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Cell transplantation using Mesenchymal stem cell (MSC) secretome have recently been presented as a
possible free-based therapy for CNS related disorders. MSC secretome is rich in several bio-factors that
act synergically towards the repair of damaged tissues, thus making it an ideal candidate for regenerative
applications. Great effort is currently being made to map the molecules that compose the MSC secre-
tome. Previous proteomic characterization of the secretome (in the form of conditioned media - CM) of
MSCs derived from adipose tissue (ASC), bone-marrow (BMSC) and umbilical cord (HUCPVC) was per-
formed by our group, where proteins relevant for neuroprotection, neurogenic, neurodifferentiation,
axon guidance and growth functions were identified. Moreover, we have found significant differences
among the expression of several molecules, which may indicate that their therapeutic outcome might be
distinct. Having this in mind, in the present study, the neuroregulatory potential of ASC, BMSC and
HUCPVC CM in promoting neurodifferentiation and axonal outgrowth was tested in vitro, using human
telencephalon neuroprogenitor cells and dorsal root ganglion explants, respectively. The CM from the
three MSC populations induced neuronal differentiation from human neural progenitor cells, as well as
neurite outgrowth from dorsal root ganglion explants. Moreover, all the MSC populations promoted the
same extent of neurodifferentiation, while ASC CM demonstrated higher potential in promoting axonal
growth.

© 2018 Published by Elsevier B.V.

1. Introduction

injury. In fact MSC-based therapies have been used in the context of
several neurodegenerative diseases, where neuronal survival has

An extensive body of literature suggests that Mesenchymal stem
cell (MSC)-mediated paracrine activity plays a role in promoting
tissue repair. MSCs were firstly identified by Friedenstein as mul-
tipotent stem cells characterized by the capacity to self-renew, to
adhere to plastic and colonize, and to differentiate into three
mesodermal cell lineages [1]. However, the real interest around
MSCs is their contribution towards regeneration of tissues upon
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been reported in animal models of stroke [2] and traumatic brain
injury (TBI) [3]. Additionally, the recovery of motor function of
induced models of Parkinson's disease (PD) [4] and SCI, with an
observed remyelination and reconnection of the neural circuitry
[5,6], has also been observed upon MSCs administration. Direct
evidences attribute the regenerative potential of MSCs to their
ability to secrete several biomolecules and trophic factors, namely
neurotrophic growth factors, chemokines, cytokines, and extra-
cellular matrix proteins, as well as extracellular vesicles, that might
be relevant in a clinical setting [7—10]. In the context of neuro-
regeneration, pre-clinical and clinical findings show that these
molecules can directly stimulate the recruitment, proliferation and
differentiation of the endogenous cells [11,12]. Additionally, they
can regulate local mechanisms such as apoptosis, scarring and
revascularization, as well as modulate immune and inflammatory
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responses [9,13], thus contributing to reduce tissue damage.

Recent insights on the effective therapeutic role of MSC-
secreted bio-factors, especially given the fact that MSCs have a
limited engraftment and survival rate when delivered into a
damaged tissue [14], opens the possibility of using MSC secretome
as a cell-transplantion free based regenerative therapy. In fact, the
therapeutic application of the secreted molecules in replacement of
stem cells presents enormous advantages as it should minimize
stem cell-related ethical and immune-compatibility issues [15], as
well as allow a precise dosing and localized delivery to the
damaged tissues in a minimally invasive manner [16].

The perspective of safer and more effective strategies motivated
further investigation towards the identification of the molecules
composing the cell secretome, rather than only looking to its
overall regenerative effects. In this line, proteomic profiling of MSC
conditioned media (CM) became intensively explored in recent
years [17—21].

