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candidate drugs are close to being tested in humans. Clinical trials for MJD are also very few to date and
their results not very promising, mostly due to trial design constraints. Here, we provide an overview of the
pharmacological therapeutic strategies for MJD studied in animal models and patients, and of their
possible translation into the clinical practice.
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2 Pharmacological Therapies
3 for Machado-Joseph Disease

4 Sara Duarte-Silva and Patrícia Maciel

5 Abstract Machado-Joseph disease (MJD), also known as Spinocerebellar Ataxia
6 type 3 (SCA3), is the most common autosomal dominant ataxia worldwide. MJD
7 integrates a large group of disorders known as polyglutamine diseases (polyQ). To
8 date, no effective treatment exists for MJD and other polyQ diseases. Nevertheless,
9 researchers are making efforts to find treatment possibilities that modify the disease

10 course or alleviate disease symptoms. Since neuroimaging studies in mutation
11 carrying individuals suggest that in nervous system dysfunction begins many years
12 before the onset of any detectable symptoms, the development of therapeutic
13 interventions becomes of great importance, not only to slow progression of manifest
14 disease but also to delay, or ideally prevent, its onset. Potential therapeutic targets
15 for MJD and polyQ diseases can be divided into (i) those that are aimed at the
16 polyQ proteins themselves, namely gene silencing, attempts to enhance mutant
17 protein degradation or inhibition/prevention of aggregation; and (ii) those that
18 intercept the toxic downstream effects of the polyQ proteins, such as mitochondrial
19 dysfunction and oxidative stress, transcriptional abnormalities, UPS impairment,
20 excitotoxicity, or activation of cell death. The existence of relevant animal models
21 and the recent contributions towards the identification of putative molecular
22 mechanisms underlying MJD are impacting on the development of new drugs. To
23 date only a few pre-clinical trials were conducted, nevertheless some had very
24 promising results and some candidate drugs are close to being tested in humans.
25 Clinical trials for MJD are also very few to date and their results not very
26 promising, mostly due to trial design constraints. Here, we provide an overview of
27 the pharmacological therapeutic strategies for MJD studied in animal models and
28 patients, and of their possible translation into the clinical practice.
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31 19.1 Machado-Joseph Disease or Spinocerebellar
32 Ataxia Type 3

33 Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3
34 (SCA3), is known to exist worldwide [1], representing the most common domi-
35 nantly inherited ataxia (Reviewed in [1–3]) and the second most common polyQ
36 disease [4]. In the last years a large effort has been put forward towards the
37 understanding of the pathologic mechanism(s) underlying polyQ diseases, however,
38 and unfortunately, the therapeutic approaches and drug development did not reach
39 the desirable outcomes yet. Despite the increasing number of therapeutic strategies
40 assessed in mouse models of polyQ diseases (around 250 preclinical therapeutic
41 trials have already been described) [5], there are no effective treatments for these
42 disorders, including MJD, and currently available therapeutic approaches are only
43 able to provide limited symptomatic relief (Reviewed in [6, 7]).
44 The core clinical feature in MJD is a slowly progressive ataxia starting in
45 adulthood, being the average age at onset of 40 years and the mean survival time of
46 21 years [8]. Numerous other clinical symptoms, including weight loss, dystonia,
47 dysarthria, spasticity, rigidity, fasciculations, postural instability, proprioceptive
48 loss, dysphagia, amyotrophy, corticospinal and autonomic nervous system dys-
49 functions and neuropathy, are also frequently observed in MJD patients [9–11].
50 Non-motor symptoms are also present, such as cramps, fatigue, sleep disturbances,
51 mild cognitive affection and mood-related diseases [12–16]. Neuropathologically,
52 MJD is characterized by neuronal loss in the cerebellum, substantia nigra, striatum,
53 thalamus, pontine nuclei, spinal cord and cranial nerves, precerebellar brainstem
54 nuclei, cholinergic and dopaminergic midbrain, as well as visual, auditory,
55 vestibular, somatosensory, and ingestion and urination-related systems (Reviewed
56 in [11]). Retained integrity of the cortical and subcortical regions of the limbic
57 system and mild degeneration of cerebral and cerebellar cortices, white matter of
58 cerebellum, inferior olive and Purkinje cells, are also characteristic of MJD [11].
59 The ataxin-3 protein (the MJD disease protein) is expressed ubiquitously and when
60 it bears the expanded allele it tends to aggregate forming neuronal nuclear inclusion
61 bodies (NNIs) in the brain [17, 18]. These NNIs are present in functionally affected
62 and non-affected brain regions, indicating that there is no direct correlation between
63 the occurrence of these protein aggregates and neuronal dysfunction [11, 19, 20].
64 Axonal aggregates have also been found in human patients and, as the intranuclear
65 aggregates, they were immunopositive for ubiquitin and p62; one can hypothesize
66 that axonal inclusions might be detrimental to axonal transport mechanisms,
67 contributing to degeneration of nerve cells in MJD [21].
68 The clinical presentation of MJD is highly pleomorphic and led to the definition
69 of four clinical sub-phenotypes: type I, characterised by the predominance of
70 pyramidal and extrapyramidal anomalies, in addition to ataxia and other signs, with
71 an early age-at-onset and fast progression; type II, with typical cerebellar ataxia,
72 progressive external ophthalmoplegia and pyramidal signs appearing at an inter-
73 mediate age; type III, with late onset and slow progression of peripheral signs, such
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74 as loss of proprioception and muscle atrophies; and type IV, the rarest, charac-
75 terised by the presence of Parkinsonic signs, associated to the core clinical features
76 [10, 22, 23].
77 Here, we provide an overview of the current situation concerning small molecule
78 therapeutics for MJD, including a brief description of the symptomatic therapies
79 used in the clinics to improve patient’s daily life, followed by a section on the
80 recent drug discovery and development efforts, outlining the disease-modifying
81 therapies tested so far in animal models of this disorder. In the end, we also provide
82 a summary of the clinical trials performed to date in MJD patients.

