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Abstract 

The effects of composition and macroscopic strain on the structural properties and 

lattice vibrations of SnxGe1-x solid solutions (SSs) are investigated numerically, 

employing Tersoff empirical inter-atomic potentials, and experimentally. The 

calculations provide statistical distributions of bond lengths, pair correlation function 

and vibrational Raman spectra of the SSs. Using this approach, we are able to 

evaluate the tin-content-dependent shifts due to the local environment (i.e changes in 

the atomic mass and bond stiffness) and strain effects in the calculated Raman spectra 

and compare them to experimental data. The relative importance of the composition 

dependent effects of the local environment and strain for epitaxial layers of GeSn 

solid solutions is analysed.  
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1. Introduction 

GeSn and GeSnSi, group IV based crystalline semiconductor solid solutions (i.e. 

alloys with continuous range of compositions) have been the object of intense 

research in the 21-st century [1-10]. The interest is related to the possibility of making 

a silicon-compatible direct band gap material with controlled lattice constant and band 

gap energy. These achievements would allow for the development of new 

optoelectronic devices, such as infra-red photodetectors, quantum emitters and 

modulators, which are the necessary ingredients for integrated photonics. Another 

potential application of these materials is in multi-junction solar cells. A great 

technological advantage is the possibility of epitaxial growth of GeSnSi alloys 

directly on silicon substrates. Because of the lattice constant mismatch between 

silicon, germanium and tin and the difference in their thermal expansion parameters, 

epitaxial layers of GeSn and GeSnSi alloys in many cases are strained. Moreover, 

post-growth treatment of the structures may change the strain state due to motion of 

misfit dislocations near the interfaces. Since the strain affects the electronic band 

structure, the deformation control is a key factor for the band gap engineering [1, 5, 

11]. 

The structural properties and strain states of tin-containing epilayers of group IV 

semiconductors have been studied both experimentally and theoretically. X-ray 

diffraction and electron microscopy methods allow for high-precision determination 

of the lattice constant and composition, providing information concerning the 

uniformity of the epilayers and the misfit dislocation density. Along with these 

techniques, Raman spectroscopy, a non-destructive and sensitive technique, is often 

used to gain information on the composition and strain in GeSn and GeSnSi alloys by 

measuring the positions of characteristic phonon modes and performing an 

appropriate theoretical analysis [11-14]. On the theoretical side, several works have 

been performed for tin-containing group IV alloys, devoted to the calculation (mostly 

using ab initio methods) of equilibrium lattice parameters [1, 2, 4, 15-17] and 

electronic band structure [2, 5, 15, 18, 19]. Although ab initio methods are very 

powerful, they are also very expensive computationally and their application to 

disordered systems, such as random alloys, is limited to small crystallites, otherwise 

they have to be combined with an approximation scheme to reintroduce translational 

symmetry, e.g. [20]. At the same time, empirical potential models proposed by 

Stillinger and Weber [21] or by Tersoff [22] can be applied to larger systems and have 
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produced insightful results for alloy crystals, e.g. phonon-related thermal conductivity 

of SixGe1-x crystals [23]. They are much less expensive in terms of computation time 

and well suited for modelling effects of strain relaxation in alloys where the end 

members have different lattice constants [24-26], as it is the case of the system under 

consideration in this work [11, 12, 27]. 

It is known that the Raman frequency shift in semiconductor solid solutions is 

affected by the composition and strain, which are not always independent [28, 29]. 