While valuable tools for MSC secretome characterization were
being used, several studies highlighted significant differences be-
tween different tissue-sources of MSCs. In fact, the heterogeneity of
MSCs residing in different tissues has been reported some time ago
[10]. So far, the best characterized and the most studied sources of
adult MSCs are obtained from the bone-marrow (BMSCs), adipose
tissue (ASCs) and umbilical cord. Several studies provided us with
distinct characteristics of each population, that goes from different
expression of cell surface markers [22], to specific differentiation
processes [23] and immunomodulatory functions [24]. A relevant
point of interest that arises from a collective analysis on this het-
erogeneity studies is the fact that different tissue sources of MSCs
are likely to have different secretion profiles [19,25]. For instance,
we have previously shown that the exposure of primary cultures of
hippocampal neurons to the CM of ASCs and Human Umbilical Cord
Perivascular Cells (HUCPVCs) had different effects on cell prolifer-
ation and metabolic activity [26]. Hsieh and colleagues also found
that MSCs isolated from Wharton's jelly secreted more factors
related to angiogenesis and neurogenesis than BMSCs, which
improved neural differentiation and migration and decreased cell
apoptosis in an in vitro model of acute ischemic stroke [27].
Considering the existence of such differences on the secretome
composition of MSCs obtained from different tissue-sources, the
choice of the best MSC population for a particular application must
be determined according to their characteristics and secretory
profile. Thereafter, our group found that it is crucial to perform a
detailed mapping of the CM obtained from BMSCs, ASCs and
HUCPVCs. In a recently published proteomic analysis, we have
shown that all these populations were able to secret important
factors known to be involved in processes of several CNS disorders/
injuries [28]. Moreover, the pattern and composition of ASCs,
BMSCs and HUCPVCs CM differed, a fact that could indicate a
certain degree of specificity towards different CNS related condi-
tions. After this, it remains unclear if these different secretion
profiles could activate distinct mechanisms by which the repair and
regeneration of tissues from the nervous system may be regulated.
Based on these results, the present study proposes to further
explore the previously analyzed MSC CM potential in promoting
the differentiation and axonal growth of neural populations in vitro.

2. Materials and methods

2.1. Cell culture

2.1.1. Human bone marrow mesenchymal stem cells (BMSCs),
adipose tissue derived stem cells (ASCs), and human umbilical cord

perivascular cells (HUCPVCs)
BMSCs (Stem Cell Technologies, Grenoble France) were thaw

and expanded according to protocol established in our lab [29];
ASCs were kindly provided by Professor Gimble (Pennington
Biomedical Research Center/Tulane University, USA); and HUCPVCs
were kindly provided by Professor Davies (University of Toronto,
Canada). ASCs and HUCPVCs were isolated as previously described
[30,31].

Cells were cultured and maintained in «-MEM medium (Invi-
trogen, USA) supplemented with sodium bicarbonate (NaHCOs;
Merck, USA), 10% of fetal bovine serum (FBS; Biochrom, Germany)
and 1% Penicilin-Streptomycin antibiotic (P/S; Invitrogen, USA).
Upon confluence, cells were enzymatically dissociated with 0.05%
trypsin/EDTA (Invitrogen, USA), re-plated at a density of 4000 cells/
cm? and maintained at 37 °C, 5% humidified CO,, 95% air and 90%
relative humidity.

2.1.2. Human telencephalon Neural Progenitor Cells (htNPCs)

htNPCs were isolated from 10-week human fetus telencephalon
region, as previously described [31]. Ethical consent was approved
by the Conjoint Health Research Ethics Board (CHREB), University
of Calgary (ID: E—~18786). htNPCs were thaw and plated in Nunc T-
25 fask containing 5mL of a serum-free medium PPRF-h2,
described in detail by Baghbaderani et al. [32]. Cells were main-
tained in culture for 48 h, during which aggregated into neuro-
spheres. After this time, htNPCs were mechanically dissociated and
re-plated into fresh medium. Every 4 days, 40% of the medium was
replaced by fresh.

2.2. Conditioned media (CM) collection

The CM of ASCs, HUCPVCs and BMSCs was collected from cells in
passage 5. For that, cells were plated at a density of 4000 cells/cm?,
and allowed to grow for 72 h. After this, cells were washed 5 times
with PBS without Ca®* and Mg?* (Invitrogen, USA), and once with
the conditioning medium.

For neurodifferentiation experiments, Neurobasal A medium
(Invitrogen, USA) supplemented with 1% Kanamycin (Invitrogen,
USA) was added to the cells. For axonal growth assays, Neurobasal
medium (Invitrogen, USA) supplemented with 1% Pen-Strep was
used. After 24 h of conditioning period, the CM was collected and
frozen at —80 °C until used.

