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Antidepressant responsiveness in adulthood is permanently
impaired after neonatal destruction of the neurogenic pool
S Yu1,6, I Zutshi1, R Stoffel1, J Zhang2, AP Ventura-Silva3,4, N Sousa3,4, PS Costa3,4, F Holsboer1,5, A Patchev1 and OFX Almeida1

The dynamic turnover of hippocampal neurons is implicated in the regulation of cognitive and affective behavior. Extending our
previous demonstration that administration of dexamethasone (ND) to neonatal rats depletes the resident population of neural
precursor cells (NPC) and restrains the size of the neurogenic regions, we now show that the adverse effects of ND persist into
adulthood. Specifically, ND impairs repletion of the neurogenic pool and neurogenesis; ND also compromises cognitive
performance, the ability to actively adapt to an acute stressor and, the efficacy of glucocorticoid (GC) negative feedback.
Interestingly, although ND depletes the neurogenic pool, it does not permanently abolish the proliferative machinery of the
residual NPC population; however, ND increases the susceptibility of hippocampal granule neurons to apoptosis. Although the
antidepressant fluoxetine (FLX) reverses the latter phenomenon, it does not replenish the NPC pool. Treatment of ND-treated adult
rats with FLX also improves GC negative feedback, albeit without rescuing the deleterious effects of ND on behavior. In summary,
ND leads to protracted disruption of mental functions, some of which are resistant to antidepressant interventions. We conclude
that manipulation of the NPC pool during early life may jeopardize the therapeutic potential of antidepressants in adulthood.
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INTRODUCTION
The dynamic acquisition and loss of hippocampal neurons is
implicated in the regulation of mood, cognition and the
neuroendocrine response to stress.1–3 The subgranular zone
(SGZ) of the hippocampal dentate gyrus is endowed with a pool
of neural precursor cells (NPC) that proliferate and differentiate
into neurons or glial cells.4 Integration of these newly formed cells
into the existing hippocampal circuitry influences cognitive
performance1,2,4,5 as well as affective behavior.6–10 Neurogenesis
persists throughout life but is subject to negative modulation by
intrinsic and extrinsic factors such as age,11,12 stress13,14 and high
glucocorticoid (GC) levels.15–17

The GC receptor agonist dexamethasone (DEX) is often used to
treat life-threatening conditions in perinatal medicine despite
concerns regarding optimal dosage and potential adverse
effects.18,19 The latter concerns arise from preclinical and clinical
reports that perinatal DEX treatment can severely retard
psychomotor, emotional and cognitive development.20–23 As high
levels of GC are encountered during stressful events, it is pertinent
to note that clinical studies have shown that early life experiences
have a critical role in shaping an individual’s mental health span
trajectory.24–27

The present study involved broad behavioral phenotyping of
adult rats that had received DEX during early postnatal life
(neonatal DEX, ND), with a focus on emotional and stress-coping
behavior, and hippocampus-dependent spatial memory. As
hyperactivity of this axis is causally linked with impaired learning
and memory3 as well as the ability to elicit adaptive behaviors that
promote health and survival,28,29 the impact of ND treatment on
the activity of the hypothalamo–pituitary–adrenal (HPA) axis was

also monitored. The decision to pay particular attention to
emotional and cognitive performance during adulthood was
based on our earlier demonstration that ND lastingly depletes the
neurogenic pool and retards volumetric growth of the rat dentate
gyrus.30 Lastly, given that antidepressants increase hippocampal
neurogenesis31,32 and concomitantly reverse some of the anom-
alous behaviors induced by stress during adulthood,7,8,33 we also
examined the potential of fluoxetine (FLX), a commonly-used
antidepressant, to ameliorate the undesired effects of ND
exposure.

MATERIALS AND METHODS
Experimental subjects
Experiments were carried out on litters derived from 13 Wistar dams
(Charles River, Sulzfeld, Germany), culled to 10 pups per litter at birth. On
weaning (21 days) animals from different litters were randomly assigned to
new housing groups (n=5 per cage). Procedures on animals were
approved by the Regierung von Oberbayern and complied with European
Union Directive 2010/63/EU. Throughout, animals were exposed to light
from 0600 to 1800 (ZT0-ZT18), and all training and behavioral test sessions
occurred between 0900 and 1200 (ZT3-ZT6). Group sizes for behavioral
and morphological experiments were decided on the basis of pilot
experiments on pup and adult rats (see figure captions for exact group
sizes).