83 19.2 Symptomatic Therapies for Machado-Joseph Disease

84 Despite the lack of efficacious disease-modifying therapies for MJD to date, several
85 treatments, including specific drugs and multi-professional supportive approaches,
86 are used to ameliorate neurological symptoms and increase the quality of life of the
87 patients (Reviewed in [24], updated in 2015).
88 Non-pharmacological therapies include genetic counselling [25], (Rodrigues
89 et al. 2012), speech therapy, exercise/physiotherapy [26], (Svensson et al. 2015) and
90 occupational therapy [27]. The occupational therapy combined with antidepressants
91 is thought to be helpful to fight the depression symptoms reported in MJD [28].
92 The pharmacological therapies prescribed by the physicians are mainly based on
93 the knowledge of other related diseases or based on the patient’s needs. Yet, the
94 efficacy of those therapies has not been proven scientifically in MJD patients.
95 Importantly, none of the clinical trials performed to date in MJD patients were based
96 on data obtained in animal models of the disease. Nowadays, and with available
97 animal models that closely mimic the human condition, the connection between
98 preclinical and clinical studies should be strengthened. Pharmacological therapy
99 includes levodopa or dopamine agonists for the restless leg syndrome as well as for

100 the parkinsonism-like symptoms [29]. Adverse events may occur with levodopa
101 treatment, namely worsening of the motor symptoms as shown for Parkinson’s
102 disease patients [30]. Modafinil, a psychostimulant, can be used to improve daytime
103 fatigue, which is very frequent in MJD, and mexiletine or carbamazepine for cramps
104 [31]. Together, these examples show that symptomatic MJD patients may benefit
105 from available pharmacological approaches, which provide an important combina-
106 tion for the quality of life and the patients’ feeling of independence.

107 19.3 Disease-Modifying Therapies for Machado-Joseph
108 Disease: Lessons from Preclinical Trials

109 Despite the existence of a variety of different MJD rodent models ([32] reviewed in
110 [33]) and their potentialities, only a few preclinical trials have been performed until
111 now using these models (see Table 19.1), and even less have then been translated to
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112 clinical trials. Those studies were performed considering different approaches:
113 (i) more directly targeting mutant ataxin-3 synthesis, folding and degradation and
114 (ii) reducing the downstream deleterious effects of mutant ataxin-3 accumulation.
115 The hypothesized pathogenic mechanism(s) involved in MJD and discussed
116 throughout this chapter are represented in Fig. 19.1, as well as the possible thera-
117 peutic targets.

118 19.3.1 Mutant Ataxin-3 Refolding and Degradation:
119 Autophagy and Proteasome Inducers

