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ABSTRACT  The plasma membrane H
+
-ATPase Pma1 and the vacuolar V-

ATPase act in close harmony to tightly control pH homeostasis, which is es-
sential for a vast number of physiological processes. As these main two regu-
lators of pH are responsive to the nutritional status of the cell, it seems evi-
dent that pH homeostasis acts in conjunction with nutrient-induced signalling 
pathways. Indeed, both PKA and the TORC1-Sch9 axis influence the proton 
pumping activity of the V-ATPase and possibly also of Pma1. In addition, it 
recently became clear that the proton acts as a second messenger to signal 
glucose availability via the V-ATPase to PKA and TORC1-Sch9. Given the prom-
inent role of nutrient signalling in longevity, it is not surprising that pH home-
ostasis has been linked to ageing and longevity as well. A first indication is 
provided by acetic acid, whose uptake by the cell induces toxicity and affects 
longevity. Secondly, vacuolar acidity has been linked to autophagic processes, 
including mitophagy. In agreement with this, a decline in vacuolar acidity was 
shown to induce mitochondrial dysfunction and shorten lifespan. In addition, 
the asymmetric inheritance of Pma1 has been associated with replicative age-
ing and this again links to repercussions on vacuolar pH. Taken together, ac-
cumulating evidence indicates that pH homeostasis plays a prominent role in 
the determination of ageing and longevity, thereby providing new perspec-
tives and avenues to explore the underlying molecular mechanisms. 
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INTRODUCTION 
pH homeostasis is of crucial importance for many molecu-
lar and physiological processes. In eukaryotic cells, intracel-
lular pH affects protein folding and enzyme activity, is re-
quired for vesicle trafficking and impacts organelle function 
and integrity. As our knowledge of pH homeostasis pro-
gresses, it becomes increasingly evident that the proton 
not only acts as a facilitator for cellular functions but also 
as a potent second messenger for the regulation of growth 
and ageing. Dysregulation of pH and lysosomal dysfunction 
are being linked to numerous human diseases [1], including 
neurodegenerative disorders [2, 3]. Moreover, acidity-
dependent probes are used as lysosomal storage disorder-

associated markers [4] and acidification of the extracellular 
space is known to promote cancer metastasis [5]. These 
observations led to a growing interest in pH-related re-
search and in this domain the unicellular organism Saccha-
romyces cerevisiae proves to be a valuable model to un-
ravel the fundamental molecular mechanisms underlying 
pH homeostasis and the relationship between pH, cell 
growth, stress resistance and longevity. 

 

THE MAIN PLAYERS IN pH HOMEOSTASIS 
Cytosolic and organellar pH are tightly controlled in all eu-
karyotic cells. The two main players of pH homeostasis in 
yeast are the V-ATPase and Pma1. The V-ATPase is a pro-
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ton translocating ATPase that pumps protons from the 
cytosol into the vacuole, endosomes and Golgi compart-
ments. Pma1 is a P-type ATPase that pumps protons over 
the plasma membrane to acidify the extracellular space. As 
accurate control of pH is required for pH homeostasis and 
optimal functionality of the cell and its organelles, it is not 
surprising that the V-ATPase and Pma1 act in close harmo-
ny. Loss of V-ATPase activity leads to a partial mislocaliza-
tion of Pma1 to the vacuole and other compartments, 
probably reflecting a compensatory mechanism [6]. In ad-
dition to the V-ATPase and Pma1, numerous other proton 
pumps and exchangers have been identified in yeast, and 
they probably fine-tune pH control of the cytoplasm and 
each of the organelles [7]. However, given the importance 
of pH for organelle-specific functions, surprisingly little is 
known about their precise regulation and contribution to 
pH homeostasis. 
 
Regulation of the vacuolar V-ATPase 
The V-ATPase is a multisubunit enzyme composed of a 
peripheral V1 sector responsible for ATP hydrolysis, and a 
membrane-embedded V0 sector responsible for proton 
translocation [8]. In contrast to mammalian cells, which 
often exhibit tissue- and/or organelle-specific expression of 
multiple isoforms of one subunit, yeast cells only have one 
organelle-specific V0 isoform. Indeed, Vph1-containing V-
ATPase complexes are localized at the vacuolar membrane, 
while Stv1-containing V-ATPase complexes cycle between 
the Golgi apparatus and endosomes [9]. The activity of 
Vph1-containing V-ATPases is mainly regulated by reversi-
ble disassembly of the V0 and V1 sectors, in which carbon 
source availability plays a major role. In the presence of 
glucose, the sectors are assembled at the vacuolar mem-
brane and the V-ATPase is highly active, acidifying the vac-
uolar lumen. When glucose is scarce, the vacuolar V1 sector 
dissociates from the V0 sector and the vacuolar luminal pH 
(pHv) becomes more alkaline [10]. However, this is in no 
case an all-or-nothing event, as intermediate levels of as-
sembly have been observed with varying nutrient condi-
tions. The exact mechanism by which glucose impacts on 
vacuolar V-ATPase assembly remains poorly understood 
though several links with glucose-induced signalling events 
and glycolysis have been reported as further explained 
below. Interestingly, the vacuolar V-ATPase is also respon-
sive to changes in cytosolic (pHc) and extracellular pH 
(pHe) [11-13]. For instance, V-ATPase disassembly upon 
glucose-starvation is significantly reduced when cells are 
grown at pH 7 and accordingly, enhanced V-ATPase activity 
is observed in isolated vacuoles from cells grown under 
these conditions as compared to cells grown at pH 5 [11, 
12]. Hence, the V-ATPase appears to act as pH sensor and 
both in yeast and mammalian cells the vacuole-specific V0 
subunit ‘a’, encoded by VPH1 in yeast, has been proposed 
as pH-sensing protein [11, 14, 15]. Interestingly, this subu-
nit also mediates the dissociation of the V1 and V0 com-
plexes upon glucose-starvation [11]. In line with this, V-
ATPases that reside in the Golgi compartment, containing 
the STV1-encoded subunit ‘a’ instead of Vph1, do not dis-
sociate upon glucose depletion [16]. Besides glucose and 

pH, lipids also impact on V-ATPase regulation as the signal-
ling phosphoinositides PI[3,5]P2 and PI[4]P promote V-
ATPase activity at the vacuole and Golgi, respectively, 
through interaction with the appropriate ‘a’ subunits Vph1 
and Stv1 [17-19]. Additional levels of V-ATPase regulation 
include the adjustment of coupling efficiency between ATP 
hydrolysis and proton translocation, and the mechanisms 
for assembly of the V0 complex in the endoplasmic reticu-
lum (ER) and the subsequent export and delivery of the 
vacuolar V-ATPase to the vacuolar membrane [20-24]. 
 
