments with a fractional labeling with
more than 20% of variation from the input substrate (20% of [U-13C]
glucose) were not considered for further analysis.

2.4. Metabolic flux calculations

A core metabolic network model of S. typhimurium was generated
based on the published genome-scale metabolic model of S. typhimurium
STM_v1.0 (Thiele et al., 2011), and includes the carbon atom transitions
for each stoichiometric reaction. The generated model consisted of
central carbon metabolic pathways, including glycolysis, pentose
phosphate pathway, Entner-Doudoroff, tricarboxylic acid cycle, and
anaplerotic reactions. Additionally, the pathways of amino acids
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biosynthesis, acetate metabolism, and biomass reaction were also in-
cluded, totalizing fifty-five stoichiometric reactions. Acetate was the
only by-product incorporated in the model. The reversibility of reac-
tions was established according to the genome-scale metabolic model
(STM v1.0) (Thiele et al., 2011) and flux variability analysis. Therefore,
pentose phosphate reactions were set as reversible. Successive reac-
tions, without changes in atom transition, were lumped. The model was
written according to the OpenFLUX instructions and examples (Quek
et al., 2009; Quek and Nielsen, 2014; Shupletsov et al., 2014).

Metabolic precursor demands for biomass synthesis were calculated
based on the S. typhimurium biomass composition previously described
by Raghunathan et al. (2009) as well as from experimental data ob-
tained by Santos and Rocha (2016, 2018) (detailed at Supplementary
material 1).

Anabolic biomass demands, together with flux values of glucose
uptake, acetate production, and biomass formation, were included as
inputs to the model (Fig. 1). To obtain relative flux values, the fluxes
included in the model were specified relative to 100mmol of glucose
uptake rate (Schatschneider et al., 2014).

To account for experimental measurement errors, mean and stan-
dard deviation of three technical replicates of MIDs, obtained for each
dilution rate experiment, were calculated and used in the model. A total
of 47 mass isotopomer fractions of amino acids from cell protein were
used as input to determine the metabolic flux distributions.

Metabolic flux values were estimated using the MATLAB-based

modeling software OpenFLUX2 (Shupletsov et al., 2014). Fluxes were
computed 10 times, with 500 iterations, starting with random initial
values. The statistical details are available at Supplementary material 1.

2.5. Genome-scale metabolic model simulations

The estimated intracellular metabolic fluxes were superimposed in
the genome-scale STM_v1.0 metabolic model reconstructed for S. ty-
phimurium by Thiele et al. (2011), which consists of 1270 genes, 2201
intracellular reactions, 345 exchange reactions, and 1119 metabolites.
The biomass equation used in simulations was the same biomass
equation used for metabolic flux calculations, as described in the me-
tabolic calculation section (Section 2.4). Simulations were run with the
OptFlux v. 3.3.1 open-source software platform (Rocha et al., 2010),
using the Constraint-based Flux Analysis (CBFA) plugin (Carreira et al.,
2014), which allowed including constraints associated with measured
fluxes together with environmental conditions. The intracellular fluxes
determined using OpenFLUX2 were used as measured fluxes with a
margin error of 10% of the flux value. Glucose uptake flux was included
as an environmental condition. The simulation method applied was the
parsimonious flux-balance analysis (pFBA) with biomass maximization
as the objective function (Lewis et al., 2010). Different oxygen uptake
flux and ATPm (ATP maintenance requirement) coefficient values were
tested in simulations. The oxygen uptake flux was varied from 5 to
15mmol gDW−1 h−1 or from 10 to 20mmol gDW−1 h−1, for 0.26 h−1

Fig. 1. Schematic representation of methods applied, data used to generate metabolic flux distributions and in silico methods and conditions. S. typhimurium LT2 was
cultivated on 20% [U-13C] glucose, under glucose-limited continuous culture conditions at D=0.26 h−1 and D=0.52 h−1. Growth parameters, data on the analysis
of labeling of biomass protein hydrolysates and biomass composition were used to generate metabolic flux distributions in central carbon pathways of S. typhimurium
LT2. pFBA simulations were then performed using (or not) estimated fluxes and glucose uptake flux as input, varying the oxygen uptake and ATP maintenance
(ATPm).
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and 0.52 h−1 dilution rates, respectively. The ATPm coefficient ranged
from 5 to 50mmol gDW−1 h−1 for both dilution rates. The in silico
results were compared with the experimental data obtained from the
continuous experiments at the two studied dilution rates. The simula-
tion conditions (ATPm and O2) that resulted on the best fitting to ex-
perimental data were used to run pFBA simulation in Optflux (without
the estimated measured fluxes) and intracellular fluxes estimated in in
silico simulations were compared (Fig. 1).

