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Abstract— Surgical training for minimal invasive kidney 
interventions (MIKI) has huge importance within the urology 
field. Within this topic, simulate MIKI in a patient-specific 
virtual environment can be used for pre-operative planning 
using the real patient’s anatomy, possibly resulting in a 
reduction of intra-operative medical complications. However, 
the validated VR simulators perform the training in a group of 
standard models and do not allow patient-specific training. For 
a patient-specific training, the standard simulator would need 
to be adapted using personalized models, which can be 
extracted from pre-operative images using segmentation 
strategies. To date, several methods have already been 
proposed to accurately segment the kidney in computed 
tomography (CT) images. However, most of these works 
focused on kidney segmentation only, neglecting the 
extraction of its internal compartments. In this work, we 
propose to adapt a coupled formulation of the B-Spline 
Explicit Active Surfaces (BEAS) framework to simultaneously 
segment the kidney and the renal collecting system (CS) from 
CT images. Moreover, from the difference of both kidney and 
CS segmentations, one is able to extract the renal parenchyma 
also. The segmentation process is guided by a new energy 
functional that combines both gradient and region-based 
energies. The method was evaluated in 10 kidneys from 5 CT 
datasets, with different image properties. Overall, the results 
demonstrate the accuracy of the proposed strategy, with a Dice 
overlap of 92.5%, 86.9% and 63.5%, and a point-to-surface 
error around 1.6 mm, 1.9 mm and 4 mm for the kidney, renal 
parenchyma and CS, respectively. 
 
Keywords— Computed Tomography, coupled B-Spline Explicit 
Active Surfaces, kidney segmentation, patient-specific virtual 
environment, renal collecting system segmentation; 

I. INTRODUCTION 
INIMALLY invasive kidney interventions (MIKI) have 
become commonplace and have largely replaced 
traditional interventions (i.e. open surgery) [1,2]. 

Although providing considerable advantage to the patients, 
MIKI difficulty is relatively higher than traditional approaches 

[3,4]. Recent clinical studies showed the added value of the 
VR systems to shorten the learning curve of several MIKI 
procedures when compared with the traditional mentor-based 
approach [5,6]. However, the validated VR simulators perform 
the training in a group of standard models and do not allow 
patient-specific training. In fact, a VR simulator that allows 
practicing in a patient-specific environment, prior to the 
intervention, can have a huge value for healthcare. Such tool 
can be useful not only for training but also to simulate any 
difficult step of a surgery, reducing, therefore, the probability 
of adverse events and the number of complications. For a 
patient-specific training, the standard simulator would need to 
be adapted using personalized models. These models can be 
extracted from pre-operative images, using segmentation 
strategies [7]. In fact, the necessity of a robust method to 
segment the kidney and its compartments could have 
hampered the development of such simulators. 

To segment the kidney in CT images, (semi-)automatic 
segmentation strategies have been developed [8]. These 
strategies allow to reduce intra- and inter-observer variability, 
as well as minimize the time usually required for the 
traditional manual delineation. However, the task of 
segmenting the kidney in CT images is challenging owing to 
the low contrast between the kidney and its neighboring 
tissues. 

Several approaches have been proposed in the literature for 
kidney segmentation, which include image-based methods [9–
11], classification [12,13], atlas-based [14–16], or deformable 
model methods [17–24]. Deformable model approaches 
present advantages against other segmentation categories, 
namely by being robust to noise and by offering topological 
flexibility to the segmentation process. These approaches are 
based on the concept of active contours, which consist in a 
curve that is evolved through internal/external energies that 
represent the generic features used to separate the object of 
interest from the background. Smooth and gapless 
segmentations are typically extracted with this type of 
methods. Different works have used deformable models to 
segment the kidney. In [17], Qiao et al. proposed an active 
contour methodology where a gradient vector flow force is 
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used to evolve the contour based on image characteristics. 
Another type of deformable model, namely template 
deformation, was used in [18,19]. In these works, the kidney’s 
position is detected using contextual information, with an 
implicit template model being used to segment the kidney, 
driven by a kidney probability map constructed using random 
forests. A template deformation approach was also proposed 
in [20]. In this method, two types of deformation were 
explored, namely global and local deformations, which were 
constrained by local features. In [21,22], a level-set approach 
was used, which combined a statistical shape prior, visual 
descriptors, and homogeneity descriptors to evolve the 
contour. A level-set set method was also used by Hufnagel et 
al. [23]. In their work, the contour is evolved towards the 
kidney using image intensities and with constrains applied by 
a statistical shape model. Despite their relatively accurate 
results in segmenting the kidney, one common limitation 
across all these methods is their computational burden. To 
solve this problem, we previously proposed to use the B-spline 
Explicit Actives Surfaces (BEAS) framework to segment the 
kidney in [24], providing low computational time to the 
segmentation process.  