Neonatal dexamethasone
Male pups received s.c. injections of vehicle (saline) or DEX (Fortecortin,
Merck, Darmstadt, Germany) on postnatal day (PND) 1–7 (DEX
200 μg kg− 1 day− 1 on PND 1–3, tapered down to 100 μg kg− 1 day− 1 on
PND 4–7); the neonatal vehicle- and DEX-treated groups are hereafter
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referred to as CON and ND, respectively. Animals that showed signs of
weakness or discomfort were immediately culled in accordance with rules
on animal welfare.

Fluoxetine treatment
At 3 months of age, animals were housed individually for at least 1 week
before receiving daily i.p. injections of either saline or FLX (10 mg kg− 1;
Kemprotech) for 4 weeks (Supplementary Figure S1A).

HPA axis function tests
At end of the study (week 16), blood samples (~100 μl) were withdrawn at
the daily nadir (ZT3) and peak (ZT18) of corticosterone (CORT) secretion;
harvested serum was assayed for CORT by radioimmunoassay (MP
Biochemicals, Costa Mesa, CA, USA). Blood samples were obtained after
venepuncture of the dorsal tail vein, which was then sealed by application
of light pressure before returning the animals to their home cages; during
this whole procedure (o2 min), rats were lightly restrained with a soft
towel. Animals were handled, restrained and underwent sham-
venepunctures on 2–3 occasions before collection of experimental test
probes.
The response of the HPA axis to an acute psychological stressor (air-

puff)34 was tested between ZT3 and ZT5. Tail blood samples, collected at
0 min and at 30 and 120 min thereafter, were subsequently assayed
for CORT.
The dexamethasone suppression test (DST)35 was used to examine the

efficacy of negative feedback regulation of the HPA. A bolus of DEX was
administered at ZT12 and tail-blood samples were collected for CORT
measurements at ZT18.

Behavioral phenotyping
Recognition memory (novel object-recognition test; Figure 1a),36 anxiety
(open field (OF) and elevated plus maze (EPM) tests),37,38 and capacity to
adopt an active and adaptive behavior during acute stressor (forced-swim
test)33,39 were tested in rats (CON: n= 26; FLX: n= 26; ND: n=13; ND–FLX:
n= 12). Tests were performed between ZT3 and ZT6, with intervals of
several days between each test to avoid carry-over effects; daily vehicle
and FLX injections were administered after each behavioral test
(Supplementary Figure S1A). Video-recorded behaviors were scored using
ANY-Maze software (Stoelting, Kiel, WI, USA) in a blinded manner.

Neonatal hippocampal NPC cultures and treatments
Primary neuronal cultures from the hippocampi of 4-day-old (P4) Wistar
rats were prepared as previously described.30 DEX was added to cultures
(10− 6 M, 24 h) after 6 days in vitro (DIV). Cells were then washed with
phosphate-buffered saline and re-incubated in culture medium; in some
cases, cultures were treated with DEX (10− 6 M) for a further 48 h.

Immunostaining
At the end of the experiment, rats (aged 4 months) were anaesthetized,
perfused with paraformaldehyde (4%) and killed; brains carefully excised,
cryo-preserved and stored at − 80 °C until sectioning (20 μm serial coronal
cryosections over the whole length of the hippocampal formation, keeping
every 10th section) (Supplementary Figure S1A). Sections were then
sequentially incubated with antisera against Ki67 (1:500, DAKO, M7248),
Sox2 (1:300, Santa Cruz; sc-17320) and cleaved caspase 3 (1:200, Cell
Signaling, Danvers, MA, USA/NEB; #9661). Immunoreactivity was visualized
using appropriate Alexa Fluor-conjugated secondary antibodies (Invitro-
gen). Volumes of the different subdivisions of the dentate gyrus and cell
densities (NV) in the SGZ (defined as a two-cell layer-thick zone on the
inner side of the granule cell layer of the dentate gyrus) were estimated
(by an investigator blind to the treatment).8 The total number of SGZ cells
of a given chemophenotype was derived from the product of Nv and
SGZ volume. Immunostaining of BrdU-incorporating NPC in vitro was
performed and analyzed as described previously.30

