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Abstract

Gliomas are characterized by a marked glycolytic metabolism with a consequent

production of massive amounts of lactate, even in the presence of normal levels of

oxygen, associated to increased invasion capacity and to higher resistance to con-

ventional treatment. This work aimed to understand how the metabolic modulation

can influence tumour aggressive features and its potential to be used as comple-

mentary therapy. We assessed the effect of bioenergetic modulators (BMs) targeting

different metabolic pathways in glioma cell characteristics. The in vivo effect of

BMs was evaluated using the chicken chorioallantoic membrane model. Additionally,

the effect of pre-treatment with BMs in the response to the antitumour drug temo-

zolomide (TMZ) was analysed in vitro. Cell treatment with the BMs induced a

decrease in cell viability and in migratory/invasion abilities, as well as modifications

in metabolic parameters (glucose, lactate and ATP) and increased the cytotoxicity of

the conventional drug TMZ. Furthermore, all BMs decreased the tumour growth

and the number of blood vessels in an in vivo model. Our results demonstrate that

metabolic modulation has the potential to be used as therapy to decrease the

aggressiveness of the tumours or to be combined with conventional drugs used in

glioma treatment.
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1 | BACKGROUND

During oncogenic transformation, tumour cells acquire metabolic fea-

tures to sustain their proliferation and to create more robust

subpopulations, adapted to the different microenvironmental

conditions.1 The altered metabolism in cancer cells was first

described in 1956, by Otto Warburg, who postulated that tumour

cells rely mainly on glycolysis, instead of oxidative phosphorylation

(OXPHOS).2 A reversion of the pH gradient across the cell

membrane occurs with this event, being associated to some cancer

hallmarks such as cell proliferation, invasion, metastasis and chemo-

and radioresistance.3,4 The high-grade glioma subtype comprises

anaplastic astrocytoma (World health organization (WHO) grade III)

and glioblastoma multiform (WHO grade IV), being the last one the

most aggressive, invasive and lethal subtype.5,6 This type of tumour

is characterized by a metabolic plasticity, with a higher dependence

of glycolysis and consequent acidification of the tumour microenvi-

ronment by lactate/proton efflux.7,8 The current available therapies
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present limited efficacy, leading to tumour relapse and poor patient

survival rates.5 Temozolomide (TMZ) is a first-line oral alkylating

drug used in glioma treatment, being its cytotoxicity based on TMZ-

generated O6-methylguanine-DNA adducts. However, the DNA

damage induced by TMZ can be repaired by the O6-methylguanine-

DNA methyltransferase (MGMT) repair enzyme, which is associated

with TMZ therapy resistance and treatment failure.9,10 Therefore, it

is important to develop more specific and effective therapies target-

ing glioma features, such as the reprogrammed metabolism.11 The

glycolytic enzymes, specifically overexpressed in cancer cells, are one

of the main targets in this field and several compounds targeting gly-

colysis are already in clinical trials.12 Dichloroacetate (DCA) is a pyru-

vate dehydrogenase kinase (PDK) inhibitor that redirects cell

metabolism towards OXPHOS. PDK is a direct inhibitor of pyruvate

dehydrogenase (PDH), a key enzyme that shifts the flux of pyruvate

into mitochondria to promote OXPHOS. Many reports showed the

promising effect of DCA in cancer therapy in in vitro and in vivo

cancer models,13-15 although aspects such as its toxicity and dose

limit effects are still unclear.16,17 Other glycolytic inhibitor with

potential anticancer activity is 2-deoxy-D-glucose (2-DG). 2-DG is a

glucose analogue that competes with glucose in the first step of gly-

colysis, being converted to deoxyglucose-6-phosphate, a molecule

that cannot be further metabolized, inhibiting hexokinase 2 (HK2),

thus blocking glycolysis and the pentose phosphate pathway.18 2-

DG is described as being able to induce tumour cell death in differ-

ent type of cancers.18-21 Although the potential use of glycolytic

inhibitors in cancer therapy, recent studies have demonstrated that

in brain tumours, mitochondrial oxidation is also an important path-

way in metabolism to support the rapid cell growth.22 Some studies

have demonstrated that biguanides, used commonly in diabetes

treatment and that act on OXPHOS, may also have antitumour

action. Phenformin is an analogue of metformin that exhibits a larger

antitumour activity in lung,23 breast 24 and colorectal cancers.25

Recently, it has been described that the compounds that target the

mitochondria can also affect glycolysis and vice versa. For instance,

metformin, which inhibits the complex I of the mitochondria respira-

tory chain, can also target HK2.26

Therefore, the aim of this study was to understand the impor-

tance of metabolic inhibition in glioma proliferation and aggressive-

ness, and how bioenergetic modulators (BMs), such as DCA, 2-DG

and phenformin, can be potentially used as antitumour drugs, namely

as combined therapy. There are very few reports describing the

metabolic behaviour of glioma cells under the conditions of this

study, as well as the use of these metabolic modulators as coadju-

vants of the standard treatment, TMZ.

