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Abstract

In this paper we perform a formal asymptotic analysis on a kinetic model for reactive mixtures in
order to derive a reaction-diffusion system of Maxwell-Stefan type. More specifically, we start from
the kinetic model of simple reacting spheres for a quaternary mixture of monatomic ideal gases
that undergoes a reversible chemical reaction of bimolecular type. Then, we consider a scaling
describing a physical situation in which mechanical collisions play a dominant role in the evolution
process, while chemical reactions are slow, and compute explicitly the production terms associated
to the concentration and momentum balance equations for each species in the reactive mixture.
Finally, we prove that, under the isothermal assumption, the limit equations for the scaled kinetic
model is the reaction diffusion system of Maxwell-Stefan type.
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1 Introduction

The description and modelling of chemically reactive mixtures is a topic of great importance due to many
engineering applications related, for example, to chemical industry and biotechnology [17, 35, 39]. In particular,
a proper description of diffusive phenomena in multicomponent mixtures, with or without chemical reactions,
is crucial in many simulations and design processes used by chemical engineers [27]. In this context, the
Maxwell-Stefan (MS) equations are used by many applied and experimental researchers to model and predict
diffusion as well as mass transfer processes in multicomponent mixtures [35, 36, 39]. In fact, it is well known
that the MS equations are adequate to describe non-typical diffusions that appear as a consequence of some
thermodynamic non-idealities, by introducing the chemical potential gradients as driving forces [27, 39]. When
a multicomponent mixture with chemical reaction is considered, a hydrodynamic system which consists of the
continuity equations for the constituents in the mixture and the MS equations, can be used to describe diffusion
among the constituents and how their concentrations change as a consequence of the chemical reaction.
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Despite the practical interest and applications of the MS equations for multicomponent mixtures with or
without chemical reaction, not much is known about the mathematical analysis of these equations. Rigorous
results have been published over the past few years, see [8, 11, 12, 13, 21, 22, 23]. In particular, [12, 13, 22] dealt
with the formal derivation of hydrodynamic systems of MS equations coupled with the continuity equations for
the species from a kinetic (mesoscopic) system of Boltzmann equations for non-reactive multicomponent mixture
and obtained explicit expressions for the diffusion coefficients in terms of the kinetic model parameters. Such
papers follow the well established line of research initiated by Golse and co-workers [2, 3, 4] on the transition
from kinetic Boltzmann models to hydrodynamic equations of fluid mechanics. In close connection with these
works, but considering chemically reactive mixtures, we quote here [5, 6, 7] which dealt with the derivation
of macroscopic reaction-diffusion equations from a system of reactive Boltzmann equations. In these papers,
using an appropriate scaling of the reactive Boltzmann equations and assuming different types of molecular
interactions, the evolution equations for the species number densities were explicitly derived in the asymptotic
limit of small Knudsen number. Moreover, the convergence from the reactive Boltzmann equations to the
reaction-diffusion system was proven and discussed in [5, 6]. Reaction-diffusion equations for chemically reactive
mixtures were also derived in [33, 34, 40], starting from kinetic equations of Fokker-Planck type. Various scalings
were considered in view of analyzing the interactions between transport processes and chemical reactions.

In the present paper, we are interested in the limiting process that leads from a particular model of reactive
Boltzmann equations to a reaction-diffusion system of MS type. More precisely, we consider a quaternary
mixture of monatomic ideal gases undergoing a bimolecular reversible reaction, described by the simple reacting
sphere (SRS) kinetic model [30, 32, 38], in which both elastic and reactive collisions are of hard-sphere type.
Then, considering a scaling of the SRS kinetic equations for which elastic collisions are dominant and reactive
collisions are less frequent, and assuming isothermal condition, we formally derive the reaction-diffusion system of
MS type form the evolution of the number density and momentum balance of the species. The formal derivation
of these equations from a kinetic model is our main contribution in this paper and, as far as we know, this is the
first attempt in this direction. Our assumptions correspond to a regime of slow, isothermal chemical reaction
that occurs when the chemical process takes place at a rate slow enough to allow the surroundings to continuously
compensate for the balance of reaction heat between the reactants and products [8, 9, 10, 21, 43, 44]. In the
limit, we obtain a reaction diffusion system similar to those studied in [8, 9, 10]. If the isothermal assumption
is disregarded, the evolution equation for the temperature of the mixture should be considered and the reaction
diffusion system obtained in the limit will be similar to the one obtained in [42] for a non-reactive mixture.

After this introduction, the remaining part of our work is organized as follows. The reaction-diffusion system
of MS type for a multi-species reactive mixture in the context of continuum mechanics is introduced in Section
2. In Section 3 we describe the SRS kinetic model and introduce its relevant properties that are essential for
our analysis.

The diffusive asymptotics of the SRS kinetic model towards the reaction-diffusion system of MS type is
studied in Section 4, after a proper scaling of the SRS equations. Our conclusions and some future perspectives
are stated in Section 5. Finally, we include an Appendix in Section 6 where we give some steps and other details
about the computation of the integrals appearing in Section 4.

2 The continuum reaction-diffusion system of Maxwell-Stefan type

In this section, we introduce a mathematical model for a reactive multi-species gaseous mixture in the context of
continuum mechanics. The mixture is influenced by two processes, namely diffusion, which causes the species to
spread in space, and chemical reaction, which results in the transformation of the species into each other. The
model equations consist of the concentration balance equations for the reactive species in the mixture coupled
with the MS equations for the momentum of the species. These equations describe how both processes affect
the evolution of the mixture and will be referred to as the reaction-diffusion system of MS type.

Let Ω ⊂ R3 be a bounded domain with boundary denoted by ∂Ω and outward normal vector at each point
x of the boundary given by ν(x). We consider a mixture of four species, say A1, A2, A3 and A4, that participate
in a chemical reaction of type

A1 +A2 
 A3 +A4. (1)
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This means that species A1, A2 react to produce species A3, A4 and conversely, species A3, A4 also react to
produce species A1, A2. We say that A1, A2 and A3, A4 are the reactive species (or the reactive pairs), more
specifically A1, A2 are reactants and A3, A4 are products of the forward chemical reaction. For each species Ai,
with i = 1, 2, 3, 4, let %i(t,x) ≥ 0 be the mass density, ui(t,x) the mean velocity and ri(t,x) the production
rate of mass density due to the chemical reaction, where x ∈ Ω and t > 0.

The mass balance equation for each constituent in the reactive mixture reads

∂%i
∂t

+
∂

∂x
(%iui) = ri, x ∈ Ω, t > 0. (2)

Due to the type of chemical reaction (1), the production rates satisfy the condition

4∑
i=1

ri = 0, (3)

which results in the conservation of the total mass of the mixture.
In this paper, we adopt a molar based description (see [16]) of the reactive mixture and, as a result, for each

species Ai we introduce the molar mass Mi and define the molar concentration ci(t,x) and its production rate
Ji, the molar flux Ni(t,x), the mole fraction γi(t,x) and the molar diffusive flux Ji(t,x), given respectively by

ci =
%i
Mi

, Ji =
ri
Mi

, Ni = ciui, γi =
ci
c
, Ji = ci(ui − v). (4)

Here, c := c(t,x) and v := v(t,x) are the molar concentration and molar average velocity of the mixture, defined
by

c =

4∑
i=1

ci, v =

4∑
i=1

γiui, x ∈ Ω, t > 0. (5)

Note that the molar diffusive fluxes Ji satisfy the constraint

4∑
i=1

Ji = 0, x ∈ Ω, t > 0. (6)

In our analysis, diffusion and chemical reaction are the relevant effects in the mixture. Therefore, as in
[8, 9, 10, 21], we neglect the effects due to temperature gradients, by assuming an isothermal condition which
corresponds to a uniform in space and constant in time mixture temperature T . We also neglect the effects due
to convection and advection.

From the mass balance equation (2), using definitions (4), we obtain the evolution equations for the species
concentrations ci in the form

∂ci
∂t

+
∂Ji
∂x

= Ji, x ∈ Ω, t > 0, i = 1, 2, 3, 4, (7)

where we have considered ∂
∂x (civ) = 0, since convection is neglected.

The diffusion process in multicomponent gaseous mixtures can be accurately described by the MS equations,
which express the relationship between the molar diffusive fluxes and the chemical potentials of the species.
Adopting the standard form for the chemical potentials [21] and taking into account the isothermal assumption,
the driving forces (given by the chemical potentials) become equal to the concentration gradients of the species
and the MS equations relate the molar diffusive fluxes to the concentration gradients. Following the description
of [35], and using our notation, the MS equations under isobaric assumption (i.e. constant pressure) can be
written in the form

∂ci
∂x

= −1

c

4∑
s=1
s6=i

csJi − ciJs
Dis

, x ∈ Ω, t > 0, i = 1, 2, 3, 4, (8)
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where Dis is the diffusion coefficient associated to species Ai and As, with Dis = Dsi. Observe that summing
(7) over all species as well as (8) over all species, we obtain

∂c

∂t
= 0 and

∂c

∂x
= 0,

which means that the total molar concentration of the mixture, c, is uniform in x and constant in t. Also, the
MS equations (8) are linearly dependent and only three of these equations are independent, so we have to add
another equation to the system.

For what concerns the boundary conditions to join to our set of equations, we assume that the chemical
reaction (1) takes place in a closed domain, so that we impose

ν · Ji = 0, x ∈ ∂Ω, t > 0, i = 1, 2, 3, 4. (9)

Equations (7) and (8), together with constraint (6), constitute the reaction-diffusion system of MS type.
These equations are similar to those studied in [8, 23]. They are used to describe diffusion and chemical kinetics
of the multi-species reactive mixture in the context of continuum mechanics.

The aim of the present paper is to formally derive the balance equations (7) and the MS equations (8) as
the hydrodynamic limit of the SRS kinetic model for the considered reactive mixture. The chemical production
rates Ji and the diffusion coefficients Dis will be explicitly computed from the collisional dynamics of the kinetic
model and will be expressed in terms of some kinetic parameters.

3 The SRS kinetic model

In this section, we introduce our kinetic model for the quaternary reactive mixture considered in Section 2. This
model is based on the kinetic theory of simple reacting spheres (SRS), first proposed by Marron in [28], and
then developed by Xystris, Dahler and Qin in [15, 32, 38]. Some aspects of the mathematical analysis of the
SRS model were investigated, for example, in [14, 20, 29, 30]. Here, we introduce the model and briefly describe
some of its properties needed for the analysis developed in this paper. Other details about the SRS model can
be seen in the references just quoted above.

We consider the quaternary reactive mixture introduced in Section 2, whose constituents A1, A2, A3, A4

participate in the bimolecular chemical reaction (1) and confined ourselves to the simplifying assumption that
the species are endowed with only translational degree of freedom. In other words, the species are monatomic
like (i.e. internal degrees of freedom associated to rotational, vibrational and nuclei energies are not taken into
account. For each i = 1, 2, 3, 4, let mi, di and Ei be, respectively, the mass, the diameter and the formation
energy of the species Ai. Conservation of mass holds for the chemical reaction (1) and thus we have

m1 +m2 = m3 +m4 = M. (10)

The reaction heat, denoted by QR, is given by the difference between the formation energies of the products of
the forward reaction and those of the reactants, i.e.

QR = E3 + E4 − E1 − E2. (11)

This means that the forward reaction A1 +A2 → A3 +A4 is exothermic if QR < 0. Otherwise, it is endothermic.
Also, we introduce the activation energy ζi for each of the species Ai, such that ζ1 = ζ2, ζ3 = ζ4 and ζ3 = ζ1−QR.