Indeed, these two effects on the position1 of the Ge-Ge phonon peak (which is the 

main feature in Raman spectra of Ge-Sn alloys) are caused by (i) local atomic 

environment changes with composition and (ii) macroscopic (possibly composition-

induced) strain and must be present simultaneously, as known for other (better 

studied) systems, such as Si-Ge [30]. In principle, these two effects can be separated 

by combining the results of Raman scattering and XRD measurements. The net effect 

on the Ge-Ge peak position can be written as: 

 strainncompositioGeGe     . (1) 

Equation (1) describes the deviation of the Raman peak with respect to unstrained Ge 

crystal at same temperature (≈ 300 cm-1 at 300 K). It is expected that the first term, 

ncompositio  should be always negative because its nature is similar to the phonon 

confinement effect in nanocrystals. Indeed, a cluster of Ge atoms surrounded by much 

heavier tin atoms that do not support the Ge-Ge vibration mode looks like a small size 

nanocrystal and the allowed wavevector values for it should be finite. By virtue of the 

relaxation of the zero-wavevector selection rule, such a finite size effect leads to a 

downward shift of the confined phonon frequencies because of the negative curvature 

of the bulk phonon dispersion curves in germanium [31]. It is hard to estimate this 

effect analytically for random alloys, however, numerical lattice dynamic calculations 

allow for predicting its composition dependence [24, 26]. In contrast, the second term 

in Eq. (1) may have any sign because it depends on several strain components and, 

consequently, on the type of deformation [32].  

A number of previous works [11, 12, 27, 33-35] attempted to extract the separate 

contributions of the two effects. These included Raman spectroscopy studies 

performed on (nominally) relaxed [27, 34] or fully strained [35] layers. It was 

                                                 
1 The line shape and width are also affected but these are harder to quantify, in particular, to separate 
the homogeneous (related to lifetime) and inhomogeneous (related to disorder) contributions to the 
linewidth. 
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concluded that biaxial strain (induced by the substrate) yields an increase of the Ge-

Ge mode frequency, i.e. leads to a partial compensation of the first term in Eq. (1). 

This conclusion was confirmed by direct measurements on two groups of samples 

grown in a unique deposition system on two different types of substrates, either 

directly on Si (yielding relaxed Sn-Ge layers) or on top of a Ge buffer layer (strained 

Sn-Ge layers); indeed, a very distinct compositional dependence was obtained for 

these two groups [33].  

The vibration modes that directly involve tin atoms, i.e. Sn-Sn (≈ 190 cm-1) and Ge-

Sn (≈ 260 cm-1), are usually rather weak (especially the former) and it is hard to 

follow their compositional dependence, even though they have been registered in a 

number of works [8, 11, 13, 14]. Thus, systematic Raman studies of a set of GeSn 

samples with different composition, eventually extended to other fundamental 

vibration modes, in principle, can provide information about the composition, the 

presence of different kinds of bonds (Ge-Sn, Ge-Ge, Ge-Si, etc.) and the strain. 

However, theoretical support for the necessary analysis (solid solution’s vibration 

mode dependence upon composition and strain) is rather scarce in the literature.   

In this work, we present the structural properties and vibrational Raman spectra of 

SnxGe1-x crystalline alloys, calculated using the Tersoff potential [22], extended to 

grey tin in Ref. [36]. 2  This family of semi-empirical potentials is known as quite 

appropriate and widely used for description of atomic bonds in group IV crystals with 

diamond structure [24, 25]. This approach allows us to obtain information on 

statistical distributions of bond lengths and angles between adjacent bonds. The 

former is discussed in comparison with the Vegard’s law. We also evaluate the 

composition and strain dependent shifts in the Raman spectra and compare them with 

experimental results obtained for a set of Ge-Sn alloy epilayers grown by molecular 

beam epitaxy (MBE). 

 

2. Modelling procedure 

2.1. Building Sn-Ge crystallites 

The algorithm used in this work is similar to the previously used by us for SiGe 

nanocrystals [24, 37]. First, SnxGe1-x crystallites were built by randomly distributing 

xN tin and (1-x)N germanium atoms over the sites of a diamond lattice structure. 

Bearing in mind the application of periodic boundary conditions, cubic crystallites 
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were used, 8×8×8 unit cells (4096 atoms) for investigation of the structure and 5×5×5 

unit cells (1000 atoms) for the lattice dynamics and Raman spectra calculations. 