Regulation of the plasma membrane embedded Pma1 
The Pma1 P-type ATPase is considered as the major deter-
minant of pHc and plasma membrane potential in yeast [25, 
26]. In contrast to genes encoding subunits of the V-
ATPase, PMA1 is an essential gene, making the protein a 
difficult target to study. Different environmental and nutri-
tional factors control Pma1 activity, with glucose availabil-
ity being the best studied. The transcription of PMA1 is 
enhanced during growth on glucose [27]. In addition, the 
proton pump is controlled by reversible phosphorylation, 
which modulates an inhibitory interaction of the C-
terminus with the active site of the H+-ATPase. The latter 
reflects a complex interplay of several signalling events, 
albeit not all players have yet been identified. Evidence 
obtained so far points to an involvement of the casein ki-
nase 1 homologues Yck1 and Yck2, the protein kinase Ptk2 
and the protein phosphatase Glc7 [28-30]. Calcium signal-
ling was also shown to modulate the plasma membrane H+-
ATPase activation in response to glucose [31]. Furthermore, 
the intra- and extracellular pH, as well as the plasma mem-
brane potential affect Pma1 activity. Here, an important 
contribution has been ascribed to the pH-dependent regu-
lation of the potassium transporter Trk1 and the compen-
satory roles of K+ transport and H+ efflux to maintain the 
electrochemical gradient [6, 32]. As mentioned before, a 
reduction in V-ATPase activity, for instance by glucose star-
vation, triggers sorting of Pma1 from the Golgi to the vacu-
ole [33].  

Note that the yeast genome encodes for another plasma 
membrane H+-ATPase, i.e. Pma2, but the expression of this 
pump is very low and, consistently, it only has a minor im-
pact on cellular pH [34, 35].  

The proton gradients established by the V-ATPase, 
Pma1 and other proton transport systems are of absolute 
importance for several processes. For instance, the driving 
force created by these gradients is crucial to maintain 
phosphate homeostasis [36] and the cation balance of al-
kali metals (Na+

 and K+), divalent cations (Ca2+ and Mg2+) 
and trace metals (Fe2+, Zn2+, Cu2+ and Mn2+). Their sym-
port/antiport along with H+ helps to maintain their physio-
logical and non-toxic levels, so as to provide a suitable en-
vironment for various biochemical reactions. The exact 
regulation of this cation balance has been the subject of an 
excellent review [7]. Several membrane proteins rely on 
the proton driving force. Examples are the proton-coupled 
phosphate symporters and the different amino acid per-
meases that reside in the plasma membrane [36, 37] or the 
yeast AVT1-7 family members that mediate bidirectional 
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transport of amino acids across the vacuolar membrane 
[38]. 
 

A MÉNAGE-À-TROIS FOR NUTRIENT SIGNALLING AND 
pH REGULATION  
As both the V-ATPase and Pma1 react closely to nutrient 
availability, it seems evident that proton pumping activity 
and pH homeostasis must be regulated by an interplay of 
diverse nutrient-induced signalling networks. Indeed, the 
protein kinases PKA and Sch9 and the protein kinase com-
plex TORC1 play a central role. This so-called ménage-à-
trois integrates input from several nutrient sensing systems 
in order to regulate metabolism, intracellular trafficking, 
proteome integrity, autophagy, stress resistance, cell size, 
cell cycle progression, growth and sporulation [39-42]. The 
activity of each of these kinases is tightly regulated in re-
sponse to different nutritional cues. 
 
Nutrient-controlled regulation of the ménage-à-trois 
As shown in Fig. 1, the activity of PKA is regulated by the 
Ras-cAMP pathway and activation of adenylate cyclase, the 

latter depending on extracellular glucose sensing via the 
Gpr1/Gpa2 GPCR system as well as on intracellular glucose 
sensing via activation of the small G-proteins Ras1 and 
Ras2 [43]. The protein kinase complex TORC1 is regulated 
by intracellular amino acid signalling and this occurs by 
different mechanisms depending on the quality of the ami-
no acid as a nitrogen source [44]. Leucine and probably 
other neutral amino acids signal to TORC1 through the EGO 
complex (EGOC), the orthologue of the mammalian Rag-
Ragulator complex. EGOC consists of Ego1, Ego2 and Ego3 
that form a scaffold at the vacuolar membrane for the Rag 
GTPases Gtr1-2. The latter function as a heterodimer that 
receives input about the cytosolic amino acid content. 
When amino-acids are available in the cytoplasm, an active 
EGOC formation is triggered in which Gtr1 is in its GTP-
bound form and Gtr2 in its GDP-bound form, leading to 
TORC1 activation. Amino acid starvation induces the oppo-
site GTP/GDP-loading status of the GTPases and the conse-
quent inhibition of TORC1 [45, 46]. Recent evidence ob-
tained in mammalian systems suggests a role for the Rag-
Ragulator in signalling lysosomal amino acid content and 