3.1 Collisional dynamics

Particles in the mixture undergo binary elastic collisions and reactive encounters obeying the chemical law (1),
both of hard sphere type. Elastic collisions take place between particles of the same species, as well as between
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particles of different species. The cross section of an elastic collision between particles of species Ai, As is
defined by

σ2
is =

1

4
(di + ds)

2, i, s = 1, 2, 3, 4. (12)

If vi, vs are the pre-collisional velocities and v′i, v′s the post-collisional velocities, the conservation laws of linear
momentum and kinetic energy for elastic collisions are, respectively, given by

mivi +msvs = miv
′
i +msv

′
s and mi(vi)

2 +ms(vs)
2 = mi(v

′
i)

2 +ms(v
′
s)

2. (13)

The post-collisional velocities are given in terms of the pre-collisional velocities by

v′i = vi − 2
µis
mi

ε 〈ε,vi − vs〉 and v′s = vs + 2
µis
ms

ε 〈ε,vi − vs〉 , (14)

where
µis =

mims

mi +ms
(15)

is the reduced mass of the colliding pair, ε is a unit vector directed along the line joining the centre of the
two spheres at the moment of impact, that is ε ∈ S2

+ =
{
ε ∈ R3 : ‖ε‖ = 1, 〈ε,vi − vs〉 > 0

}
. Moreover, 〈·, ·〉

represents the inner product in R3 and ‖ · ‖ is the norm induced by this inner product. For convenience, we
introduce the total mass of the colliding pair, Mis = mi +ms.

Remark 3.1 Note that if we use spherical coordinates with θ ∈ [0, π/2] as the polar angle between vi−vs and ε
and φ ∈ [0, 2π[ as the azimuthal angle in the plane orthogonal to vi−vs, then ε = (sin θ cosφ, sin θ sinφ, cos θ).
Also, 〈ε,vi − vs〉 = V ∗ cos θ, where V ∗ = ‖vi − vs‖ is the norm of the relative velocity before collision.

Concerning reactive encounters, a collision between particles of species Ai, Aj with pre-collisional velocities
vi, vj will result in a chemical reaction if the kinetic energy associated with the relative motion of the colliding
pair along the line of their centres is greater than, or equal to, the activation energy, that is

1

2
µij 〈ε,vi − vj〉2 ≥ ζi. (16)

If Ak, Al represent the products of the forward reaction and v◦k, v◦l their post-collisional velocities, then
the conservation laws of linear momentum and total energy (kinetic plus binding) for reactive collisions are,
respectively, given by

mivi +mjvj = mkvk
◦ +mlvl

◦, (17)

Ei +
1

2
mi(vi)

2 + Ej +
1

2
mj(vj)

2 = Ek +
1

2
mk(v◦k)2 + El +

1

2
ml(v

◦
l )

2, (18)

where the indexes are such that (i, j, k, l)∈{(1, 2, 3, 4), (2, 1, 4, 3), (3, 4, 1, 2), (4, 3, 2, 1)}. From now on, if nothing
is said about the indexes (i, j, k, l), we assume that they are as introduced above.

Remark 3.2 From condition (16), for a reactive collision to occur, we must have 〈ε,vi − vj〉 ≥
√

2ζi/µij.

Using the definitions of the unit vector ε and relative velocity norm V = ‖vi − vj‖ before the collision, we

obtain V ≥
√

2ζi/µij, which motivates the definition of the threshold relative velocity as Ξij =
√

2ζi/µij. In

particular, Ξij is the required relative velocity necessary to assure that the collision will be of reactive type.

The reactive cross sections for the direct and reverse chemical reactions can be defined in terms of their
threshold relative velocities by

σ′212 =

 β12σ
2
12, 〈ε,v1 − v2〉 ≥ Ξ12,

0, 〈ε,v1 − v2〉 < Ξ12,
σ′234 =

 β34σ
2
34, 〈ε,v3 − v4〉 ≥ Ξ34,

0, 〈ε,v3 − v4〉 < Ξ34,
(19)
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where the coefficients βij represent the fraction of colliding pairs with enough kinetic energy to produce a
reaction that in fact react chemically. They play the role of steric factors, with 0 ≤ βij ≤ 1.

The post-collisional velocities for the forward chemical reaction A1 +A2 → A3 +A4 are given by

v◦3 =
1

M

[
m1v1 +m2v2 +m4

√
µ12

µ34

{
(v1 − v2)− ε 〈ε, (v1 − v2)〉+ εω−

}]
,

v◦4 =
1

M

[
m1v1 +m2v2 −m3

√
µ12

µ34

{
(v1 − v2)− ε 〈ε, (v1 − v2)〉+ εω−

}]
,

(20)

where ω− =
√

(〈ε, (v1 − v2)〉)2 − 2QR/µ12. Analogously, the post-collisional velocities for the reverse chemical
reaction A3 +A4 → A1 +A2 are given by

v◦1 =
1

M

[
m3v3 +m4v4 +m2

√
µ34

µ12

{
(v3 − v4)− ε 〈ε, (v3 − v4)〉+ εω+

}]
,

v◦2 =
1

M

[
m3v3 +m4v4 −m1

√
µ34

µ12

{
(v3 − v4)− ε 〈ε, (v3 − v4)〉+ εω+

}]
,

(21)

where ω+ =
√

(〈ε, (v3 − v4)〉)2 + 2QR/µ34.

We close this subsection by recalling some properties about the dynamics of the reactive collisions that have
been established in [14] and [30].

Property 3.3 For a reactive collision, the following properties hold

1

2
µij(vi − vj)

2 =
1

2
µkl(v

◦
k − v◦l )

2 +QR, (22)

µij (〈ε,vi − vj〉)2
= µkl (〈ε,v◦k − v◦l 〉)

2
+ 2QR, (23)

1

2
µij (〈ε,vi − vj〉)2 − ζi =

1

2
µkl (〈ε,v◦k − v◦l 〉)

2 − ζk, (24)

〈ε,vi − vj〉 =

(
µkl
µij

)1
2

ω+. (25)

Property 3.4 For a fixed vector ε, the Jacobians of the transformations (vi,vj) 7→ (v◦k,v
◦
l ) and (vk,vl) 7→

(v◦i ,v
◦
j ) are, respectively, given by(

µkl
µij

)3
2 〈ε,v◦k − v◦l 〉

ω+
and

(
µij
µkl

)3
2 〈ε,vi − vj〉

ω−
. (26)

3.2 Kinetic equations

The state of the reactive mixture is described by the one-particle distribution functions fi(t,x,vi) representing
the density of particles of species Ai, expressed in moles, which at time t are located at position x and have
velocity vi, with i = 1, 2, 3, 4 and (t,x,vi) ∈ R+×Ω×R3. The functions fi are related to the molar concentrations
ci through the following expressions

ci(t,x) =

∫
R3

fi(t,x,vi) dvi, t ≥ 0, x ∈ Ω, i = 1, 2, 3, 4. (27)

In absence of external forces, the SRS kinetic equations are given by

∂fi
∂t

+ vi ·
∂fi
∂x

= Ji , in R+ × Ω× R3, (28)
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for i = 1, 2, 3, 4, with Ji = JEi + JRi , where JEi is the elastic collision operator and JRi is the reactive collision
operator. They are respectively defined as follows,

JEi = σ2
ii

∫
R3

∫
S2
+

[
fi
′f ′i∗ − fifi∗

]
〈ε,vi − vi∗〉 dε dvi∗

+

4∑
s=1
s6=i

σ2
is

∫
R3

∫
S2
+

[fi
′f ′s − fifs] 〈ε,vi − vs〉 dε dvs

− βijσ2
ij

∫
R3

∫
S2
+

[fi
′fj
′ − fifj ] Θ (〈ε,vi − vj〉 − Ξij) 〈ε,vi − vj〉 dε dvj ,

(29)

JRi = βijσ
2
ij

∫
R3

∫
S2
+

[(
µij
µkl

)2
f◦kf

◦
l − fifj

]
Θ (〈ε,vi − vj〉 − Ξij) 〈ε,vi − vj〉 dε dvj , (30)

where we have adopted the usual notation f ′i = f(t,x,v′i), f
′
i∗ = f(t,x,v′i∗), f

′
s = f(t,x,v′s), fk

◦ = f(t,x,v◦k),
fl
◦=f(t,x,v◦l ), and Θ is a Heaviside step function, defined at x ∈ R by

Θ(x) =

{
1, x ≥ 0,
0, x < 0.

(31)

Equations (28) together with expressions (29) and (30) constitute the SRS kinetic system. Without being
precise, the accompanying boundary conditions to describe the interactions between the molecules and the
boundary ∂Ω of the evolution domain are taken to be of specular reflection type [37]. Such boundary conditions
ensure that the reactive mixture is considered in a closed domain, as assumed in Section 2.

In expression (29) for the elastic collision operator, the first term on the right hand side represents collisions
involving particles of the same species and the index i∗ is used to distinguish their velocities. This term
represents the standard Boltzmann collision operator for a single gas (mono-species) and will be denoted by
JmEi . The second term in the same expression describes elastic collisions between particles of different species
(bi-species) and will be denoted by JbEi . The last term singles out the fraction βij of those pre-collisional states
that are energetic enough to result in chemical reaction, and thus prevent double counting of these collisions
in the elastic and reactive operators. This term will be denoted by Jb∗Eij . Accordingly, in what follows, for
i = 1, 2, 3, 4, we will write

JEi = JmEi + JbEi − Jb∗Eij , (32)

with the following notations

JmEi = σ2
ii

∫
R3

∫
S2
+

[
fi
′f ′i∗ − fifi∗

]
〈ε,vi − vi∗〉 dε dvi∗ , (33)

JbEi =

4∑
s=1
s 6=i

σ2
is

∫
R3

∫
S2
+

[fi
′fs
′ − fifs] 〈ε,vi − vs〉 dεdvs︸ ︷︷ ︸
Qis

, (34)

Jb∗Ei = βijσ
2
ij

∫
R3

∫
S2
+

[fi
′fj
′ − fifj ] Θ (〈ε,vi − vj〉 − Ξij) 〈ε,vi − vj〉 dε dvj . (35)

The following proposition provides an alternative form of writing the collision operator Ji, which is very useful
to interpret the collisional dynamics of the model, in particular, the role of the operator Jb∗Eij . For the proof, it

is enough to combine Jb∗Eij with the contribution from JbEi when s = j and use the identity Θ(x) + Θ(−x) = 1.

Proposition 3.5 For each i = 1, 2, 3, 4, the collision operator Ji introduced in (28) can be rewritten as

Ji = σ2
ii

∫
R3

∫
S2
+

[
f ′if
′
i∗ − fifi∗

]
〈ε,vi − vi∗〉 dε dvi∗
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+ σ2
ik

∫
R3

∫
S2
+

[fi
′f ′k−fifk]〈ε,vi−vk〉 dεdvk + σ2

il

∫
R3

∫
S2
+

[f ′if
′
l−fifl]〈ε,vi−vl〉 dεdvl

+ σ2
ij

∫
R3

∫
S2
+

Θ (Ξij − 〈ε,vi − vj〉) [fi
′fj
′ − fifj ] 〈ε,vi − vj〉 dεdvj (36)

+ (1− βij)σ2
ij

∫
R3

∫
S2
+

Θ (〈ε,vi − vj〉 − Ξij) [fi
′fj
′ − fifj ] 〈ε,vi − vj〉 dεdvj

+ βijσ
2
ij

∫
R3

∫
S2
+

[(
µij
µkl

)2
f◦kf

◦
l − fifj

]
Θ (〈ε,vi − vj〉 − Ξij) 〈ε,vi − vj〉 dε dvj .