3. Results and discussion

3.1. S. typhimurium continuous culture

In the present study, 13C-MFA was applied to study S. typhimurium
LT2 metabolism in aerobic glucose-limited chemostat cultivations
under two different dilution rates (0.26 h−1 and 0.52 h−1). The dilution
rates were chosen based on previous results, which showed noticeable
differences on the metabolic behavior of S. typhimurium growing at the
mentioned dilution rates (Sargo et al., 2015). In our studies, 20%
[U-13C] glucose mixed with 80% naturally labeled glucose was used to
explore S. typhimurium central carbon metabolism. In fluxomic studies
using stable isotopic labeled substrates, the labeling should be selected
according to the purpose of the study. Although the use of uniformly
13C labeled glucose mixed with naturally labeled glucose has been de-
bated recently (Crown et al., 2016) due to high confidence intervals in
the estimations, it is an economic alternative to other substrates and has
been recommended and successfully applied to study the metabolism of
organisms, providing an overview of the most important pathways of
the central carbon metabolism (Blank et al., 2005; Castillo et al., 2007;
Chokkathukalam et al., 2014; Niu et al., 2013; Tao et al., 2012;
Zamboni et al., 2009).

Growth parameters of S. typhimurium LT2 in glucose-limited con-
tinuous culture were determined (Fig. 1). The biomass yield obtained
was similar in both dilution rates, and slightly higher than the one
obtained for S. typhimurium, under the same conditions, by Sargo et al.
(2015). Acetate was the unique by-product detected and was secreted in
both dilution rates, with a production flux of 0.87 and 2.63mmol
gDW−1 h−1, for D=0.26 h−1 and D=0.52 h−1, respectively. Al-
though the CO2 concentration in the exhaust gas was analyzed and CO2

production flux was determined (8.82 and 14.87mmol gDW−1 h−1, for
D 0.26 h−1 and D=0.52 h−1, respectively) these data were not used
for constraining metabolic flux distributions, since this flux may be
higher than that determined, according to the carbon recovery obtained
for both dilution rates (89% and 92%, for D=0.26 h−1 and
D=0.52 h−1, respectively) (Supplementary material 2).

Metabolic and isotopic steady state was achieved, as detailed at
Supplementary material 3.

3.2. GC-MS-based labeling analysis

In 13C labeling experiments, free metabolites can be analyzed or
proteinogenic amino acids can be measured after biomass hydrolysis.
The analysis of the amino acids of protein biomass provides extensive
labeling information, being more abundant and less affected by errors
(Wittmann, 2007). Labeling patterns of proteinogenic amino acids,
obtained for instance by GC-MS, can be associated with their pre-
cursors, providing important information on central carbon metabolism
(Nanchen et al., 2007).

In the present work, protein hydrolysates of biomass obtained in the
continuous growth of S. typhimurium were analyzed by GC-MS. To ob-
tain free amino acids, biomass protein underwent an acidic hydrolysis.
During this process, cysteine and tryptophan are destroyed, and as-
paragine and glutamine are converted to aspartate and glutamate, re-
spectively (Fountoulakis and Lahm, 1998). Thus, asparagine/aspartate
and glutamine/glutamate are analyzed together. Moreover, arginine is
not derivatized using the derivatization method applied (Smart et al.,