2 | MATERIALS AND METHODS

2.1 | Cell lines and cell culture

U251 and SW1088, two high-grade glioma cell lines, were obtained

from American Type Culture Collection. The immortalized astrocyte

cell line hTERT/E6/E7 HOXA9, previously retrovirally infected with

MSCVneo vectors containing HOXA9 cDNA,27 was kindly provided

by Professor Bruno Costa, ICVS, University of Minho. All cell lines

were maintained in Dulbecco’s Modified Eagle’s Medium (DMEM)

supplemented with 10% foetal bovine serum (FBS) and 1% penicillin-

streptomycin solution, at 37°C and 5% CO2.

2.2 | Drugs

TMZ (Sigma-Aldrich) was dissolved in dimethyl sulfoxide (DMSO) in

a 100 mmol/L stock solution, from which the working solutions

were prepared. The BMs 2-DG, DCA and phenformin (Sigma-Aldrich)

were dissolved in PBS, to prepare stock solutions of 1000, 10 000

and 100 mmol/L, respectively, from which the working solutions

were prepared.

2.3 | Cell viability assay

Cells were plated into 96-well plates, at a density of 3 9 103 cells/

well for all cell lines, for TMZ, 2-DG and phenformin exposure, dur-

ing 72 hours and DCA exposure, during 48 hours. After treatment,

cell viability was determined by the sulforhodamine B (SRB) assay, as

described previously.28 IC50 values were estimated from at least 3

independent experiments, each one in triplicate, using the GraphPad

Software.

2.4 | Colony-forming assay

Five hundred cells were seeded in 6-well plates and treated with the

IC50 of the different BMs, during the respective incubation times.

Untreated cells were used as control. After incubation, the medium

containing the compounds was removed, cells were washed twice

with PBS and then fresh medium was added. Cells were then

allowed to grow for 10 days. The formed colonies were fixed for

5 minutes with 3.7% (w/v) paraformaldehyde in PBS and stained for

20 minutes with 0.05% (w/v) violet crystal in distilled water. The

plating efficiency (PE) was calculated as the percentage of the num-

ber of grown colonies over the number of cells seeded in the control

before BMs treatment. For each condition, the survival fraction was

determined as the number of colonies over the number of cells

seeded 9 1/PE.

2.5 | Metabolism assays (Extracellular glucose and
lactate, and ATP content)

Cells were plated in 6-well plates at a density of 3 9 105 cells/well.

Then, cells were treated with the respective BMs IC50, and the cell

culture medium was collected after the respective incubation time,

for glucose and lactate quantification. Glucose and lactate were

quantified using commercial kits (SPINREACT), according to the man-

ufacturer’s protocols and normalized against total biomass. Untreated

cells, incubated during the same period of time, were used as con-

trol. Results are expressed as total lg of metabolite/total biomass.

Simultaneously, the cells were used for protein extraction and to
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quantify the intracellular ATP using a commercial kit (Molecular

Probes), according to the manufacturer’s instructions. The ATP con-

tent was normalized for the concentration of protein and also

against the value obtained with untreated cells, incubated during the

same period of time of the respective treatment, set as 1. The

results presented correspond to the average of at least three inde-

pendent experiments.

2.6 | Wound-healing assay

Cells were plated in 6-well plates at a density of 1 9 106 cells/well

and the wound-healing assay was performed. Cells were treated

with different concentrations of BMs for 24 hours, and the wound

areas were photographed at 0, 12 and 24 hours. The relative migra-

tion distances were analysed using Image J Software. The relative

migration for glioma cells treated with the respective BM IC50 was

compared with the control (untreated cells).

2.7 | Invasion assay

Cell invasion in cancer cell lines was analysed using 24-well BD Bio-

coat Matrigel Invasion Chambers, according to the manufacturer’s

instructions (354480, BD Biosciences). In brief, after matrigel inva-

sion chamber rehydration with medium without FBS, cells were

seeded and incubated with the IC50 of the different BMs for

24 hours. Then, the invading cells were fixed with methanol and

stained with haematoxylin. Membranes were photographed in Olym-

pus SZx16 stereomicroscope (169), and invading cells were counted

using the Image J software (version 1.41; National Institutes of

Health). Invasion was calculated as percentage of cell invasion, nor-

malized for the control condition.