120 Restoration of global protein homeostasis, or proteostasis, is a promising approach
121 to reduce the toxicity of mutant ATXN3 in MJD. Several studies in rodent models
122 demonstrated the efficacy of activating the cellular machinery involved in main-
123 taining adequate conformation and solubility of proteins or, in case this fails, send
124 them for degradation, such as molecular chaperones, the ubiquitin-proteasome
125 system (UPS) and autophagy, which will be discussed hereafter.
126 For instance, Hsp90 inhibitors are known to possess the unique pharmacological
127 effect of inducing a heat stress response and, in addition to their use as anticancer
128 agents, have also been developed as pharmacological HSP inducers for application
129 in protein folding disorders [34, 35]. Several studies demonstrated the positive
130 effects of 17-AAG and its analogues (including 17-DMAG, which is less toxic) as
131 Hsp90 inhibitors in models of polyQ diseases [36–39]. The efficacy of 17-DMAG
132 in improving the behavioral deficits was tested in the CMVMJD135 mice [40]. In
133 this study it was shown that the behavioral deficits were transiently improved by
134 17-DMAG administration and neuropathologic features were ameliorated.
135 Surprisingly, 17-DMAG did not induce the HSR in the brain of CMVMJD135
136 animals as expected. However, the protein levels of mutant ataxin-3 as well as the
137 aggregate load were diminished after 17-DMAG treatment suggesting that other
138 mechanism(s) would be occurring in the cells. Indeed, it was proposed that
139 17-DMAG was inducing autophagy and therefore probably the degradation of
140 mutant ataxin-3 through this mechanism (not excluding others, as the UPS). In spite
141 of the promising results in mouse models, establishing proof of concept, 17-DMAG
142 is known to exert several important adverse effects in humans [41], which must be
143 taken in consideration given the expected need for chronic treatment of MJD
144 patients. Chemical modifications should be conducted in 17-DMAG to decrease its
145 toxicity while keeping its beneficial effects; only after that should such an approach
146 be considered for clinical trials in MJD.
147 Autophagy induction seems to be a promising target to modulate protein
148 aggregation in polyQ diseases and, in addition to the abovementioned results, there
149 is an extensive body of literature demonstrating its beneficial effects in polyQ
150 diseases [42–54]. In order to verify the therapeutic efficacy of autophagy induction
151 in MJD, Menzies and colleagues used the mouse model generated by Bichelmeier
152 et al. [55] which they chronically treated with an autophagy inducer—temsirolimus
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Fig. 19.1 Schematic representation of the potential pathogenic mechanisms underlying MJD and
possible therapeutic targets. Intracellular candidate pathogenesis pathways inMJD are represented in
red. These include the formation of cytoplasmic and nuclear aggregates/inclusions, transcriptional
deregulation, mitochondrial dysfunction, impairment of degradation mechanisms (autophagy/
proteasome) and activation of caspases/calpains. Possible intracellular therapeutic targets are
represented in green
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153 (codenamed CCI-779), a rapamycin analog. Although the authors were not able to
154 reproduce the phenotype previously described for this model [55], at the end of a
155 two months preclinical trial they report that treated-MJD animals performed better
156 in the accelerating rod when compared to placebo-treated mice, and that this
157 compound had no effect in wild-type (WT) animals in the rotarod. Also, tem-
158 sirolimus was able to reduce mutant ataxin-3 aggregates in the motor cortex and the
159 soluble cytoplasmic, but not nuclear, mutant ataxin-3 in total brain extracts. Finally,
160 the authors performed a microarray study at basal conditions and after temsirolimus
161 treatment. Overall, the transcriptional alterations found were very small, probably
162 correlating to the absence of a clear phenotype in this cohort of MJD mice. Yet, it
163 was possible to identify genes with decreased expression in MJD-vehicle mice,
164 which was increased after temsirolimus treatment; the opposite effect was not found
165 [47]. The potential beneficial effects of autophagy induction were further reinforced
166 in studies using beclin-1 overexpression in rodent models of MJD [56]. Thus, and
167 also considering the beneficial effects of 17-DMAG, other autophagy inducers were
168 tested in the CMVMJD135 mice: lithium chloride and CCI-779. Unexpectedly, the
169 use of lithium chloride had no overall effect on the behavioral deficits of
170 CMVMJD135 mice, in spite of activating autophagy as expected [40]. Accordingly,
171 a human clinical trial using lithium carbonate was performed in the same year,
172 demonstrating that albeit well tolerated, lithium had no major impact on disease
173 progression in MJD patients [57] (see Sect. 19.4 in the present chapter). In another
174 attempt to increase autophagy, a combination of two autophagy inducers acting
175 independently and dependently of mTOR—lithium and CCI-779, respectively—
176 was tested in the CMVMJD135 mouse model. This combinatory therapy showed
177 no beneficial effects and even proved to be deleterious to both transgenic and
178 wild-type mice, affecting neurological function and general health, at doses shown
179 to be safe in mice when administered alone [47, 58]. These results suggest that
180 overactivation of autophagy could also be dangerous, however, other effects of the
181 drug combination cannot be excluded.
182 Using the mouse model developed by their team [59], Chou and colleagues
183 developed a preclinical trial using H1152, a Rho-kinase (ROCK) inhibitor. ROCK
184 is a kinase and acts as the downstream effector of small GTP-binding proteins of the
185 Rho subfamily, and its abnormal activation has been implicated in several neu-
186 rodegenerative diseases [60]. Also, ROCK inhibitors were shown to decrease the
187 levels of mutant huntingtin in brain as well as improve motor function in a mouse
188 model of Huntington’s disease (HD) [61]. This study confirmed that H1152 could
189 also decrease the brain level of pathogenic ataxin-3 and exert a therapeutic effect on
190 the MJD mouse model. The authors tested several ROCK inhibitors in vitro and
191 showed that H1152 was the most potent in reducing ataxin-3 protein levels, and that
192 acted by increasing proteasome activity. Daily intraperitoneal injections of H1152
193 in the MJD mice improved motor coordination and locomotor activity deficits.
194 H1152 administration significantly decreased mutant ataxin-3 levels in the cere-
195 bellum, cerebral cortex, pontine nuclei and spinal cord and decreased the cell death
196 (reduction in NeuN positive cells) observed in the pontine nuclei of vehicle-treated
197 transgenic animals [62]. Fasudil, a first-generation ROCK inhibitor, has been
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198 studied widely in clinical trials for the treatment of pulmonary arterial hypertension
199 as well as for subarachnoid hemorrhage [63], constituting a safe drug in humans.
200 A phase II clinical trial is ongoing for the study of its safety and efficacy in
201 amyotrophic lateral sclerosis patients (NCT01935518). Indeed, its protective effects
202 were recently shown in a model of HD [64]. In this sense, the inhibition of ROCK
203 can be regarded as a promising avenue for therapeutic intervention in various
204 neurological disorders, including MJD and other polyQ diseases.