2010).
From mass spectrometry (MS) raw data, the mass isotopomer dis-

tributions were calculated and corrected as described at item 2.4. To
determine the fraction of unlabeled biomass, a first-order kinetics was
applied, as proposed by Nanchen et al. (2007). Accordingly, since the
13C glucose was fed to the bioreactor during one residence time, the
fraction of unlabeled biomass was 0.368, for both dilution rates. It is
known that using [U-13C] glucose in labeling experiments, the frac-
tional labeling (FL) of all amino acid fragments should be the same as
the labeling content of the substrate (Nanchen et al., 2007), meaning
that, in our experiments, the FL should be 20% for each amino acid
fragment. As such, the actual experimental labeling was determined for
each amino acid fragment to select the amino acid fragments that could
be further used in calculations. A fractional labeling of 20% ± 4 was
established as a criterion to accept the fragment for subsequent ana-
lysis. In general, mean FL values of 20.5% and 18.4% for 0.26 h−1 and
0.52 h−1, respectively, were obtained and used as labeling percentage
for the determination of metabolic flux distributions (Fig. 1). It is im-
portant to highlight that the theoretical FL (20%) was also used to run
metabolic flux analysis, without significant differences in the estimated
intracellular fluxes.

Based on the relative error of mass isotopomer distributions, 10
amino acids derivatives (alanine, aspartate, glutamate, glycine, lysine,
proline, serine, threonine, tyrosine, and valine) were selected to use as
inputs for the determination of metabolic flux distributions
(Supplementary material 4).

3.3. S. typhimurium core metabolic network and metabolic flux analysis

The generated S. typhimurium LT2 core model consisted of 55 re-
actions, 45 intracellular metabolites and 3 extracellular metabolites
(Supplementary material 5).

In order to determine the metabolite precursor demands for bio-
mass, the contribution of each biomass component was determined and
adjusted to account for all components. After that, the biomass pre-
cursor demands were calculated and are presented at Supplementary
material 6.

To evaluate the data consistency, experimental mass isotopomer
fractions were plotted versus simulated mass isotopomer fractions ob-
tained in MFA simulations for all amino acids, for each dilution rate
(Supplementary material 7). This analysis showed the agreement be-
tween experimental and simulated data, also corroborated by the mean
deviation between experimental and simulated data (29%, for both
dilution rates). The differences between experimental and estimated
MIDs can be explained, in part, by the high experimental standard
deviations observed for some mass isotopomers (Supplementary mate-
rial 4).

3.4. Impact of growth rate on central carbon metabolic flux distributions

The cell physiology of an organism is highly influenced by the
growth rate, with the cell adapting its metabolism according to the
availability of carbon and energy, as demonstrated for E. coli (Kayser
et al., 2008; Valgepea et al., 2011). The best estimation of in vivo in-
tracellular flux distributions of S. typhimurium LT2 growing under glu-
cose-limited continuous culture conditions at the studied dilution rates
are showed in Fig. 2. Three possible pathways for glucose catabolism
are present in S. typhimurium, namely Glycolysis, the Pentose Phosphate
and the Entner-Doudoroff (ED) pathways. Glucose catabolism via gly-
colysis was described (Driessen et al., 1987) and seems to be the most
important route that functions in S. typhimurium during infection of
macrophages and mice (Bowden et al., 2009). The ED pathway was also
reported to be important in Salmonella within macrophages for the
utilization of some carbon sources, such as gluconate (Diacovich et al.,
2017; Eriksson et al., 2003).

The flux distributions obtained in the present work suggested that
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glucose is mostly catabolized via pentose phosphate at the studied
growth conditions. At D=0.52 h−1, 70.8% of glucose flux was cata-
bolized by the pentose phosphate pathway and a small percentage by
glycolysis (27.8%), while for D=0.26 h−1, the pentose phosphate is
utilized together with ED, with 49.2% of glucose being catabolized by
the last.

Simulation results suggested a low ED pathway flux at 0.52 h−1.
Even though there is no available information about the use of ED
pathway by Salmonella during growth with glucose, it is proven that
some organisms can use the ED pathway to catabolize glucose, such as
Z. mobilis, P. fluorescens, S. meliloti, A. tumefaciens, P. versutus, R.
sphaeroides, X. campestris (Fuhrer et al., 2005; Schatschneider et al.,
2014). According to Conway (1992), this pathway is more primitive
than glycolysis.