2.8 | Immunohistochemistry

Immunohistochemistry for Ki67 (AP10243CM, Gennova) was per-

formed according to the avidin-biotin-peroxidase principle (R.T.U.

Vectastin Elite ABC kit; Vector Laboratories), as previously described

by our group.6 In brief, deparaffinized and rehydrated slides were

submitted to heat-induced antigen retrieval in the microwave for

15 minutes with 10 mmol/L citrate buffer (pH 6.0). After endoge-

nous peroxidase inactivation, incubation with the primary antibody

was performed for 2 hours at room temperature. The immune reac-

tion was visualized with 3,30-Diamonobenzidine (DAB + Substrate

System; Dako). All sections were counterstained with Gill-2 haema-

toxylin. For negative controls, primary antibodies were replaced by a

universal negative control antibody (N1699, Dako).

2.9 | Chicken chorioallantoic membrane (CAM)
assay

In brief, fertilized chicken eggs were incubated at 37°C. On day 3

of development, a window was made into the eggshell after

puncturing the air chamber, and eggs were sealed with BTK tape

and returned to the incubator. On day 9 of development, the

U251 cell line suspension (2 9 106 cells in 20 lL DMEM medium

and matrigel (Corning ref. 354230)) was placed inside the eggs

and then they were tapped and returned to the incubator. At day

13 of incubation, the control group received 40 lL of PBS and

the treated group received 40 lL of 2x IC50 of each BMs. After

96 hours (day 17 of development), the chicken embryos were

killed by placing them at �80°C for 10 minutes. CAMs with

tumours were dissected, fixed in 4% paraformaldehyde at room

temperature and included in paraffin for further analysis. Digital

Images were taken on days 13 and 17 of development in a stere-

omicroscope (Olympus S2 9 16), using a digital camera (Olympus

DP71). At the selected time-points, the in ovo tumour perimeter

was measured using the Cell B software (Olympus). Before paraf-

fin inclusion, tumours were photographed ex ovo for blood vessel

counting. The number of blood vessels was counted using the

Image J software. An additional group of eggs (n = 20) was used

to evaluated the direct effect of BMs on the CAM and chicken

embryo.

2.10 | Effect of the bioenergetic modulators on
TMZ cytotoxicity

1.5 9 103 cells/well were seeded into 96-well plates and pre-

treated with a fixed concentration of BMs (a concentration previ-

ously determined that increase cytotoxicity of TMZ but do not

induce cell death per se), during the respective incubation times.

In untreated cells, the medium was replaced at this time-point.

After the period of incubation, the medium containing the com-

pounds was removed, cells were washed twice with PBS and the

cells pre-treated and not pre-treated with BMs were exposed to

TMZ at the same range of concentrations previously used for

72 hours. The effect of TMZ alone and BM + TMZ on cell viabil-

ity was evaluated using the SRB assay. Additionally, the action

of BMs on TMZ effect on cell migration and colony formation

ability was evaluated through wound-healing and colony forma-

tion assays, respectively. In both assays, cells were pre-treated or

not with a fixed concentration of BMs (2-DG (5 mmol/L), DCA

(20 mmol/L) and phenformin (0.01 mmol/L)—concentrations pre-

viously determined that increased cytotoxicity of TMZ but did

not induce cell death per se) for the respective time of incuba-

tion. After this period of incubation, cells were treated with

100 lmol/L of TMZ for 72 hours in the colony formation assay

and until 48 hours in the wound-healing assay. The assays con-

tinued as described previously in this materials and methods sec-

tion.

2.11 | Statistical analysis

The GraphPad prism 5 software was used, with the Student’s t-test,

considering significant values to be P ≤ .05.
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3 | RESULTS

3.1 | Treatment with bioenergetic modulators
affects cell survival and changes the metabolic profile
of glioma cells