Despite all the methods proposed in the literature for kidney 
segmentation in CT images, most are restricted to the 
extraction of one single solid structure. However, the kidney is 
internally divided in the renal parenchyma (which in its turn is 
divided in renal cortex and medulla) and in the renal collecting 
system (CS), which contains the renal pelvis and the sinus 
complex (see Figure 1). The segmentation of these different 
renal compartments in CT images has not been fully explored 
in the research field yet. However, the ability to distinguish 
both renal parenchyma and renal CS within the kidney can be 
useful for functional and morphological assessments of the 
kidney. In fact, the volume of the parenchyma can be helpful 
to identify certain pathological renal conditions, such as 
posterior urethral valves [25]. Similarly, the volume of the 
renal CS and its relation with the total volume of the kidney 
can help recognize renal diseases, such as hydronephrosis 
[25].   

For the above reasons, the present work aims to develop a 
method to segment the different renal regions, namely the 
renal parenchyma and the renal CS. To this end, we extended 
our previously proposed kidney segmentation framework [24]. 
Specifically, a coupled formulation of the BEAS framework to 

simultaneously segment the whole kidney and the renal CS in 
3D CT images is used. Using the difference between both 
surfaces, the renal parenchyma is obtained. Moreover, the 
gradient-based regularization term proposed in our previous 
work is now extended to a gradient-based energy functional, 
which is then combined with a region-based energy.  

The rest of this paper is organized as follows. In section II, 
the general formulation of the coupled BEAS framework and 
the proposed energy functional for both kidney and renal CS 
are presented. In section III, the implementation details are 
outlined, being the results present in section IV. In section 0, 
the results are discussed, with the main conclusions being 
given in section VI. 

II. METHODOLOGY 
In this subsection, a description about the proposed 

methodology to segment the whole kidney, the renal CS, and 
the renal parenchyma is presented. Firstly, a coupled 
formulation of the BEAS framework is used to segment he 
whole kidney and the renal CS simultaneously. Afterwards, 
the renal parenchyma is segmented by using the different 
between the kidney and CS segmentations.  

A. B-spline Explicit Active Surfaces (BEAS) 
The primary principle of the BEAS framework is the active 

contours method. In active contours, an evolving interface is 
propagated by minimizing a given energy functional that 
reflects the characteristics of the object to be segmented. In 
BEAS, the concept of Active Geometric Functions (AGF) [26] 
is used by representing the evolving interface as an explicit 
function. Geometrically, this implies that one of the 
coordinates of the points on a surface is given explicitly as a 
function of the remaining coordinates. Such explicit relation 
can be mathematically defined as: ߰: ℝ௡ିଵ ↦ ℝ, ଵݔ = ߰(࢞∗), (1) 

where ࢞ is a point of coordinates {ݔଵ, … ,  ௡} within the surfaceݔ
and ࢞∗ = ,ଶݔ} … ,  ௡}. This explicit form of the interfaceݔ
reduces the dimensionality of the segmentation problem, 
limiting however the contour’s topology. Nevertheless, this 
formulation fits well to recover the kidney’s boundary, owing 
to its star-like and smooth shape. 