The starting lattice constant was chosen according to Vegard’s law: 

   xaxaxa SnGeGeSn  1)(  (2) 

where Gea = 5.64613 Å and Sna = 6.48920 Å are the lattice constants of the crystalline 

Ge and Sn, respectively. So far, the underlying lattice retained the Td symmetry with 

perfect tetrahedric bonding. 

The Tersoff potential was used to describe the interactions between the atoms, with 

the parameters listed in Table 1. Periodic boundary conditions were applied for the 

surface atoms. The lattice was allowed to relax to the minimum of its total energy by 

letting the atoms to move in response to the forces produced by their neighbours. For 

this relaxation, a molecular dynamics method employing the Verlet algorithm [38] 

was used. The equations of motion were integrated at each temporal step (not 

exceeding 10-15 s) until the equilibrium of the lattice was achieved. The crystallite, 

which no longer possessed the Td symmetry (unless for x = 0 or 1) after the relaxation, 

was used for the statistical analysis of the distributions of bond lengths and angles. 

 
2.2. Raman spectra 

Given the atomic coordinates and the (Tersoff) potentials acting on each of them, the 

dynamical matrix of the crystallite (constituted by the second derivatives of the 

atomic potential energy with respect to the spatial coordinates at equilibrium) was 

obtained. The vibration modes (i.e. eigenmode frequencies and the corresponding 

eigenvectors, i.e. normalised atomic displacement vectors, j
lu , for the l-th atom and j-

th vibration mode) were calculated by diagonalizing the dynamical matrix. 

With these data, the non-resonant Raman spectra were calculated using the bond 

polarisability model [39], where three second-rank tensors are defined for each (j-th) 

phonon mode as follows: 
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2 For tin, these parameters were adjusted to obtain the experimentally known value of the cohesion 
energy [36]. 
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In Eqs. (3) lir̂  is a unit vector directed from atom l to its neighbour i, j
lû is a unit 

vector along the atomic displacement vector j
lu , and I


 is the unit dyadic. The tensor 

1


 represents the polarizability modulation due to bond stretching and is responsible, 

e.g., for the Raman peak of pure crystalline Ge at ≈ 300.9 cm-1. The 2


 and 3


 

contributions represent angular distortions and vanish in the case of perfect tetrahedric 

bonding, while they have to be taken into account for random-network structures 

characteristic of amorphous Si or Ge. Since the pair correlation function for our 

relaxed GeSn solid solutions (Fig. 4), showing well-defined peaks corresponding to 

the diamond lattice coordination spheres looks much alike that for the crystalline 

materials with diamond structure rather than for the amorphous materials, we may say 

that the tetrahedric symmetry of the underlying lattice is approximately preserved and 

it is expectable that the contribution of terms (3b) and (3c) may be neglected. Indeed, 

it was confirmed by our calculations for some alloy compositions. Moreover, the 

diagonal elements of the full polarizability tensor,  321 


 , vanishing in the 

case of perfect tetrahedric bonding, were found to be very small.  

Thus, the Raman scattering intensity, averaged over the possible cross-polarization 

configurations and normalized to the volume, was calculated as: 

         j
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where  BEn  is the Bose-Einstein function. For computational purposes, the  -

function in Eq. (4) was replaced by a Lorentzian. Such a procedure has been used 

before to model the Raman spectra of bulk pure Si and Ge, Si-Ge alloy and 

corresponding nanocrystals [17, 24, 40, 41]. In order to make the calculated spectra 

comparable to experimental ones, they were averaged over at least ten different 

realisations of alloy disorder for each value of x. 

 

3. Calculated results 

3.1. Bond length distribution 

The average bond length, in first approximation, is described by the 

phenomenological Vegard’s law, Eq. (2). However, for the Sn-Ge system, 



7 
 

experimental results and calculations [1-3, 6, 17] show deviations, which are more 

substantial than for Si-Ge alloys. A better approximation for SnxGe1-x alloys is 

provided by the following expression: 

 xxxaxaxa SnGeGeSn )1()1()(   , (5) 

where   is called the slope parameter. Notice that experimental data exist only for 

2.0x , while the calculations go beyond this value of Sn content.  

