
Combinatorial identities in the context of hypercomplex
function theory

I. Cação1, M. I. Falcão2 and H. R. Malonek1,a)

1CIDMA and Department of Mathematics, University of Aveiro, Campus Universitário de Santiago, 3810-193
Aveiro, Portugal

2Centre of Mathematics and Department of Mathematics and Applications, University of Minho, Campus de Gualtar,
4710-057 Braga, Portugal

a)Corresponding author: hrmalon@ua.pt

Abstract. Recently, the authors have shown that a certain combinatorial identity in terms of generators of quaternions is related to
a particular sequence of rational numbers (Vietoris’ number sequence). This sequence appeared for the first time in a theorem by
Vietoris (1958) and plays an important role in harmonic analysis and in the theory of stable holomorphic functions in the unit disc.
We present a generalization of that combinatorial identity involving an arbitrary number of generators of a Clifford algebra. The
result reveals new insights in combinatorial phenomena in the context of hypercomplex function theory.

INTRODUCTION AND BASIC NOTATIONS

The identity is verified . . . by operations in which properties of the binomial coefficients are employed.
Combinatorialists use recurrence, generating functions, and such transformations as the Vandermonde convolutions;

others, to my horror, use contour integrals, differential equations, and other resources of mathematical analysis.
John Riordan

(in: Combinatorial Identities, Wiley, 1968)

Combinatorics as a branch of mathematics is concerned with the study of finite or countable discrete structures
and has recently enjoyed a rapid growth, partially influenced by new connections to other fields like algebra, proba-
bility theory, topology, geometry or their applications. The powerful algebraic computational tools for manipulating
combinatorial expressions, unknown in the time of J. Riordan’s book, essentially contribute to the same development.
Our aim is to show that not only the classical resources of complex analysis, horrifying J. Riordan, are very useful tools
for detecting or verifying combinatorial identities, but even some facts about Clifford algebra-valued polynomials in
several hypercomplex variables can play an important role in this context.

As usual, we consider an orthonormal basis {e1, e2, · · · , en} of the Euclidean vector space Rn with a non-
commutative product according to the multiplication rules ekel + elek = −2δkl, k, l = 1, · · · , n, where δkl is the Kro-
necker symbol. Then the set {eA : A ⊆ {1, · · · , n}} with eA = eh1 eh2 · · · ehr , 1 ≤ h1 < · · · < hr ≤ n, e∅ = e0 = 1, forms
a basis of the 2n-dimensional Clifford algebra C`0,n over R. We embed Rn+1 in C`0,n by identifying (x0, x1, · · · , xn) ∈
Rn+1 with x = x0 + x ∈ A := spanR{1, e1, . . . , en} ⊂ C`0,n. Here x0 = S(x) and x = V(x) = e1x1 + · · · + enxn are the
so-called scalar resp. vector part of the paravector x ∈ A. The conjugate of x is given by x̄ = x0 − x and its norm by
|x| = (xx̄)

1
2 = (x2

0 + x2
1 + · · · + x2

n)
1
2 . Often, {e1, e2, · · · , en} are called the imaginary units or generators of the Clifford

algebra C`0,n. Obviously, we can identify the case n = 1 with the complex algebra case by i := e1 and the case n = 2,
where e1 = i, e2 = j, e1e2 = k, with the quaternion algebra case C`0,2 � H. Notice that, in particular, we have
(e1e2)2 = k2 = ijk = −1.

We need also a generalized Cauchy-Riemann operator in Rn+1, n ≥ 1, defined by ∂ := 1
2 (∂0+∂x) and its conjugate

∂ := 1
2 (∂0 − ∂x) where ∂0 := ∂

∂x0
and ∂x := e1

∂
∂x1

+ · · ·+ en
∂
∂xn

. C1-functions f in the kernel of ∂, i.e. with ∂ f = 0 (resp.

f∂ = 0) are called left Clifford holomorphic (resp. right Clifford holomorphic), [1], or left resp. right monogenic [2].
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We suppose that f is hypercomplex-differentiable in Ω in the sense of [3], that is, it has a uniquely defined areolar
derivative f ′ in each point of Ω. Then, f is real-differentiable and f ′ can be expressed by the conjugate generalized
Cauchy-Riemann operator as f ′ = ∂ f . Since a hypercomplex differentiable function belongs also to the kernel of ∂,
one has f ′ = ∂0 f = −∂x f like in the complex case.

In the following we intensively use the embedding of the non-commutative Clifford algebra product into an
n − nary symmetric product (see [4] and more detailed [5]):

Definition 1 (Symmetric Product) Let V+,· be a commutative or non-commutative ring, ak ∈ V, k = 1, . . . , n, then
the “×”-product is defined by

a1 × a2 × · · · × an =
1
n!

∑
π(s1,...,sn)

as1 as2 · · · asn (1)

where the sum runs over all permutations of all (s1, . . . , sn). Moreover, if the factor a j occurs µ j-times in (1), we briefly
write a1 × a2 × · · · × an = a1

µ1 × a2
µ2 × · · · × an

µn and set parentheses if the powers are understood in the ordinary way.

Let us now recall the announced combinatorial identity which was proved in [6] and involves the generators of
quaternions.