2.3. htNPCs culture with MSC CM

For neurodifferentiation experiments, htNPCs were enzymati-
cally dissociated with 0.05% trypsin-EDTA, and plated onto glass
coverslips pre-coated with poly-p-lysine hydrobromide (100 pg/
mL; Sigma) and laminin (10 pg/mL; Sigma) at a density of
5.5 x 104 cells. Cells were maintained in culture for 5 days with the
CM collected from the three MSC populations, at 37 °C, 5% C02, 95%
air and 90% relative humidity. htNPCs culture with Neurobasal-A
medium supplemented with 1% of kanamycin was used as control.

2.4. Isolation and culture of dorsal root ganglion (DRG) explants
with MSC CM

Dorsal root ganglion explants were used for axonal growth ex-
periments. For that, DRGs from 5 days-old neonatal Wistar-Han rat
pups were dissected as previously described [33]. Briefly, DRGs
from cervical and thoracic regions of the spine of neonatal rat pups
(P5) were dissected and the remnants of peripheral nerve processes
were cleaned. The explants were placed on top of collagen hydro-
gels, prepared as previously described [34] and incubated with MSC
CM for 7 days. DRG cultures in collagen gels in Neurobasal Medium
supplemented with B27, L-glutamine, glucose and 1% of P/S was
used as control.
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2.5. Immunostaining

htNPCs. htNPCs were fixed with, washed, and blocked as pre-
viously described [4], with the following primary antibodies: rabbit
anti-doublecortin (DCX; 1:500, Abcam, Cambridge, MA, USA) to
detect immature neurons, and mouse anti-rat microtubule associ-
ated protein-2 (MAP-2; 1:500, Sigma), for 1hat 37°C. After
washing, samples were incubated with the secondary antibodies
Alexa Fluor 488 goat anti-rabbit immunoglobulin G (IgG, Life
Technologies) and Alexa Fluor 594 goat anti-mouse immunoglob-
ulin G (IgG, Life Technologies) for 1 hat 37 °C. Further incubation
with 4-6-diamidino-2-ph enylindole-dihydrochloride (DAPI; Life
Technologies) was performed for 10 minat Room Temperature
(RT). Samples were then observed under an Olympus BX-61 Fluo-
rescence Microscope (Olympus, Hamburg, Germany).

DRGs. For the immunocytochemistry (ICC) of DRGs, the
following antibodies were used: Mouse monoclonal anti-human
neurofilament 200 kDa (Millipore) as the primary antibody and
Alexa fluor 488 goat anti-mouse IgG (Invitrogen) as the secondary
antibody. DRGs were fixed with 4% paraformaldehyde (PFA) in PBS
for 45 min at RT and washed with PBS. A further incubation 0.3%
Triton X-100 (Sigma, USA) for 10 min at RT was used for cell per-
meabilization, and washing with PBS. Samples were then incubated
with a blocking buffer solution [PBS containing 10% fetal bovine
serum (FBS)] for 90 min at RT, after which they were incubated with
the primary antibody (diluted 1:200 in PBS solution with 10% FBS)
for 48 h at 4 °C. After washed with a PBS solution containing 0.5%
FBS, samples were incubated with the secondary antibody (diluted
1:1000 in PBS/0.5%FBS solution) overnight at 4°C. After PBS
washing, DAPI (1 pg mL—1; Invitrogen) was added to the samples
for 10 min to stain cell nuclei. Samples were finally washed and
maintained hydrated in PBS for fluorescence microscopy analysis
(Olympus BX-61 Fluorescence Microscope, Olympus, Hamburg,
Germany).

2.6. Neurodifferentiation assessment

Neurodifferentiation of htNPCs was determined by qRT-PCR for
NeuroD1 (ND1) and BIlI-Tubulin (BIII-Tub) (details bellow), and by
the number of Doublecortin (DCX) and Microtubule associated
protein (MAP-2) expressing cells. For this purpose, three coverslips
and ten representative fields per condition were chosen and
imaged using a fluorescence microscope as referred above. To
normalize the data between the different experiments, the results
are presented in percentage (%) of cells. This was calculated by
counting the number of cells with positive staining for DCX and

Table 1

MAP-2 markers, and dividing this value by the total number of
cells/field (DAPI-positive cells; n = 3).