FIGURE 1: The nutrient signalling ménage-à-trois. Glucose stimulates PKA activity through the GPCR system of Gpr1 and Gpa2 on the one 
hand, and through activation of Ras1/2 on the other. Both induce cAMP production by Cyr1, activating PKA. At the vacuolar membrane, the 
EGOC senses amino acids from the cytosol and presumably the vacuole, and activates TORC1 in return. TORC1 negatively regulates the en-
ergy sensor SNF1 and activates Sch9 through phosphorylation. Besides TORC1, also SNF1 influences Sch9 activity as well as the sphingolipid 
effectors Pkh1-3. The PKA and TORC1/Sch9 branches converge on multiple players, perhaps the most prominent being Rim15, whose import 
into the nucleus is inhibited by both branches and is also controlled by phosphate availability through Pho85. When the ménage-à-trois is 
inactive, Rim15 can enter the nucleus where it induces transcription of PDS genes by Gis1 and STRE genes by the Msn2/4 transcription fac-
tors. 
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transport in addition to cytosolic amino acid content [47, 
48], but whether EGOC has a similar role in sensing the 
vacuolar amino acid load in yeast remains to be studied. 
Preferred nitrogen sources like glutamine can signal inde-
pendently of EGOC to trigger a more sustained TORC1 acti-
vation required to support vigorous growth [44]. At pre-
sent, the underlying mechanism for this Gtr1/2-
independent TORC1 activation in yeast remains poorly 
understood, though one study identified Ypt1, a GTPase 
involved in ER-to-Golgi vesicular trafficking, as an alterna-
tive regulator of TORC1 [49]. Other studies suggested a 
role for the vacuolar membrane-associated phosphatidyl-
inositol (PI) 3-phosphate binding protein Pib2 and the 
Vps15/34 Pl 3-kinase complex [50, 51]. The third member 
of the ménage-à-trois, the AGC kinase Sch9, is the yeast 
orthologue of mammalian PKB/Akt and S6 kinase. It is a 
well-known target of TORC1 and as such it is involved in 
amino acid and nitrogen source signalling [52]. However, 
Sch9 has been implicated in the sensing and signalling of 
other nutrients as well. It plays a major role in lipid signal-
ling as a regulator of the so-called sphingolipid rheostat 
[53] and, besides its phosphorylation by TORC1, Sch9 
needs to be phosphorylated by sphingolipid-activated ki-
nases Pkh1-3 at its PDK1 site in the activation loop to ob-
tain full activity [52, 54, 55]. Moreover, Sch9 also responds 
to glucose availability, thereby acting in conjunction with 
PKA [56], and receives input of the protein kinase complex 
SNF1, a central regulator of cellular energy homeostasis 
[57]. Thus, Sch9 appears to play an integratory role in nu-
trient sensing that allows for coordination and fine-tuning 
of diverse signalling cascades. As such, it shares several 
effectors with the PKA and TORC1 signalling routes but for 
several of these targets the effect inflicted by Sch9 can 
either be additive or opposite depending on the activity 
status of the other kinases [41, 58-60]. 

An example of the interplay between the signalling 
pathways controlled by the ménage-a-trois is their conver-
gence to regulate the activity and nuclear localization of 
Rim15, a protein kinase required for metabolic adaptation 
and the general stress response (Fig. 1) [61]. Here, also 
phosphate availability comes into the picture as the nucle-
ar exit of Rim15 is controlled by the phosphate-responsive 
PHO-pathway, particularly Pho85 [41, 62]. 
 
The nutrient status regulates pH homeostasis 
The most straightforward evidence for the role of nutrient 
signalling in pH regulation are the alterations of extra- and 
intracellular pH in response to nutrient availability and 
growth rate. Albeit quite complex, we can summarize this 
as follows. When cells grow fermentatively, they produce 
organic acids that acidify the medium, such as acetic acid. 
In its protonated form, acetic acid is able to move through 
the plasma membrane back into the cell [63]. Once inside 
the cytosol, whose pH is maintained around neutrality dur-
ing exponential growth, protons dissociate from the weak 
acid causing intracellular acidification. This acidification is 
counteracted by Pma1-mediated proton efflux and V-
ATPase-mediated vacuolar acidification in order to main-
tain pHc homeostasis [9, 64-66]. During the diauxic shift or 

upon glucose starvation, the activity of Pma1 reduces, the 
cytosol acidifies and the vacuolar V-ATPase disassembles 
[11, 67-70]. Re-addition of glucose or sucrose to glucose-
starved cells initially results in a rapid drop in pHc, proba-
bly due to the resumption of glycolysis, but this is quickly 
followed by intracellular alkalization and extracellular acidi-
fication as a result of Pma1 and vacuolar V-ATPases regain-
ing full activity [11, 70-72]. In contrast to the clear impact 
of carbon source availability, re-addition of amino acids or 
another nitrogen source to starved cells does not affect 
pHc [70, 73]. This demonstrates that adjusting pHc is not 
simply a matter of growth resumption, but that it is specifi-
cally controlled by carbon source availability. 
 
The ménage-à-trois is crucial for pH regulation 
The ménage-à-trois plays an important role to integrate 
nutrient availability and pH homeostasis as shown in Fig. 2. 
Alterations that enhance PKA activity, like deletion of the 
Ras2 GTPase IRA2 or the PKA regulatory subunit BCY1, 
were found to inhibit vacuolar V-ATPase disassembly upon 
glucose deprivation. This suggests that PKA is involved in 
glucose-dependent V-ATPase regulation [74]. Although 
PKA-dependent phosphorylation has been described for 
the V1 subunit ‘C’ in insect cells [75] and for the V1 subunit 
‘A’ in human HEK-293T cells [76], no such event has been 
reported in yeast so far. Nonetheless, the Ras-cAMP path-
way and PKA are known to regulate key enzymes of glycol-
ysis in yeast [41, 77] and two glycolytic enzymes, i.e. al-
dolase and phosphofructokinase, were reported to associ-
ate with the V-ATPase, placing them in pole position to 
mediate the glucose signal [67, 78-80]. Especially the 
phosphofructokinase Pfk2 might be a good candidate as it 
is a direct target of PKA [81]. Pfk2 is indeed required to 
maintain vacuolar acidification and optimal RAVE-mediated 
reassembly of the V0 and V1 subunits upon re-addition of 
glucose to cells that were briefly deprived of the sugar [67, 
78]. RAVE is the acronym for ‘Regulator of H+-ATPase of 
Vacuolar and Endosomal membranes’ and is a complex 
known to function as a scaffold that binds the V0 and V1 
sectors in a glucose-dependent manner [82, 83]. Earlier 
studies also suggested a possible role for the Ras-cAMP 
pathway in the glucose-induced activation of Pma1 [84, 85]. 
However, subsequent detailed analysis contradicted such a 
role and showed that the plasma membrane H+-ATPase is 
still activated in mutant strains deficient for glucose-
induced cAMP increase and that similar activation levels 
are obtained in strains with normal or attenuated PKA ac-
tivity [86, 87]. 