Flamholza and collaborators (2013) conducted a study to exploit the
use of glycolytic and ED pathways in prokaryotes. Although the main
difference between ED and glycolysis is the ATP production, being
produced one ATP in ED and two in glycolysis, they hypothesized that
the enzymatic synthesis cost also plays a key role in the choice of the
pathway used for glucose catabolism. The use of the ED pathway results
in a lower protein synthesis cost to catabolize the same amount of
glucose than glycolysis (Flamholza et al., 2013). They also suggested
that, for organisms that possess another form of ATP production, which
is the case of S. typhimurium, the ED pathway would be preferentially
used, considering that protein synthesis limits growth (Flamholza et al.,
2013). Despite that, the influence of growth rate on the catabolic
pathway used is still not clarified. Taking together our data and the

hypothesis exposed by Flamholza et al. (2013), we can hypothesize that
at a lower growth rate (D=0.26 h−1) and under balanced growth
conditions, there would be no ATP limitation but rather protein
synthesis would be the limiting step for growth. On the other hand, at
D=0.52 h−1, the ATP produced in ED pathway seems insufficient, and
the cell utilizes the glycolysis to compensate the energetic needs. The
modulation of the utilization of these pathways by the growth rate is a
hypothesis that needs yet to be proven, for example, by investigating
protein expression under these conditions. The use of positional la-
beling of glucose could also be applied to prove the arising hypothesis.
For instance, [1,2- 13C] glucose or [1–13C] glucose could be applied to
clarify the activation of ED pathway, as reported by other authors
(Hollinshead et al., 2015; Schatschneider et al., 2014). In addition, data
on dilution rates lower than D=0.26 h−1 would contribute to clarify
these assumptions.

The excess flux in the pentose phosphate pathway returned to
fructose-6-phosphate and continued to the glycolytic pathway, more
intensely at D= 0.52 h−1. The fluxes through the tricarboxylic acid
cycle decreased with increasing growth rates. This relative increase of
pentose phosphate fluxes and the decrease of TCA cycle fluxes with
increasing dilution rates were also observed by Kayser et al. (2005) in E.
coli glucose-limited chemostat cultures, especially at growth rates
higher than 0.3 h−1. This limitation in the TCA cycle may also be as-
sociated with a relatively lower respiratory rate at higher dilution rates,
which may contribute to an increased limitation in the availability of
ATP, favouring the utilization of Glycolysis in replacement of the ED
pathway, as described above.

Fig. 2. In vivo metabolic flux distributions in the central carbon pathways of S. typhimurium LT2 growing under glucose-limited continuous culture conditions at
D= 0.26 h−1(A) and D=0.52 h−1(B). Fluxes relative to 100mmol of glucose uptake rate. Arrows thickness is proportional to flux. Fluxes to biomass are indicated in
gray. Abbreviations: 3PG – 3-Phospho-D-glycerate, 6PGC – 6-Phospho-D-gluconate, AC – Acetate, ACCOA – Acetyl-CoA, AKG – 2-Oxoglutarate, DHAP –
Dihydroxyacetone-phosphate, E4P – D-Erythrose-4-phosphate, F6P – D-Fructose-6-phosphate, FDP – D-Fructose-1–6-bisphosphate, G3P – Glyceraldehyde-3-phos-
phate, G6P – D-Glucose-6-phosphate, GLC – D-Glucose, GLX – Glyoxylate, ICIT – Isocitrate, MAL – L-Malate, OAA – Oxaloacetate, P5P – Pentose-5-phosphate, PEP –
Phosphoenolpyruvate, PYR – Pyruvate, S7P – Sedoheptulose-7-phosphate, SUCC – Succinate.
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Fig. 3. Correlation matrixes between free fluxes (A and B). Correlation values between free fluxes are represented as a gradient of colors from orange (−1) to dark
blue (+1). Correlation values that represent a very high correlation are highlighted in white writing. (A): D= 0.26 h−1 and (B): D= 0.52 h−1. Optimum values
(circles) and associated 95% of confidence interval using a non-linear approach for fluxes of reactions at D= 0.26 h−1 and D=0.52 h−1 (C). List of reactions and
associated metabolic pathways (D). Abbreviations in Fig. 2.
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The increase of the relative flux going to the pentose phosphate
pathway at higher growth rates points to the necessity of producing
reducing equivalents in the form of NADPH for biosynthesis, as well as
cell precursors, evidencing the anabolic function of this pathway. This
result is, however, in contrast with the results obtained by Haverkorn
van Rijsewijk et al. (2011) that showed that the relative flux into the PP
pathway is not affected by the growth rate in E. coli growing on glucose.
To further elucidate the flux ratio between the pentose phosphate
pathway and glycolysis in S. typhimurium, future analysis using [1–13C]
glucose could be used as the 1st 13C labeled carbon is released as CO2 in
the oxidative PP pathway, whereas it is conserved in the glycolysis
(Toya et al., 2010).