Cell behaviour of two glioma cell lines (U251 and SW1088) was evalu-

ated on metabolic remodelling using different metabolic modulators,

2-DG, DCA and phenformin. A decrease in cell viability was triggered

in both cell lines by the three compounds, in a dose- and time-depen-

dent manner (Figure 1A). The lower IC50 values were found for phen-

formin (<1 mmol/L for both cell lines), whereas 2-DG IC50 values were

in the range of 10-35 mmol/L and DCA IC50 values were higher than

100 mmol/L (Figure 1B). Accordingly, all the compounds induced a

decrease in the ability of both cell lines to form colonies, after a recov-

ery period in the absence of compounds (Figure 2A). In U251 cells

treated with 2-DG and DCA, not only the colony number was lower

but also the colony size. In contrast, the phenformin effect in the

decreased ability to form colonies was more noticeable in SW1088,

although the effect in the size was not so evident (Figure 2A,B). As

referred previously, tumour cells present a metabolic reprogramming,

being most of cellular ATP generated from glucose via aerobic glycoly-

sis (“Warburg effect”) rather than by OXPHOS, what leads to a high

rates of lactic acid production. However, most tumours do not depend

completely of glycolysis for ATP supply, as mitochondrial metabolism

is not decreased in all cancer cells.29 To analyse the metabolic profile

in glioma cells, intracellular ATP content and extracellular lactate and

glucose levels were measured for both cell lines treated with the

respective BM IC50 values. Untreated cells, incubated for the same

period of time, were used as control. It was observed that the gly-

colytic inhibitors, 2-DG and DCA were able to reduce the consump-

tion of glucose, as well as the production of lactate and ATP content,

in both cell lines, although more evident for U251 cells, especially for

DCA (Figure 3). Different results were obtained when the glioma cells

were treated with phenformin. In U251 cell line, a significant increase

in glucose and lactate extracellular levels was observed, as well as ATP

production, in opposition to what happened with the other BMs. This

effect can be due to an activation of energy production through gly-

colytic pathway when OXPHOS was inhibited. In SW1088 cells, glu-

cose consumption was not altered and lactate production was higher

compared to the control. Concerning ATP content, the blockage of this

pathway impaired the energy production by this cell line. This indicates

that SW1088 present a markedly oxidative phenotype, as inhibition by

phenformin induced the most relevant alterations in the metabolic

profile of this cell line. In contrast, U251 cells present a more glycolytic

phenotype, as the glycolytic inhibitors induced a higher decrease in

glucose consumption, and lactate/ATP production.

3.2 | Metabolic modulation reduces the migration
and invasion capacity of glioma cells

To understand the influence of metabolic modulation on the motility

of glioma cell lines, we assessed cell migration by the wound-healing

assay, 12 and 24 hours after the treatment with BMs. Concerning

U251 cells, all metabolic inhibitors induced a decrease in the motil-

ity, compared to untreated cells (Figure 4A). Nevertheless, phen-

formin was the less effective in this reduction. In SW1088 cells,

metabolic modulation was not able to reduce the migratory ability in

a significant way, as it presented already a low ability to close of

wound, after 12 hours. However, after 24 hours, 2-DG and phen-

formin induced a reduction in cell migration capacity. It was also

observed that the invasion ability was affected by metabolic modula-

tion (Figure 4B). This inhibition was more evident in U251 cells, with

the glycolytic modulators, as they present a higher basal invasion

capacity, compared to SW1088 cells. Concerning phenformin, it was

not able to induce a significant decrease in invasion. Concerning

SW1088 cells, phenformin induced a higher reduction in the invasive

capacity, compared with glycolytic inhibitors, namely DCA.

3.3 | Treatment of cancer cells with the metabolic
modulators decreases glioblastoma proliferation
in vivo

According to our in vitro results, U251 cells exhibit higher glycolytic

rates, compared with SW1088 cells. However, all the compounds

including phenformin were able to decrease cell migration/invasion

and cell proliferation of these cells. Therefore, we aimed to evaluate

the efficacy of these compounds in an in vivo chicken chorioallantoic

membrane (CAM) model. U251 cells were grown in the CAM of

chicken embryos for 4 days, and treatment with 2X IC50 values of

the three BMs was performed during 4 days. As demonstrated in

Figure 5, all the BMs induced a decrease in tumour size, compared

to the untreated group. The tumour perimeter of treated microtu-

mours was around 3 or 4 mm, whereas one of the controls (un-

treated) was about 7 mm. Furthermore, BM treatment also reduced

the number of blood vessels formed around the tumour. The number

of tumour vessels in treated groups was about 10 or 15 vessels and

in the control group was about 45 vessels (Figure 5). Additionally,

tumour cell proliferation was reduced, compared to control, shown

through Ki67 expression (Figure 5), being the glycolytic inhibitors

the compounds that induced a higher decrease in tumour prolifera-

tion. These results demonstrated BMs ability to reduce the tumour

cell population and the vascular support. It is important to notice

that none of the metabolic inhibitors induced a decrease in blood

vessels and chicken embryo viability when we tested in the CAM

without tumour, under the same conditions (Figure S1A,B).