Let us focus on the last three terms on the right hand side of expression (36), which are associated to collisions
between the reactive species Ai and Aj . The first of these terms, with σ2

ij in front of it, is related to those
collisions between Ai, Aj with insufficient amount of energy to produce a chemical reaction, and therefore are
governed by elastic collisional dynamics. The last two terms correspond to collisions between Ai, Aj with
sufficient amount of energy to produce a chemical reaction. However, only a fraction βij of such collisions
results in a chemical reaction (last term) and produces species Ak and Al. The remaining fraction (1 − βij)
corresponds to collisions that are also governed by elastic collisional dynamics (second to the last term).

Remark 3.6 Observe that by setting the coefficients βij equal to zero, the collisional terms Jb∗Ei and JRi vanish,
see (30) and (35). This corresponds to a situation in which the chemical reaction is turned off and we recover
from our equations the hard-spheres model for a non-reactive mixture. Moreover, by setting the coefficients
equal to one, all collisions with sufficient amount of energy to produce a chemical reaction will result, in fact,
in a reactive collision. However, this is not the case in general, because it is well known in chemistry [41]
that besides the activation energy barrier, the relative orientation of the molecules at the instant of collision is
very important for the occurrence of a chemical reaction, meaning that only collisions with sufficient amount
of energy and right orientation will result in a chemical reaction. Accordingly, we will consider in this paper
the case in which βij ∈ ]0, 1[ to guarantee that chemical reaction in fact occurs (βij > 0), but some collisions
between the reactive species will not result in a chemical reaction due to improper orientation (βij < 1), even if
they have enough energy to react chemically.

3.3 Fundamental Properties of The SRS Model

In this subsection we review some fundamental properties of the SRS kinetic system. We have decided to include
these properties in our paper because here we split the elastic collision operator in a particular form, see (32).
These properties are adapted to our formalism and can be proved adapting the proofs in [14, 20, 29, 30] for
similar results.

Lemma 3.7 Given the mono-species elastic collision operator JmEi , let ϕ(vi) be a sufficiently smooth test
function. Then, the weak form of (33) for each of the species in the reactive mixture is given by∫

R3

JmEi ϕ(vi) dvi =
1

4
σ2
ii

∫
R3

∫
R3

∫
S2
+

[
f
′

if
′

i∗ − fifi∗
]
〈ε,vi − vi∗〉

× [ϕ(vi) + ϕ(vi∗)− ϕ(v′i)− ϕ(v′i∗)] dε dvi∗dvi. (37)

Lemma 3.8 Given the bi-species elastic collision operator JbEi defined in (34) as a sum of several contributions
of Qis, let ϕ(vi) be a sufficiently smooth test function. Then, for each i, s = 1, 2, 3, 4 with i 6= s, we have that∫

R3

Qis ϕ(vi)dvi = σ2
is

∫
R3

∫
R3

∫
S2
+

[ϕ(v′i)− ϕ(vi)] fifs 〈ε,vi − vs〉 dε dvs dvi. (38)
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Lemma 3.9 Given the elastic collision operator Jb∗Eij defined in (35), let ϕ(vi) be a sufficiently smooth test
function. If we assume that βij = βji, then for (i, j) ∈ {(1, 2), (2, 1), (3, 4), (4, 3)}, we have that∫

R3

Jb∗Eij ϕ(vi) dvi = βijσ
2
ij

∫
R3

∫
R3

∫
S2
+

[ϕ(v′i)− ϕ(vi)] fifj Θ (〈ε,vi − vj〉 − Ξij)

× 〈ε,vi − vj〉 dε dvj dvi. (39)

Concerning the reactive collision operator JRi , we have the following property.

Lemma 3.10 Given the reactive collision operator JRi defined in (30), let ϕ(vi) be a sufficiently smooth test
function. If we assume that βij = βji and β12σ

2
12 = β34σ

2
34, then we have that

4∑
i=1

∫
R3

JRi ϕi(vi)dvi = β12σ
2
12

∫
R3

∫
R3

∫
S2
+

[ϕ1 + ϕ2 − ϕ◦3 − ϕ◦4]

[(
µ12

µ34

)2
f◦3 f

◦
4 − f1f2

]

×Θ (〈ε,v1 − v2〉 − Ξ12) 〈ε,v1 − v2〉 dε dv2 dv1 (40)

= β34σ
2
34

∫
R3

∫
R3

∫
S2
+

[ϕ3 + ϕ4 − ϕ◦1 − ϕ◦2]

[(
µ34

µ12

)2
f◦1 f

◦
2 − f3f4

]

×Θ (〈ε,v3 − v4〉 − Ξ34) 〈ε,v3 − v4〉 dε dv4 dv3.

3.4 Conservation equations

The conservation equations of the SRS model are obtained from the properties stated in Subsection 3.3. Their
proofs are rather standard and follow the same line as in [14, 20, 29, 30].

Corollary 3.11 The mono-species elastic collision operator given in (33) is such that, for i = 1, 2, 3, 4,

∫
R3

JmEi

 1
mivi

1
2mi(vi)

2

 dvi = 0. (41)

Proof. The proof follows from Lemma 3.7 and conservation laws (13). �

Corollary 3.12 Let Qis and Jb∗Eij be as defined in (34) and (35), respectively. Then∫
R3

Qis dvi = 0, (42)∫
R3

Jb∗Eij dvi = 0, (43)∫
R3

Qis
(

mivi
1
2mi(vi)

2

)
dvi +

∫
R3

Qsi
(

msvs
1
2ms(vs)

2

)
dvs = 0, (44)∫

R3

Jb∗Eij

(
mivi

1
2mi(vi)

2

)
dvi +

∫
R3

Jb∗Eji

(
mjvj

1
2mj(vj)

2

)
dvj = 0. (45)

Proof. The proof follows from Lemmas 3.8, 3.9 and conservation laws (13). �
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Corollary 3.13 The reactive collision operators satisfy the following property∫
R3

JR1 dv1 =

∫
R3

JR2 dv2 = −
∫
R3

JR3 dv3 = −
∫
R3

JR4 dv4. (46)

Proof. The proof follows from Lemma 3.10. �

Corollary 3.13 assures the correct exchange rates for the species in the chemical reaction (1).

Corollary 3.14 The elastic and reactive collision operators are such that

4∑
i=1

∫
R3

ϕ(vi)
(
JEi + JRi

)
dvi = 0, (47)

with ϕ(vi) alternatively given by ϕ(vi)=
(
1, 0, 1, 0

)
, ϕ(vi)=

(
1, 0, 0, 1

)
, ϕ(vi)=

(
0, 1, 1, 0

)
, or by ϕ(vi)=mivix,

ϕ(vi)=miviy, ϕ(vi)=miviz, or by ϕ(vi)=Ei + 1
2miv

2
i , where vix, viy and viz represent the spatial components

of the molecular velocity vi.

Proof. The proof follows from Corollaries 3.11, 3.12 and Lemma 3.10. �

Corollary 3.14 indicates that, at least formally, the SRS model possesses seven independent macroscopic con-
servation laws, for the total number of particles of the reactant-product pairs of the form A1-A3, A1-A4 and
A2-A3, the three momentum components and the total energy of the mixture.

3.5 Equilibrium solutions and H-Theorem

The equilibrium solutions of the SRS system are characterized as follows.

Definition 3.15 The equilibrium solutions of the SRS model (28) are distribution functions fi(t,x,vi) such
that the operators JEi and JRi given in (29) and (30) satisfy

JEi + JRi = 0, i = 1, . . . , 4. (48)

Proposition 3.16 If the coefficients βij and the reactive cross sections are such that βij = βji and β12σ
2
12 =

β34σ
2
34, then the following statements are equivalent

(a) fi = ci

(
mi

2πkBT

)3/2

exp

(
−mi(vi − u)2

2kBT

)
, for i = 1, . . . , 4, with

c1c2 =

(
µ12

µ34

)1/2
c3c4 exp

(
QR
kBT

)
; (49)

(b) JEi = 0 and JRi = 0, i = 1, . . . , 4;

(c)

4∑
i=1

∫
R3

[
JEi + JRi

]
log

(
fi
µij

)
dv = 0,

where

ci(t,x) =

∫
R3

fi(t,x,vi)dvi, i = 1, . . . , 4, (50a)
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u(t,x) =

4∑
i=1

∫
R3

mivifi(t,x,vi)dvi

/ 4∑
i=1

∫
R3

mifi(t,x,vi)dvi, (50b)

T (t,x) =
1

3kB

4∑
i=1

∫
R3

mi(vi − u)2fi(t,x,vi)dvi

/ 4∑
i=1

ci(t,x). (50c)

Condition (49) represents the so called mass action law for the SRS kinetic model.

4 Reaction diffusion limit of the SRS kinetic model

In this section we formally derive the reaction-diffusion system of MS type as a hydrodynamic limit of the SRS
kinetic model given in Section 3. In order to achieve this, we have to define an evolution regime for the chemical
process and consider the mathematical assumptions that should be imposed on the kinetic model in agreement
with the physical conditions associated to the MS setting.

4.1 The scaled equations and our assumptions

The starting point for the derivation of the reaction diffusion system of MS type is the scaled SRS kinetic system
in a form compatible with the considered chemical regime of dominant elastic collisions and slow chemical
reactions. Accordingly, we will consider the SRS kinetic equations written in non-dimensional form as

St
∂f̂i

∂t̂
+ v̂i ·

∂f̂i
∂x̂

=
1

Kne
ĴmEi +

1

Kne
ĴbEi −

1

Knr
Ĵb∗Eij +

1

Knr
ĴRi , i = 1, 2, 3, 4, (51)

where St is the kinetic Strouhal number [19], Kne and Knr are the elastic and reactive Knudsen numbers
[1]. The Knudsen numbers are such that the reactive and elastic mean free paths are related by the factor
Knr/Kne = 1/βij . The symbols with the hat indicate scaled quantities with respect to a reference length L,
time τ and temperature T0. We also introduce the speed of sound c0 in a mixture of monatomic ideal gases

at temperature T0, given by c0 =
√

5n0kBT0

3ρ0
, and scale the velocities with respect to c0. The scaled collisional

operators are defined by

ĴmEi = σ̂2
ii

∫
R3

∫
S2
+

[
f̂i
′
f̂ ′i∗ − f̂if̂i∗

]
〈ε, v̂i − v̂i∗〉 dε dv̂i∗,

ĴbEi =

4∑
s=1
s6=i

σ̂2
is

∫
R3

∫
S2
+

[
f̂i
′
f̂s
′
− f̂if̂s

]
〈ε, v̂i − v̂s〉 dε dv̂s,

Ĵb∗Eij = σ̂2
ij

∫
R3

∫
S2
+

[
f̂i
′
f̂j
′
− f̂if̂j

]
Θ (〈ε, c0v̂i − c0v̂j〉 − Ξij) 〈ε, v̂i − v̂j〉 dε dv̂j ,

ĴRi = σ̂2
ij

∫
R3

∫
S2
+

[(
µij
µkl

)2
f̂◦k f̂

◦
l − f̂if̂j

]
Θ (〈ε, c0v̂i − c0v̂j〉 − Ξij) 〈ε, v̂i − v̂j〉 dε dv̂j .