The calculated results obtained in this work, at zero temperature and with composition 

step, x , of 0.1 are shown in Fig. 1. The maximum deviation between the 

calculations and the Vegard´s behaviour is reached for x = 0.6. The best fit of Eq. (5) 

to our calculated data (dashed line in Fig. 1) is obtained for the slope parameter   = 

0.026 nm. Even though this value does not coincide with that obtained from 

experimental data [6], in general, our calculated results compare well with the 

literature data in this composition range.  

Figure 2 shows the comparison of our calculated results with experimental data from 

the literature, in the range of alloy compositions x < 0.2, which is the important range 

for applications. Even here deviations from the Vegard’s law are clearly noticeable 

and the experimental and calculated (including ours) data indicate a steeper growth of 

the average lattice parameter than predicted by Eq. (2). 

It is interesting and useful to analyse, separately, the lengths of different bonds, i.e., 

Sn-Sn, Sn-Ge and Ge-Ge. These results are presented in Fig. 3, which demonstrates a 

three-modal distribution of bond lengths. It clearly shows that the relaxed Sn-Ge 

lattice is not a diamond crystal structure any more. Similar conclusions were derived 

for Si-Ge alloys [37] but for the tin-germanium system the effect is more pronounced 

because of the larger difference of the lattice parameter of α-Sn from that of Ge than 

in the case of silicon. It is also possible to conclude that the strongest variation with 

composition occurs for the Sn-Ge and Ge-Ge bonds, while Sn-Sn bond length is less 

dependent of x . The latter was also concluded in Ref. [8] where the authors found the 

strongest compositional variation for Ge-Ge bonds. 

Another way to see the alloy disorder introduced by the substitution of germanium 

with tin atoms is provided by the “pair correlation function”, which gives the 

probability to find a second atom within a spherical shell of radius, r , and thickness, 

dr , with the first atom in its centre. It is a measure of the alloy short-range order. The 

performed numerical calculations followed the procedure proposed in Ref. [38] and 
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the results are shown in Fig. 4, for x = 0.2. Each peak corresponds to a certain 

coordination sphere of the reference atom (either Ge or Sn). As it is seen from this 

plot, the short-range order is different for tin and germanium atoms only for the first 

coordination sphere (seen by the shift of the peak for Sn-Sn atomic pairs), that reflects 

the difference in the Ge-Ge and Sn-Sn bond lengths. For further coordination spheres, 

no such shift between Sn and Ge atoms is seen and the same behaviour is verified also 

for other compositions. This effect can be understood by a compensation of the bond 

length difference due to the variation of the inter-bond angles, another composition-

dependent effect verified by our calculations. Notice that the broadening of the peaks 

is related to static alloy disorder only and not to thermal displacements of the atoms. 

 

3.2. Calculated Raman spectra 

Figure 5 presents the calculated Raman spectra of relaxed SnxGe1-x solid solutions 

with different compositions, including x = 0 (pure germanium). The obtained spectra 

are considerably different from those obtained in [24] for SixGe1-x system, using 

essentially the same model. Raman spectra of the Si-Ge system are characterised by 

three principal modes corresponding to the Ge-Ge, Si-Ge and Si-Si vibration 

(although a fine structure can be resolved, related to different local atomic 

arrangements [42]). For the Sn-Ge system (Fig. 5) the peaks corresponding to the 

vibrations involving Sn-Sn and Sn-Ge bonds are hardly seen for small and medium 

values of x. Indeed, as mentioned in the Introduction, experimental Raman spectra of 

this system are dominated by the Ge-Ge peak, while a weak Ge-Sn feature can also be 

observed, as it will be shown in Section 4. Moreover, in the calculated Raman 

spectra, the Ge-Sn peak appears as a shoulder of the main (Ge-Ge) mode and cannot 

be identified as a clear peak. This is because of the smoothening of the calculated 

spectra obtained for relatively small size supercells3 and averaging over at least 10 

different realizations of alloy disorder. Nevertheless, it is seen that the role of the Sn-