205 19.3.2 Therapies Targeting Downstream Molecular Events

206 19.3.2.1 Transcriptional Regulation

207 Transcriptional deregulation is a unifying feature of polyQ disorders [65–70];
208 however, the relationship between polyQ-induced deregulation of gene expression
209 and the ongoing degenerative processes remains unclear.
210 More than 20 nuclear proteins relevant for transcription are known to interact
211 with polyQ disease associated-proteins [69, 71]. Mutant ataxin-3 has been shown to
212 interact abnormally with several proteins involved in the transcription machinery,
213 namely CREB-binding protein (CBP) and p300/CREBBP associated factor (PCAF),
214 suppressing their histone acetyltransferase activity [65, 72]. Overexpression of some
215 of these transcription regulators was shown to overcome polyQ toxicity, both in
216 cellular models for MJD, Spinal and Bulbar Muscular Atrophy (SBMA), and HD
217 [68, 73] as well as in vivo, in a polyQ model in Drosophila [70]. This suggests that
218 expanded polyQ proteins may contribute for the depletion of key transcriptional
219 regulators with toxic effects to the cell and reinforces the idea of an important role for
220 transcription deregulation in polyQ pathogenesis. Acetylation of histones relaxes the
221 DNA structure, promoting transcription, whereas hypoacetylation represses gene
222 activity [74]. The equilibrium of histone acetylation/deacetylation is controlled by
223 histone acetyltransferases (HATs) and deacetylases (HDACs).
224 Previously, based on expression data, Chou and collaborators suggested that a
225 global transcriptional deregulation was occurring in the cerebellum of a MJD
226 transgenic model [59]. More specifically, they have shown a generalized
227 hypoacetylation of H3 and H4. In order to modulate these alterations in the tran-
228 scriptome, the same authors treated their mouse model with sodium butyrate (SB),
229 an HDAC inhibitor. They observed that daily administration of SB was able to
230 revert histone hypoacetylation as well as the transcription downregulation in the
231 cerebellum. Importantly, SB treatment improved motor performance of transgenic
232 animals in the rotarod, an effect that was less evident in later stages. The gait-related
233 symptoms, quantified through the footprint pattern, were also ameliorated with SB,
234 as well as the spontaneous locomotor activity, body weight loss and survival [75].
235 In contrast, Esteves S and colleagues, demonstrated that chronic treatment of the
236 CMVMJD135 mice with valproic acid (VPA), also known to act as an HDAC
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237 inhibitor led to limited effects concerning the improvement of motor deficits and
238 had no effect on mutant ataxin-3 aggregation in the brain. Nevertheless, VPA
239 treatment increased the levels of GRP78, an endoplasmic reticulum chaperone
240 involved in the folding of newly synthetized proteins and in the translocation of
241 aberrant proteins for degradation by the proteasome, which might explain the small
242 improvement in motor coordination seen after a long treatment duration [16]. These
243 results contrast with the findings of a study in human patients, in which a beneficial
244 effect was observed (see Sect. 19.4 in the present chapter).

245 19.3.2.2 Calcium Signaling Stabilizers

246 Calcium signaling is thought to play an important role in polyQ pathogenesis. This
247 hypothesis is based on previous studies demonstrating that mutant huntingtin can
248 bind and activate specifically type 1 inositol 1,4,5-triphosphate receptors (InsP3R1,
249 an intracellular calcium release channel), influencing calcium signaling [76].
250 Deranged calcium signaling was also observed in neuronal primary cultures from
251 the YAC128 HD mouse model [77, 78]. Later on, mutant ATXN3 was also proven
252 to bind to InsP3R1 and to perturb calcium signaling (ref?). Taking advantage of the
253 YAC transgenic model of MJD generated by Cemal et al. in 2002, Chen and
254 collaborators performed a chronic treatment to these mice, using food supplemented
255 with dantrolene. This compound is a ryanodine antagonist and a clinically relevant
256 Ca2+ signaling stabilizer, being commonly used as a skeletal muscle relaxant to
257 treat hyperthermia and muscle spasticity [79]. Dantrolene-treated MJD mice
258 showed an improved performance in the balance beam test (taking less time to
259 traverse the different beams, with a number of foot slips identical to WT), reduction
260 of the crawling behavior seen in the MJD-vehicle group, and a significant
261 improvement in the footprinting pattern. To evaluate the neuroprotective effect of
262 dantrolene, the brains of the four groups used were weighed, however there was no
263 improvement in this parameter. Dantrolene food supplementation did, nevertheless,
264 diminish the loss of NeuN positive cells in the pontine nuclei and of TH-positive
265 cells in the substantia nigra of MJD mice [80]. Besides its beneficial effects, no
266 further studies with this compound were performed in MJD patients. The known
267 side effects of dantrolene originate in the central nervous system, and include
268 drowsiness, lightheadedness, headaches, anorexia, diarrhea, nausea, and vomiting
269 [81]. To our knowledge, no clinical trials with dantrolene have been performed in
270 neurodegenerative diseases, suggesting that this compound might not be a good
271 candidate for MJD treatment.