Moreover, we assume that the bulk velocity of the mixture is comparable to L/τ and, as a result, the Strouhal
number becomes the Mach number, Ma. Henceforth, we introduce the notations

St = Ma = α, Kne = αp and Knr = αq, (52)

where α� 1, p and q are real numbers with p ≥ 1 and p > q. Also, we assume that the elastic Knudsen number
is of the same order of magnitude as the Mach number, so that p = 1. Additionally, we are interested in a
chemical regime for which elastic collisions are predominant and reactive collisions are rare, so that we assume
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q = −1. Using the above notations and the generic assumptions in (51), and removing the hats for simplicity,
we obtain that, for i = 1, 2, 3, 4,

α
∂fαi
∂t

+ vi ·
∂fαi
∂x

=
1

α
JmαEi +

1

α
JbαEi − αJb∗αEij + αJαRi , in R+ × Ω× R3, (53)

where fαi , i = 1, 2, 3, 4, are now the scaled unknowns in the considered regime and JmαEi , JbαEi , Jb∗αEij , JαRi
indicate that the collisional operators are now expressed in terms of fαi . Equations (53) emphasize that the
mono-species and bi-species elastic operators JmαEi and JbαEi are associated to predominant effects, whereas
the reactive operator JαRi and the correction elastic term Jb∗αEij are associated to rare effects.

With the obvious adjustments, the conservation laws and properties of the SRS model given in Section 3 are
still valid for the scaled equations (53).

Besides the chemical regime of slow chemical reaction, our central assumptions to derive the reaction diffusion
system of MS type from the kinetic formulation are as follows:

(a) The initial conditions are local Maxwellian functions centred at the mean velocity of the species.

(b) The evolution of the system leaves the distribution functions in the local Max-wellian state.

(c) The bulk velocity of the mixture is small and goes to zero as α→ 0.

(d) The evolution of the mixture obeys the isothermal condition.

Assumption (d) implies that the temperature T of the mixture is uniform in space and constant in time. It is
compatible with the physical situation of slow chemical reaction and signifies that the chemical process takes
place at a rate slow enough to allow the surroundings to continuously compensate for the balance of reaction
heat between the reactants and products (see [43]). Assumption (c) allows us to neglect convective effects and
describe a physical system governed by diffusion and chemical reaction. Assumptions (a) and (b) correspond
to the physical situation in which the system evolves not far away from the local Maxwellian equilibrium.

From both the assumption (a) and the first assertion of (52), and following [18, 19], the initial conditions
for (53) are distribution functions of the following form

f
α(in)
i (x,vi) = c

α(in)
i (x)

(
mi

2πkBT

)3
2

exp

−mi

(
vi−αu

α(in)
i (x)

)2

2kBT

, x ∈ Ω, vi ∈ R3, (54)

where T > 0 is constant (isothermal condition), c
α(in)
i : Ω → R+, for i = 1, . . . , 4, with cα(in) =

∑4
i=1 c

α(in)
i ,

and u
α(in)
i : Ω → R3, for i = 1, . . . , 4. From assumption (b), the distribution functions at time t > 0 are local

Maxwellians centred at the mean velocity of the species, given by

fαi (t,x,vi) = cαi (t,x)

(
mi

2πkBT

)3
2

exp

−mi

(
vi−αuαi (t,x)

)2

2kBT

, x ∈ Ω, vi ∈ R3, (55)

where cαi : R+ × Ω→ R+ and uαi : R+ × Ω→ R3, for i = 1, . . . 4. Using (55), the moments of order 0 and 1 of
the distribution functions are, respectively, given by∫

R3

fαi (t,x,vi)dvi = cαi (t,x) and

∫
R3

vif
α
i (t,x,vi)dvi = αcαi (t,x)uαi (t,x). (56)

An important step in the passage from a kinetic model to hydrodynamic equations is the explicit computation
of the integral contributions appearing in the kinetic equations. When a reactive mixture is involved, such
computation can be very intricate, essentially because of the redistribution of masses and internal energies
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among the constituents. Having this in mind, in the light of assumption (c), the Maxwellian (55) with species
velocity will be approximated through a first order expansion around the Maxwellian Mα

i with a common and
vanishing mixture velocity, namely

fαi (t,x,vi) ≈Mα
i (t,x,vi)

[
1 +

αmivi · uαi (t,x)

kBT

]
, (57)

with

Mα
i (t,x,vi) = cαi (t,x)

(
mi

2πkBT

)3
2

exp

(
−mi(vi)

2

2kBT

)
. (58)

Expressions (57) will be used in Subsections 4.2 and 4.3 for the explicit computation of the integral contributions.
As stated by Present in [31], p. 147, first-order corrections to the Maxwellian distributions (58) as those given
by expansions (57) were first used by J. Stefan in his celebrated work from 1872 to capture the diffusion effects
in a mixture of gases.

Moreover, hereinafter we will use the notation Γ(η, x) for the incomplete Euler gamma function defined by

Γ(η, x) =

∫ ∞
x

tη−1e−tdt. (59)

4.2 Concentration balance equations

The balance equations for the species concentration can formally be derived from the scaled SRS equations
given in (53), by integrating over the velocity space. Also, the conservation laws and some of the fundamental
properties of the kinetic model stated in Section 3 will be used to achieve the following result.

Lemma 4.1 The concentration balance equations for the species in the reactive mixture can be written as

∂cαi
∂t

+
∂

∂x
(cαi uαi ) = Ji, i = 1, . . . , 4, (60)

with Ji being the reaction rate of the i-th species given by

Ji = σ2
ij

(
2πµij
kBT

)1
2

[(
µij
µkl

)1
2

cαk c
α
l exp

(
QR
kBT

)
− cαi cαj

]
(61)

×

[
2kBT

µij
Γ(2, z∗i )−

(
Ξij
c0

)2
Γ(1, z∗i )

]
,

where the terms Γ(1, z∗i ), Γ(2, z∗i ) are defined by (59) with

z∗i =
µij

2kBT

(
Ξij
c0

)2
. (62)

Moreover, for each i = 1, . . . , 4 we have Ji = λiJ1, with λ1 = λ2 = 1 and λ3 = λ4 = −1.

Proof. First, we integrate both sides of the scaled SRS equations given in (53) with respect to vi ∈ R3, to
obtain

α
∂

∂t

(∫
R3

fαi dvi

)
+

∂

∂x

(∫
R3

vif
α
i dvi

)
= α

∫
R3

JαRi dvi,

where we have used Corollary 3.11, Lemma 3.8 with ϕ(vi) = 1, and Lemma 3.9 with ϕ(vi) = 1. Using (56), we
obtain

∂cαi
∂t

+
∂

∂x
(cαi uαi ) =

∫
R3

JαRi dvi. (63)
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Next, we derive an explicit expression for the integral contribution on the right hand side of (63). To do
this, we replace the distribution functions by their approximations (57). For sake of simplicity, we write such
approximations in the form

fαi ≈Mα
i

(
1 + ai · vi

)
, with ai =

αmiu
α
i

kBT
, (64)

and, for any index i, we refer to ai as coefficient a. Using (64), we can write the integral on the right-hand-side
of (63) as the sum of the following three terms,

D=σ2
ij

∫
R3

∫
R3

∫
S2
+

(
µ2
ij

µ2
kl

Mα◦
k M

α◦
l −Mα

iM
α
j

)
Θ
(〈
ε, c0vi−c0vj

〉
−Ξij

)
〈ε,vi−vj〉 dεdvjdvi,

E=σ2
ij

∫
R3

∫
R3

∫
S2
+

(
µ2
ij

µ2
kl

Mα◦
k M

α◦
l

(
ak ·v◦k+al · v◦l

))
Θ
(〈
ε, c0vi−c0vj

〉
−Ξij

)
〈ε,vi−vj〉 dεdvjdvi,

F=−σ2
ij

∫
R3

∫
R3

∫
S2
+

(
Mα
i M

α
j

(
ai ·vi+aj ·vj

))
Θ
(〈
ε, c0vi−c0vj

〉
−Ξij

)
〈ε,vi−vj〉 dεdvjdvi, (65)

where quadratic terms in the coefficients a have been neglected.

Inserting (58) into the integral contributions D, E and F , we obtain

(i) D = Ji, with Ji the reaction rate defined in (61);

(ii) E = 0;

(iii) F = 0.

Concerning items (ii) and (iii), the computations require some variable transformations and we give some details
in Appendix A of Subsection 6.1. Let us focus on item (i). Using (58) and the conservation law of total energy
during reactive collisions given in (18), we obtain

D =σ2
ij

(mimj)
3
2

(2πkBT )3

[(
µij
µkl

)1
2

cαk c
α
l exp

(
QR
kBT

)
− cαi cαj

]
(66)

×
∫
R3

∫
R3

∫
S2
+

exp

[
−mi(vi)

2+mj(vj)
2

2kBT

]
Θ
(〈
ε, c0vi−c0vj

〉
−Ξij

)
〈ε,vi − vj〉 dεdvjdvi.

Evaluating the integral over S2
+, using spherical coordinates as described in Remark 3.1, we obtain∫

S2
+

Θ (〈ε, c0vi−c0vj〉−Ξij) 〈ε,vi − vj〉 dε = πVΘ

(
V −Ξij

c0

)[
1−
(

Ξij
c0V

)2]
. (67)

Susbstituting (67) into (66), then transforming the resulting sixfold integral in vi, vj to the relative velocity
V = vj−vi and centre of mass velocity X=(mivi+mjvj)/(mi+mj), and using the fact that the Jacobian of
the transformation has absolute value 1, we get

D = πσ2
ij

(mimj)
3
2

(2πkBT )3

[(
µij
µkl

)1
2

cαk c
α
l exp

(
QR
kBT

)
− cαi cαj

]

×
∫
R3

exp

(
−MX2

2kBT

)
dX

∫
R3

VΘ

(
V −Ξij

c0

)[
1−
(

Ξij
c0V

)2]
exp

(
−µijV

2

2kBT

)
dV, (68)
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where M = mi +mj . The integral in X can be easily evaluated and becomes∫
R3

exp

(
−MX2

2kBT

)
dX =

(
2πkBT

M

)3
2

. (69)

The integral in V can be expanded and the resulting terms are computed by first transforming to spherical
coordinates. Next, the resulting scalar integrals in V are transformed to z, using z =

µij
2kBT

V 2, and finally using
(59), we obtain∫

R3

VΘ

(
V −Ξij

c0

)
exp

(
−µijV

2

2kBT

)
dV −

∫
R3

V exp

(
−µijV

2

2kBT

)
Θ

(
V −Ξij

c0

)(
Ξij
c0V

)2
dV

= 2π
2kBT

µij

[
2kBT

µij
Γ(2, z∗i )−

(
Ξij
c0

)2
Γ(1, z∗i )

]
. (70)

Substituting (69) and (70) into (68), and performing a little algebra, we obtain the desired expression (61) for
the integral D in item (i).

The last assertion of Lemma 4.1 is an immediate consequence of Corollary 3.13 about the reactive collision
operators. �

Remark 4.2 (a) The reaction rate Ji given in (61) can be written in an equivalent form, as a phenomenological
law for the chemical reaction (1), as

Ji = −λi
(
kf c

α
1 c
α
2 − kb cα3 cα4

)
, i = 1, . . . , 4, (71)

with kf and kb being the forward and backward rate constants given, respectively, by

kf = σ2
12

√
8πkBT

µ12
exp

(
− ζ1
kBT

)
and kb = σ2

34

√
8πkBT

µ34
exp

(
− ζ3
kBT

)
, (72)

Equation (71) expresses the reaction rate in the form used, in general, in physical applications, see [24].