2.7. Protein association network analysis and quantitative real time
PCR

For neurodifferentiation experiments, the mRNA expression
levels of selected genes of interest (Table 1) were measured by
quantitative real time polymerase chain reaction (qRT-PCR), after
htNPCs incubation with MSC CM. These genes were selected based
on protein-protein interaction networks from the previously
identified biomolecules in the MSC CM [28] using STRING (Search
Tool for the Retrieval of Interacting Genes/Proteins) bioinformatics
tool. The neurodifferentiation markers NeuroD1 and Tubulin beta 3
Class Il (TUBB3) were also used to assess the neurodifferentiation
stage after incubation of htNPCs with MSC CM. The oligonucleotide
primers for the target genes were designed using Primer-BLAST
software (NCBI). The real time reactions were performed in an
Applied Biosystems 7500 Fast Real-Time PCR System (Applied
Biosystems, LLC, CA, USA) using PerfeCTa SYBR Green SuperMix,
Low ROX (Quanta Biosciences). Target gene expression levels were
normalized against the housekeeping gene Beta2-microglobulin
(B2M), and presented as fold-change of mRNA levels compared to
the Control group. The 2725CT method was used to calculate fold-
change levels.

2.8. Axonal outgrowth/migration quantification

As previously described [34], DRG axonal growth was inferred
by the quantification of the area occupied by the neurites within
the collagen gels. For that, after confocal imaging, samples (n =8/
condition) were analyzed by Image | software. The image scale was
first set and converted to 8 bit and binary, after which the body of
the DRG itself was excluded. Thereafter, the area occupied by the
neurites were automatically calculated considering the image black
backgrzound as contrast. The area of neurite outgrowth is presented
as pm-.

2.9. Statistical analysis

Statistical evaluation was performed using GraphPad Prism
(version 5.0; GraphPad Software, USA). Differences among groups
were assessed using Student's t-test or One-way ANOVA test. A p-
value of <0.05 (95% confidence level) was set as the criteria for
statistical significance (*).

Forward and reverse sequences of oligonucleotide primers used in the qRT-PCR, and the respective gene symbol, name and product size.

Gene symbol Gene name Primer sequence 5'—3’ forward = reverse Product Size (bp)

TUBB3 Tubulin beta 3 class IIl Fw GGC CTC TTC TCA CAA GTA CG 317
Rv CCA CTC TGA CCA AAG ATG AAA

NeuroD1 Neuronal differentiation 1 Fw CCG TCC GCC GAG TTT G 173
Rv GCG GTG CCT GAG AAG ATT G

FLT1 Fms-related tyrosine kinase-1 Fw CTG GGC AGC AGA CAA ATC CT 113
Rv AAA AGT CAC ACC TTG CTT CGG

NRP1 Neuropilin 1 Fw CGC AAG GCG AAG TCT TIT GA 265
Rv TGT GAG CTG GAA GTC ATC ACC

TGFBR1 Transforming growth factor beta receptor 1 Fw TCC AAC TAC TGG TTT ACC ATT GC 123
Rv TTC TTC TCC CCG CCA CTT TC

SMAD2 SMAD family member 2 Fw GGC CTT TAC AGC TTC TCT GAA CA 240
Rv ACTGGAGGCAAAACTGGTGTC

STAT3 Signal transducer and activator of transcription 3 Fw GGA GAA GGA CAT CAG CGG TAA 205
Rv GCT CTC TGG CCG ACA ATA CT

B2M Beta2-microglobulin (Reference gene) Fw GAT AGT TAA GTG GGA TCG AG 95

Rv GCA AGC AAG CAG AAT TTG GA
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Fig. 1. Gene expression of neuronal markers in htNPCs after incubation with MSCs CM. The gene expression levels of (A) NeuroD1 (for immature neurons) and (B) BlII-Tubulin
(for mature neurons) was assessed in cells incubated for 5 days with regular media, denoted as CTR, or with either ASC-, BMSC- and HUCPVC-CM. Results are presented as

Mean + SD; n = 3 per condition; **p < 0.01.

3. Results and discussion
3.1. MSC CM induced htNPCs neuronal differentiation

To assess the potential of MSC secretome in promoting neuronal
differentiation, htNPCs were cultured with ASC, BMSC and HUCPVC
CM. After 5 days in culture, gene expression analysis of NeuroD1, a
neuronal cell-fate and early differentiation marker, and Tubulin
beta III (BIlI-Tubulin), a marker of mature neurons, was performed

Ctr

ASCCM

<

DCX DAPI

MAP-2 DAPI

in htNPCs to assess the differentiation stage of these cells (Fig. 1).