Acetate was produced in both studied dilution rates. An increase of
acetate production rate was observed with increasing growth rates,
showing the overflow effect, also reported in our previous work on S.
typhimurium (Sargo et al., 2015). Although the overflow metabolism is
an intricate phenomenon that is regulated at different cellular levels, it
is recognized that the growth rate acts as a modulator of the overflow
metabolism (for review see Bernal et al., 2016). An increase in this
phenomenon at higher growth rates is also consistent with the lower
relative activity observed for the TCA cycle.

In E. coli, acetate overflow and assimilation patterns vary with the
strain. For instance, E. coli K-12 strain can only assimilate acetate after
the exhaustion of glucose in the culture medium, while E. coli BL21
accumulates less acetate due to the lower catabolite repression, being
possible a simultaneous assimilation of acetate and glucose, using the
glyoxylate cycle (Bernal et al., 2016; Phue et al., 2005; Waegeman
et al., 2012). The assimilation of acetate concomitantly with glucose
consumption has not been described for S. typhimurium. In our results,
the high levels of acetate accumulation at D= 0.52 h−1 are coherent
with no or a low acetate assimilation (Sargo et al., 2015). On the other
hand, the activation of the glyoxylate shunt is only visible at
D=0.52 h−1.

The glyoxylate shunt is usually inactive under growth with glucose
and is commonly used for growth solely on acetate and other 2-carbon
substrates (Bernal et al., 2016). In Salmonella, the glyoxylate pathway
was characterized by Wilson and Malloy (1987) and is known to be
transcriptionally regulated. Isocitrate lyase (aceA) and malate synthase
(aceB) are two enzymes involved in this pathway and are induced
during growth with acetate. aceA and aceB genes are at the same operon
and have repressors encoded by iclR and fadR genes (Wilson and
Malloy, 1987). In E. coli, the knock-out of iclR (isocitrate lyase reg-
ulator) increases the expression of aceA and aceB, with a consequent
activation of the glyoxylate pathway, as shown in E. coli BL21 (Liu
et al., 2017). The glyoxyate pathway can also be regulated by icd, which
encodes for the isocitrate dehydrogenase, modulating the metabolic
flux between the TCA cycle and the glyoxylate shunt. This node seems
to be regulated by the growth rate, since in glucose-limiting conditions
it was observed that the activity of this enzyme decreased with the
increase of the growth rate (Chao et al., 1997).

On the other hand, Fischer and Sauer (2003) described a cycle
called phosphoenolpyruvate (PEP)-glyoxylate cycle in Escherichia coli.
In the described route, PEP carboxykinase and glyoxylate shunt en-
zymes are active at the same time. Parallel operation of TCA cycle and
PEP-glyoxylate cycle in Escherichia coli growing in continuous culture at
low dilution rates (0.12 h−1) was observed (Fischer and Sauer, 2003).
In addition, Haverkorn van Rijsewijk et al. (2011) studied the regula-
tion associated with the distribution of metabolic fluxes in E. coli
growing aerobically with glucose and galactose and proved that in
glucose-limited growth conditions, the increase of dilution rate dimin-
ished the percentage of relative flux through PEP-glyoxylate cycle. They
also pointed to possible transcriptional regulation at the acetyl-CoA
branch point, distributing the flux between acetate overflow and the
TCA cycle (Haverkorn van Rijsewijk et al., 2011).

At dilution rate of 0.52 h−1 the anaplerotic reaction (OAA=PEP
+CO2), catalyzed by PEP carboxykinase is active (9.8%) together with

the glyoxylate cycle, as well as TCA cycle, suggesting the presence of
(PEP)-glyoxylate cycle in Salmonella typhimurium LT2 (Fig. 2). However,
there is a remarkable difference in the growth rate in which this cycle
was observed in the published works (Haverkorn van Rijsewijk et al.,
2011; Fischer and Sauer, 2003) and the one verified in the present
work.