272 19.3.2.3 Neuroprotection

273 Neuronal dysfunction and synaptotoxicity are thought to play a major role in polyQ
274 disease pathogenesis. Indeed, it was previously suggested that neuronal dysfunction
275 may precede neurodegeneration and clinical symptoms in HD [82, 83]. In MJD,
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276 loss of synaptic markers was proposed to be an early feature in a lentiviral-based
277 disease model, suggesting a putative role for ataxin-3 in the control of synapse
278 function [84]. Furthermore, Silva-Fernandes and colleagues have shown the pres-
279 ence of a clear motor phenotype in the CMVMJD135 mouse model of MJD,
280 without major early neuronal loss, suggesting once again, that neuronal dysfunction
281 may precede neurodegeneration [40]. These hypotheses were not deeply explored,
282 so far, in MJD; nevertheless, some compounds known to have neuroprotective
283 effects have been tested in MJD models.
284 Treatment with caffeine (a non-selective adenosine receptor antagonist) as well
285 as with selective blockers of the adenosine A2A receptor (A2AR) have been shown
286 to be neuroprotective in several brain diseases, including HD [85–87]. In a study by
287 Gonçalves et al., caffeine was administered to a lentiviral model of MJD (over-
288 expression of human wild-type—atx3-27Q—or mutant ataxin-3-atx3-72Q) in the
289 drinking water for 3 months (maximum), in a 1 g/L dose, corresponding to a
290 human diary consumption of 5 cups of coffee. Chronic caffeine treatment rescued
291 the striatal shrinkage observed in the mutant ATXN3 transduced animals and
292 slightly reduced the number of pycnotic cells. Also, caffeine was able to avoid the
293 loss of NeuN positive cells observed in the atx3-72Q animals. These data suggest
294 that chronic caffeine treatment is neuroprotective towards ataxin-3 overexpression
295 in the striatum. Furthermore, loss of DARPP-32 staining volume, astrogliosis and
296 putative microgliosis were improved in the treated group. Nevertheless, the bene-
297 ficial effects of caffeine were shown to be transient. Finally, and intriguingly,
298 caffeine-treated mice showed an increase in the number of nuclear inclusions when
299 compared to water-drinking animals. These observations might indicate that the
300 final stages of aggregation, visible neuronal inclusions, are protective rather than
301 toxic [84], but this was not explored further. Several studies support the use of
302 caffeine for different neurodegenerative diseases (reviewed in [88]). The neuro-
303 protective effects of caffeine observed in the lentiviral-mediated model of MJD, and
304 considering the well-define and side-effect profile, being in general well tolerated
305 comparing to other drugs, support the use of antagonists of adenosine receptors as
306 potential therapeutic tools to treat MJD and other polyQ diseases. Further studies in
307 MJD patients should be performed to prove the clinical utility of this approach.
308 Recently, Cunha-Santos and colleagues tested the potential of resveratrol, a
309 Sirtuin-1 (SIRT1) activator, as potential therapeutic strategy for MJD [89]. SIRT1
310 belongs to the group of the histone deacetylase enzymes being a NAD+-dependent
311 histone and protein deacetylase that plays an important role in several cellular and
312 physiological processes, including an important involvement in neurodegeneration
313 [90]. Indeed, induction of SIRT1 was shown to have a protective role in HD and
314 SBMA models [91–93]. Resveratrol treatment in the MJD mouse model was shown
315 to improve motor and balance deficits after disease onset. This study pointed SIRT1
316 activation as a potential therapeutic target for MJD 89]. Resveratrol, being a
317 multitarget compound with several neuroprotective roles, represents an interesting
318 candidate for the treatment of MJD. Nevertheless, it is important to remember
319 resveratrol solubility and bioavailability limitations [94], which can be solved by
320 appropriate chemical modifications. Resveratrol was already tested in a phase 2
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321 clinical trial in Alzheimer’s disease patients. Unfortunately, this study presented
322 some limitations, such as early termination leading to a small number of partici-
323 pants, leading to uninterpretable results, which did not allow to determine whether
324 resveratrol may be beneficial or not. It was also stated that “More potent and
325 bioavailable SIRT1 activators are also in development” (see Study Results of the
326 NCT01504854 clinical trial), which could be useful for this and other neurode-
327 generative diseases.