(b) Our expression (61) differs from the corresponding one obtained in paper [5], see (42) in that paper, es-
sentially because the SRS reactive cross sections are of hard-sphere type and the integral over S2

+ is explicitly
evaluated in (67), whereas reactive cross sections in paper [5] are of Maxwell molecules type and the integral
over S2

+ is not explicitly evaluated. Moreover, our exponent 1/2, instead of 3/2 as in paper [5], is a consequence
of the fact that the exponent of the term

(
µij/µkl

)
in our reactive collision operator JRi is 2, see (30), while in

[5] it is 3.

4.3 Momentum balance equation

The momentum balance equations for the species in the reactive mixture can formally be derived from the
scaled equations (53), after multiplying by the molecular velocity vi and then integrating over the velocity
space. Also, the conservation laws and some of the fundamental properties stated in Section 3 will be used to
compute explicitly the production terms appearing in the balance equations.

However, some words are needed before presenting the next lemma. As it is well known, the computation
of the integral contributions appearing in the momentum balance equations is rather technical and extremely
intricate, and the final explicit expressions of these contributions are quite huge. On the other hand, as it will
become clear from the balance equations derived in the lemma (see (73), below), only the O(1) terms in α will
be retained in the equations, that is only those terms associated to the elastic scattering will influence the final
formulation of the balance equations. Accordingly, we include in the next lemma only the explicit expressions
of the O(1) terms and present in Appendix 6.2 the explicit expression of the O(α2) terms.
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Lemma 4.3 The momentum balance equation for each of the species in the reactive mixture is given by

α2 ∂

∂t
(cαi uαi ) +

kBT

mi

∂cαi
∂x

+ α2 ∂

∂x
(cαi uαi ⊗ uαi ) = Oi − Pi +Qi, (73)

where Oi is an O(1) production term associated to the elastic scattering, and is given by

Oi =
1

α

∫
R3

viJ
bαE
i dvi =

32

9

4∑
s=1
s6=i

σ2
is

ms

mi +ms

(
2πkBT

µis

)1
2

cαi c
α
s

(
uαs − uαi

)
, (74)

and Pi, Qi are O(α2) production terms associated to the chemical process, and are respectively given by

Pi = α

∫
R3

viJ
bα∗E
ij dvi, Qi = α

∫
R3

viJ
αR
i dvi, (75)

whose explicit expressions are given in Appendix 6.2, see (91) and (104).

Proof. First, we multiply both sides of the scaled SRS equations given in (53) by vi and integrate with respect
vi ∈ R3, to obtain

α
∂

∂t

(∫
R3

vif
α
i dvi

)
+

∂

∂x

(∫
R3

vi ⊗ vif
α
i dvi

)
=

1

α

∫
R3

viJ
mαE
i dvi

+
1

α

∫
R3

viJ
bαE
i dvi︸ ︷︷ ︸

Oi

−α
∫
R3

viJ
b∗αE
ij dvi︸ ︷︷ ︸
Pi

+α

∫
R3

viJ
αR
i dvi︸ ︷︷ ︸

Qi

. (76)

Let us concentrate first on the left-hand-side terms in (76).

(i) From the second expression in (56), it immediately follows that

α
∂

∂t

(∫
R3

vif
α
i dvi

)
= α2 ∂

∂t

(
cαi uαi

)
. (77)

(ii) For what concerns the second term on the left-hand side of (76), we transform from vi to the peculiar
velocity ξi = vi − αuαi and then use the fact that the Jacobian of the transformation is equal to 1 to obtain

∂

∂x

(∫
R3

vi ⊗ vif
α
i dvi

)
=

∂

∂x

(∫
R3

fαi ξi ⊗ ξi dξi

)
+ 2α

∂

∂x

(
uαi ⊗

∫
R3

fαi ξidξi

)
+ α2 ∂

∂x

(
uαi ⊗ uαi

∫
R3

fαi dξi

)
. (78)

Inserting (55), expressed in terms of the peculiar velocity ξi, into (78) and evaluating the integrals, we easily
see that the second term on the right hand side vanishes. Consequently, (78) reduces to

∂

∂x

(∫
R3

vi ⊗ vif
α
i dvi

)
=
kBT

mi

∂cαi
∂x

+ α2 ∂

∂x

(
cαi uαi ⊗ uαi

)
. (79)

Now let us deal with the terms on the right hand side of (76).

(iii) The first term vanishes by virtue of the second assertion in Corollary 3.11 about the mono-species elastic
operator, see (41).
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(iv) To derive an explicit expression for the production term Oi, we use the considered approximation of fαi in
the form (57) or (64). Taking into account Lemma 3.8 with ϕ(v′i) = v′i and ϕ(vi) = vi, we obtain

Oi =
1

α

4∑
s=1
s6=i

σ2
is

∫
R3

∫
R3

∫
S2
+

(
v′i − vi

)
fαi f

α
s 〈ε,vi − vs〉 dε dvs dvi.

Using the first expression in (14) for v′i, evaluating the integral over the sphere S2
+ by transforming to spherical

coordinates as described in Remark 3.1, and transforming the remaining sixfold integral in vi and vs to the
relative velocity V∗ = vs − vi and centre of mass velocity X∗ = (mivi + msvs)/Mis, with Mis =mi+ms, as
defined before, we obtain

Oi =
4π

3α

4∑
s=1
s6=i

σ2
is

ms

Mis
cαi c

α
s

(mims)
3
2

(2πkBT )3
(80)

×

{(∫
R3

exp

(
−MisX

∗2

2kBT

)
dX∗

)(∫
R3

V ∗exp

(
−µisV

∗2

2kBT

)
V∗dV∗

)
+

(∫
R3

exp

(
−MisX

∗2

2kBT

)
X∗dX∗

)
(as + ai)·

(∫
R3

V ∗ exp

(
−µisV

∗2

2kBT

)
V∗dV∗

)
+

mi

Mis

(∫
R3

exp

(
−MisX

∗2

2kBT

)
dX∗

)(∫
R3

(as ·V∗)V∗ exp

(
−µisV

∗2

2kBT

)
V ∗dV∗

)
− ms

Mis

(∫
R3

exp

(
−MisX

∗2

2kBT

)
dX∗

)(∫
R3

(ai ·V∗)V∗ exp

(
−µisV

∗2

2kBT

)
V ∗dV∗

)}
,

where we have neglected the quadratic term in the coefficients a and introduced the notation V ∗ = ‖V∗‖,
X∗=‖X∗‖. Also, ai=

αmiu
α
i

kBT
, as =

αmiu
α
s

kBT
as defined in (64).

Considering the first integral in (80), writing V∗ = V ∗~v with ~v a unit vector, and transforming to spherical
coordinates, we conclude that the integral vanishes, since∫

R3

V ∗exp

(
−µisV

∗2

2kBT

)
V∗dV∗ =

∫ ∞
0

V ∗4 exp

(
−µisV

∗2

2kBT

)
dV ∗

(∫ π

0

sin2 θ dθ

∫ 2π

0

cosφdφ x̂

+

∫ π

0

sin2 θ dθ

∫ 2π

0

sinφdφ ŷ +

∫ π

0

sin θ cos θ dθ

∫ 2π

0

dφ ẑ

)
= 0.

where x̂, ŷ, ẑ are the Cartesian unit vectors in R3. This implies that the first two addends within the braces in
(80) vanish. Concerning now the integrals in the third and last terms on the right hand side of the same equation,
we have that the integrals in X∗ are similar to the one in (69). Moreover, by setting (as ·V∗)V∗ = as cos θV ∗2~v,
with as = ‖as‖, in the integral with respect to V∗ appearing in the third term, and then transforming to
spherical coordinates, we obtain∫

R3

as cos θV ∗2~v exp

(
−µisV

∗2

2kBT

)
V ∗dV∗= as

∫ ∞
0

V ∗5exp

(
−µijV

∗2

2kBT

)
dV ∗

(̂
x

∫ π

0

sin2 θ cos θdθ

∫ 2π

0

cosφdφ︸ ︷︷ ︸
0

+ŷ

∫ π

0

sin2 θ cos θ dθ

∫ 2π

0

sinφdφ︸ ︷︷ ︸
0

+ẑ

∫ π

0

sin θ cos2 θ dθ︸ ︷︷ ︸
2
3

∫ 2π

0

dφ︸ ︷︷ ︸
2π

)
.

Performing the integration with respect to V ∗, we obtain∫
R3

(as ·V∗)V∗ exp

(
−µisV

∗2

2kBT

)
V ∗dV∗ =

4π

3

(
2kBT

µis

)3

as. (81)
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Similarly, with respect to the last term on the right hand side of (80), we obtain∫
R3

(ai ·V∗)V∗ exp

(
−µisV

∗2

2kBT

)
V ∗dV∗ =

4π

3

(
2kBT

µis

)3

ai. (82)

Substituting the above results into (80) and performing a little algebra we derive the final expression (74). This
ends the proof of Lemma 4.3. The computation of the O(α2) terms Pi and Qi is omitted here, see Appendix
6.2. �

Remark 4.4 (a) The diffusion coefficients in our limiting equations can be computed explicitly from expressions
(74). This will be done in the next subsection, see expression (86).

(b) In paper [25], for another kinetic model, the authors considered a different input function (see Eq. (32)
of [25]) and obtained a production term (see (34) in that paper) similar to the one in our expression (74).
However, the coefficient 32/9 in our case, instead of 8/3 in paper [25], results from the fact that the models are
different and also from the definition of the elastic cross sections, namely we use σ2

is = (di + ds)
2/4 and paper

[25] uses σβα=(dα + dβ)2/16. �

4.4 Macroscopic equations and formal asymptotics

In this subsection we state the main result of this paper. In particular, using Lemmas 4.1 and 4.3, we formally
derive the reaction diffusion system of MS type as the hydrodynamic asymptotic limit of the scaled SRS kinetic
system (53). The connection between the two systems is based on the fact that the scaled Maxwellians (55)
solve the kinetic equations if the macroscopic parameters cαi and uαi characterizing such Maxwellians solve the
approximate equations (60) and (73). The conclusion is obtained in the limit as α → 0 by assuming that the
functions cαi , uαi converge pointwise to ci, ui, for t ≥ 0 and x ∈ Ω.

Theorem 4.5 (i) The Maxwellians defined in (55) are solutions of the initial boundary value problem for the
scaled SRS kinetic equations (53) with initial conditions (54) if, for i = 1, 2, 3, 4, functions cαi and uαi solve the
approximate system 

∂cαi
∂t

+
∂

∂x
(cαi uαi ) = Ji,

α2 ∂

∂t
(cαi uαi ) +

kBT

mi

∂cαi
∂x

+ α2 ∂

∂x
(cαi uαi ⊗ uαi ) = Oi − Pi +Qi,

(83)

where the reaction rate Ji and the production terms Oi, Pi and Qi, defined respectively by (61), (74) and (75),
are computed using the approximations (57) to the Maxwellians (55).

(ii) Moreover, in the limit as α→ 0, the system (83) reduces to

∂ci
∂t

+
∂Ji
∂x

= σ2
ij

(
2πµij
kBT

)1
2

[(
µij
µkl

)1
2

ck cl exp

(
QR
kBT

)
− ci cj

]

×

[
2kBT

µij
Γ(2, z∗i )−

(
Ξij
c0

)2
Γ(1, z∗i )

]
,

∂ci
∂x

=
32

9

4∑
s=1
s6=i

σ2
is

(
2πµij
kBT

)1
2 (
ciJs − csJi

)
,

(84)

whose unknowns are the concentrations ci and the diffusive fluxes Ji.
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Proof. The statement in item (i) follows from Lemmas 4.1 and 4.3.