Although starvation and resupplementation of nitrogen 
and amino acids does not influence pHc [70, 73], both 
TORC1 and Sch9 are involved in the regulation of pH ho-
meostasis in function of glucose availability. When cells are 
grown on glucose both players are localized at the vacuolar 
membrane, but once cells enter the diauxic shift, Sch9 is 
displaced into the cytosol. The latter occurs concomitantly 
with the disassembly of the vacuolar V-ATPase [70]. In fact, 
Sch9 has a modulatory role in controlling the V-ATPase 
assembly state as evidenced by the observation that cells 
lacking Sch9 display an enhanced association of  the V0 and  
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V1 sectors in the presence of glucose and a delayed disas-
sembly of the proton pump upon glucose starvation. Simi-
lar effects were also seen upon rapamycin-induced TORC1 
inhibition or upon replacement of the wild type Sch9 allele 
by the Sch95A version that can no longer be activated by 

TORC1 [70]. Accordingly, sch9 cells have more acidic vac-
uoles both in the presence or absence of glucose, and 

while sch9 mutant cells are able to maintain their pHc 
within the same range as wild type (WT) cells during fer-
mentative growth, once they traverse the diauxic shift a 
hyperacidification of the cytosol is observed [70]. Whether 
the latter points to a role of Sch9 in the regulation of Pma1 
or other ion pumps and exchangers remains to be investi-
gated in more detail, but at least two observations suggest 

that this may well be the case. Indeed, sch9 cells fail to 
rapidly acidify the extracellular medium when glucose is 
refed to glucose-starved cells and the additional deletion 
of SCH9 in strains lacking a functional V-ATPase triggers a 

further alkalization of the vacuolar lumen [70]. Interesting-
ly, a most recent paper reported that TORC1 is required to 
obtain full Pma1 activity and although a possible role of 
Sch9 was not examined, the study demonstrated an in-
volvement of the protein phosphatase Sit4, another TORC1 
effector, in the turnover but not the phosphorylation sta-

tus of Pma1. The same study also showed that both sit4 
cells and cells lacking the TORC1 subunit Tco89 display 
reduced K+ uptake and a more acidic intracellular pH as 

compared to WT cells, but solely in the sit4 mutant this 
was associated with a reduced Pma1 activity [88]. 
 
Additional players link nutrient signalling with pH 
homeostasis 
Apart from the effects mediated by the PKA and TORC1-
Sch9 axis on V-ATPase assembly/disassembly or Pma1 ac-
tivity, other players involved in nutrient signalling also af-
fect pH homeostasis. As mentioned, the signalling lipid 

FIGURE 2: The interplay between signalling and pH control. Pma1 and the V-ATPase, the two main players in pH control, both impact and 
are regulated by the ménage-à-trois. When stimulated by glucose or cytosolic protons, the vacuolar Vph1-containing V-ATPase stimulates 
TORC1 via the EGOC-components Gtr1/2. The Golgi-specific Stv1-containing V-ATPase stimulates PKA via Ira1/2 inhibition by Arf1, pushing 
Ras1/2 towards the GTP-bound state and in turn activating Cyr1 to produce cAMP. Active TORC1 and PKA each regulate the vacuolar V-
ATPase assembly state. TORC1 stimulates disassembly via Sch9, while PKA aids V-ATPase assembly presumably via Pfk2 which impacts on 
the V-ATPase scaffolding complex RAVE. Additionally, the vacuolar V-ATPase subunit Vph1 acts as a proton sensor to induce V-ATPase activi-
ty, and this may also be the case for the Stv1-containing V-ATPase. Additionally, active TORC1 also stimulates Pma1 activity. 
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PI[3,5]P2 was shown to be important for pHv regulation. 
Accordingly, the PI[3,5]P2-deficient mutants vac7, vac14 
and fab1 all display vacuolar acidification defects [89-91]. 
Although PI[3,5]P2 may directly affect V-ATPase activity 
[18], the phosphoinositide may also act indirectly via 
TORC1/Sch9 signalling, as TORC1 activity as well as the 
recruitment of Sch9 and its TORC1-dependent phosphory-
lation at the vacuolar membrane are dependent on the 
presence of PI[3,5]P2 [92-94]. Moreover, increased 
PI[3,5]P2 levels are associated with vacuolar fragmentation, 
which involves TORC1 and its downstream effectors [95, 
96]. This relationship is further highlighted by the signifi-
cant overlap in targets between a genome-wide screening 
aiming to identify genes conferring a synthetic sick/lethal 
phenotype when combined with the SCH9 deletion and a 
screening for genes mediating inositol auxotrophy [70, 97]. 
Similar genome-wide screenings were performed to find 
proteins involved in the control of pHc or pHv during fer-
mentative growth on glucose [24, 25] and at least with the 
screening on pHc a significant overlap is seen when com-
pared to the data of the synthetic SCH9 screening [70]. 
Besides proteins associated with vesicular transport, lipid 
metabolism or amino acid biosynthesis, both pH screenings 
retrieved proteins required formitochondrial functions. 
This is intriguing because it indicates that mitochondria are 
essential to maintain pH homeostasis even during fer-
mentative growth, where they are not required for energy 
supply. This underscores the importance of cross-talk be-
tween organelles, and the notable lack of research per-
formed to date in this area. 
 
pH as a second messenger for nutrient signalling 
Changes in intracellular pH affect cell functioning at differ-
ent levels as it impacts on protein folding, enzyme activi-
ties and the protonation of biological macromolecules, 
lipids and other metabolites [66]. The crucial question, 
however, is whether alterations in pH are sensed and per-
ceived as signals. Perhaps the best way to answer this is to 
describe the recent advances in how pH affects the activi-
ties of the PKA/TORC1/Sch9 ménage-à-trois.  