3.4 | Metabolic inhibition potentiates temozolomide
cytotoxicity

This study also aimed to investigate the influence of BMs, acting at

different metabolic targets, on the efficacy of the conventional anti-

tumour drug TMZ, with the objective to overcome the treatment

resistance commonly developed during therapeutic regimens. As

described previously, the main mechanism of resistance in glioma is

increased MGMT activity. Both glioma cell lines used did not express
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this enzyme, confirmed by quantitative PCR (Figure S2) and also

reported in the literature.30,31 For that reason, we decided to include

another cell line from human astrocytes: the hTERT/E6/E7 HOXA9

cell line, transfected with the HOXA9 gene, described as presenting

an aggressive behaviour and treatment resistance.27 This cell line

showed a higher expression of MGMT gene compared to glioma cell

lines (U251 and SW1088). The HOX genes are expressed in many

human cancers, being responsible for different oncogenic features,

including cell proliferation, migration and metastization and resis-

tance to treatment, namely in gliomas.32-34 Firstly, we evaluated the

cytotoxic effect of TMZ alone in different cell lines. Accordingly, and

after 72 hours of treatment, it was observed that hTERT/E6/E7
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F IGURE 1 Effect of bioenergetic inhibitors (BMs), 2-DG, DCA and phenformin on total biomass of glioma cells, U251 and SW1088. A, Cell
survival was assessed by the sulforhodamine B assay. B, The IC50 values determined after the respective incubation time. Results represent the
mean � SEM of triplicates from at least three independent experiments
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F IGURE 2 Effect of DCA, 2-DG and phenformin on cell colony formation. A, Glioma cells were incubated with different compounds, and
after a period of recovery for 10 days without compounds, the survival fraction was calculated. B, Representative pictures of colony formation
in both cell lines. Pictures were taken at 2009 magnification in a Nikon eclipse TE 2000-U microscope. Results represent the mean � SEM of
duplicates from three independent experiments. *P < .05; **P < .01; compared to untreated cells
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HOXA9 cell line presented the highest TMZ IC50 (762.08 lmol/L)

value (Figure 6), compared also to the parental cell line of astrocytes

non-transfected with HOXA9.27 The other two cell lines, U251

(IC50 = 75 lmol/L) and SW1088 (IC50 = 85 lmol/L), presented

lower IC50 values. Trying to correlate the bioenergetic status of the

cells with chemoresistance in cancer treatment, we evaluated the

effect of cell metabolism inhibition on TMZ cytotoxicity. To evaluate

the combined effect of BMs plus TMZ, all the three cell lines were

pre-treated with each BM and then exposed to different concentra-

tions of TMZ, during 72 hours. As Figure 7 demonstrates, all the

BMs enhanced TMZ cytotoxicity. 2-DG, DCA and phenformin were

able to potentiate the drug action, even when combined with lower

concentrations of TMZ (between 0.01 and 0.1 mmol/L). According

to these results, pre-treatment with BMs, before incubation with

TMZ, decreased also the cell migration capacity and the ability to

form colonies, comparing to cells treated only with TMZ (Fig-

ure 8A,B, respectively). Overall, our results showed that all the

compounds increase the cytotoxicity of TMZ as well as its effect

on inhibiting cell migration, namely for the glycolytic inhibitors in

U251 cells and phenformin in SW1088 and hTERT/E6/E7 HOXA9
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F IGURE 3 Metabolic profile of glioma cells estimated by extracellular glucose (A) and lactate (B) and ATP production (C), after treatment
with 2-DG, DCA and phenformin. Cells were incubated in the presence of the IC50 of the compounds, at the respective time of incubation.
After this time, the metabolic parameters were quantified. Glucose and lactate levels were normalized against the biomass content. Untreated
cells were used as control. ATP levels were normalized against the protein content of the extract, and against the value obtained with
untreated cells, set as 1. Results are presented as mean � SEM in triplicate of at least three independent experiments. *P < .05; **P < .01;
***P < .001 compared to untreated cells. Ns, no significant
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F IGURE 4 Cell migration (A) and cell invasion (B) of glioma cell lines after 2-DG, DCA and phenformin treatment. Cell migration and
invasion were evaluated by the wound-healing and matrigel assays, respectively, after treatment with the compound IC50 values. Pictures were
taken at 409 magnification (migration) and 2009 magnification (invasion) in a Nikon eclipse TE 2000-U microscope. Results represent the
mean + SEM of at three independent experiments. *P < .05; **P < .01 compared to untreated cells (control). Ns, no significant
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cells. This increase in TMZ toxicity is more evident in hTERT/E6/