Immunoblotting
Hippocampi, obtained from subgroups of animals at the end of the
experiment (n= 3 per group) were lysed and immunoblotted40 to detect
Bax (1:1000, EMD Millipore, Darmstadt, Germany; 04-434), Bcl-xl (1:1000,
Abcam, Cambridge, UK; ab32370) and Bcl-2 (1:1000, BD Biosciences, San

Jose, CA, USA; 554087), using an enhanced chemiluminescence detection
kit (GE Life Sciences, Freiburg, Germany). Blots were scanned, checked for
linearity of signal and quantified (TINA 3.0 Bioimaging software, Raytest,
Straubenhardt, Germany) after subtraction of local background. Normal-
ized data are expressed as a percentage of controls.

Statistics
Appropriate sample sizes were determined on the basis of previous
experiments in our laboratory (effect size f= 1, type I error [α] = 0.05 and
minimum level of statistical power [1− β] = 0.8). Numerical data (mean± s.
e.) were subjected to 2-tailed Student t-tests or analysis of variance and
appropriate post-hoc analysis (IBM SPSS Statistics for Windows, Version
22.0; IBM, Armonk, NY, USA). Two-way ANOVA, followed by appropriate
post-hoc tests were used to determine the effects and interactions of the
ND and FLX treatments.

RESULTS
Persistent, fluoxetine-irreversible depletion of the NPC pool by ND
The efficacy of the DEX and FLX treatments are shown in
Supplementary Figure S1. Confirming that ND retards the
volumetric growth of the SGZ and granule cell layer (GCL),30

stereological analysis showed that ND exerts inhibitory effects on
hippocampal growth and the SGZ (P= 0.03, Supplementary
Figure S2A) and GCL volume (P= 0.03; Supplementary
Figure S2B), effects that persist through to adulthood.
The SGZ harbors a pool of NPC which was markedly depleted by

ND. Specifically, ND reduced the number of Sox2+ (NPC) cells
(P= 0.02; Figures 2a–c and e), Ki67 (mitotic) cells (P= 0.002;
Figures 2a–c) and Sox2+/Ki67+ (proliferating NPC) cells (P= 0.04;
Figures 2a–d) in the SGZ. Further, ND was found to disrupt the
migration and maturation of NPC from the SGZ to the inner GCL
(cf. Zhao et al.4), evidenced by the significant reduction in the
number of Sox2+ cells within the GCL of ND-treated animals
(P= 0.04; Figure 2g).
Antidepressants, including FLX, stimulate neurogenesis, thus,

possibly contributing to the therapeutic effects of
antidepressants.31 There was a significant interaction between
ND and FLX with respect to Ki67-positive proliferating cells
(F1,32 = 6.45, P= 0.02), but not Sox2-positive NPCs (F1,32 = 0.06,
P= 0.81), in the SGZ; specifically, FLX significantly increased the
number of proliferating cells (Ki67+: ND vs ND–FLX, P= 0.005;
Figure 2c) and proliferating NPCs (Sox2+/Ki67+: ND vs ND–FLX,
P= 0.008; Figure 2d) in the SGZ of ND-treated rats. Notably, FLX
did not influence the number of proliferative cells among any of
the sub-populations of cells examined in control animals (Ki67+:
control vs FLX, P= 0.59; Sox2+Ki67+: control vs FLX, P= 0.60;
Figures 2c and d).
The above effects of FLX were accompanied by a corresponding

increase in the number of migrating (Sox2+) NPCs in the GCL of
FLX-treated vs untreated ND-exposed rats (ND vs ND–FLX,
P= 0.001; Figure 2g). However, although FLX did not significantly
increase the number of NPCs in the SGZ of ND-exposed rats (Sox2:
ND vs ND–FLX, P= 0.23; Figure 2e), the number of NPCs in the ND–
FLX group was significantly lower than that found in the SGZ of
control (non-ND) rats that received FLX (Sox2: FLX vs ND–FLX,
P= 0.008; Figure 2e).
Administration of FLX to ND-treated animals leads to a recovery