The BEAS method extends the concept of AGF to the 
variational level-set B-spline formulation proposed in [27]. In 

 
Figure 1 – CT image showing the different renal compartments. (A) CT image; (B) Kidney; (C) Renal collecting system; (D) Renal parenchyma; (E) 3D model of 
kidney and renal collecting system.  



this formulation, the interface function is modeled as a 
continuous parametric function expressed on a B-spline basis, 
where the minimization of the energy functional is expressed 
as a sequence of 1D convolutions. Therefore, the BEAS 
method expresses ߰ as a linear combination of B-spline basis 
functions: ݔଵ = ,ଶݔ)߰ … , (௡ݔ = ෍ ௗߚ[࢑]ܿ ൬࢞∗ℎ − ࢑൰ ,௞∈ℤ೙షభ  (2) 

where ߚௗ(. ) is the uniform symmetric (݊ − 1) −dimensional 
B-spline of degree ݀. The knots of the B-splines are located on 
a rectangular grid defined on the chosen coordinate system, 
with a regular spacing given by ℎ. The coefficients of the B-
spline representation are gathered in ܿ[࢑] and the 
minimization of the energy functional can be directly obtained 
in terms of these coefficients. 

B. Coupled energy functional  formulation 
Similarly to typical coupled active contours formulations, 

we defined both kidney and renal collecting system surfaces 
separately. In this sense, a simple definition of the boundaries 
was adapted: 

௞(࢞࢑∗) = ߰௞(࢞࢑∗), (3) 

௖௦(࢙࢞ࢉ∗) = ߰௖௦(࢙࢞ࢉ∗), (4) 

for kidney (݇) and renal CS interfaces (ܵܥ), respectively.  
To evolve these interfaces, an appropriate energy criterion 

must be defined. In [28], Lankton and Tannenbaum introduced 
the concept of localized region-based energies. Using these 
energies, the evolving interface is propagated taking into 
account the properties of the local regions around each point 
of the interface. The energy functional can be defined in terms 
of a generic force function ܨ as: ܧௗ =  න (࢑࢞)థೖߜ න ,࢑࢞)ܤ ࢟࢑).  ࢑݀࢞࢑࢟݀(࢑࢟)௞ܨ

+ න (࢙ࢉ࢞)థ೎ೞߜ න ,࢙ࢉ࢞)ܤ .(࢙ࢉ࢟  (5) ,࢙ࢉ࢙࢞݀ࢉ࢟݀(࢙ࢉ࢟)௖௦ܨ

where ߜథ(࢞) specifies the respective interface and ܤ(࢞, ࢟) is a 
mask function in which the local parameters are estimated to 
drive the contour evolution. For each interface, this mask is 
defined around each point ࢞ as the set of points belonging to 
the normal direction of ࢞ and whose distance is lower than a 
parameter ܤ :ݎ(࢞, ࢟) =  ൜ 1, ݂݅ ࢟ = ࢞ + ݇ × ,෡ࡺ ݇ ∈ ,ݎ−]  (6) .                                      ݁ݏ݅ݓݎℎ݁ݐ݋         ,0[ݎ

To minimize the abovementioned energy, a modified 
version of the gradient descent optimization with feedback 
step adjustment algorithm is used. In BEAS, the energy can be 
directly minimized with respect to ܿ[࢑] through the following 
evolution equations: ܿ[࢑]௧ାଵ =  ܿ[࢑]௧ + ߣ  (7) ,(௧)[࢑]߲ܿܧ߲

[࢏࢑]߲ܿܧ߲ =  න ൫݃̅௞(࢞࢑∗)൯ߚௗ ൬࢞࢑∗ℎ − ൰࢏࢑ ௞∗ೖݔ݀  

+ න ൫݃̅௖௦௥(࢙࢞ࢉ∗)൯ߚௗ ൬࢙࢞ࢉ∗ℎ − ൰࢏࢑ ௖௦∗,೎ೞݔ݀  (8) 

where ݐ is the current iteration number and ߣ is a parameter 
controlling the step at each iteration. ݃̅(࢞∗) is a feature 
function that reflects the features of the object to be 
segmented. For clarity’s sake, considering a generic function ℎ(ݔ) in ℝ௡ ,, ℎത is noted as the restriction of ℎ over the interface 

 in ℝ௡ିଵ. 