In summary, the fact that the glyoxylate cycle is activated at high
dilution rates seems to be in opposite directions as what has been de-
scribed for E. coli regarding the PEP-glyoxylate cycle. The regulatory
patterns of acetate consumption and glyoxylate cycle remain to be
described for Salmonella, as well as the role of the isocitrate dehy-
drogenase in this organism. According to Maeda et al. (2016), the
mixture of non-labeled, [1–13C] and [U-13C] glucose at ratios of 4:1:5
could be applied to estimate the metabolic fluxes through glyoxylate
pathway with higher precision.

3.4.1. Statistical evaluation of estimated flux distributions
A correlation matrix of free fluxes was generated to study the re-

lationship between fluxes (Fig. 3A and B). In general, pentose phos-
phate fluxes and acetate biosynthesis flux were shown to be particularly
correlated with the other free fluxes. Due to network structure, it was
expected that some fluxes were highly correlated, which was verified
for the pentose phosphate fluxes (v15, v17, and v19). Another example
was the correlation between v2 (G6P=F6P) and pentose phosphate
fluxes (v15, v17, and v19). Furthermore, some unexpected correlations
arose, such as the high correlation between v10 (acetate production) and
pentose phosphate fluxes. Moreover, it is important to stress that there
were noticeable differences in correlations between fluxes at the stu-
died dilution rates. For instance, acetate production flux (v10) showed
an opposite correlation at the different studied dilution rates, pre-
senting a positive correlation with v15 and v17 (pentose phosphate
fluxes) and a negative correlation with v19 (also a pentose phosphate
flux) for D= 0.26 h−1 and the opposite correlations for D=0.52 h−1.
These observed differences in correlations emphasize the different
metabolic behaviors observed at the different growth rates.

Correlations between biomass formation (v52) and other free fluxes
were not observed, which was not expected since glycolysis and pentose
phosphate pathway contributes with precursors to biomass formation.

In the determination of metabolic flux distributions, it is important
to study the uncertainty and variability of the obtained results. It must
be stressed that the estimated fluxes with wider confidence intervals
must be analyzed carefully to avoid misleading interpretations. Thus,
the sensitivity of estimated metabolic fluxes was determined using a
non-linear approach with 95% of confidence, implemented in
OpenFLUX2 (Shupletsov et al., 2014) (Fig. 3C). In general, the prob-
ability distributions showed that the estimated intracellular fluxes for
D=0.26 h−1 present higher sensitivity than the ones estimated for
D=0.52 h−1. Glycolysis reaction fluxes v2-v7 showed wide intervals,
while v14 - v19 pentose phosphate reactions presented narrow con-
fidence intervals, for both growth rates. TCA cycle reaction fluxes v21-
v24 presented higher flux values with a narrow confidence interval at
D=0.26 h−1 comparing with D=0.52 h−1. The confidence limits
determined for Entner-Doudoroff reaction flux (v20) at D=0.26 h−1

showed that this reaction will have a flux between (6.5 and 55.7), with
95% of confidence. Although the determined interval is large, it is
different from that obtained for D= 0.52 h−1 (0–44.3), indicating a
greater probability that this pathway is being activated at the lowest
growth rate. For glyoxylate cycle reactions, a wide interval was ob-
served for D= 0.52 h−1 with an optimum flux value of 28, while the
glyoxylate cycle will be inactive or with very low flux (1.65), with 95%
of confidence, at D=0.26 h−1.

It is known that the determination of metabolic fluxes is affected by
a variety of errors. Besides the choice of the isotopic tracer, analytical
labeling analysis procedures and the structure of metabolic network are
factors that contribute to the uncertainties of the flux estimation
(Crown et al., 2016; Leighty and Antoniewicz, 2012; Mairinger et al.,
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2018). Nevertheless, it is important to highlight that the present work
was conducted with the aim of explore the S. typhimurium metabolism,
raising hypothesis to be further explored.

3.5. In vivo vs. in silico S. typhimurium metabolic fluxes

In order to compare the experimental data with in silico simulation
results and investigate the suitability of the genome-scale metabolic
model to describe S. typhimurium metabolism, simulations were per-
formed using pFBA.