328 19.3.2.4 Modulators of the Serotonergic and Glutamatergic Systems

329 Recently, and departing from an unbiased screening of FDA-approved small
330 molecules, Teixeira-Castro and collaborators identified Citalopram (Selective
331 Serotonin Reuptake Inhibitor—SSRI) as a hit compound able to modify the neu-
332 rotoxic effect of mutant ATXN3 in the nematode C. elegans, but also its aggre-
333 gation. The effect required early treatment initiation and a minimum duration. The
334 compound was further tested in a mouse model of the disease (CMVMJD135) and
335 shown to delay disease progression, decrease mutant ATXN3 aggregation and
336 neuropathology. This work also demonstrated, using pharmacogenetic approaches,
337 that activation of the serotonergic signaling was beneficial in both animal models of
338 MJD [95]. Intriguingly, improvement in the mouse model happened in spite of
339 normal neurotransmitter levels at the basal state. This intriguing link between
340 serotonin signaling and protein homeostasis has been recognized by the work of
341 Prahlad and colleagues [96], and may imply a new perspective for usage of these
342 established compounds in neurodegenerative diseases, including other
343 polyQ-associated SCAs.
344 Although evidence for excitotoxicity is not as strong as for HD, perturbed
345 glutamate transmission has also been proposed to play a role in MJD [59, 97, 98],
346 namely through very intriguing links to mutant protein cleavage and aggregation.
347 Interestingly, clinical trials using the antiglutamatergic drug riluzole demonstrated a
348 beneficial effect in patients with different ataxias [99, 100]. Unfortunately, MJD
349 patients were not included in these clinical trials. Considering this, and also the fact
350 that riluzole was shown to have protective effects in cellular models of HD [101,
351 102], Schmidt and colleagues have studied the potential beneficial effects of riluzole
352 in a conditional MJD mouse model. Post-symptomatic chronic treatment with
353 riluzole had no effect on motor deficits of the mouse despite the observed reduction
354 of soluble mutant ataxin-3 protein levels. Furthermore, riluzole increased the levels
355 of ataxin-3 aggregation. Also, and very importantly, the authors showed that
356 treatment with riluzole decreased the Calbindin expression in Purkinje cells of the
357 cerebellum, suggestive of possible toxicity, which might indicate that this com-
358 pound might not be commendable to test in humans with MJD, or, at least, that it
359 should be tested with caution [103].
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360 19.4 Clinical Trials in MJD Patients