E7 HOXA9 cells, which was characterized as the less sensitive cell

line to this drug. Furthermore, we showed that all BMs, induced

per se a decrease in cell survival and alterations in the cell meta-

bolic profile, decreasing glucose consumption as well as lactate and

ATP production, also in hTERT/E6/E7 HOXA9 cells, similarly to

what happened with U251 and SW1088 cell lines, being this effect

more noticeable for the glycolytic modulators (Figure S3). Addition-

ally, all the compounds decrease the migration and colony forma-

tion ability in this cell line, approximately in the same extent to

what happened with the other cell lines, showing that hTERT/E6/

E7 HOXA9 is more resistant to TMZ than U251 and SW1088

glioma cell lines, but the effect of the BMs was similar in all of

them (Figure S4).

4 | DISCUSSION

Although the knowledge of the influence of the bioenergetic status

on tumour characteristics increased greatly in the last years, there

is a relatively modest knowledge on the efficacy of metabolic inhi-

bitor compounds, namely in the clinical setting. One of the most

aggressive and lethal types of brain human cancer is glioblastoma.

However, the efficacy of the current therapies is very modest due

to the development of multidrug resistance (MDR) phenotype,

together with the disease recurrence.30 The switch of metabolism

present in gliomas, with an increase in glycolysis as main energy

source, is correlated with a worse prognostic and failure of antitu-

mour therapies.7

In this study, we intend to understand the role of the repro-

grammed metabolism and how its modulation can improve the con-

ventional existent therapies. Many reports showed that the use of

metabolic inhibitors potentiate the antitumour therapy and reduce

tumour aggressiveness 35–37 Despite the existence of many

In
 o

vo
Ex

 o
vo

Control 2-DG PhenforminDCA
K

i6
7

PBS
2-D

G
DCA

Phen
for

min
0

2

4

6

8

10

***
*** ***

)
m

m(
rete

mireP

PBS
2-D

G
DCA

Phen
for

min
0

10

20

30

40

50

60

***

B
lo

od
 v

es
se

ls
 n

um
be

r

*** ***

F IGURE 5 In vivo effect of BMs in
U251 glioma microtumour growth.
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F IGURE 6 Effect of TMZ on total biomass of three cell lines,
after 72 h of exposure assessed by the sulforhodamine B assay.
Results represent the mean � SEM of triplicates from at least three
independent experiments
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compounds that target the altered metabolism, we decided to use

different compounds, 2-DG, DCA and phenformin, which target dif-

ferent steps of the metabolic network on tumour cells. 2-DG inhibits

glycolysis, targeting HK and also competes with the entrance of

extracellular glucose into the cells by GLUTs.38 Other reports

showed the effect on tumour cells induced by this compound alone

or in combination with other drugs.18-21 However, few reports

showed the effectiveness of 2-DG in glioma therapy. The pyruvate

mimetic, DCA, redirects the tumour metabolism from glycolytic path-

way to OXPHOS, inducing a decreasing the mitochondrial membrane

potential and activating the K+ channel Kv1.5.11,39 DCA is normally

used to treat human hereditary mitochondrial metabolic diseases and

lactic acidosis, but it has been recently evaluated in several pre-clini-

cal cancer therapies including prostate,40 colon 41 and breast

cancer.42 DCA safety and efficacy has been studied in glioblastoma

patients in a clinical trial (NCT01111097), but no results are pub-

lished until now. Although most of the new metabolic antitumour

agents target the glycolytic metabolism, we also assayed phenformin,

a biguanide that showed promising results in the fight against can-

cer.43,44 The main mechanism to explain the biguanide anticancer

effect is the inhibition of the mitochondrial complex I, with a subse-

quent overproduction of reactive oxygen species (ROS).45 Addition-

ally, these drugs activate 50-AMP-activated protein kinase (AMPK)

that inhibits mammalian target of rapamycin complex 1 (mTORC1)

leading to reduced cell proliferation. Recently, some studies have

demonstrated that biguanides may also have antitumour action and

enhance the efficacy of TMZ treatment in glioma cells and glioma

stem cells.46,47 Nevertheless, most of these studies used metformin,

U251 SW1088 hTERT/E6/E7 HOXA9
Medium (48 h) + TMZ (72 h) 0.50 ± 0.20 mmol/L >1 mmol/L >1 mmol/L
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F IGURE 7 Effect of BMs, 2-DG (5 mmol/L), DCA (20 mmol/L) and phenformin (Phen. 0.01 mmol/L), pre-treatment on TMZ cytotoxicity, in
U251, SW1088 and hTERT/E6/E7 HOXA9 cells. Cells were pre-treated or not with fixed concentration of BMs during the respective
incubation time, followed by the incubation with increasing concentrations of TMZ (0.01-1 mmol/L). A, Cell survival was assessed by the
sulforhodamine B assay. B, IC50 values, determined after the respective incubation time. Results represent the mean � SEM of triplicates from
at least three independent experiments
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which less potent than phenformin.37 For that reason, more studies

on its effect on glioma therapy are needed.