Concerning item (ii), we can write cαi uαi = Jαi + cαi uα, where uα represents the average velocity of the mixture
relative to the scaled distributions fαi , see expression (50b). Letting α→ 0 in (83), assuming that the limits

ci = lim
α→0

cαi , Ji = lim
α→0

Jαi , u = lim
α→0

uα,

exist pointwise for any t > 0 and x ∈ Ω, and neglecting the convective term, that is ∂
∂x (ciu) = 0, we obtain the

desired system (84). �

Observe that summing the first and second equations of (84) over all species, we obtain that c is uniform in
space and constant in time. Therefore, the second equation of system (84) can be rewritten as

∂ci
∂x

=
1

c

4∑
s=1
s6=i

ciJs − csJi
Dis

, (85)

where

Dis =
9

32

(
kBT

2πµis

)1
2 1

c σ2
is

, i 6= s, (86)

are the diffusion coefficients.

Consequently, for i = 1, 2, 3, 4, putting together the constraint law (6), the boundary conditions (9) for the
diffusive fluxes Ji, and (84) with the gradient term ∂ci

∂x expressed as given in (85), we obtain

∂ci
∂t

+
∂Ji
∂x

= Ji, x ∈ Ω, t > 0,

∂ci
∂x

= −1

c

4∑
s=1
s6=i

csJi − ciJs
Dis

, x ∈ Ω, t > 0,

4∑
i=1

miJi = 0, x ∈ Ω, t > 0,

ν · Ji = 0, x ∈ ∂Ω, t > 0.

(87)

System (87) constitutes a boundary value problem which we refer to as the reaction diffusion system of Maxwell-
Stefan type.

Remark 4.6 It is important to underline that expansion (57) was used in this paper for the explicit computation
of the integrals appearing on the right hand side of the concentration and momentum balance equations (see
equations (60) and (73), respectively).

Furthermore, we note that a system of Maxwell-Stefan type with the same general structure of the one in (84)
can be derived from the SRS kinetic model if we do not use expansion (57). �

5 Conclusion

In this paper, we formally derive a reaction diffusion system of Mawell-Stefan type as the hydrodynamic limit
of the simple reacting spheres kinetic model for a quaternary mixture of monatomic ideal gases undergoing
a reversible chemical reaction of bimolecular type. By considering a scaling in which elastic collisions play a
dominant role in the evolution of the species while chemical reactions are slow, and using a first order correction
to the Maxwellian distribution in the species rest frame, the diffusion coefficients and the chemical production
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rates appearing in the species equations for the concentration and momentum have been explicitly computed
from the collisional dynamics of the kinetic model.

An important aspect in our work is that we have used the same correction to the Maxwellian distribution
for the computation of both elastic and reactive production terms, leading to a more consistent macroscopic
picture (see Remark 4.6). Moreover, our correction to the Maxwellian distribution coincides with the one used
by Stefan in his celebrated work from 1872 to derive the diffusion coefficients in a mixture of gases.

In the quoted literature about the hydrodynamic limits of kinetic models for reactive mixtures, the derivation
of the MS equations had not yet been considered. Our work provides the first result in this direction and, in
our opinion, complements the work developed in [11, 12, 13, 22] in the context of non-reactive mixtures.

Still in connection with the work developed in [11, 12, 13, 22] for non-reactive mixtures, we would like to
emphasize here that when we turn off the chemical reaction in our model (i.e if the mixture is made up of four
non-reactive species), our limiting system (87) reduces to the Maxwell-Stefan system for hard sphere molecules,
which is similar to the one obtained in [12] for Maxwellian molecules.

The fact that in our analysis the mixture can react chemically allows to consider many interesting problems
concerning the derivation of the MS equations from the kinetic model. Among the most interesting problems,
we quote the following.

The first problem is the introduction of chemical potentials as the main agent in the definition of the driving
forces and the study of the passage to the hydrodynamic limit by removing the isothermal assumption. This
will certainly lead to a very rich setting from the physical but also from the mathematical point of view.

The second problem concerns the possibility of studying different time scales associated to the chemical
reaction, in particular different chemical regimes, and obtaining the influence of chemical reaction in the limiting
MS equations.

In fact, the scaling of slow chemical reaction studied here is the sole reason why the limit equations for the
momentum of the species do not include any contributions coming from the reactive collision terms. This can be
seen from Lemma 4.3, in particular, from the second equation in (83), where clearly the chemical contributions
are present, but they are of order of α2, due to the scaling, and hence go to zero in the limit as α→ 0.

Additionally, when studying different time scales associated to the chemical reaction, especially those chem-
ical regimes in which reactive collisions are treated on a par with elastic ones, our SRS model results to be
appropriate, because of the inclusion of the correction term in the elastic operator. This correction term, as
mentioned before, singles out those pre-collisional states that are energetic enough to result in a chemical reac-
tion, therefore preventing double counting of these collisions in the elastic and reactive operators. In this sense,
the correction term leads to non anomalous results.

Finally, our next line of action will include an extension of the present analysis to kinetic models for reactive
mixtures with polyatomic structure, in view of describing more meaningful chemical processes.

The problems just described above will be addressed in future works.
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6 Appendices

In this section, we provide some details about the computation of the integrals given in Section 4 that were not
evaluated there.

6.1 Appendix A

In this appendix, we prove that E and F , given in (65) of Subsection 4.2 are null. We start with E and write it
as the sum of the next two terms

E1 = σ2
ij

(
µij
µkl

)2
ak·
∫
R3

∫
R3

∫
S2
+

v◦kM
α
kM

α
l Θ

(〈
ε, c0vi − c0vj

〉
− Ξij

)
〈ε,vi − vj〉 dε dvj dvi,

E2 = σ2
ij

(
µij
µkl

)2
al·
∫
R3

∫
R3

∫
S2
+

v◦lM
α
kM

α
l Θ

(〈
ε, c0vi − c0vj

〉
− Ξij

)
〈ε,vi − vj〉 dε dvj dvi.

From (58) we rewrite the integral appearing in E1 as

cαk c
α
l

(mkml)
3
2

(2πkBT )3

∫
R3

∫
R3

∫
S2
+

v◦k exp

[
−mk(v◦k)2 +ml(v

◦
l )

2

2kBT

]
×Θ

(〈
ε, c0vi − c0vj

〉
− Ξij

)
〈ε,vi − vj〉 dε dvj dvi.

Now we change variables from vi, vj to v◦k, v◦l and use the first expression of (26) given in Property 3.4 together
with (25) to rewrite the previous term as

cαk c
α
l

(mkml)
3
2

(2πkBT )3

(
µkl
µij

)2 ∫
R3

∫
R3

∫
S2
+

v◦k exp

[
−mk(v◦k)2 +ml(v

◦
l )

2

2kBT

]
×Θ (〈ε, c0v◦k − c0v◦l 〉 − Ξkl) 〈ε,v◦k − v◦l 〉 dε dv◦k dv◦l . (88)

Performing similar computations to those of (67), we conclude that the integral in (88) is equal to the difference
of the next two integrals

E1
1 =

∫
R3

∫
R3

v◦k exp

[
−mk(v◦k)2 +ml(v

◦
l )

2

2kBT

]
V∗Θ

(
V∗ −

Ξkl
c0

)
dv◦k dv

◦
l ,

E2
1 =

∫
R3

∫
R3

v◦k exp

[
−mk(v◦k)2 +ml(v

◦
l )

2

2kBT

]
V∗Θ

(
V∗ −

Ξkl
c0

)(
Ξkl
c0V∗

)2

dv◦kdv
◦
l ,

(89)

where V∗ = ‖v◦k − v◦l ‖ = ‖v◦l − v◦k‖. Now, we look first at E1
1 . We transform the six fold integral in v◦k and v◦l

to the centre of mass velocity X∗ = (mkv
◦
k +mlv

◦
l )/M and relative velocity V∗ = v◦l − v◦k. Using the fact that

the Jacobian of the transformation has absolute value 1, we obtain

E1
1 =

∫
R3

X∗ exp

(
−MX2

∗
2kBT

)
dX∗

∫
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exp

(
−µklV

2
∗

2kBT

)
V∗Θ

(
V∗ −

Ξkl
c0
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dV∗

−ml

M
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exp

(
−MX2

∗
2kBT
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dX∗
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V∗ exp

(
−µklV

2
∗

2kBT
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V∗Θ

(
V∗ −

Ξkl
c0

)
dV∗,

where X∗ = ‖X∗‖. Note that the integral with respect to X∗ in the first term on the right hand side of E1
1 is

null and so the first term above vanishes. Moreover, the integral with respect to V∗ in the second term can be
written in spherical coordinates and it is equal to∫ ∞

V∗≥
Ξkl
c0

∫ π

0

∫ 2π

0

V 4
∗ ~v exp

(
−µklV

2
∗

2kBT

)
sin θ dφ dθ dV∗,
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where we used the fact that any vector can be written in terms of a unit vector, i.e. V∗ = V∗~v, with ~v =
x̂ sin θ cosφ+ ŷ sin θ sinφ+ ẑ cos θ, and x̂, ŷ, ẑ the Cartesian unit vectors in R3. By simple computations, we get
that the previous integral is equal to zero. This shows that E1

1 = 0. Now, repeating exactly the same strategy
as above in order to show that E2

1 = 0, it is enough to compute the next two integrals

E2
1A =

∫
R3

X∗ exp

(
−MX2

∗
2kBT

)
dX∗

∫
R3

exp

(
−µklV

2
∗

2kBT

)
V∗Θ

(
V∗ −

Ξkl
c0

)(
Ξkl
c0V∗

)2

dV∗,

E2
1B =

∫
R3

V∗ exp

(
−µklV

2
∗

2kBT

)
V∗Θ

(
V∗ −

Ξkl
c0

)(
Ξkl
c0V∗

)2

dV∗

∫
R3

exp

(
−MX2

2kBT

)
dX∗.

Note that the integral with respect to X∗ in the expression of E2
1A is null, so that E2

1A = 0. The integral with
respect to V∗ in the expression of E2

1B can be written in spherical coordinates and by writing V∗ = V∗~v with ~v
a unit vector, we can easily show that it vanishes, so E2

1B = 0. Thus E2
1 = 0. Since both E1

1 and E2
1 vanish, we

have that E1 = 0. Similar computations show that E2 = 0. Putting all together we conclude that E = 0.

Now we prove that F given in (65) is equal to zero. As we have done above, we write it as the sum of the next
two terms

F1 = −σ2
ijai·

∫
R3

∫
R3

∫
S2
+

viM
α
i M

α
j Θ

(〈
ε, c0vi − c0vj

〉
− Ξij

)
〈ε,vi − vj〉 dε dvj dvi,

F2 = −σ2
ijaj ·

∫
R3

∫
R3

∫
S2
+

vjM
α
i M

α
j Θ

(〈
ε, c0vi − c0vj

〉
− Ξij

)
〈ε,vi − vj〉 dε dvj dvi.

(90)

Evaluating the integral over S2
+ in F1 and F2 using (67), we obtain

F1 =−σ2
ijai·

∫
R3

∫
R3

vi exp

[
−mi(vi)

2 +mj(vj)
2

2kBT

]
VΘ

(
V − Ξij

c0

)[
1−

(
Ξij
c0V

)2
]
dvj dvi,

F2 =−σ2
ijaj ·

∫
R3

∫
R3

vj exp

[
−mi(vi)

2 +mj(vj)
2

2kBT

]
VΘ

(
V − Ξij

c0

)[
1−

(
Ξij
c0V

)2
]
dvj dvi.