While NeuroD1 transcriptional expression was particularly
overexpressed in htNPCs incubated with ASC CM (Fig. 1A), BIII-
tubulin was similarly expressed in all the experimental groups,
with no statistically significant differences comparing with the
control (Fig. 1B).

The differentiation of htNPCs was further confirmed by immu-
nocytochemistry analysis for DCX and MAP-2, staining for imma-
ture- and early stage mature neurons, respectively. Higher levels of

BMSC CM HUCPVC CM
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Fig. 2. HtNPCs neuronal differentiation induced by MSC CM. Cells were incubated with (A,B) regular media, denoted as Ctr; (C,D) ASC CM, (E,F) BMSC CM, and (G,H) HUCPVC CM
for 5 days, and stained for immature (DCX; upper panel) and mature (MAP-2, lower panel) neurons. htNPCs differentiation after incubation with the CM of ASCs, BMSCs and
HUCPVCs, was calculated as the percentage of I) DCX* and B) MAP-2" cells, in comparison to control condition (Ctr). K) The ratio of immature (DCX*) to mature (MAP-2") cells was
also calculated. Results are presented as Mean + SD; n = 3 per condition; *p < 0.05; **p < 0.01.
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Fig. 3. Gene expression of receptors and signaling molecules in htNPCs after incubation with MSCs CM. Representative networks of the receptors and signaling molecules
identified by the convergence of proteins present in the MSC CM, using STRINGS bioinformatics tool (A,B). Gene expression levels of receptors putativelly involved in the response to
MSC CM (C,D) and of the corresponding signaling molecules (E, F, G) was assessed in cells incubated for 5 days with regular media, (CTR), or with either ASC-, BMSC- and HUCPVC-

CM. Results are presented as Mean + SD; n = 3 per condition; **p < 0.01.

differentiation into a neuronal phenotype were revealed for all the
CM (Fig. 2C—H). Indeed, as shown in Fig. 2 the CM of all MSC
populations was able to induce neural differentiation of human
fetal htNPCs (ASCs: 72,98 + 13,75%; BMSCs: 84,20 +2913%; and
HUCPVCs: 72,88 + 6490%), with significant differences being ob-
tained towards control samples (Ctr: 47,49 + 2208%).

Similar results were obtained for the differentiation of htNPCs
into mature neurons (MAP-27 cells; Fig. 2]). All MSC CM induced
neuronal cell differentiation (ASCs: 65,88 +15,38%; BMSCs:
85,67 +4088%; HUCPVCs: 65,24 + 6063%), with no significant dif-
ferences between them. Moreover, only BMSC CM was found to
significantly increase the percentage of MAP-2" cells in comparison
to control (Ctr: 43,84 +3240%). Finally, the ratio of immature
(DCX™) to mature (MAP-27) cells was found to be similar between
all the experimental groups (Fig. 2K).

To investigate whether the CM effects on htNPCs neuro-
differentiation may result from the presence of proteins that have
been previously identified in the CM of these MSC populations,
namely the Pigment epithelium-derived factor (PEDF, also known
as SERPIN1), Semaphorin 7A (SEM7A), Cadherin2 (CHD2) and
Interleukin-6 (IL-6) [28], we analyzed the gene expression for some
of these factors' receptors in htNPCs after incubation with CM
(Fig. 3). In order to identify converging receptors and signaling
molecules that could be involved in the molecular response to
these proteins we used STRINGs bioinformatics tool, and identified
two protein-protein interaction-based networks, one that includes
SERPIN1 and SEM7A (Fig. 3A), and another including CDH2 and IL-6
(Fig. 3B). In the first network, VEGF and TGFB were identified as
common effector molecules. Thus, the gene expression of FLT-1
(Fig. 3D) and TGFBR1 (Fig. 3E), the receptors for VEGF and TGFB,
respectively, was assessed as well as the related-signaling mole-
cules NRP1 (Fig. 3F) and SMAD?2 (Fig. 3G). The signaling molecule
STAT3 was also assessed as it responds to both IL-6 and CDH2.

Gene expression results show that cells from all experimental
groups express the receptors necessary to respond to the factors
present in the MSC CM. The expression of FLT-1 was significantly
increased in htNPCs after incubation with ASC CM, when compared

to Ctr, BM and HUCPVC CM. However, no variations were found in
the expression of TGFBR1, NRP1, SMAD2, and STAT3 between the
experimental groups.