Using the extracellular flux of glucose as constraint and considering
unlimited oxygen uptake, the genome-scale metabolic model predicts a
specific growth rate of 0.39 h−1 for the lower dilution rate and 0.79 h−1

for the higher one, which are higher than the ones obtained in vivo. This
discrepancy can be justified by the presence of acetate in vivo, which is
not predicted by the model under full aerobic conditions. In fact, using
stoichiometric models it is only possible to mimic the overflow meta-
bolism by constraining artificially the oxygen uptake rate. If the ex-
perimentally determined fluxes (extracellular flux of glucose as well as
intracellular fluxes v2 – v30 indicated in Fig. 3D) are used as constraints
and also considering unlimited oxygen uptake, the genome-scale model
predicts a specific growth rates more closely to the ones obtained in vivo
(0.30 h−1 for the lower dilution rate and 0.58 h−1 for the higher one).
Besides that, ATP coefficient associated with non-growth maintenance
(ATPm), although kept fixed in metabolic models, is known to vary
with the growth rate of an organism (Russel and Cook, 1995).

Given these results, we have performed additional pFBA simulations
to map the influence of oxygen uptake and the ATPm coefficient in
model outputs. Simulations using the Optflux - CBFA plugin were run
with the same estimated intracellular fluxes previously selected as
constraints and glucose uptake flux as environmental condition. The
results of simulations (Fig. 4) show that the in silico biomass formation
rate varies with ATPm coefficient and oxygen uptake rate. If the oxygen
uptake increases, it is necessary to increase the ATPm coefficient to fit
the in silico to experimental specific growth rate (Fig. 4 – A and C). The
prediction of acetate production is also affected by the oxygen uptake

rate and ATPm coefficient. The production of this metabolite is only
predicted at ATPm coefficients higher than 15mmol ATP gDW−1 h−1

and oxygen uptake rates higher than 10mmol O2 gDW−1 h−1for
D=0.26 h−1; and ATPm coefficients higher than 30 and oxygen up-
take rates higher than 15 for D=0.52 h−1 (Fig. 4 – B and D). Besides
acetate, the formation of other by-products, such as ethanol and for-
mate, was predicted by the simulations, but not observed experimen-
tally. For D=0.52 h−1, ethanol production was predicted for almost
every simulation conditions, whereas, at D= 0.26 h−1, ethanol for-
mation was predicted especially for lower values of oxygen uptake and
ATPm coefficients (below 12mmol gDW−1 h−1 and 15mmol gDW−1

h−1, respectively). In fact, ethanol is predicted to be produced, instead
of acetate, for ATPm coefficients lower than 30 and 15, for
D=0.26 h−1 and D=0.52 h−1, respectively. For D=0.52 h−1 all si-
mulation conditions predicted the production of another by-product
than acetate (Supplementary material 8). Ethanol and formate are
known to be by-products formed under anaerobiosis (Sargo et al.,
2015). Thus, at the condition of aerobiosis used in the present work the
formation of these metabolites would not be expected.

It is known that, for Salmonella and E. coli, acetate production is
beneficial in energetic terms when compared with the production of
other by-products such as ethanol (one extra ATP molecule formed
when acetate is produced) (Wolfe, 2005). Thus, under aerobic condi-
tions and given the possibility of using other means of re-oxidizing the
reduced NAD cofactor, these organisms excrete acetate under overflow
conditions. The fact that the genome-scale model, constrained by the
measured fluxes, predicts that acetate only needs to be excreted when
ATPm is high reflects this phenomenon. With a lower ATPm the cells
seem to have no energetic limitations and thus could excrete the
overflow carbon in the form of ethanol, without gaining the extra ATP.
With a higher ATPm, cells pass into an energy-limiting condition and
acetate is the only product that can be excreted. The differences ob-
served between both dilution rates are difficult to discuss, as the impact
of the oxygen uptake is higher at a higher dilution rate. Clearly, at
lower oxygen uptake rates (under oxygen limitation), ethanol needs to
be excreted as a way to recycle the reduced cofactors.