Already decades ago, it was reported that the treat-
ment of fungi with depolarizing agents inflict a rapid in-
crease in the level of cAMP [98-100]. Mechanistically, dif-
ferent scenarios were described as intracellular acidifica-
tion was found to enhance both the affinity of the adenyl-
ate cyclase Cyr1 for its substrate ATP [98] as well as Ras-
GTP loading by inhibition of the GTPase-activating proteins, 
Ira1 and Ira2 [101]. Notably, a mild treatment of cells with 
a protonophore allows to bypass the requirement of hex-
ose transport for glucose-induced activation of the Ras-
cAMP pathway [102], which is consistent with the observa-
tion that the protonophore treatment of glucose-starved 
cells triggers a rapid drop in pHc similar as that seen im-
mediately after addition of glucose to these starved cells 
[98]. A more recent study correlated the glucose-induced 
changes in pHc to V-ATPase assembly/disassembly and 
subsequent activation of PKA [11]. As mentioned, this 
study also proposed the V-ATPase to act as pH-sensor with 
Vph1, the V0 subunit ‘a’, as putative pH-sensing protein. 

Subsequently, the role of the V-ATPase for activation of the 
Ras-cAMP pathway was further defined, since in the pres-
ence of glucose the pump was shown to signal to the Ras 
proteins via Arf1, a GTPase that interacts with the Golgi-
specific V0 subunit Stv1. Moreover, the activity of the 
plasma membrane ATPase Pma1 was shown to stimulate 
growth through Ras activation by increasing pHc [73]. 

Additionally, pHc and the V-ATPase also confer signals 
for glucose availability to TORC1 and Sch9. To this end, the 
V-ATPase controls the GTP-load of Gtr1 and interacts with 
this EGOC Rag GTPase via the vacuole-specific V0 subunit 
Vph1. This finding is rather remarkable as Gtr1 plays a piv-
otal role in amino acid sensing [45, 46], but amino acid 
availability itself does not affect pHc nor the V-ATPase as-
sembly state [70, 73]. As the V-ATPase apparently acts as 
activator of both PKA and the TORC1-Sch9 axis, while each 
of the kinases has the ability to provide feedback by affect-
ing the V-ATPase assembly/disassembly, a very balanced 
system based on feedback loops is established (Fig. 2). The 
necessity of this tight control relates undoubtedly to the 
crucial roles of the PKA/TORC1/Sch9 ménage-à-trois for 
the overall cellular functioning and the coordination be-
tween growth and the cell cycle [41]. The latter is further 
evidenced by the finding that the TORC1-Sch9 axis trans-
mits signals from the vacuole that are required for cell cy-
cle progression [94]. 

A signalling role of pHc also became apparent from da-
ta obtained from a genome-wide screening that investigat-
ed the correlation between aberrant intracellular pH and 
reduced growth rate of mutants. This analysis confirmed a 
tight connection between both, suggesting that pHc dic-
tates the growth rate. For 19 out of the 173 mutants, how-
ever, the causal relationship between pHc and growth rate 
was completely abrogated, indicative that these mutants 
fail to properly sense the pH signal. Among them were 
mutants affected in mitochondrial translation, inositol 
phosphate biosynthesis and lipid biosynthesis [25]. Im-
portantly, a similar study found no causal correlation be-
tween pHv and growth rate [24]. 
 

pH CONTROL, STRESS TOLERANCE AND LONGEVITY  
It is well established that the nutrient pathways controlled 
by the PKA/TORC1/Sch9 ménage-à-trois have a significant 
impact on cellular ageing, whether being monitored as 
replicative lifespan (RLS) by assessing the number of divi-
sions a mother cell can undergo before dying, or as chrono-
logical lifespan (CLS) by assessing the time span a non-
dividing cell remains viable [103]. Both modes of ageing 
rely on partially overlapping cellular and molecular deter-
minants and these have been the topic of excellent reviews 
to which we refer for more details [40, 104-112]. As nutri-
ent availability and the PKA/TORC1/Sch9 ménage-à-trois 
affect pH control, it is not surprising that pH is being linked 
to the regulation of ageing/longevity in yeast. Hence, a 
number of groups have explored the interplay between 
extracellular, cytosolic and organelle pH and longevity, the 
topic of the sections below and summarized in Fig. 3. 
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FIGURE 3: The interplay between pH control and ageing. (A) Young daughter cell. Fermentatively growing cells produce acetic acid, which 
is extruded from the cell. When protonated in the acidic medium, acetic acid passes the plasma membrane causing cytosolic acidification 
and acetic acid stress. CR and medium buffering counteract this phenomenon by reducing fermentation and protonation of acetic acid 
respectively. The optimally active Pma1 and V-ATPase retain the cytosolic pH around neutrality by counteracting this proton influx. The 
resulting acidic vacuole allows for optimal amino acid uptake by the proton/amino acid antiporter Avt1 and efficient autophagy. Acetic acid 
stress induces the environmental stress response aided by transcription factors Msn2/4. Albeit mitochondria are not required for energy 
production on fermentative medium, they do contribute to the maintenance of pH homeostasis. The retrograde response, mediated by 
Rtg1/3, assures mitochondrial integrity. In the event of protein misfolding, the UPR is activated in the ER. Damaged and aggregated proteins 
are efficiently cleared by autophagy and the ubiquitin-proteasome system (UPS; not shown). (B) Old mother cell. Due to asymmetrical 
inheritance, mother cells possess an abundance of Pma1 proteins, presumably raising the cytosolic pH, which likely also causes an 
unavailability of protons to be traversed to the vacuole. The resulting vacuolar alkalization causes insufficient amino acid import by Avt1, 
leading to mitochondrial dysfunction by a yet unknown mechanism. The retrograde response is activated in an attempt to counteract 
mitochondrial dysfunction, though it may not be sufficient to maintain mitochondrial integrity. Misfolded proteins accumulate in the ER 
thereby triggering ER stress, and damaged proteins accumulate in the cytosol due to impaired autophagy and an overwhelmed UPS (not 
shown). Both reduced mitochondrial integrity and protein misfolding lead to the formation of reactive oxygen species (ROS) and they affect 
lipid homeostasis thereby further impairing vacuolar functioning. (C) Chronological ageing of young daughter cell. When traversing the 
diauxic shift, cells experience a disassembly of the V-ATPase and a reduction in Pma1 activity, aided by its endocytosis. As a result, the 
cytosol acidifies and the vacuole alkalizes. This presumably, similar as in replicatively ageing cells, leads to an impairment of vacuolar amino 
acid uptake, autophagy, mitophagy and endocytosis. In post-diauxic shift cells, Msn2/4 and Gis1 are activated to induce stress responses 
and the production of trehalose, which helps to protect cells from acetic acid stress and toxicity of damaged proteins. Although stress 
responses are optimal in young daughter cells traversing post-diauxic shift, intracellular damage will accumulate over time, eventually 
surpassing the capacity of the protective machinery, leading to cell demise. (D) Hypothetical model of chronological ageing in old mother 
cell. In this model we assume a cumulative deregulation of the already decontrolled pH homeostasis in old mother cells following post-
diauxic shift. This should lead to an additional impairment of vacuolar amino acid uptake, autophagy, mitophagy and endocytosis and cause 
a quick accumulation of intracellular damage, leading to more rapid cell demise. 
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Acetic acid shortens longevity and induces programmed 
cell death 
A nice example that illustrates the interconnections be-
tween lifespan, nutrient availability and their dependence 
on pH is the observation that chronologically aged cells 
display a reduced subsequent RLS, but that this can be 
attenuated when the chronological ageing occurs in buff-
ered medium or in calorie restriction (CR) conditions [113, 
114]. As mentioned, during fermentative growth yeast cells 
produce and secrete different organic acids. While some of 
these acids accumulate in the growth medium, acetic acid 
levels decline after post-diauxic shift, indicating that this 
acid is used as a carbon source. The drawback is, however, 
that acetic acid uptake by the cell comes with a degree of 
toxicity that affects longevity (Fig. 3). Consistently, growing 
cells under acidic conditions was found to shorten CLS and 
RLS, while CR significantly reduces the production of organ-
ic acids and extends CLS and RLS [114-116]. Buffering the 
medium also has a positive effect on lifespan as it lowers 
the difference between the extra- and intracellular pH val-
ues, thereby reducing the driving force for inwards diffu-
sion of acetic acid. As such, buffering presumably prevents 
stress by reducing the amount of energy that needs to be 
consumed to maintain the intracellular pH [117].  