of the SGZ volume to a level found in control animals; as
compared with the vehicle-treated ND group, the volume of the
SGZ was greater in ND animals that received FLX (ND vs ND–FLX,
P= 0.0004) (Supplementary Figure S2A). This, together with the
finding that FLX does not restore the density of NPCs in the SGZ to
control levels (F3,31 = 5.50, P= 0.004; control vs ND–FLX: P= 0.005;
Figure 2f), adds support to our previous report on the irreversible
depletion of NPC pool by ND treatment.30
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DEX blocks cell proliferation in a reversible manner
The question of whether ND alters the proliferation rate of NPC
was approached in primary hippocampal NPC cultures that were
treated with DEX (10− 6 M, 24 h). Predictably,41–43 exposure to
DEX (24 h) reduced the number of BrdU-positive cells by ~ 40% (cf.
Supplementary Figures S3A and C with Supplementary Figure S3E;
P= 0.01, compared with control cells). Following the withdrawal of
DEX, the number of BrdU-incorporating cells increased to levels
found in control cultures within 24 h (P40.05 vs control;
Supplementary Figure S3E).
Previous studies demonstrated that DEX blocks neural cell

proliferation by inducing arrest in the G1 phase of the cell
cycle.41,43 As depicted in Supplementary Figures S3F and G,
withdrawal of DEX from hippocampal NPC cultures alters the
expression of two key regulators of the cell cycle, cyclinD1 (up-
regulated) and p27 (down-regulated). Notably, following the
withdrawal of DEX, good temporal coincidence was found
between the expression patterns of cyclinD1 and p27 and the

increased BrdU incorporation (Supplementary Figures S3E–G;
CycD1-DEX vs CycD1-CON at 4 h, P40.05, and p27-DEX vs p27-
CON at 24 h, P40.05). These in vitro findings provide a first
mechanistic insight into how ND depletes the resident NPC pool
and prevents replenishment of the granule cell population by
agents such as FLX (cf. Figure 2f).

Extended susceptibility of NPC population to apoptosis after ND
treatment
Apoptotic events were previously implicated in ND-induced
depletion of the neurogenic pool during early postnatal
development.30,44,45 The results shown in Figure 3 show persistent
upregulation of the apoptotic machinery in adult ND-treated
animals: the hippocampi of ND-exposed rats displayed signifi-
cantly higher expression ratios of the pro-apoptotic protein Bax vs
the anti-apoptotic proteins Bcl-xL and Bcl-2 (cf. ref. 44 (control vs
ND: P= 0.003 and P= 0.005, for the ratios of Bax:Bcl-xL and Bax:Bcl-
2, respectively)), albeit without a contemporaneous increase in the
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Figure 1. Spatial and novel object-recognition memory are impaired after neonatal dexamethasone (ND) exposure and fluoxetine (FLX)
cannot rescue these cognitive deficits. The schematic (a) summarizes the paradigms used to assess two object-recognition memory.
Discrimination between the objects was determined using a discrimination ratio, calculated as the difference in time spent exploring the
novel object vs the familiar object divided by the total time spent exploring both objects.36 Initially, the distance traveled and speed of
movement of all experimental groups was assessed in the open field arena without objects; the results are shown in b. Results of the 2-object
relocated object preference test are shown in c. This test revealed that ND-treated rats are impaired in their ability to discriminate between a
relocated object and an object in its original location, and that this impairment of spatial recognition is not restored after treatment with FLX.
Examination of novel object preference (d) revealed that ND are retarded in their ability to discriminate between a novel and familiar object,
and that this impairment is cannot be rescued with FLX. Data are mean± s.e.m. (n= 13, 13, 13 and 12 for CON, ND, FLX and ND–FLX groups,
respectively). *Po0.05 vs control.
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number of activated caspase 3-positive cells (Figure 3a). Two-way
ANOVA revealed a significant interaction between ND and
fluoxetine with respect to the expression ratios of the pro- and
anti-apoptotic molecules, Bax and BCl2 and Bcl-xL (Bax:Bcl-xL,
F1,103 = 33.29, P=0.000; Bax:Bcl-2: F1,117 = 5.6, P=0.02). Although FLX
did not significantly influence these ratios in control rats (control vs
FLX: P=0.7 for Bax:Bcl-xL; P=0.61 for Bax:Bcl-2), the antidepressant
reversed them in ND-treated animals (Bax:Bcl-xL: ND vs ND–FLX
Po0.001; Bax:Bcl-2 ND vs ND–FLX P=0.001) (Figure 3b).