Theorem 1 Let i and j be the generators of H. Then the following combinatorial identity is true

(
k
b k

2 c

)  k∑
s=0

(
k
s

)
(ik−s × js)2

 = (−2)k, k ≥ 0. (2)

It follows immediately that

1
2k

(
k
b k

2 c

)
= (−1)k

 k∑
s=0

(
k
s

)
(ik−s × js)2


−1

. (3)

The combinatorial identity (2) was proved in [6] by calculating directly the values of the symmetric products
ik−s × js. It is an easy task to recognize the left hand side of (3) as the sequence of rational numbers

1, 1
2 ,

1
2 ,

3
8 ,

3
8 ,

5
16 ,

5
16 ,

35
128 ,

35
128 ,

63
256 ,

63
256 ,

231
1024 ,

231
1024 , . . . . (4)

which appeared in the context of positive trigonometric sums in the celebrated paper of L. Vietoris [7]. Askey’s version
[8] of Vietoris’ theorem is the following:

Theorem 2 (L. Vietoris)

n∑
k=1

ak sin kθ > 0, 0 < θ < π, and
n∑

k=0

ak cos kθ > 0, 0 ≤ θ < π,

where

a2k = a2k+1 =

(
1
2

)
k

k!
, k = 0, 1, . . . , (5)

with (·)k as the raising factorial in the classical form of the Pochhammer symbol.

The coefficients in the sine sum (starting with the index k = 1) used in Askey’s as well as in Vietoris’ original version
are exactly the elements of (4). In the next section we show that (2) can be generalized to a combinatorial identity
involving the generators of an arbitrary Clifford algebra C`0,n, but this time by applying properties of a sequence
of hypercomplex Appell polynomials (see [10] and [11], where the concept of Appell sequences in hypercomplex
context was introduced).



A COMBINATORIAL IDENTITY IN TERMS OF GENERATORS OF A CLIFFORD
ALGEBRA

We show now that our goal, i.e. the generalization of (2), can be achieved by combining several results previously
obtained in other contexts and not as a direct generalization with the same methods as (2) was obtained in [6]. We
start with recalling a theorem proved in [9].

Theorem 3 Let n ≥ 1 be fixed and for each k = 0, 1, . . . , consider the sets of real numbers {T k
s (n)}(0≤s≤k) defined

by

T k
s (n) :=

(
k
s

) ( n+1
2

)
k−s

( n−1
2

)
s

(n)k
.

After that, build for |x| < 1, the homogeneous of degree k polynomials in x and x̄

Pn
k(x) :=

k∑
s=0

T k
s (n)xk−s x̄s. (6)

Then the series
Pn

0(x) +
n
1!
Pn

1(x) +
n(n + 1)

2!
Pn

2(x) +
n(n + 1)(n + 2)

3!
Pn

3(x) + · · ·

is the hypercomplex generalized geometric series whose sum in |x| < 1 is given by

g(x) = (1 − x)−1 |1 − x|1−n =

+∞∑
k=0

(n)k

k!
Pn

k(x).

From one side, since Pn
k(x)

∣∣∣
x=0 = xk

0 it is evident, that Pn
k(1) = 1, k = 0, 1, . . .. From the other side, (6) implies

for x0 = 0 that

Pn
k(x) =

k∑
s=0

(−1)s T k
s (n) xk = ck(n) xk,

where

ck(n) :=
k∑

s=0

(−1)s T k
s (n).

This formula appeared for the first time in [10, 11] for the particular case n = 2, including the determination of ck(2)
in the form

ck(2) = (−1)k

 k∑
s=0

(
k
s

)
(ek−s

1 × es
2)2


−1

. (7)

Formula (7) was obtained in [10, 11] by treating P2
k(x) as a sequence of monogenic Appell polynomials in two

hypercomplex variables according to the approach described in [12]. Its right side is nothing else than the right side
of formula (3) in another notation. This observation indicates the way for the further reasoning. For the case of n
hypercomplex variables [12] allows to recognize the generalization of (7) in the form

ck(n) = (−1)k

∑
|ν|=k

(
k
ν

)
(eν1

1 × · · · × eνn
n )2

−1

,

where ν = (ν1, . . . νn) is a multi-index and
(

k
ν

)
= k!

ν! . In [10, 11] one can also find the explicit values of ck(2)

ck(2) =


k!!

(k+1)!! , if k is odd

ck−1(2), if k is even
(8)



which, in turn, can be written in the form

ck(2) =
1
2k

(
k
b k

2 c

)
=
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)
b
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2 c(

1
)
b
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2 c

(9)

used in (3) in terms of the generalized central binomial coefficient resp. in terms of Pochhammer symbols as in (5).
Obviously, (8) is the special n = 2 case of

ck(n) =


k!!(n−2)!!
(n+k−1)!! , if k is odd

ck−1(n), if k is even
(10)

These explicit values of ck(n) have been determined in [13, Th. 3.9]. Some cumbersome but elementary calculations
show that an analogue suggested by formula (9) also exists for ck(n) in (10), namely

ck(n) =

(
1
2

)
b

k+1
2 c(

n
2

)
b

k+1
2 c

. (11)

Combining all relevant formulas together we end up with the generalization of (2) in the form(
k
b k

2 c

) ∑
|ν|=k

(
k
ν

) (
eν1

1 × eν2
2 × · · · × eνn

n

)2
 = (−2)k

(
b k+1

2 c + n−2
2

b k+1
2 c

)
, k ≥ 0. (12)
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