Indeed, as a first line of defense against acetic-acid in-
duced stress, cells rely on energy-consuming proton pumps 
to counteract cytosolic acidification caused by dissociation 
of protons from the acetic acid once it has entered the cell, 
and to maintain pH optima in all different cellular com-
partments. Here, the plasma membrane-embedded Pma1 
fulfils an important role by extruding these protons from 
the cytosol, allowing healthy exponential WT cells to main-
tain pHc around neutrality independently of pHe (Fig. 3A) 
[71]. During ageing however, yeast cells struggle to main-
tain proper pH homeostasis. As mother cells undergo divi-
sions, the pHc increases whereas daughter cells retain a 
more acidic cytosol (Fig. 3B). This phenomenon is attribut-
ed to asymmetrical distribution of Pma1, which predomi-
nantly remains in the plasma membrane of the mother cell 
[118]. This mother-specific increase in Pma1 activity and 
subsequent reduction of cytosolic proton content is be-
lieved to trigger the decline of vacuolar acidity during repli-
cative ageing, as protons are unavailable for the V-ATPase 
to be pumped into the vacuolar lumen [118]. Conversely, 
when cells have traversed the diauxic shift or when en-
countering glucose depletion, a condition typically used to 
study chronological ageing, the activity of Pma1 declines as 
mentioned previously. Moreover, also the V-ATPase is dis-
assembled under these conditions [11, 67-70] and this loss 
of V-ATPase activity signals ubiquitination and endocytosis 
of Pma1 [119]. In consequence, the pHc is significantly 
reduced both in post-diauxic cells and in chronologically 
aged cells and due to the lower activity of the V-ATPase, 
the vacuole presumably becomes more alkaline (Fig. 3C). 

Secondly, mild stress induces the so-called general or 
environmental stress response pathway, an adaptive re-
sponse that allows to acquire a form of stress resistance 
that protects cells from subsequent stress triggered by the 
same or another stressor [120, 121]. This adaptive re-

sponse applies to acetic acid-induced stress as well as to 
physiological stresses affecting lifespan [122] and it is the 
basis of hormesis effects that play in ageing [123, 124]. In 
the environmental stress response pathway, the transcrip-
tion factors Msn2/4 play a central role. Msn2/4 are well 
known targets of the PKA/TORC1/Sch9 ménage-à-trois 
required to induce expression of several stress-responsive 
genes needed to protect cells from adverse conditions (Fig. 
1; Fig. 3) [41]. Notably, these transcription factors are also 
induced when cells encounter alkaline stress [125, 126], 
suggesting that the actual stress factor might be a change 
in pH, the proton gradient or membrane potential. A study 
that aimed to identify genes essential for the acquisition of 
tolerance to different weak acids implicated Msn2/4 for 
acetic acid tolerance [127]. Interestingly, apart from vacuo-
lar acidification, intracellular trafficking and ergosterol bio-
synthesis, acetic acid tolerance was found to specifically 
depend on a small set of genes and this included those 
encoding Ras2, the trehalose-6P synthase, different cyto-
solic and mitochondrial ribosomal proteins and two well-
known players of the retrograde response pathway, i.e. 
Rtg2 and Rtg3 [127]. These data nicely complement obser-
vations connecting metabolism, cell death and longevity. 
The finding of mitochondrial ribosomal proteins and com-
ponents of the retrograde response pathway is consistent 
with the requirement of functional mitochondria to main-
tain pH homeostasis [24, 25], and there is ample evidence 
that mitochondrial dysfunction accompanies acetic acid-
induced programmed cell death (PCD) [128, 129] and the 
reduction of CLS and RLS (Fig. 3B-D) [130-135]. Upon mito-
chondrial dysfunction, the retrograde response pathway is 
triggered to transmit signals to the nucleus in order to 
make adjustments in cellular metabolic and biosynthetic 
activities. The retrograde response pathway is positively 
controlled by Ras2, explaining why this small GTPase is 
essential for the acquisition of acetic acid tolerance. In fact, 
PKA, similar as TORC1, negatively influences the retrograde 
response pathway [136]. Among other genes, the retro-
grade response pathway targets several cytosolic and mi-
tochondrial ribosomal protein genes [137], explaining their 
involvement in acetic acid tolerance.  