ND-induced cognitive impairment is FLX-irreversible
Inhibition of hippocampal neurogenesis is known to impair spatial
discrimination5 and spatial recognition memory.46 In experiments
to examine the impact of ND-induced depletion of NPC in the
novel object-recognition test, ND and FLX did not significantly
influence exploration time in either the sample (F3,48 = 0.98,
P= 0.41), relocated object test (F3,40 = 0.65, P= 0.59) or novel
object test (F3,37 = 0.19, P= 0.9; Figure 1a) phases. None of the
groups differed in terms of locomotor activity (total distance
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traveled and speed) (F3,48 = 1.9, P= 0.14 and F3,48 = 1.9, P= 0.14,
respectively), as measured in an OF arena (Figure 1b).
Analysis of results obtained in the spatial recognition test

revealed main effects of ND (F1,37 = 12.43, P= 0.001) but not of FLX
(F1,37 = 2.55, P= 0.12); no significant interaction effects of ND and
FLX were detected (F1,33 = 0.28, P= 0.6). As shown in Figure 1c,
whereas control animals orientated to the new location
(expected), ND-treated rats rigidly preferred the object in its
familiar location (discrimination ratio in controls vs ND-treated
rats: P= 0.007). No differences were found between FLX-treated
and control rats in the spatial recognition test (control vs FLX:
P= 0.48). Further, FLX did not improve the deficit in spatial
memory displayed by ND animals (ND vs ND–FLX: P= 0.12;
Figure 1c) despite the efficacy of FLX in stimulating hippocampal
neurogenesis (cf. Figures 2d and e).
Examination of recognition memory that depends on structural

integrity of the hippocampus47 (Figure 1a) showed that ND-
treated rats were significantly impaired in their ability to
differentiate between novel and familiar objects when compared
with controls (P= 0.002, Figure 1d). This deficit was not reversed
by FLX administration during adulthood (P= 0.38; no significant
FLX ×ND interaction: F1,44 = 2.04, P= 0.16, Figure 1d).

ND persistently disrupts mood-like behavior and HPA axis function
Emotion, mood and cognition are closely-related behavioral
domains,33,48,49 and comorbidity of mood and anxiety disorders
occurs frequently.3,32 ND-treated rats showed increased anxiety-
like behaviors in the OF test; specifically, these animals showed
fewer rearings (control vs ND: P= 0.01) and spent less time in the
center of the OF arena (F3,77 = 2.21, P= 0.09; control vs ND:
P= 0.03) (Figure 4a). A similar pattern of behavior was observed
when control rats were given FLX (control vs FLX: P= 0.03);
moreover, FLX did not relieve ND-increased anxiety (time in OF
arena central area: ND vs ND–FLX: P= 0.74; rearings: F3,51 = 2.53,
P= 0.07; ND vs ND–FLX: P= 0.09 (Figure 4a).

ND-treated individuals showed signs of increased anxiety-like
behavior in the EPM in terms of time spent in (P= 0.001), and the
number of entries into (P= 0.05), the open arms of the maze
(Figure 4b). FLX elicited anxiety-like behavior in control rats (time
in open arms: P= 0.001; entries into open arms: P= 0.03) and failed
to exert anxiolytic actions in the ND-treated group (the time spent
in open arms: F3,47 = 18.15, P= 0.001; ND vs ND–FLX, P= 1.00;
number of entries into open arms: F3,47 = 3.34, P= 0.03; ND vs ND–
FLX, P= 0.27); these observations are consistent with previous
reports that FLX does not always produce anxiolytic effects in
rodents.50–57

Floating, rather than swimming or active struggling, in the
forced-swim test serves as an index of reduced ability to ‘switch
from active to passive behavior in the face of an acute stressor,
aligned to cognitive functions underlying behavioral adaptation
and survival’.39 Adult rats that had been exposed to ND showed
impaired coping behavior; as compared with controls, the ND
group displayed a significantly higher number of floating episodes
(P= 0.001) and were immobile (floating) for a significantly longer
time (P= 0.001; Figure 4c). No significant effects of FLX were
detected between the number and time of floating episodes in
control (time: F3,44 = 26.96, P= 0.000; control vs FLX: P= 1.00;
number of episodes: F3,51 = 10.55, P= 0.000; control vs FLX:
P= 1.00) and ND-exposed rats (time: ND vs ND–FLX: P= 0.16;
number of episodes: ND vs ND–FLX: P= 1.00; Figure 4c).
Impaired GC negative feedback mechanisms and hypersecre-