3.2. Axonal growth promoted by MSC CM

The MSC CM-mediated axonal growth was herein studied using
a DRG-based neurite outgrowth in vitro model. DRG explants were
placed on top of collagen matrices, and the CM collected from ASCs,
BMSCs and HUCPVCs were added to the culture for 7 days. The
neurites grown from the explants were stained for Neurofilament
and analyzed by fluorescence microscopy, as represented in Fig. 4.

Ctr ASC CM

BMSC CM

HUCPVC CM

Fig. 4. Neurite outgrowth from DRG explants incubated with MSC CM. DRG staining
against neurofilament was performed after culture with CM collected from B) ASCs
(ASC CM), C) BMSCs (BMSC CM) and D) HUCPVCs (HUCPVC CM). Control conditions
(A), denoted as Ctr, regards to DRGs incubated with supplemented Neurobasal medium
(please see M&M section). Scale bar: 100 pm.
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DRGs were found to be able to extend long neurites in the
presence of ASC (Fig. 4A), BMSC (Fig. 4C) and HUCPVC CM (Fig. 4D).
The same was not found for the control condition (Ctr; Fig. 4A), as
almost no neurite growth was observed.

This qualitative analysis was confirmed by quantifying the area
of neurite outgrowth (denoted as pm?) in the explants for each
referred condition (Fig. 5).

Axonal growth was significantly increased in the presence of
ASC CM (520952 + 228401 pm?), when compared to control (Ctr;
5589 + 9979 um?). In addition, ASC CM induced significantly higher
axonal growth than BMSC and HUCPVC CM (194926 + 139336 pm?;
196718 + 129509 um?, respectively). This suggests that the ASC
secretome provides a more robust and adequate environment for
DRG axons to grow and migrate.

4. Discussion

Mapping the molecules that compose the secretome of MSCs
aims at determining the factors upregulated by these cells in
response to specific triggers, and thereafter finding their role in
mediating one or more mechanisms of repair. Until recently, most
reports focused on identifying only a subset of factors released by
MSCs at high levels, therefore providing only a very superficial
knowledge on the composition of its secretome. Contrary to this, a
comparative analysis of the proteins secreted by ASCs, BMSCs and
HUCPVCs was recently performed by our group using a more in-
tegrated proteomic approach, named Liquid chromatography
tandem-mass spectrometry (LC-MS/MS) [28]. In that study, a vast
panel of proteins with neuroprotection, neurogenic, neuro-
differentiation, and axon guidance and growth functions was
identified. The three MSC populations differed in their secretion
profile, posing the question of whether their neuroregulatory ac-
tion may differ accordingly. Therefore, the study herein presented
aimed at evaluating the role of MSC secretome in mediating neu-
rodifferentiation and axonal growth as a function of tissue source.
For that purpose, htNPCs and DRGs were incubated with the CM of
ASCs, BMSCs and HUCPVCs, for neurodifferentiation and axonal
growth assessment, respectively.

htNPCs are normally expanded as neurospheres in the presence
of a serum-free medium PPRF-h2, as demonstrated by Teixeira et al.
[4]. Upon removal of the expansion medium, these cells are
described to spontaneously differentiate into neural phenotypes.
For that reason, this cell population was used in this study to test
the neurodifferentiation potential of MSC CM. The incubation of
htNPCs with the MSC CM induced significantly higher levels of
differentiation into neuronal phenotypes in comparison to control
conditions, as shown by the expression of DCX (immature neurons)
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Fig. 5. Area of neurite outgrowth promoted by ASC, BMSC and HUCPVC CM, in
comparison to control (Ctr). The mean area occupied by neurites (um?) was calcu-
lated using Neurite] plugin for Image] (NIH) software. Results presented as Mean + SD;
n = 8 per condition; **p < 0.01; ***p < 0.001.

and MAP-2 (mature neurons) markers. On the other hand no dif-
ferences were observed in Blll-tubulin levels, another marker of
fully mature neurons, as assessed by gene expression (Figs. 1 and 2).
Moreover, no differences were observed between the MSC pop-
ulations, suggesting that the different CM had the same differen-
tiation potential.