C. Proposed hybrid energy functional 
In this paper, an energy functional that combines region- 

and edge-based terms is proposed (Figure 2). Concerning the 
region-based term, a signed version of the Yezzi energy [29] 
was adopted. This energy proposed by Queirós et al. [30] 
evolves the contour in order to have the maximum separation 
between the statistics of the image, modelling the foreground 
and background regions as having maximally-separated 
average intensities. To explicitly specify the expected relation 
between both regions, the signed version of this energy is 
expressed in terms of ܨ for each surface as: ܨோೖ(ݕ௞) = ௫ೖݒ − (௖௦ݕ)ோ೎ೞܨ ௫ೖ, (9)ݑ = ௫೎ೞݑ −  ௫೎ೞ. (10)ݒ

where ݑ௫ and ݒ௫ are the mean intensities inside and outside of 
the respective evolving contour at point ࢞. With this energy, 
the contour related with the kidney surface is forced to evolve 
so that the interior of the interface has higher intensities than 
its exterior, assuming that the kidney is brighter than the 
background (Figure 2C). In opposite, the surface 
correspondent to the renal CS is evolved assuming that the 
interior of the kidney (the CS) is darker than the surrounding 
tissue, i.e. the renal parenchyma (Figure 2E). 

The feature functions for the evolution are given by: ݃̅ோೖ(࢞࢑∗) = ൫(∗࢑࢞̅)ܫ − ௫ೝ൯ݒ + ൫(∗࢑࢞̅)ܫ − (∗࢙ࢉ࢞)௫ೝ൯, (11) ݃̅ோ೎ೞݑ = ൫(∗࢙ࢉ࢞̅)ܫ − ௫೎ೞ൯ݑ + ൫(∗࢙ࢉ࢞̅)ܫ −  ௫೎ೞ൯, (12)ݒ

where ܫ(̅࢞∗) corresponds to the image value at point ࢞. 
In order to make our strategy less dependent of the 

initialization and the presence of local minima, we combine 
the abovementioned region-based energy with an edge-base 
term, taking advantages of the expected well-defined 
boundaries in CT images. For that, it is proposed to use the 
derivative of the signal given by the set of points belonging to 
the mask ܤ to analyze its transitions. The gradient information 
is used as the localized edge-based energy itself, being 
expressed as:  ܨாೖ(ݕ௞) = −∇P(࢞࢑∗), (13) ܨா೎ೞ(ݕ௖௦) = ∇P(࢙࢞ࢉ∗), (14) 



where P corresponds to the surface’s normal profiles 
computed using mask ܤ. 

 The edge-based term related with kidney’s surface presents 
its maximum in bright-to-dark intensity transitions (Figure 
2D), while the edge-based term related with the renal CS 
surface presents higher values in dark-to-bright steps (Figure 
2F). The feature functions associated to this energy is 
computed by convolving the energy with the derivative of a 
Gaussian function ܩ: ݃̅ாೖ(࢞࢑∗) = ܩ∇ ∗ (∗࢙ࢉ࢞)ா೎ೞ̅݃ (15) ,(ݕ)ாೖܨ = ܩߘ ∗  (16) .(ݕ)ா೎ೞܨ

The proposed energy functional consists in the combination 
of the region-based energy and the proposed edge-based 
energy, resulting in a hybrid force function ܨ, defined in 
equation (5), expressed as:                    ܨ௞(࢟࢑) = (௞ݕ)ோೖܨ  + .௞ߙ  (࢙ࢉ࢟)௖௦ܨ                    (17) (௞ݕ)ாೖܨ = (௖௦ݕ)ோ೎ೞܨ  + .௖௦ߙ   (18) (௖௦ݕ)ா೎ೞܨ

where the parameter ߙ is a weight factor that allow to control 
the influence of edge term in the associated contours 
evolution. The feature function associated with the proposed 
energy functional is thus given by:               ݃̅௞(࢞࢑∗) = ݃̅ோೖ(࢞࢑∗) + .௞ߙ  ݃̅ாೖ(࢞࢑∗) (19)               ݃̅௖௦(࢙࢞ࢉ∗) = ݃̅ோ೎ೞ(࢙࢞ࢉ∗) .௖௦ߙ + ݃̅ா೎ೞ(࢙࢞ࢉ∗) (20) 