Some evidence suggests that the expression of genes 
involved in trehalose biosynthesis is also influenced by the 
retrograde response pathway [137]. Although the role of 
trehalose in conveying acetic acid tolerance is not fully 

understood, the long-lived tor1 and sch9 mutants ap-
pear to make optimal use of the protective properties of 
trehalose as these strains were found to switch their me-
tabolism in the quiescent phase and use the acetic acid 
that was secreted during the pre-diauxic phase to produce 
trehalose [138]. A recent study reported that Tps1 can 
decelerate chronological ageing independently of its 
known trehalose-6P catalytic activity [139, 140]. Consist-

ently, the tps1 mutant is short-lived. However, another 
study demonstrated that this phenotype is shared by mu-
tants lacking the trehalose-6P phosphatase Tps2, or the 
neutral trehalases Nth1 and Nth2. In contrast, mutants 
lacking the regulatory subunits of the trehalose synthase 
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complex Tps3 or Tsl1, or the periplasmic acid trehalase 
Ath1, were found to be long-lived [141]. Analysis of these 
different mutants revealed that trehalose reduces the 
amount of oxidative carbonylated proteins during post-
diauxic phase and that it lowers the level of protein aggre-
gation in the quiescent state [141]. Thus, trehalose seems 
to protect cells by preventing proteotoxicity (Fig. 3C-D).  
 
pH and proteotoxicity 
Cells are equipped with a complex network that ensures 
proteome integrity. Proteins that can no longer fulfil their 
function due to misfolding, damage or aggregation become 
substrates for the protein degradation machinery and they 
are cleared either via the proteasome, or via autophagy 
and vacuolar targeting (Fig. 3). Here the link to pH homeo-
stasis is obvious, as the final step of autophagy, i.e. the 
disintegration of autophagic bodies, is linked to vacuolar 
membrane integrity and acidification of the vacuolar lu-
men by the V-ATPase [142-144]. Next to its detoxifying 
function, however, autophagy also has a role in nutrient 
recycling. In that regard, it seems logical that autophagy is 
upregulated in nutrient limiting conditions and that the 
nutrient signalling ménage-à-trois plays an important role 
in the regulation of autophagy [40, 41, 60]. Interestingly, 
the cellular capacity for autophagic degradation declines 
with age, which will itself also contribute to the accumula-
tion of cellular and molecular damage. Accordingly, induc-
tion of autophagy extends lifespan, and this seems to be 
accompanied by vacuolar acidification (Fig. 3) [143, 145]. 

Recent evidence indicates that misfolded and damaged 
proteins are first partitioned in specific inclusions in the 
cell. In JunQ and INQ misfolded proteins are refolded, 
while those deposited in IPOD probably await clearance via 
autophagy [146, 147]. This partitioning requires Hsp104 
and functional actin cables [148-150], the latter being an-
other essential lifespan determinant [151, 152]. Partition-
ing of misfolded proteins is beneficial during chronological 
ageing [153] and assures the asymmetric inheritance of 
damaged and non-functional proteins during replicative 
ageing, thereby producing rejuvenated daughter cells [148-
150]. A recent study connected the V-ATPase, vesicular 
trafficking and components involved in actin cable-
dependent vacuole inheritance to this asymmetric inher-
itance [154], implying a pH dependency. Notably, apart 
from the vacuole also the ER, mitochondria and even 
mRNA are subject to asymmetric inheritance during the 
division of yeast cells (reviewed in [155]). 

 
Mitochondrial dysfunction and its interplay with the ER 
and the vacuole 
Several molecular chaperones assist in the correct folding 
of proteins or the refolding in case protein misfolding oc-
curs. These chaperone proteins can be found in the cyto-
plasm, the ER and mitochondria. In fact, a recent study 
revealed that yeast cells possess a cell-wide proteostasis 
system where proteotoxicity in one cellular compartment 
triggers a response in other compartments. This response, 
termed cross-organelle stress response (CORE) has a pro-
tective role and extends both CLS and RLS [156]. Aberrant 

chaperone activity in each of the compartments leads to 
fragmented mitochondria, a loss of respiratory activity and 
an increase in cytosolic NADPH reducing power. This effect 
is associated with inactivation of TORC1, which acts as pro-
tein folding sensor, and the subsequent activation of Snf1 
[156, 157]. The existence of a cell-wide proteostasis system 
is also inferred by the observation that yeast cells use a 
common system to monitor and ensure protein quality 
control in the ER and mitochondria. This system involves 
Cdc48/p97, an AAA ATPase known from the ubiquitin-
proteasome system that is recruited by stressed ER or mi-
tochondria to extract ubiquitinated proteins presented at 
the membranes of the organelles and to direct these to the 
proteasome [158, 159]. Interestingly, several physical or-
ganelle contact sites exist in yeast, although their involve-
ment in CORE and the cell-wide proteostasis system re-
mains to be elucidated. Here we mention ERMES, the ER-
mitochondrial contact site [160], and vCLAMP, the vacuole-
mitochondrion contact site [161]. Several nutrient and ion 
transporters have been shown to be enriched at these con-
tact sites, indicating a role as hubs for the exchange of nu-
trients and ions between organelles [161] and pointing 
towards the idea that pH could be an essential regulator. In 
addition, ERMES and vCLAMP have been proposed to serve 
as dynamic metabolic signalling hubs [162]. Notably, they 
are co-regulated in response to nutrients and appear to 
fulfil partially overlapping functions as their simultaneous 
disruption is lethal [161].  