361 Currently, no disease modifying treatment exists for MJD. Yet, some symptomatic
362 treatment is available, including genetic counseling, physical therapy programs, and
363 speech and swallowing training as discussed above. The translation of findings from
364 model systems to human patients is an important and urgent issue. Considering the
365 lack of information on the key aspects of the pathogenic mechanism(s), the clinical
366 and molecular heterogeneity of MJD patients and the scarcity of human biological
367 tissues available for research, the development of translational approaches is very
368 difficult. Still, some clinical trials have been performed for MJD (see Table 19.2).
369 The detection of undesired side effects is also of major importance in clinical trials
370 and must be taken in consideration. Most of the MJD clinical trials to date were
371 performed using very few patients (less than 10) and only short-term effects were
372 investigated, thus their outcome assessment might be compromised.
373 The combination of sulphamethoxazole and trimethoprim (Bactrim, a
374 broad-spectrum antibiotic used in ear and urinary infections) was suggested to
375 reduce disease symptoms in a small double-blind clinical trial using 8 MJD patients.
376 The authors observed mild improvements in some of the parameters evaluated, such
377 as hyperreflexia of knee jerks and rigospasticity of the legs in the patients treated
378 with Bactrim. It was also shown that the levels of biopterins and homovanillic acid
379 (?) were reduced in the cerebrospinal fluid (CSF) of MJD patients when compared
380 with controls with other neurodegenerative diseases. The short-term treatment with
381 Bactrim increased also the levels of total and oxidized biopterins in the CSF [104].
382 In the same year, another double-blind clinical trial was performed using Bactrim in
383 8 additional patients. In this study, three parameters were evaluated: subjective
384 performance, neurological examination and timed tests. The treatment with Bactrim
385 again demonstrated an improvement on gait and coordination. The authors sug-
386 gested that further clinical trials using Bactrim should be performed due to the
387 promising results obtained with this small number of patients [105]. Indeed, in
388 2001, a third double-blind clinical trial using Bactrim was performed in 22 MJD
389 patients. In this trial, and in contrast to previous observations, chronic treatment
390 with Bactrim had no effect in the parameters evaluated, such as ataxia ranking scale,
391 self-assessment score, posturography and computer assisted motor performance test
392 of Schoppe. The visual system function and mental health were also evaluated, but
393 no effect was observed with Bactrim treatment [106].
394 The progression of MJD usually confines the patients to a wheelchair and
395 ultimately the patients will be bedridden. In this condition, and in contrast to
396 cognitive preservation, the patients might suffer depressive symptoms. Furthermore,
397 the serotoninergic system in the cerebellum seems to play a role in motor output,
398 such as locomotion. Serotonergic system impairment in the cerebellum was
399 demonstrated to induce cerebellar ataxia [107]. The selective serotonin reuptake
400 inhibitors (SSRIs), such as fluoxetine, are commonly used in the treatment of
401 depression and present few side-effects [108]. In fact, as discussed above, citalo-
402 pram (a commonly used antidepressant) proved to ameliorate the phenotype and
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403 neuropathology of the CMVMJD135 mouse model of MJD, suggesting that sero-
404 tonergic system modulation might have an important role in MJD counteracting
405 pathogenesis. Indeed, and long before this preclinical evidence emerged, some
406 clinical trials using antidepressants have been performed in MJD patients, however
407 the trial design was often less than optimal for detection of an effect. Monte et al.
408 performed an open-label trial in 13 molecularly confirmed MJD patients, and saw
409 that after 6 weeks of treatment, fluoxetine had no overall effect on motor abilities
410 measured by functional scales and had no beneficial effect on the other neu-
411 ropsychological tests [109]. Again, the outcome of the study may have been
412 compromised by the small number of patients and particularly by the short duration
413 of the study.
414 The use of 5-HT1A agonists has been controversial for the treatment of cere-
415 bellar ataxia, but several reports have suggested the efficacy of these agonists for the
416 treatment of MJD [110–113]. Indeed, Friedman and collaborators have shown mild
417 effects of buspirone in one MJD patient [114]. Later, Takei et al., reported the
418 positive effects of tandospirone, another 5-HT1A agonist, in one MJD patient, that
419 showed improvement in ataxia, depression, insomnia, anorexia and leg pain [115].
420 These positive effects led the authors to pursue a larger clinical trial using 10 MJD
421 patients. In this trial, the patients started tandospirone treatment at an initial dose of
422 15 mg/kg (as the previous case study) that was further increased to 30 mg/kg for
423 7 weeks. The patients were examined using the international cooperative ataxia
424 ranking scale (ICARS), the total length traveled (TLT) by stabolimetry test and the
425 self-rating depression scale (SDS). All these parameters were alleviated with tan-
426 dospirone treatment. Interestingly, all the symptoms were aggravated after a tran-
427 sient stop of tandospirone, and improved when the therapy was restarted [116].
428 These results suggested that 5-HT1A agonists could be effective in MJD, although
429 more studies need to be performed to confirm these assumptions. Interestingly, it
430 was suggested that the effects of 5-HT1A agonists might be potentiated by the
431 concomitant use of SSRI’s (e.g. citalopram) and vice versa [117, 118], which could
432 be an interesting approach considering the results of these human trials and the
433 promising data resultant of the study showing the beneficial effects of citalopram
434 (but also of 5-HT receptor agonists) in MJD animal models [95]
435 The involvement of excessive N-methyl-d-aspartate (NMDA)-mediated signal-
436 ing in the mechanism of neuronal inclusion formation has been proposed [119]. It
437 was recently shown that L-glutamate-induced excitation of iPSC cells of MJD
438 patients leads to Ca2+-dependent proteolysis of ATXN3 followed by the formation
439 of insoluble aggregates. The formation of those aggregates was also dependent on
440 Na+ and K+ channels as well as on voltage-gated Ca2+ channels [97]. These very
441 intriguing observations could provide a link between excitotoxicity and ATXN3
442 aggregation. A pilot study was performed in 6 MJD patients using Lamotrigine
443 (25 mg twice a day during 9 weeks), a commonly used antiepileptic drug acting as
444 a sodium channel-blocking agent that might be related to the reduction of
445 NMDA-induced toxicity. In this trial, the patients were evaluated in the one leg
446 standing test (OLST) and tandem gait index (TGI). Both OLST and TGI were
447 improved during Lamotrigine treatment, comparing the values obtained with the
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448 normal values for Chinese population. Furthermore, and given these positive
449 results, the authors cultured lymphoblastoid cells of one MJD patient and treated
450 those cells with Lamotrigine. Mutant, but not normal ataxin-3, was reduced with
451 Lamotrigine at concentrations within the therapeutic range in humans. The mech-
452 anism underlying the reduction in mutant ataxin-3 levels was not investigated in
453 this work and this effect was not confirmed in the trial subjects [120].
454 Recently, Zesiewicz and collaborators carried out a short-term clinical trial in 20
455 MJD patients using Varenicline (Chantix, 1 mg twice a day for 9 weeks). Chantix
456 (partial agonist of the a4b2 neuronal nicotinic acetylcholine receptors) is used for
457 smoking cessation. The rationale for this study was the fact that, although the major
458 components of the cholinergic system seem to be spared in MJD, which may be
459 reflected by the absence of dementia in MJD patients, the midbrain cholinergic pars
460 compacta of the pedunculopontine nucleus suffers cell loss during disease pro-
461 gression [11], contributing for example to REM sleep disturbances, hence targeting
462 the cholinergic neurotransmission could be a good approach. Chantix was also
463 shown to be beneficial in SCA patients in previous case studies [121–123]. In this
464 trial, patients were evaluated at baseline and at the end of the treatment (after
465 8 weeks) primarily using the Scale for the Assessment and Rating of Ataxia (SARA
466 scale). Secondary measurements consisted of a timed 25-foot walk, a 9-hole peg
467 test, Beck depression inventory (BDI), Beck anxiety inventory (BAI), clinical
468 global impression (CGI), patient global impression (PGI) and the Short-Form 36
469 (SF36) to evaluate daily living. Chantix was able to significantly improve some
470 subscores of the SARA scale, such as gait and rapid alternating movements. Also,
471 the timed 25-foot walk was ameliorated by Chantix treatment, as well as the BDI
472 score. The BDI score improved in both groups (Chantix and placebo) probably
473 because the patients that were enrolled in the trial became hopeful regarding new
474 treatment possibilities. A problem concerning this study was a high rate of dropout
475 in the placebo group (4 out of 10 patients), interpreted as probably reflecting the
476 difficulty of patients to reach the academic center. Regarding adverse events, it is
477 possible to observe that Chantix caused, to a higher extent, gastrointestinal effects
478 when compared to placebo patients. The mechanism by which Chantix improves
479 ataxic symptoms was not evaluated in this study or elsewhere [124]. No follow up
480 studies with larger groups of patients have been undertaken after this first promising
481 result.
482 More recently, Saute and colleagues conducted a phase II clinical trial in 62
483 MJD patients using Lithium Carbonate. Lithium is commonly used to treat bipolar
484 disorder, and is also used adjunctively with mood stabilizers and antidepressants to
485 enhance, prolong and facilitate treatment response and remission of mood disorders
486 [125, 126]. Lithium treatment was shown to have beneficial effects in several
487 models of different neurodegenerative diseases [127–131], by the inhibition of
488 glycogen synthase kinase-3b (GSK-3b) and autophagy activation. Importantly,
489 however, irreversible cerebellar toxicity, leading to ataxia, nystagmus and dysar-
490 thria has also been observed due to lithium intoxication (reviewed in [132]). In this
491 long-term clinical trial, Lithium (at therapeutic dosages of 0.5–0.8 mEq/L) was well
492 tolerated by patients. After 48 weeks of follow-up, patients treated with Lithium did
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493 not show significant differences in disease progression, given by the results by
494 Neurological Examination Score for the Assessment of Spinocerebellar Ataxia
495 (NESSCA) and SARA scale. Nevertheless, the authors were able to observe that
496 Lithium-treated MJD patients had a slower progression concerning the PATA test
497 (word speed) and the Click test (finger-pointing coordination) as well as in the
498 SCAFI (spinocerebellar ataxia functional index) and CCFS (composite cerebellar
499 functional score), when compared to patients receiving placebo [133]. They sug-
500 gested that larger clinical trials should be performed in order to understand the value
501 of Lithium in the treatment of MJD.
502 The vast literature regarding transcription deregulation involvement in polyQ
503 pathogenesis, lead (led?) some researchers to conduct a clinical trial in MJD
504 patients using Valproic Acid (VPA). VPA is commonly used as an anticonvulsant
505 drug in the treatment of bipolar disorder. It has several known functions, including
506 the increase in GABA neurotransmission, inhibition of voltage-gated sodium
507 channels, T-type sodium channels and HDAC. In the preclinical trial field, the
508 literature is controversial, since it was shown to be neuroprotective in a Drosophila
509 MJD model [134], but showing limited therapeutic effects in a transgenic mouse
510 model of the disease [16], as discussed above. Nevertheless, a clinical trial was
511 recently performed in MJD patients using VPA. In this study, Lei and collaborators
512 used two different study designs. In the first, a randomized, open-label,
513 dose-escalation study was performed to evaluate safety of VPA administration. In
514 this first part of the study, it was possible to observe that VPA was safe in all the
515 dosages tested (400, 600 and 800 mg/twice a day). In the second approach, 36 MJD
516 patients were enrolled and randomly allocated to placebo, 800 and 1200 mg/day
517 VPA dosing. After 12 weeks of treatment, the patients were evaluated using the
518 SARA scale, and it was possible to observe a decrease in the total SARA score in
519 both VPA dosages, indicating a significant improvement of the patients’ motor
520 coordination [135].
521 There are many concerns regarding the clinical trials performed to date in MJD:
522 (i) the small cohorts of patients, which might be difficult to overcome due to the fact
523 that this is a rare disorder and also the collaboration of patients might represent a
524 problem; (ii) the clinical heterogeneity of the patients; (iii) the short-term obser-
525 vation of the patients, that contrasts with the slow progression of the disease (except
526 for the Lithium Carbonate trial, which had a duration of 48 weeks); (iv) the out-
527 comes used for ataxia measurement, which might be difficult to analyze due to the
528 multisystem involvement in this disease; (v) the design of the studies, as ran-
529 domized double-blinded trials with quantifiable ataxia scales and non-ataxia mea-
530 surements should be used, which was not often the case, and (vi) the lack of useful
531 biomarkers. Despite the existence of several scales to measure ataxia (reviewed in
532 [136]), other non-ataxia scores should be applied to MJD patients since these
533 patients also present non-ataxia symptoms, such as pyramidal and extrapyramidal
534 signs, as well as peripheral findings [137].