D. Regularization term 
In order to guide the surfaces with a proper relation between 

each other, and to guarantee that the coupling of the surfaces 
results in plausible segmentations, a regularization term ݃̅ோ் is 
added to the CS energy functional. In [31], a regularization 
term that ensures a proper local thickness between two 
surfaces is proposed. Although this term is feasible to 
constrain the thickness between the kidney and the renal CS, 

there is a region of the kidney, namely its concave surface 
(renal hilum), where both kidney and renal CS’s surfaces must 
merge. Here, both surfaces stand in a homogeneous region, 
presenting similar inner and outer intensities. In this sense, we 
proposed a new formulation of the regularization term, which 
allows the CS surface to be evolved towards the kidney’s 
boundary in this homogeneous region: ݃̅ோ்(࢙࢞ࢉ∗) = ((1 − .(௛ܪ (߰௞ − ߰௖௦ − .( (௧ݐ +௧ܪ .௛ܪ (߰௞ − ߰௖௦)  (21) 

where ܪ is the Heaviside function defined in our 
implementation as: ܪ௛ = ௛ݐ)ܪ − ห(ݑ௫ೖ − (௫೎ೞݑ − ௫ೖݒ) − ௧ܪ ௫೎ೞ)ห), (22)ݒ = ௧ݐ൫ܪ − (|߰௞ − ߰௖௦|)൯. (23) 

In the equation, ݐ௧ is the minimum thickness between the 
kidney and CS surfaces in the regions where the surfaces 
should not merge and ݐ௛ is a homogeneity parameter. Note 
that the regularization term is regulated by ݐ௛, being always 
activated in homogeneous regions. However, when in 
heterogenous regions, ݐ௧ controls the thickness between the 
surfaces, penalizing thicknesses lower than its value. In this 
sense, the regularization term ensures a proper thickness 
between both kidney and CS’s surfaces, while pushing the 
latter one towards the kidney boundary in the renal hilum. The 
CS feature function with the regularization term in then given 
as: ݃̅௖௦௥(࢙࢞ࢉ∗) =  ݃̅௖௦(࢙࢞ࢉ∗) + ݃̅ோ்(࢙࢞ࢉ∗). (24) 

III. EXPERIMENTS 

A. Dataset and ground truth 
The performance of the proposed segmentation method was 

evaluated on a database of 5 CT images, being both left and 
right kidneys assessed individually. The parameters used 
during the acquisition of the CT images were set to 120 kV 

Figure 2 – Principle of the localized energy functional used in the segmentation method. (A) Slice of the original CT image; (B) Contour evolution for kidney (dark 
yellow) and renal CS (light yellow), showing the kidney’s boundary (red dot) and renal CS’s boundaries (violet dot); (C) Image intensity profile extracted in the 
blue line in (B); (D) Derivative profile of (C); (E) Image intensity profile extracted in the black line in (B); (F) Derivative profile of (E); (G) Final segmentation of 
kidney (red contour) and renal CS (violet contour). 



and between 265 and 445 mA. The pixel spacing ranged from 
0.61 to 0.96 mm and the spacing between slices ranged from 
1.5 to 3 mm. The number of slices was between 502 and 797. 
Each axial slice had a spatial resolution of 512×512 pixels. 

Concerning the ground truth, both kidney and CS’s ground 
truth surfaces were manually delineated by one observer using 
the Medical Imaging Interaction Toolkit (MITK) software 
[32]. The ground truth of the renal parenchyma was obtained 
from the difference of both kidney and CS ground truth 
segmentations. The manual delineation was performed twice 
for each structure (henceforward referred as Manual1 and 
Manual2), allowing the comparison between the performance 
of the proposed method and the intra-observer variability. 

B. Contour initialization 
The first step of active contour-based segmentation 

strategies is the initialization of the contour that will be 
evolved towards to the object to be segmented. To initialize 
the BEAS method in the present work, a user drew fourteen 
points in the kidney and an ellipsoid was fitted to this data. 
The fitted ellipsoid was used as initialization for the kidney’s 
surface during semi-automatic segmentation with BEAS. The 
renal CS surface was initialized within the BEAS framework 
as follows: 

௖௦బ =  ௞బ/2. (25) 