tion of GC is a common feature in depression in humans29,58 and
in animal models of the disease.59 In this study, serum
corticosterone levels did not differ between control and ND-
treated animals during the daily nadir in the activity of the HPA
axis (P= 0.66; Figure 5a); this finding indicatings that ND did not
suppress adrenocortical secretion under basal conditions. On the
other hand, ND-exposed rats displayed discrepant GC secretory
responses when confronted with an acute stressor (Figure 5a);
despite their significantly higher resting levels of corticosterone
(P= 0.001), ND-treated rats responded to acute stress with a
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sluggish and significantly blunted corticosterone response
(P= 0.001). Further, results of a DST showed that ND-treated
animals are impaired in terms of GC negative feedback: whereas
the daily nocturnal rise in corticosterone secretion was fully
suppressed by DEX in control animals, DEX only partially
suppressed corticosterone secretion in ND-treated animals
(P= 0.001; Figure 5b).
Although FLX did not affect baseline corticosterone secretion

(F3,57 = 0.33, P= 0.8; Figure 5a), the antidepressant improved GC
negative feedback after exposure of ND-treated rats to an acute

stressor (at 120 min-post stress: F3,61 = 13.2, P= 0.000; control vs
ND–FLX: P= 0.48; ND vs ND–FLX: P= 0.001; Figure 5a). Moreover,
FLX treatment during adulthood resulted in improved GC feed-
back efficacy in ND-exposed animals (F3,53 = 10.06, P= 0.001;
control vs ND–FLX: P= 1.0; ND vs ND–FLX: P= 0.001; Figure 5b).

DISCUSSION
Neuronal turnover in the hippocampus is a dynamic process
which includes neurogenesis and apoptosis in the SGZ of the
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dentate gyrus.4 The hippocampus undergoes its most dynamic
structural organization during early postnatal life60 but new
granule neurons continue to be generated throughout life, albeit
at progressively lower rates as individuals age.61 Abundant
evidence indicates the importance of neurogenesis and apoptosis
in modulating preexisting neurocircuits.62,63 Apoptosis has an
important role in the control of the size of the granule neuron
population. Although post-mitotic neurons are endowed with
robust anti-apoptotic mechanisms, these can be subjugated by
GC3,64,65 and aging,63 resulting in significant attrition of the
granule cell layer. In light of demonstrations that the (finite)
population of NPC in the dentate gyrus are vulnerable to GC-
induced apoptosis,30 the present study was designed to examine
the functional consequences (and reversibility) of ND exposure.

This was considered important because DEX appears in the WHO
Model List of Essential Medicines for children (http://www.who.int/
medicines/publicati-ons/essentialmedicines/EMLc_2015_FINAL_
amended_AUG2015.pdf?ua = 1).
The results obtained in the present study show that ND has a

persistent negative impact on the neurogenic capacity of the
hippocampus. In ND-treated animals, the reduction in the
hippocampal pool of NPC (Sox2+ cells) and the number of
actively dividing NPC (Ki67+/Sox2+ cells) in ND-treated animals is
accompanied by shrinkage of the SGZ; however, it is important to
note that some cells may escape the actions of DEX because they
do not express GR.30,66 As the inhibitory effect of DEX on neuronal
proliferation can be spontaneously reversed, the persistent
impairment of the neurogenic pool is most likely due to the loss
of neural progenitors during neonatal life. The finding that ND-
exposed adult rats display reduced GCL volumes and deficits in
spatial and object-recognition memory confirms earlier sugges-
tions that neurogenesis is important for the manifestation of
hippocampus-dependent behaviors.5,46,62,67