As anticipated, in the present study, cell treatment with the

energetic modulators changed the metabolic parameters, in most of

the conditions used. Based on our findings, we hypothesized that

the glycolytic pathway seems to be the main source of energy in

U251 cells, as treatment with phenformin did not induce a deple-

tion of cellular ATP. It is important to notice that the biguanide

compounds, such as phenformin, require a functional OXPHOS to

inhibit the complex I and consequently decrease ATP levels in the

cell.48 In contrast, treatment with the antiglycolytic agents reduced

significantly the cell ATP content and inhibited, in a greater extent,

lactate production and glucose consumption. This can be explained

by a mitochondrial dysfunction in this cell line, suggesting that

forced utilization of defective OXPHOS could be toxic to the cells.

Regarding SW1088 cells, our results indicate that both glycolysis

and OXPHOS contribute to energy production. Indeed, all the

agents led to a decrease in the ATP content in a similar way.

About the glycolytic inhibitors, the effect was greater when 2-DG

was used, what is particularly evident in the glucose levels in the

culture medium. Concerning phenformin, SW1088 cells were able

to rely on glycolysis when the OXPHOS is inhibited, as glucose

consumption was maintained in levels similar to the control and lac-

tate production was higher. However, ATP production was lower,

revealing that glycolysis is less effective as energy source. More-

over, we found that metabolic inhibition can also decrease the

migration/invasion abilities of tumour cells, important hallmarks in

the first steps of the metastatic process. We can hypothesize that

the metabolic inhibition reduced lactate production and conse-

quently decreased lactate and proton efflux, increasing extracellular

pH (pHe), and motility is compromised. Our research group showed

that blockage of lactate efflux, through MCT inhibition decreased

the migration and invasion abilities in different cancer models.6,49

Additionally, we observed that metabolic inhibition, by the use of

glycolytic inhibitors, induced an increase in pHe compared to

untreated cells (Table S1). Nevertheless, our results also demon-

strated that when the cells were exposed to phenformin, the pro-

duction of lactate was high and the pHe decreased. However,

these in vitro assays do not mimic all the in vivo conditions for the

migratory and invasive characteristics, and other processes not eval-

uated in this work, can be involved in the decrease in migratory

and invasive capacity of cells. To support the previous results, we

used an in vivo model, the CAM assay, where we observed a

decrease in tumour proliferation and the number of surrounded

vessels when treated with BMs. CAMs without tumours were

exposed to the same concentrations of BMs and no toxic alter-

ations were observed. In fact, few reports demonstrated toxic

effects in normal cell lines or tissues induced by these metabolic

inhibitors. Cheng et al20 detected some brain toxicity using 2-DG;

however, to the best of our knowledge, no others reports referred

adverse effects in normal tissues. In the case of DCA, the main side

effect reported was a certain dose-dependent reversible peripheral

neuropathy.50 No side effects have been reported when the phen-

formin is used as antitumour therapy.