Fig. 4. Contour maps of CBFA simulations using estimated fluxes as measured fluxes and glucose uptake flux as input. Variation of biomass (A and C) and acetate (B
and D) production fluxes with oxygen uptake flux and ATPm flux. Experimental values marked in graphs. (A) and (B): D= 0.26 h−1 and (C) and (D): D= 0.52 h−1.
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In the S. typhimurium genome-scale metabolic model (STM_v1.0)
reconstructed by Thiele et al. (2011), the default value for ATPm is
8.39mmol gDW−1 h−1, which was determined for E. coli (Feist et al.,
2007). Nevertheless, in general, and assuming that ATPm levels as high

as 20mmol gDW−1 h−1 are not physiologically possible, we can con-
clude that Salmonella cells seem to be in an ATP non-limiting condition
for both dilution rates. This hypothesis was already raised above when
concerning the lower dilution rate for the discussion on the utilization

(caption on next page)
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of the ED pathway. The fact that ethanol is not produced in vivo instead
of acetate, if this hypothesis is true, is probably related with regulatory
constraints.

As a way to evaluate the predictions made solely with the genome-
scale metabolic model, we have compared the results of pFBA simula-
tion without constraining the measured fluxes with the CBFA simula-
tion where all the measured fluxed were used as constraints (Fig. 5).
Generally, pFBA simulations presented higher fluxes than CBFA for
glycolysis and the TCA cycle reactions, for both dilution rates (Fig. 5A,
B, E, F). Pentose phosphate reactions presented a very low flux in pFBA
simulation compared with CBFA simulation (Fig. 5C and G), showing
that the genome-scale metabolic model does not adequately describe
the experimental fluxes through this pathway, as was already reported
for other organisms (Pereira et al., 2016). pFBA simulation also failed to
predict flux in the Entner–Doudoroff pathway at D= 0.26 h−1. The flux
values in anaplerotic reactions were also very different in pFBA simu-
lation and CBFA (Fig. 5D and H), with glyoxylate cycle activated in
pFBA simulation at D=0.26 h−1 instead of at D=0.52 h−1 (obtained
for CBFA).

4. Conclusions

This work represents, to the best of our knowledge, the first study
describing the carbon flow in the central carbon metabolic network of
S. typhimurium growing at glucose-limited chemostat cultures under
two different dilution rates (0.26 h−1 and 0.52 h−1).

Several conclusions can be drawn regarding the utilization of
pathways for glucose catabolism. Differences in flux distributions in
central carbon reactions between growth rates were observed. Besides
glycolysis, pentose phosphate pathway is utilized to a higher extent.
The results suggested that the Entner-Doudoroff pathway and the
glyoxylate shunt were also activated at D= 0.26 h−1 and
D=0.52 h−1, respectively. Such hypotheses could be elucidated by: (1)
the inclusion of 13CO2 measures to extend the metabolic network model
and improve its accuracy (Leighty and Antoniewicz, 2012); (2) em-
ploying optimization methods such as D-optimality criterion in order to
select appropriates isotopic tracers for a precise estimation of fluxes
depending on the interested pathway (Crown and Antoniewicz, 2012);
and (3) performing multiple parallel labeling experiments to generate
complementary labeling information that can improve the resolution of
fluxes and also allow the S. typhimurium model validation (Leighty and
Antoniewicz, 2012).

Overall, the obtained results point, on one hand, to a flexible me-
tabolism in Salmonella typhimurium, with the possibility of the use of
different pathways with similar functions but, on the other hand, to the
need of performing further experiments to understand the regulation of
the glyoxylate shunt and acetate metabolism, which seem to behave
differently when compared with what has been observed for E. coli.

In silico studies were performed to infer about genome-scale meta-
bolic model precision. In general, pFBA simulation using the CBFA
OptFlux plugin with estimated intracellular fluxes as constraints
showed a better fitting with extracellular fluxes, thus improving the
accuracy of metabolic model simulations. Regarding intracellular

fluxes, it is noticeable that some pathways, such as the pentose phos-
phate and anaplerotic reactions are not well described by pFBA using
the genome-scale metabolic model (STM_v1.0), a limitation that seems
to be common to many genome-scale models.

We also raise here the hypothesis of, at least at the lower dilution
rate, the cells not being energy-limited, justifying the utilization of the
ED pathway and the results obtained analyzing the flux space con-
strained by the measured fluxes. Although, this hypothesis still needs to
be proven.

Besides the contribution to broad the knowledge of S. typhimurium
metabolism, the data presented here might be useful to modulate and
optimize the growth of this organism with important medical and
biotechnological applications.
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