GC stimulate apoptosis of hippocampal neurons41,42 and of NPC
within the SGZ.30,44 In the present study, adult ND-treated rats did
not display increased hippocampal levels of cleaved caspase 3, a
marker of active apoptosis. However, ND treatment was associated
with higher expression ratios of pro-apoptotic (Bax) vs anti-
apoptotic (Bcl-2 and Bcl-xl) proteins, indicating greater vulner-
ability of hippocampal cells to apoptosis.30,45 As ND treatment
depletes the NPC pool through apoptosis,30 and astrocytes are
resistant to DEX-induced apoptosis,40 we suggest that the cells
displaying signs of vulnerability to apoptosis during adulthood are
likely to be mature granule neurons.
The hippocampus occupies a key position in the central

regulatory cascades that serve to restrain GC secretion following
stress.68 Failure to curtail GC secretion in a timely manner
compromises stress-coping ability and may trigger the onset of
depression and anxiety,29,58,69 cognitive dysfunction3,48,49 and
possibly, Alzheimer disease pathology.37,70 The association
between ND treatment and impaired GC negative feedback,
together with the behavioral phenotype observed, reinforces the
view that exposure to stress or GC during early life can lead to
protracted/lifelong disruption of mental functions.70,71 Interest-
ingly, we found that administration of the antidepressant FLX
during adulthood reverses the ND-triggered inhibition of mitosis
in the dentate gyrus and the disruptive effect of ND on GC
negative feedback; however, FLX failed to rescue ND-induced
impairments in memory and adaptive behavior. This observation,
which is consistent with a previous report that adult neurogenesis
is required for FLX to normalize HPA axis activity,72 also suggests
that a mechanism, other than proliferation, contributes to the
overall therapeutic effects of FLX, a possibility worthy of further
investigation.
Consistent with the results of studies with various

antidepressants,33,73,74 FLX was found to stimulate mitosis within
the dentate gyrus of ND-exposed animals, but not control animals.
Strikingly, however, FLX did not restore the NPC pool in ND-
treated animals, indicating that chronic FLX treatment in
adulthood is not sufficient to rescue the effects of ND treatment.
GC receptors, which mediate the apoptotic effects of DEX, are
expressed by both quiescent neural progenitors and amplifying
neural progenitors in the SGZ.30 Interestingly, FLX application
during adulthood only promotes division of amplifying neural
progenitors;75 this offers a plausible explanation for why FLX
treatment stimulates neurogenesis in the absence of a concomi-
tant increase in the NPC pool. In this context, it is important to
recall that NPC have a limited capacity for self-renewal and that
neurogenesis wanes with increasing age;76,77 accordingly, accel-
erated age-related deterioration of hippocampal functions that
depend on neurogenesis would be a predictable outcome of ND
treatment.
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Given that the hippocampus is reciprocally connected with the
amygdala, bed nucleus of the stria terminalis, nucleus accumbens
and medial prefrontal cortex, it is not surprising that neurogenesis
in the hippocampus has an impact on mood and emotion.6–9 The
results of the present study show that both, ND and FLX induce
hyperanxiety; they also show that FLX does not act as an anxiolytic
when administered to ND-exposed animals. Interpretation of
these findings is challenging because of the highly variable
direction of effects of FLX on anxiety levels in animals: FLX has
been variably described to have no effects,51,52 anxiolytic
effects33,53 or anxiogenic effects54–57 in animals; these disparate
reports most likely reflect differences in animal strain,54 age78 and/
or experimental conditions such as handling.79

In summary, our results demonstrate that ND impairs a variety
of hippocampus-dependent functions, ranging from neuroendo-
crine homeostatic mechanisms to the regulation of affective and
cognitive behaviors. These impairments occur contemporaneously
with the depletion of the hippocampal NPC pool, persistent
inhibition of hippocampal neurogenesis and, increased vulner-
ability of hippocampal neurons to apoptosis. As FLX administra-
tion enhances the survival of hippocampal neurons, we suggest
that timely application of antidepressants may help rescue at least
some of the behavioral functions that are lost following ND-
induced reductions in the neurogenic capacity of the hippocam-
pus. Our findings that early postnatal life represents a phase
during which NPC are particularly sensitive to DEX lend support to
the American Academy of Pediatrics’ policy on the use of
glucocorticoids in pediatric practice.18 On the other hand, and
notwithstanding the limitations of extrapolating results from one
species to another, it deserves mentioning, (i) that neurogenesis is
only transiently inhibited when DEX is administered to adult rats,64

and (ii) that prenatal DEX does not persistently impair the volume
and proliferative and differentiation capacity of the non-human
primate hippocampus.80 Therefore, exploration of the existence of
developmental windows during which DEX therapy may be safely
applied will be a worthwhile pursuit in future investigations.
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