Regarding the effects of MSC CM on axonal growth, the well
described DRG-based in vitro model of neurite outgrowth [35] was
used. After incubation with MSC CM, we observed that neurite
extension from DRGs was promoted by the CM of all populations,
in comparison to controls (Fig. 4). Moreover, we verified that ASC
CM induced more neurite extension from the explants, with sig-
nificant differences regarding BMSC and HUCPVC CM, and control
(Fig. 5).

The results herein presented showing the neuroregulatory
potential of MSC secretome in neural cultures goes in accordance
to some previous studies. For example, our group has shown that
the CM of both ASCs and HUCPVCs promoted both proliferation
and metabolic activity of hippocampal neurons [26]. We have also
observed that BMSC CM improved both neuronal and glial cell
survival. In that study different CM collection times were tested
(e.g 24 h and 96 h of conditioning). While the former increased the
survival of neurons, the later was more prone to improve glial cell
survival [36]. High in vitro neuronal differentiation [4,37] and
in vivo cell proliferation in the dentate gyrus (DG) of adult rat
hippocampus [4] was also found using HUCPVC CM. Interestingly,
proteomic analysis on these CM revealed differences in proteins
related with neural cell viability, proliferation and differentiation,
namely 14-3-3, Ubiquitin C-Terminal Hydrolase L1 (UCHL1), Heat
shock protein (hsp) 70 and Peroxiredoxin-6 (PRDX6), which may
explain the above-referred results [36]. Others observed the
neurotrophic factors Brain-derived neurotrophic factor (BDNF)
and Beta-nerve growth factor (B-NGF) to be correlated with the
ability of undifferentiated MSCs to induce the survival and neurite
outgrowth of neuroblastoma cells and DRGs, respectively [7].
Some other factors not related to MSC so far but that were recently
shown to have regenerative and neurotrophic functions are the
ASC-secreted Macrophage-colony stimulating factor (MCSF), Ma-
trix metalloproteases (MMPS), Follistatin (FST)-like 1, Mesence-
phalic astrocyte-derived neurotrophic factor (MANF), and Neuron
derived neurotrophic factor (NDNF) [38]. Others like Semaphorins
(SEM), Galectins (Gal), Platelet-derived growth factor (PDGF) and
Transforming growth factor-beta (TGF-B) were found in the
secretome of BMSCs by Cizkova et al. [39]. Altogether, these results
suggest the existence of tissue-source based differences, as
recently evidenced by Pires et al. [28]. In this proteomic data, the
expression of some factors related to neuronal differentiation,
namely of PEDF, SEM7A, CDH2 and IL-6 varies in the CM of ASC,
BMSCs and HUCPVCs, which would indicate that neuro-
differentiation and axonal growth processes mediated by the MSC
CM would be distinct. Still, the role of these factors in the CNS is
robustly proved. PEDF, for instance, was shown to induce a
neuronal phenotype in cultured human retinoblastoma cells
in vitro [40], as well as to contribute to the survival and differen-
tiation of embryonic chick spinal cord motor neurons [41]. CDH2
was also found to be essential for the neural differentiation of
mouse induced pluripotent stem cells [42], and to regulate the
pattern of neurodifferentiation in P19 carcinoma cells [43,44].
Similarly, IL-6 was recently demonstrated to promote neural dif-
ferentiation of pluripotent stem cells upon treatment with an
immunosuppressive drug [45]. However, the presence of these
factors in the CM of MSCs did not translate into a fully maturation
into neurons at least using this period of CM exposure. Nonethe-
less, we have shown that htNPCs express some of the receptors
that have been implicated in the promotion of neurogenesis,
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neurodifferentiation and neuronal migration, namely FLT-1 [46]
and TGFBR1 [47], suggesting they might be responsive to the
factors present in the MSC CM and that longer culturing periods
may potentiate further their differentiation into fully mature
neurons (Fig. 3). The putative downstream signaling molecules
involved in neuronal differentiation signaling cascades upon
activation of these receptors, such as NRP1 [48], SMAD2 [49] and
STAT3 [50,51], were not differentially expressed in the cells from
the different experimental groups (Fig. 3). In fact, signaling mol-
ecules display a very quick turnover, which may have accounted
for the lack of significant differences in their expression between
groups. Facing these observations, the absence of differences of
htNPCs neurodifferentiation herein observed can therefore sug-
gest that the protein levels presented may not be within the
optimal dose to fully exert their effects, opening up the possibility
to explore new approaches that may promote the secretion of
higher doses of these molecules by MSC. Yet, the existence of
innumerous distinct protocols among the different studies eval-
uating the differentiation of neural cultures may also account for
different outcomes. Another possible explanation to be consid-
ered is the existence of multidirectional function of most of neu-
roregulatory factors. For example, the upregulation of PEDF in ASC
CM does not necessarily mean it should promote higher levels of
neurodifferentiation of htNPCs. On the contrary, this factor is also
related to axonal growth [52], which supports the pronounced
effects of ASC CM in the levels of neurite outgrowth from DRG
explants, depicted in Fig. 5. So, in this case, PEDF appears to be
mediating axonal growth over neurodifferentiation. A similar
phenomenon might be happening for IL-6. Indeed, this factor was
shown to have a role in both neurodifferentiation and axonal
growth [53]. But there is a clear upregulation of this factor in
HUCPVCs CM in the proteomic analysis [28]. However, the effect of
MSC secretome on axonal growth is clearly provided by ASC
population (Fig. 5), and not by HUCPVCs, suggesting a poor
contribution of IL-6 in that effect. This is supported by the upre-
gulation levels of SEM7A and Glial-derived nexin (GDN) in the ASC
CM, which suggests that it is more likely that these two factors are
responsible for mediating axonal growth, rather than IL-6. The
potential of SEM7A and GDN in CNS has been in fact shown. The
SEM7A-mediated axonal guidance has been proven to be required
for proper axon tract formation during embryonic development
[54], and to promote spreading and dendricity in human mela-
nocytes [55]. On the other hand, the action of GDN has been also
reported several years ago to improve chick sympathetic neurons
[56] and hippocampal pyramidal cell [57] neurite extension
in vitro. Based on these results, we believe that ASC-mediated
neurite outgrowth of DRG explants is mostly based on the com-
bined action of PEDF, SEM7A and GDN. Adding to this, Beta-1,4-
galactosyltransferase 1 (4Gal-T1) protein was found only in the
ASC CM [28]. B4Gal-T1 was suggested to regulate the neurite
outgrowth on PC12 cells [58] and DRG when co-cultured with
Schwann Cells [59]. Moreover, the overexpression of this protein
in the lesion site after sciatic nerve crush suggest it involvement in
the regeneration of the injured tissue [60]. Therefore, the exclu-
sive presence of this molecule on ASC CM may have indeed
improved their impact in the in vitro DRG model of neurite
outgrowth herein used. Another multi-functional protein relevant
for axonal growth guidance is the extracellular chaperone Clus-
terin (CLUS), found highly expressed by ASC CM in comparison to
BMSC and HUCPVC CM [28]. It is mainly involved in modulating
toxic protein deposition in CNS disorders such as Alzheimer's
disease [61]. However, studies have also found this protein to
contribute to neurite outgrowth of PC12 cells [62] and to induce
sensory nerve outgrowth after sciatic nerve transection [63].
Finally, Decorin (DCN), a leucine proteoglycan protein, was also