C. Implementation details 
In the implementation of the proposed method, some 

parameters had to be defined. First, the CT images were 
normalized between 0 and 1. Next, an appropriate coordinate 
system was set. Due to the kidney’s ellipsoid shape, a 

spherical coordinate system was chosen. Thus, the radial 
coordinate of the points within the surfaces will be given as a 
function of the azimuth and zenith angles. Concerning the B-
spline scales and the number of surface points, the first one 
was set to 22 and 64 points were used to define each direction 
of the rectangular grid in the spherical domain. These values 
were selected for both kidney and CS’s surfaces. Regarding 
mask ܤ, the radius of the normal vector was experimentally 
set to 10 mm for kidney and 8 mm for CS. The weights 
associated to the region-based and edge-based terms in the 
hybrid energy functional were set to 1 and 1.75, respectively, 
for the two surfaces. At last, ݐ௧ and ݐ௛ were experimentally set 
to 5 pixels and 0.1, respectively. 

IV. RESULTS 
TABLE I presents a surface analysis of the segmentation 

performance against Manual1, using Dice, Point-to-Surface 
(P2S) distance, and 95th Hausdorff Distance (HD). In the table, 
results for the whole kidney, renal CS, and renal parenchyma 
are presented. The intra-observer variability between both 
manual analyses is also presented in the table. In Figure 3, an 
example of one segmentation result is presented. 

Besides the surface analysis, a volumetric analysis was also 
performed. In this analysis, the volumes of the segmented 
kidney, CS, and parenchyma surfaces were compared with the 
manual ones. Figure 4 presents the Bland-Altman plots using 
Manual1 as reference. In these analyses, the biases (average 
difference between methods) and limits of agreement (LOA, 
1.96σ) were assessed. The volumetric comparison was also 
performed between both manual delineations. 

The computational time of the proposed strategy was also 
assessed, being required in average 14 seconds per each 

TABLE I. 
3D KIDNEY SEGMENTATION PERFORMANCE (μ ± σ)  

 
DICE (%)  P2S (mm)  HD (mm) 

Kidney CS Parenchyma  Kidney CS Parenchyma  Kidney CS Parenchyma 
Initialization 80.9 ± 3.2 51.2 ± 12.2 -  4.0 ± 0.8 5.4 ± 1.7 -  10.1 ± 2.0 12.8 ± 4.0 - 
Segmentation 92.5 ± 1.3 63.5 ± 10.4 86.9 ± 2.6  1.6 ± 0.3 4.0 ± 1.8 1.9 ± 0.5  5.2 ± 2.1 11.1 ± 5.2 6.5 ± 2.3 
Intra-observer 94.4 ± 1.2 71.6 ± 6.4 91.2 ± 1.5  1.2 ± 0.3 2.7 ± 0.8 1.5 ± 0.3  3.9 ± 1.4 6.8 ± 2.4 4.4 ± 1.4 

 

 
Figure 3- One example segmentation result. (A) Original CT image with initial contours for kidney (dark yellow) and renal CS (light yellow); (B) Final kidney 
segmentation (red contour) and its respective ground truth (dark green contour); (C) Final renal CS segmentation (violet contour) and its respective ground truth 
(light green contour); (D) 3D models of the segmentation results; 



segmentation. Note that the results were computed with a 
MATLAB code running on a 3.6 GHz Core computer with 
CPU i7-4740 and 16 GB of RAM.  

V. DISCUSSION 
This paper proposed a segmentation approach to extract the 

kidney, the renal parenchyma, and the renal CS from 3D CT 
images. Analyzing TABLE I, it is possible to verify the 
performance of the proposed method. Concerning kidney 
segmentation, a Dice overlap of 92.5% and an average P2S 
error lower than 2 mm was achieved. These results proved the 
accuracy of the proposed segmentation method and its 
associated hybrid energy functional. In [24], we showed that 
the signed version of the Yezzi energy obtains suitable results 
for kidney segmentation, which is corroborated in the present 
paper. When using it, the knowledge of the specific intensity 
relationship between the kidney and the background adds an 
explicit prior to the segmentation method, allowing to achieve 
a good robustness against the different appearances of the 
kidney. In this sense, this energy was also used to segment the 
renal CS. However, a purely region-based energy may not be 
enough if the contour is too far from the true kidney’s 
boundary. To solve this problem, an edge-based term was 
added to the energy functional, using a gradient-based 
approach. Therefore, the edge-based term forces the contour to 
evolve towards positions with higher gradients. Moreover, the 
edge-based term searches for specific transitions (bright-to-
dark in the case of the kidney segmentation), reducing the 
influence of interfaces that do not belong to the kidney’s real 

boundaries. In this sense, it is possible to conclude that the 
combination of both region-based and edge-based terms 
represents a robust energy functional for kidney segmentation, 
as demonstrated by the accurate performance of the proposed 
hybrid energy functional. 