Ge feature increases with the increase of tin content. As for the Sn-Sn vibrations 

assigned by some authors as the origin of a rather broad, low intensity band observed 

around 185 cm-1 [8, 11, 13, 14], the calculations performed in this work do not 

provide any evidence of this. 
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The peak position of the Ge-Ge band in the calculated spectra can be approximated by 

the following linear relation: 

 ]cm[6.919.300 1
GeGe


  x  (6) 

The coefficient in the linear term of Eq. (6) is close to the experimentally measured 

one ( 1cm83  ), in the low tin content range, 077.00  x , for fully relaxed 

samples [33] and also to the value ( 1cm95  ) proposed by the authors of [12, 27], 

based on their analysis of strained layers and using the theoretical estimate of the 

strain contribution according to Ref. [32]. The latter is based on experimentally 

measured phenomenological deformation potentials, while our calculations employ 

Tersoff potentials, so the closeness of the values obtained from very different 

approaches makes us confident concerning the reliability of the obtained results. 

The model reported here also allows for investigating the effect of macroscopic strain 

on the vibration modes of SnxGe1-x alloys under elastic stress produced by some 

external forces. The strain was imposed by changing the supercell size in one, two or 

three directions (coinciding with the principal axes of the underlying diamond lattice). 

The deformation (assumed independent of composition) was counted with respect to 

the size corresponding to the average lattice constant value for the given composition 

x as presented in Fig. 1. The results for strained supercells are shown in Fig. 6 for 

several different types of deformation. 

As it can be seen from Fig. 6, the position of the Ge-Ge peak and even the shape are 

strongly influenced by the macroscopic strain. The sign of the shift (with respect to 

the unstrained case, curve 1 in the plot) correlates with the sign of the trace of the 

strain tensor. Compressive strain (curves 2, 4 and 5) produces a blue shift that 

compensates or even overcomes the red shift caused by the tin doping (shown in Fig. 

5). Indeed, the two terms in Eq. (1) have opposite signs in these cases. The physical 

cause of the mode shift here is that the imposed static displacements of the atoms 

change the force constants between them (determined by the Tersoff potentials). 

Again, we notice the qualitative agreement with the results predicted by the analytical 

theory using empirical deformation potentials [32]. The most realistic case in Fig. 6 is 

the one represented by curve 5, since for a Sn-Ge layer grown on a germanium 

substrate, the in-plane components xx  and yy  should be negative (compression) 

                                                                                                                                            
3 For computational purposes each eigenmode was broadened by γ=0.006 cm-1, i.e. the δ–function in 
Eq. (4) was replaced by a Lorentzian of FWHM γ. 
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while zz  (also commonly denoted as  ) should be positive. In fact, the lattice 

constant in the growth direction, a  (z axis), measured in Ref. [33] was larger than 

the equilibrium lattice parameter corresponding to the given Sn content. 

 

4. Experimental results 

4.1. Samples and experimental details 

The samples were grown by molecular beam epitaxy using an electron beam 

evaporator for Ge with a silicon crucible and a Knudsen cell for Sn with pyrolytic BN 

crucible and a base pressure lower than 10-9 mbar [43-45]. The layers were grown on 

Si (100) wafers with 100 mm diameter. The wafer was treated with a HF-bath and 

introduced into the MBE chamber and heated, in situ, to 700 oC for a period of 5 

minutes to remove the hydrogenised layer on its surface by thermal desorption. After 

this thermal treatment, a Ge epitaxial buffer layer with 100 nm thick was grown at 

330 oC with a growth rate of 0.43 Å/s. Then, a GeSn layer, with a target thickness of 

200 nm, was grown over the Ge buffer layer, at a substrate temperature between 75 

and 85 oC. The Ge flux for the GeSn growth was the same as used for the buffer layer 

and kept constant for all the samples, whereas the Sn flux was changed from sample 

to sample. The samples were annealed in-situ by ramping-up their temperature to ≈ 