19 Pharmacological Therapies for Machado-Joseph Disease 19

Layout: T1_Standard Book ID: 340981_1_En Book ISBN: 978-3-319-71778-4

Chapter No.: 19 Date: 24-11-2017 Time: 11:02 am Page: 19/28

A
u

th
o

r 
P

ro
o

f



U
N
C
O
R
R
EC

TE
D
PR

O
O
F

535 19.5 Concluding Remarks

536 The search for disease-modifying therapeutic approaches for most neurodegener-
537 ative diseases has not been very productive to date; in the specific case of MJD, an
538 important link between preclinical and clinical studies is still lacking. It is important
539 to pursue well-designed clinical trials based on robust preclinical studies. Certainly,
540 efforts are being made to perform good preclinical trials, and the scientific com-
541 munity is nowadays conducting better clinical studies with promising results for
542 MJD. Other, non-pharmacological, disease-modifying therapeutic strategies may
543 also be very promising.
544 Despite being rare diseases, MJD and other SCAs affect a large number of
545 people worldwide. Given our current efficacy measures, large clinical trials,
546 involving multiple centers and of long duration, are necessary which, in turn,
547 implies high costs. Pharmaceutical companies are increasingly aware of the rele-
548 vance of studying diseases of well-defined etiology, such as MJD, and their con-
549 tribution could help to speed this process in a significant manner.
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