It is obvious that mitochondria play an important role 
in the determination of lifespan that surpasses their func-
tion as energy supplying factory. It is essential for viability 
that dysfunctional mitochondria are removed, which oc-
curs via mitophagy [40]. Efficient mitophagy requires ubiq-
uitination of the ERMES components Mdm34 and Mdm12 
[163]. Moreover, ERMES colocalizes with the site of mi-
tophagosome generation and the ER was proposed to de-
liver the necessary lipids for membrane engulfment of the 
mitochondrion [164, 165]. Whether vCLAMP has a role in 
mitophagy has not been investigated yet. Nonetheless, it is 
known that it suffices to enhance vacuolar proton pumping 
to significantly reduce mitochondrial dysfunction, indicat-
ing a communication between these organelles which 
could rely on vCLAMP. Consistently, cells lacking functional 
V-ATPases display significant increased levels of markers 
for dysfunctional mitochondria and a dramatically short-
ened RLS and CLS (Fig. 3B-D) [70, 134]. Intriguingly, this 
appears not to be related to a reduced capacity of vacuolar 
protein degradation, but rather to the impaired ability of 
the vacuole to efficiently store amino acids. This is evi-
denced by the observation that enhanced expression of 
the neutral amino acid transporter Avt1 attenuates mito-
chondrial dysfunction in replicative ageing cells without 
preventing vacuolar alkalization [134]. How this relates to 
the regulation of autophagic processes by the 
PKA/TORC1/Sch9 ménage-à-trois [40, 166, 167] remains to 
be investigated. 
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pH, lipid synthesis and liponecrosis 
The synthesis of major membrane lipids is spatially orga-
nized and involves different organelles [168]. Moreover, 
many lipid synthesizing enzymes are enriched at the con-
tact sites between the ER and other organelles and these 
contacts mediate non-vesicular selective lipid transport 
[169-175]. As organelles rely on pH for optimal functionali-
ty, it is expected that compartmental cross-talk for lipid 
metabolism is closely connected to pH regulation. This is 
supported by the observation that membrane contact sites 
constitute domains important for ion transport as well [161, 
176], which in case of the ER-plasma membrane contact is 
linked to proton pumping by Pma1 [177]. Moreover, a 
study that used a systems biology approach to investigate 
the interdependence of pH control and CLS by comparison 
of young and old cells grown in buffered or non-buffered 
medium revealed that pH has a main impact on the reor-
ganization of lipid metabolism. This reorganization has a 
beneficial effect on CLS by preserving mitochondrial and 
vacuolar health, the latter being dependent on V-ATPase 
activity [178].  

Lipid homeostasis is of utmost importance to maintain 
longevity of yeast cells and persistent deviations thereof 
can lead to cell demise and a phenomenon described as 
liponecrosis [105, 179-181]. Several observations indicate 
that alterations in lipid homeostasis induce mechanisms 
involved in protein quality control. Conditions that perturb 
lipid biosynthesis, that alter the lipid compositions of the 
plasma membrane and endomembranes or that affect the 
lipid droplet content of cells were all reported to trigger ER 
stress and activation of the unfolded protein response 
(UPR) [182-188]. In contrast to acute ER stress, which in-
duces PCD [189, 190], the lipid-associated induction of ER 
stress appears to be linked to compensatory mechanisms 
directed to reinstate lipid biosynthesis and lipid metabo-
lism and to promote cell survival [191-195]. For instance, 
the activation of the UPR was shown to restore normal 
ceramide levels when sphingolipid biosynthesis was com-
promised [192] and to enhance synthesis of triacylglycerols 
and sterol esters in order to stimulate the formation of 
lipid droplets [196]. Besides their role for energy storage, 
these lipid droplets are essential for the regulation of au-
tophagic processes and the clearance of damaged and ag-
gregated proteins from the ER and mitochondria [197-201]. 
Interventions that affect lipid homeostasis are commonly 
associated with the appearance of fragmented vacuoles 
and V-ATPase dysfunction. This includes alterations in the 
biosynthesis of ergosterols, sphingolipids and ceramides or 
the availability of essential precursors like inositol [202-
205]. However, preventing lipid droplet formation by 
blocking the synthesis of di- and triacylglycerol through 
deletion of the PAH1-encoded phosphatidic acid phospha-

tase appears to be an exception since pah1 cells are char-
acterized by vacuolar fragmentation and enhanced lipid 
toxicity while still displaying improved acidification of the 
vacuolar lumen due to elevated expression of V-ATPase 
subunits [206, 207]. The latter relates to a negative effect 
of Pah1 on the transcription of several V-ATPase subunit 

genes, which all contain an UASINO element in their promo-
tor [206]. This is interesting since this promotor element 
also links the expression of these V-ATPase genes to phos-
pholipid biosynthesis and the availability of inositol, cho-
line and phosphate [208]. 

 

CONCLUDING REMARKS 
Taken together, control of pH homeostasis is emerging as a 
key factor determining longevity and alterations culminate 
in many hallmarks of ageing. Although we are only begin-
ning to uncover the importance of pH homeostasis, it is 
already amazing how many aspects of cell functioning are 
influenced by intracellular pH and the reciprocal regulation 
of mainly two players, the V-ATPase and Pma1. When 
thriving in an environment with plentiful nutrients, Pma1 
and the V-ATPase maintain an ideal pH to support vigorous 
cell growth. During ageing, the activity of these two players 
changes, and while increased Pma1 activity may provide 
enhanced tolerance of a mother cell to the weak acids that 
were produced, the drawback is a reduction of vacuolar 
acidity. Indeed, vacuolar acidity is of absolute importance 
for endocytosis and vesicular trafficking, as well as cellular 
damage control, the latter via the clearance of malfunc-
tioning proteins and organelles, important for both CLS and 
RLS (Fig. 3). In addition, damage control also occurs via 
asymmetrical inheritance during replicative ageing and also 
here links with vacuolar functioning and pHv are emerging. 
Undoubtedly, this field of research opens a promising path 
towards the understanding of intrinsic mechanisms of age-
ing and longevity, which could be of critical value for our 
insight into lysosomal-related human diseases and prote-
opathies, including neurodegenerative disorders, different 
types of cancer and lysosomal storage diseases. 
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