In TABLE I, it is also possible to evaluate the accuracy of the 
proposed method to segment the renal CS. In fact, a Dice 
overlap of 63.4% and an average P2S error of 4 mm were 
obtained. These results are comparable to the intra-observer 
agreement, corroborating therefore the potential of this 
framework. Please note that the renal collecting system has a 
length of 5 cm in average. The segmentation of this structure, 
even manually, is considered a challenging task. First, the 
renal CS is heterogeneous, given the presence of other 
substructures with different intensity properties, namely the 
renal sinus and pelvis, as well as the presence of the point of 
entrance to the renal vessels. Second, the size and shape 
variability of the renal CS among patients can further hamper 
its segmentation. Another problem that explains the results for 
the renal CS is the quality of the initialization. As mentioned 
in section III-B, deformable model approaches are highly 
dependent of the initialization. In the present paper, the 
contour initialization for the renal CS relies on an ellipse, 
similar to the one used for the kidney segmentation, having the 
same center as the kidney but with a lower radius. However, 
the renal CS presents a variable size and its position is not 
completely in the center of the kidney. Instead, it stands nearer 
to the concave surface of the kidney. Thus, a more robust 

 

 
Figure 4- Bland-Altman plots for the volumetric analysis between surfaces obtained by automatic segmentation and manual delineation. (A),(C),(D) represent the 
agreement between automatic and manual approaches for the different renal structures, while (B),(D),(F) shows the agreement between manual delineations. 



initialization of the renal CS contour can improve the 
segmentation results. 

Last, accurate segmentation results were also achieved for 
the renal parenchyma, with a Dice overlap of 86.9 and a P2S 
distance of 1.9 mm. In Figure 3, it is possible to visualize that 
the proposed segmentation approach resulted in contours close 
to the ones delineated by the observer, which once again 
shows the robustness of the proposed method. 

When assessing the agreement between manually and semi-
automatically computed volumes (Figure 4), no statistically 
significant biases (red dashed line) were observed for the 
different structures (݌ > 0.05 in a two-tailed ݐ-test against 0). 
Moreover, narrow LOAs (green dashed lines) were obtained 
for the kidney and the renal parenchyma. In fact, for these 
structures, the LOAs proved to be statistically similar to the 
intra-observer ones (݌ > 0.05 in a two-tailed F-Test against 
the intra-observer), which suggests the equivalence of semi-
automatic and manual volume measurements. However, wider 
LOAs were obtained for the CS structure (݌ < 0.05). This can 
be explained by segmentations that presented a less accurate 
result, being this possibly related with bad initializations.   

Regarding the computational time, BEAS strategy requires 
an average of 14 seconds per segmentation. This proves the 
clear advantages of the BEAS framework for fast 3D 
segmentation problems. Moreover, the initialization of the 
contour only requires in average 20 s for the user input the 
initial points where the initial ellipsoid is fitted. This proves 
the advantage of this framework against manual segmentations 
(which required in average 15 min for delineation).  

VI. CONCLUSION 
In this paper, a segmentation method that can be used to 

provide patient-specific anatomical models of the renal 
compartments to develop pre-operative patient-specific 
surgical simulators was proposed. In this sense, the BEAS 
framework was adapted to a coupled formulation to 
simultaneously segment the kidney the renal CS. The 
segmentation of the renal parenchyma was also obtained, 
being represented by the difference between the other two 
segmentations. The results obtained showed the potential in 
terms of accuracy and robustness of the proposed framework 
for the segmentation of the different renal structures. 
Moreover, the method proved to be computationally efficient, 
taking around 14 s to segment the kidney, parenchyma, and 
renal CS. 

In the future, one intends to develop an automatic kidney 
detection algorithm to fully automatize the segmentation 
process, thus obtaining a user-independent methodology. 
Moreover, a more robust initialization for the renal CS will 
also be addressed. 
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