found to be upregulated in ASC CM in our proteomic analysis [28].
This anti-scarring molecule was elsewhere reported to promote
robust neurite outgrowth across SCI lesion sites, by reducing the
expression of chondroitin sulfate proteoglycan (CPSGs) [64,65].

5. Conclusions

This study revealed that the incubation of ASC, BMSC and
HUCPVC CM in htNPCs induced their differentiation towards the
neuronal phenotype although with no significant differences
among them. Moreover, all MSC CM improved neurite/axonal
outgrowth in an in vitro model of axonal regeneration based on
DRG explants. However, ASC CM provided higher extent of axonal
growth when compared to BMSC and HUCPVC. The presence of
important neuroregulatory factors in the secretome of MSCs,
namely PEDF, CADH2, IL-6, SEM7A and GDN, may explain the
observed results. Specifically, the upregulation of PEDF, SEM7A
and GDN on ASC CM may be responsible for the higher levels of
axonal growth observed with this population. Therefore, these
results suggest two mechanisms underlying MSC secretome
therapeutic action, namely neurodifferentiation and axonal
growth. However, its potential is not limited to these two mech-
anisms. The modulation of other events such as excitotoxicity,
apoptosis, inflammation, should be elucidated to understand their
relevance in recovering the normal function of the CNS. The mo-
lecular and cellular pathways implicated on them may also be
clarified to envisage the future application of MSC secretome in a
clinical setting.
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