In order to show that F1 and F2 vanish it is enough to compute the above integrals. Upon expanding, we
obtain similar expressions to those given in (89), so that one can perform exactly the same computations as we
did above to conclude that they both vanish. This shows that F = 0.

6.2 Appendix B

In this appendix, we compute the integrals Pi and Qi, that appear in (75). Our first goal is to show that

Pi =
8

9

µij
kBT

α2σ2
ij

√
π
mj

M
cαi c

α
j (uαj − uαi )

[(
2kBT

µij

)3
2

Γ(3, z∗i )−
(

Ξij
c0

)3
Γ

(
3

2
, z∗i

)]
. (91)

Using Lemma 3.9 with ϕ(v′i) = v′i and ϕ(vi) = vi, we obtain

Pi = σ2
ijα

∫
R3

∫
R3

∫
S2
+

(v′i − vi) fifjΘ (〈ε,vi − vj〉 − Ξij) 〈ε,vi − vj〉 dε dvj dvi.

Using the first expression in (14) for v′i and writing the integral over S2
+ in spherical coordinates as described

in Remark 3.1, where in both cases s is replaced by j, we obtain
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Pi = 2σ2
ijα

mj

M

×
∫
R3

∫
R3

∫ π
2

0

∫ 2π

0

(vj − vi)f
α
i f

α
j Θ (〈ε, c0vi − c0vj〉 − Ξij)V cos2 θ sin θ dφ dθ dvj dvi.

Integrating with respect to φ and observing that∫ arccos
(

Ξij
c0V

)
0

cos2 θ sin θ dθ =
1

3

[
1−

(
Ξij
c0V

)3]
,

we get

Pi = σ2
ijα

4π

3

mj

M

∫
R3

∫
R3

Vfαi f
α
j Θ

(
V − Ξij

c0

)
V

[
1−

(
Ξij
c0V

)3]
dvj dvi,

where V = vj − vi is the relative velocity and V = ‖vj − vi‖. Now, we can split Pi into

Pi = σ2
ijα

4π

3

mj

M

∫
R3

∫
R3

Vfαi f
α
j Θ

(
V − Ξij

c0

)
V dvj dvi︸ ︷︷ ︸

Pi1

− σ2
ijα

4π

3

mj

M

∫
R3

∫
R3

Vfαi f
α
j Θ

(
V − Ξij

c0

)
V

(
Ξij
c0V

)3
dvj dvi︸ ︷︷ ︸

Pi2

.

(92)

Using (64), neglecting the quadratic term in the coefficient a and transforming from vi and vj to the centre
of mass velocity X and relative velocity V and also using the fact that the Jacobian of the transformation has
absolute value 1, we obtain

Pi1 =
4π

3
σ2
ijα

mj

M
cαi c

α
j

(mimj)
3
2

(2πkBT )3

∫
R3

∫
R3

V exp

(
−MX2 + µijV

2

2kBT

)
VΘ

(
V − Ξij

c0

)
×
[
1 + (aj + ai) ·X +

(
ajmi − aimj

M

)
·V
]
dX dV,

Pi2=
4π

3
σ2
ijα

mj

M
cαi c

α
j

(mimj)
3
2

(2πkBT )3

∫
R3

∫
R3

V exp

(
−MX2+µijV

2

2kBT

)
Θ

(
V −Ξij

c0

)
V

(
Ξij
c0V

)3
×
[
1 + (aj + ai) ·X +

(
ajmi − aimj

M

)
·V
]
dX dV.

We can split the integral appearing in Pi1 as the sum of

P1
i1 =

∫
R3

exp

(
−MX2

2kBT

)
dX

∫
R3

V exp

(
−µijV

2

2kBT

)
VΘ

(
V − Ξij

c0

)
dV

P2
i1 =(aj + ai)·

∫
R3

X exp

(
−MX2

2kBT

)
dX

∫
R3

V exp

(
−µijV

2

2kBT

)
VΘ

(
V − Ξij

c0

)
dV

P3
i1 =

mi

M

∫
R3

exp

(
−MX2

2kBT

)
dX

∫
R3

(aj ·V)V exp

(
−µijV

2

2kBT

)
VΘ

(
V − Ξij

c0

)
dV

P4
i1 =−mj

M

∫
R3

exp

(
−MX2

2kBT

)
dX

∫
R3

(ai ·V)V exp

(
−µijV

2

2kBT

)
VΘ

(
V − Ξij

c0

)
dV.

Observe that the integrals with respect to V in both P1
i1

and P2
i1

are equal. By using the fact that V = V ~v
with ~v a unit vector and V = ‖V‖, we note that writing them in spherical coordinates, it is easy to see that
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they both vanish. Therefore, P1
i1

= P2
i1

= 0. The integral with respect to X appearing in P3
i1

and P4
i1

has been
computed in (69). By setting (aj ·V)V = aj cos θV 2~v, the integral with respect to V in P3

i1
can be written in

spherical coordinates as given below∫
R3

aj cos θV 2~v exp

(
−µijV

2

2kBT

)
VΘ

(
V − Ξij

c0

)
dV

= aj

∫ ∞
V≥

Ξij
c0

V 5 exp

(
−µijV

2

2kBT

)
dV

(
x̂

∫ π

0

sin2 θ cos θdθ

∫ 2π

0

cosφdφ︸ ︷︷ ︸
0

+ ŷ

∫ π

0

sin2 θ cos θ dθ

∫ 2π

0

sinφdφ︸ ︷︷ ︸
0

+ẑ

∫ π

0

sin θ cos2 θ dθ︸ ︷︷ ︸
2
3

∫ 2π

0

dφ︸ ︷︷ ︸
2π

)
,

where x̂, ŷ, ẑ are the Cartesian unit vectors in R3. Using the transformation z =
µij

2kBT
V 2 together with (59),

we obtain ∫ ∞
V≥

Ξij
c0

V 5 exp

(
−µijV

2

2kBT

)
dV =

1

2

(
2kBT

µij

)3

Γ(3, z∗i ),

where z∗i is defined as in (62). Therefore,∫
R3

(aj ·V)V exp

(
−µijV

2

2kBT

)
VΘ

(
V − Ξij

c0

)
dV =

2π

3

(
2kBT

µij

)3

Γ(3, z∗i )aj . (93)

Similarly, ∫
R3

(ai ·V)V exp

(
−µijV

2

2kBT

)
VΘ

(
V − Ξij

c0

)
dV =

2π

3

(
2kBT

µij

)3

Γ(3, z∗i )ai.

Putting together the previous computations and doing some algebra, we conclude that

Pi1 =
8
√
π

9
σ2
ijα

2mj

M
cαi c

α
j

µij
kBT

(uαj − uαi )

(
2kBT

µij

)3
2

Γ(3, z∗i ). (94)

Now we compute Pi2 by repeating exactly the same computations as we did for Pi1 . Splitting Pi2 into four
terms, we see that two of them vanish by the same reason as above and the remaining two are as given below

P3
i2 =

4π

3
σ2
ijα

mj

M
cαi c

α
j

(mimj)
3
2

(2πkBT )3
mi

M

(
Ξij
c0

)3

×
∫
R3

exp

(
−MX2

2kBT

)
dX

∫
R3

(aj ·V)V exp

(
−µijV

2

2kBT

)
Θ

(
V − Ξij

c0

)
dV,

P4
i2 =− 4π

3
σ2
ijα

mj

M
cαi c

α
j

(mimj)
3
2

(2πkBT )3
mj

M

(
Ξij
c0

)3

×
∫
R3

exp

(
−MX2

2kBT

)
dX

∫
R3

(ai ·V)V exp

(
−µijV

2

2kBT

)
Θ

(
V − Ξij

c0

)
dV.

The integral with respect to X appearing in P3
i2

and P4
i2

has been computed in (69) and the integrals with
respect to V can be computed as we did above to obtain(

Ξij
c0

)3(
2kBT

µij

) 3
2 2π

3
Γ

(
3

2
, z∗i

)
aj and

(
Ξij
c0

)3(
2kBT

µij

) 3
2 2π

3
Γ

(
3

2
, z∗i

)
ai.
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Putting together the previous computations and doing some algebra, we conclude that

Pi2 =
8
√
π

9
σ2
ijα

2mj

M
cαi c

α
j

µij
kBT

(uαj − uαi )

(
Ξij
c0

)3
Γ

(
3

2
, z∗i

)
. (95)

Substituting (94), (95) into (92) and factorizing gives the desired expression (91).

The last term on the right hand side of (73), that is the integral Qi given in (75), can be written as the sum of
the next three terms, where quadratic terms in the coefficients a have been neglected,

R = ασ2
ij

∫
R3

∫
R3

∫
S2
+

((
µij
µkl

)2
Mα◦
k Mα◦

l −Mα
i M

α
j

)
vi

×Θ
(〈
ε, c0vi − c0vj

〉
− Ξij

)
〈ε,vi − vj〉 dεdvjdvi,

S = ασ2
ij

∫
R3

∫
R3

∫
S2
+

(
µij
µkl

)2
Mα◦
k Mα◦

l (ak · v◦k + al · v◦l )vi (96)

×Θ
(〈
ε, c0vi − c0vj

〉
− Ξij

)
〈ε,vi − vj〉 dε dvj dvi,

T = −ασ2
ij

∫
R3

∫
R3

∫
S2
+

Mα
iM

α
j (ai ·vi+aj ·vj)viΘ

(〈
ε, c0vi−c0vj

〉
−Ξij

)
〈ε,vi−vj〉 dε dvj dvi.

First we prove that R = 0. Observe that R is similar to the integral D given in (65) and, therefore, writing R
in terms of centre of mass velocity X and relative velocity V, and expanding the resulting integral, we realize
that R can be written as the difference of the two next terms

R1 = ∆

∫
R3

X exp

(
−MX2

2kBT

)
dX

∫
R3

V Θ

(
V − Ξij

c0

)[
1−

(
Ξij
c0V

)2
]

exp

(
−µijV

2

2kBT

)
dV,

R2 =
mj

M
∆

∫
R3

exp

(
−MX2

2kBT

)
dX

∫
R3

VVΘ

(
V −Ξij

c0

)[
1−

(
Ξij
c0V

)2
]

exp

(
−µijV

2

2kBT

)
dV

where

∆ = πασ2
ij

(mimj)
3
2

(2πkBT )3

[(
µij
µkl

)1
2

cαk c
α
l e

QR
kBT − cαi cαj

]
.

Since the integral with respect to X in R1 is zero, we conclude that the contribution to R comes only from R2,
which can be rewritten as

mj

M
∆

∫
R3

exp

(
−MX2

2kBT

)
dX

∫
R3

Vexp

(
−µijV

2

2kBT

)
VΘ

(
V −Ξij

c0

)
dV

−mj

M
∆

∫
R3

exp

(
−MX2

2kBT

)
dX

∫
R3

V

(
Ξij
c0V

)2
exp

(
−µijV

2

2kBT

)
VΘ

(
V −Ξij

c0

)
dV.