Regarding all the results obtained, it is important to note that we

demonstrated that BMs decreased cell proliferation and survival,

even when used alone, having the potential to be used as an alterna-

tive therapy in glioma, as they are able to cross the brain-blood bar-

rier (BBB).29,51 Even with some controversy on this issue regarding

the biguanide class, a recent report showed some BBB permeability

to these compounds.52

This study aimed to demonstrate the existence of new thera-

peutic approaches, based on cancer altered metabolism, to

improve the available therapies. We demonstrated that the differ-

ent cell lines used in this work presented different responses to

TMZ. Transfection with the HOXA9 gene of the human immortal-

ized astrocytes hTERT/E6/E7 cells induced an increase in resis-

tance to TMZ treatment and a more aggressive behaviour.27 As

we observed in our results, this cell line presents an increased

resistance to TMZ comparatively to the glioma cells, what can be

due to one of the most common mechanism of resistance in glio-

mas, the increase in MGMT enzyme activity.10 In contrast, the

glioma cell lines present a higher sensitivity to treatment, with

lower IC50 values, probably due do their low/null expression of

MGMT.30,31 For that reason, we pre-treated all the cell lines with

BMs, in an attempt to modulate metabolism to overcome the

resistance demonstrated by these cells. We observed that pre-

treatment with all BMs decrease the initial TMZ IC50 values, as

well as migration and colony formation ability of cells treated with

TMZ, potentiating its effect, particularly in the most resistant cell

line expressing MGMT. However, there is no report describing the

energy dependence of MGMT enzymatic activity; therefore, other

mechanism should be involved. The use of BMs could be a dou-

ble-edge sword, as they can induce an alteration of pHe. Some

authors showed that the activity of TMZ or the derived metabo-

lites, namely the active metabolite 3-methyl-(triazen-1-yl)

F IGURE 8 Effect of 2-DG (5 mmol/L), DCA (20 mmol/L) and phenformin (Phen. 0.01 mmol/L), pre-treatment on TMZ effect on cell
migration and cell colony formation. All the cell lines, U251, SW1088 and hTERT/E6/E7 HOXA9 cells were pre-treated or not with fixed
concentrations of BMs during the respective incubation time, followed by the incubation with 100 lmol/L of TMZ. A, Cell migration was
quantified by the wound-healing assay, after pre-treatment with the BMs and during incubation with TMZ. Pictures were taken at 409
magnification (migration) and 2009 magnification (invasion) in a Nikon eclipse TE 2000-U microscope. B, Representative pictures of colony
formation in both cell lines. Cells were incubated with different compounds, and after a period of recovery for 10 days without compounds,
the survival fraction was calculated. Pictures were taken at 2009 magnification in a Nikon eclipse TE 2000-U microscope. Results represent
the mean + SEM of at three independent experiments. *P < .05; **P < .01; ***P < .001 compared to cells treated with TMZ alone. #P < .05;
compared to untreated cells (control) Ns, no significant
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imidazole-4-carboxamide (MTIC) seems to be pH dependent

(pH > 7). However, there is some controversy on their mechanism

of action and additionally, the reports did not specify the place

where this activation occurs, inside or outside of tumour cells.53,54

Therefore, the activity and subsequent toxicity of MTIC could be

altered with the pH gradient, what can explain the chemosensiti-

zation of cells when pre-treated with the BMs. Additionally, pre-

treatment with different BMs was also able to potentiate the

TMZ action in glioma cell lines, probably due to other mechanism

unrelated to MGMT. Additionally, and supporting our findings,

other reports showed the advantage of using these kind of com-

pounds in a combined way with conventional drugs. In fact, Kouk-

ourakis et al55 sensitized glioblastoma cell lines, namely the most

resistant ones, to conventional therapies (radiotherapy and

chemotherapy with TMZ), using the glycolytic inhibitor 2-DG and

the LDHA inhibitor oxamate, as well as LDHA gene silencing. Vel-

pula et al56 also demonstrated that other mechanisms than MGMT

expression can be involved in MDR phenotype, namely in glioblas-

tomas. The authors observed that DCA increases TMZ cytotoxic-

ity, reverting the Warburg effect through tyrosine kinase

signalling, namely via EGFRvIII.

Deprivation of tumour energy may predictably potentiate con-

ventional chemotherapeutic treatments, as many of the proteins

associated with the MDR phenotype are energy dependent, such

as the ATP-binding cassette (ABC) transporter family responsible

for the efflux of different high affinity substrates, namely a wide

range of antitumour drugs.57 In fact, some reports showed the

overexpression of these resistance proteins either in BBB or in

glioma cells, preventing TMZ cytotoxicity.58–60 By Western blot,

we demonstrated a strong expression of Pgp in glioma cell lines

used in this study (U251 and SW1088) compared to the hTERT/

E6/E7 HOXA9 cells (Figure S5). However, this is not the case for

U251 cells treated with phenformin, where we observed an

increase in ATP intracellular content. Nevertheless, phenformin

was also able to alter cancer characteristics and to potentiate the

cytotoxicity of TMZ, what can be probably explained by other

mechanisms. In fact, the MDR phenotype involves different and

complex mechanisms that can be used as target to overcome the

low efficacy of employed treatment regimens, and metabolic inhi-

bition could be one of the strategies that can be used for this

purpose.

Collectively, our findings provided new insights into cancer cell

metabolism as a promising therapeutic strategy for patients with

gliomas, increasing therapeutic sensitivity. The use of different meta-

bolic inhibitors combined to standard therapy used in clinical routine,

reducing therapeutic doses and consequently decreasing adverse

effects in normal brain, could be a new helpful option.
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