Transforming both integrals in V above to spherical coordinates and using the fact that V = V ~v with ~v a unit
vector and V = ‖V‖, we get that both integrals vanish. This shows that R = 0 as desired. Now we analyze S,
which can be written as the sum of the next two terms

S1 = ασ2
ij

(
µij
µkl

)2∫
R3

∫
R3

∫
S2
+

(ak ·v◦k)viM
α
kM

α
l Θ

(〈
ε, c0vi−c0vj

〉
−Ξij

)
〈ε,vi−vj〉 dεdvjdvi

S2 =ασ2
ij

(
µij
µkl

)2∫
R3

∫
R3

∫
S2
+

(al ·v◦l )viMα
kM

α
l Θ

(〈
ε, c0vi−c0vj

〉
−Ξij

)
〈ε,vi−vj〉 dεdvjdvi.
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Now we change variables from vi, vj to v◦k, v◦l , by using the first expression of (26) given in Property 3.4
together with (25) to rewrite S1 and S2 as

S1 = ασ2
ij

(
µij
µkl

)2∫
R3

∫
R3

∫
S2
+

(ak ·v◦k)v◦kM
α
kM

α
l Θ (〈ε, c0v◦k−c0v◦l 〉−Ξkl)

×
(
µkl
µij

)1
2

ω+

(
µkl
µij

)3
2 〈ε,v◦k − v◦l 〉

ω+
dε dv◦k dv

◦
l ,

S2 = ασ2
ij

(
µij
µkl

)2∫
R3

∫
R3

∫
S2
+

(al ·v◦l )v◦kMα
kM

α
l Θ (〈ε, c0v◦k−c0v◦l 〉−Ξkl)

×
(
µkl
µij

)1
2

ω+

(
µkl
µij

)3
2 〈ε,v◦k − v◦l 〉

ω+
dε dv◦k dv

◦
l .

Therefore,

S1 = σ2
ijα

∫
R3

∫
R3

∫
S2
+

(ak · v◦k)v◦kM
α◦
k Mα◦

l Θ (〈ε, c0v◦k − c0v◦l 〉 − Ξkl) 〈ε,v◦k − v◦l 〉 dε dv◦k dv◦l

(97)

S2 = σ2
ijα

∫
R3

∫
R3

∫
S2
+

(al · v◦l )v◦kMα◦
k Mα◦

l Θ (〈ε, c0v◦k − c0v◦l 〉 − Ξkl) 〈ε,v◦k − v◦l 〉 dε dv◦k dv◦l .

Performing similar computations to those of (67), we obtain

S1 = σ2
ijαπ

∫
R3

∫
R3

(ak · v◦k)v◦kM
α◦
k Mα◦

l V∗Θ

(
V∗ −

Ξkl
c0

)[
1−

(
Ξkl
c0V∗

)2]
dv◦k dv

◦
l ,

S2 = σ2
ijαπ

∫
R3

∫
R3

(al · v◦l )v◦kMα◦
k Mα◦

l V∗Θ

(
V∗ −

Ξkl
c0

)[
1−

(
Ξkl
c0V∗

)2]
dv◦k dv

◦
l ,

where V∗ = ‖v◦k − v◦l ‖ = ‖v◦l − v◦k‖.

Now, expanding S1 and transforming from v◦k and v◦l to the centre of mass velocity X∗ = (mkv
◦
k + mlv

◦
l )/M

and relative velocity V∗ = v◦l −v◦k, as well as using the fact that the Jacobian of the transformation has absolute
value 1, we obtain that it can be written as the difference of the next two terms

S1
1 = σ2

ijαπc
α
k c
α
l

(mkml)
3
2

(2πkBT )3

∫
R3

∫
R3

(
X∗−

mlV∗
mk +ml

)[
ak ·
(
X∗−

mlV∗
mk +ml

)]
× exp

(
−MX2

∗ + µklV
2
∗

2kBT

)
V∗Θ

(
V∗ −

Ξkl
c0

)
dX∗dV∗,

S2
1 = σ2

ijαπc
α
k c
α
l

(mkml)
3
2

(2πkBT )3

∫
R3

∫
R3

(
X∗−

mlV∗
mk +ml

)[
ak ·
(

X∗−
mlV∗
mk +ml

)]
×exp

(
−MX2

∗ + µklV
2
∗

2kBT

)
V∗Θ

(
V∗−

Ξkl
c0

)(
Ξkl
c0V∗

)2

dX∗dV∗,

where we have used (58). Expanding S1
1 , we obtain

S1
1 = σ2

ijαπc
α
k c
α
l

(mkml)
3
2

(2πkBT )3

∫
R3

(ak ·X∗)X∗ exp

(
−MX2

∗
2kBT

)
dX∗
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×
∫
R3

exp

(
−µklV

2
∗

2kBT

)
V∗Θ

(
V∗ −

Ξkl
c0

)
dV∗

− σ2
ijαπc

α
k c
α
l

(mkml)
3
2

(2πkBT )3

ml

mk +ml

∫
R3

X∗exp

(
−MX2

∗
2kBT

)
dX∗

×ak ·
∫
R3

V∗exp

(
−µklV

2
∗

2kBT

)
V∗Θ

(
V∗−

Ξkl
c0

)
dV∗ (98)

− σ2
ijαπc

α
k c
α
l

(mkml)
3
2

(2πkBT )3

ml

mk +ml
ak ·
∫
R3

X∗exp

(
−MX2

∗
2kBT

)
dX∗

×
∫
R3

V∗exp

(
−µklV

2
∗

2kBT

)
V∗Θ

(
V∗ −

Ξkl
c0

)
dV∗

+ σ2
ijαπc

α
k c
α
l

(mkml)
3
2

(2πkBT )3

m2
l

(mk +ml)2

∫
R3

exp

(
−MX2

∗
2kBT

)
dX∗

×
∫
R3

(ak ·V∗)V∗exp

(
−µklV

2
∗

2kBT

)
V∗Θ

(
V∗−

Ξkl
c0

)
dV∗.

Setting (ak ·X∗)X∗ = ak cos θX2
∗~x, where ~x is a unit vector, the first integral of the first term on the right hand

side of (98) can be written in spherical coordinates as given below∫
R3

ak cos θX2
∗~x exp

(
−MX2

∗
2kBT

)
dX∗

= ak

∫ ∞
0

X4
∗ exp

(
−MX2

∗
2kBT

)
dX∗

(
x̂

∫ π

0

sin2 θ cos θdθ

∫ 2π

0

cosφdφ︸ ︷︷ ︸
0

+ ŷ

∫ π

0

sin2 θ cos θdθ

∫ 2π

0

sinφdφ︸ ︷︷ ︸
0

+ẑ

∫ π

0

sin θ cos2 θdθ︸ ︷︷ ︸
2
3

∫ 2π

0

dφ︸ ︷︷ ︸
2π

)

where x̂, ŷ, ẑ are the Cartesian unit vectors in R3. Performing the integration with respect to X∗, we obtain∫
R3

(ak ·X∗)X∗ exp

(
−MX2

∗
2kBT

)
dX∗ =

π
3
2

2

(
2kBT

M

) 5
2

ak.

The second integral of the first term on the right hand side of (98) is similar to the first integral on the left

hand side of (70) and is equal to 2π
(

2kBT
µkl

)2

Γ (2, zi∗), where zi∗ =
(

Ξkl
c0

)2 {
µkl

2kBT

}
.

The integral in X∗ in the second and third terms on the right hand side of (98) vanishes. The first integral in
the fourth term on the right hand side of (98) is similar to (69) and the second integral is similar to (93) and

is equal to 2π
3

(
2kBT
µkl

)3
Γ(3, zi∗)ak, where zi∗ is as previously defined.

Putting together the previous computations and doing a little algebra, we obtain

S1
1 = σ2

ijα
2cαk c

α
l

2

M

(
2πkBT

µkl

) 1
2
[
mkΓ (2, zi∗) +

2

3
mlΓ(3, zi∗)

]
uαk .

Employing a similar strategy in the computation of S2
1 , we obtain that

S2
1 = σ2

ijα
2cαk c

α
l

1

M

(
Ξkl
c0

)2(
2πµkl
kBT

) 1
2
[
mkΓ(1, zi∗) +

2

3
mlΓ(2, zi∗)

]
uαk .

Since S1 is the difference between S1
1 and S2

1 , we obtain
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S1 = σ2
ijα

2cαk c
α
l

2

M

(
2πkBT

µkl

) 1
2
[
mkΓ (2, zi∗) +

2

3
mlΓ(3, zi∗)

]
uαk

− σ2
ijα

2cαk c
α
l

1

M

(
Ξkl
c0

)2(
2πµkl
kBT

) 1
2
[
mkΓ(1, zi∗) +

2

3
mlΓ(2, zi∗)

]
uαk . (99)

Similarly,

S2 = 2σ2
ijα

2cαk c
α
l

ml

M

(
2πkBT

µkl

) 1
2
[
Γ (2, zi∗)−

2

3
Γ(3, zi∗)

]
uαl

− σ2
ijα

2cαk c
α
l

ml

M

(
Ξkl
c0

)2(
2πµkl
kBT

) 1
2
[
Γ(1, zi∗)−

2

3
Γ(2, zi∗)

]
uαl . (100)

Since S is the sum of S1 and S2, we obtain

S = σ2
ijα

2cαk c
α
l

2

M

(
2πkBT

µkl

) 1
2
[
mkΓ (2, zi∗) +

2

3
mlΓ(3, zi∗)

]
uαk

− σ2
ijα

2cαk c
α
l

1

M

(
Ξkl
c0

)2(
2πµkl
kBT

) 1
2
[
mkΓ(1, zi∗) +

2

3
mlΓ(2, zi∗)

]
uαk

+ 2σ2
ijα

2cαk c
α
l

ml

M

(
2πkBT

µkl

) 1
2
[
Γ (2, zi∗)−

2

3
Γ(3, zi∗)

]
uαl

− σ2
ijα

2cαk c
α
l

ml

M

(
Ξkl
c0

)2(
2πµkl
kBT

) 1
2
[
Γ(1, zi∗)−

2

3
Γ(2, zi∗)

]
uαl .

(101)

Now, we treat the last term on the right hand side of (96). Observe that it can be written as the sum of the
following two terms

T1 = −ασ2
ij

∫
R3

∫
R3

∫
S2
+

vi(ai ·vi)Mα
iM

α
j Θ

(〈
ε, c0vi − c0vj

〉
−Ξij

)
〈ε,vi−vj〉 dε dvj dvi,

(102)

T2 = −ασ2
ij

∫
R3

∫
R3

∫
S2
+

vi(aj ·vj)Mα
iM

α
j Θ

(〈
ε, c0vi − c0vj

〉
−Ξij

)
〈ε,vi−vj〉 dε dvj dvi.

Equations (102) are similar to (97), so we can do exactly the same computations as we did above for S, and we
get at the end that

T = −α2σ2
ijc

α
i c
α
j

2

M

(
2πkBT

µij

) 1
2
[
miΓ (2, z∗i ) +

2

3
mjΓ(3, z∗i )

]
uαi

+ σ2
ijα

2cαi c
α
j

1

M

(
Ξij
c0

)2(
2πµij
kBT

) 1
2
[
miΓ(1, z∗i ) +

2

3
mjΓ(2, z∗i )

]
uαi

− 2α2σ2
ijc

α
i c
α
j

mj

M

(
2πkBT

µij

) 1
2
[
Γ (2, z∗i )− 2

3
Γ(3, z∗i )

]
uαj

+ σ2
ijα

2cαi c
α
j

mj

M

(
Ξij
c0

)2(
2πµij
kBT

) 1
2
[
Γ(1, z∗i )− 2

3
Γ(2, z∗i )

]
uαj

(103)

Finally, since R = 0, we obtain
Qi = S + T , (104)

with S and T given by (101) and (103), respectively.
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