195 oC followed by an immediate ramp-down to room temperature. The very low and 

not usual substrate temperature (75-85 oC) used for the GeSn growth was chosen in 

order to avoid precipitation and / or segregation of Sn, since it is known that Sn has 

low solubility in Ge (≈ 0.5%). Samples with Sn content up to 4.3 % were grown so as 

to avoid significant changes of the lattice structure trough defects or segregation or 

precipitation of Sn. The deposited epilayers were characterized using Rutherford 

backscattering spectroscopy (RBS) to determine the Sn content, X-ray diffraction 

(XRD) to determine the bond lengths (i.e. strain), transmission electron microscopy 

(TEM) to determine the quality of the layers, and the micro-Raman spectroscopy. 

Table 2 provides a list of samples used in this study and the respective Sn contents 

determined using RBS. TEM showed no evidence of either segregation or 

precipitation of Sn atoms. Raman spectroscopy studies were performed using a 633 

nm excitation in a backscattering geometry, at room temperature; the frequency shift 

was calibrated using a Si wafer. 

 

4.2. XRD results and strain analysis 
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The XRD geometry usually employed to study epitaxial semiconductors with cubic 

structure is the geometry known as ‘one-dimensional ω/2θ rocking curve’ of a certain 

diffraction plane. Using the angular position of the diffraction peak originated by the 

(004) planes and applying the Bragg’s law it is possible to determine the inter-planar 

distance, d004, and therefore the perpendicular (or out-of-plane) lattice constant: 

 0044da  . (7) 

The parallel (or in-plane) lattice constant, ||a , in principle, can be determined from the 

position of a diffraction peak produced by another family of atomic planes, e.g. (224). 

Taking the growth plane as reference, the parallel (in-plane) and perpendicular (out-

of-plane) diagonal components of the strain tensor can be defined through the lattice 

constants of the deformed layer and the relaxed lattice constant ( a ) as: 

 
a

aa 
 

 , (8a) 

 
a

aa 
 ||

|| . (8b) 

For a fully relaxed solid solution, the lattice constant usually follows a linear 

dependence upon the composition. This dependence (the Vegard’s law) has been 

verified for SnxGe1-x,  xaxa 147.01)( Ge   [35]. For the ultimate case of fully 

strained solid solution (so called pseudomorphic strain caused by the elastic force 

induced by the substrate with the same crystal structure but with a different lattice 

constant, see Appendix) one can expect substrate|| aa   and, if the substrate is relaxed 

germanium crystal, nm5658.0Gesubstrate  aa . However, if the substrate (or the 

buffer layer) is deformed itself, ||a  is not known a priori. 

The deformations (i.e. the out-of-plane and in-plane components of strain tensor) can 

be related using the elasticity theory for the case of pseudomorphic strain (see 

Appendix), 

 ||
11

122 
C

C
 , (9) 

where 11C  and 12C  are the elastic constants of the material. Since the samples have a 

very low amount of Sn, the pure germanium values can be used for the calculations, 

for which Eq. (9) yields ||7.0   . In this way, by using the relation (8b), 

information concerning the parallel (in-plane) lattice constant has been obtained. 
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A Cu source with characteristic emission Kα1 (0.154056 nm) and Kα2 (0.154439 nm) 

was used for the XRD measurements4. The XRD configuration used for this study 

was the standard θ/2θ scan and the calibration was made with crystalline bulk silicon. 

Relevant information was obtained by analyzing the (004) diffraction peak. The 

diffractograms of the studied samples typically show two peaks, (i) 2θ ≈ 66o 

associated with Ge-Ge bonds, and (ii) the one appearing between 65 o and 65.5 o, 

corresponding to (longer) Ge-Sn bonds.  

For samples with low Sn content (#1 and #3) the latter is hardly seen, while it is quite 

evident for the samples with high Sn content (samples #4, #5 and #6). 

We observed that for samples with lower Sn content, the Ge-Ge lattice constant is 

smaller than the one of a bulk Ge crystal, indicating that the layers are not fully 

relaxed but close to this. When the Sn concentration is large enough to originate the 

Ge-Sn diffraction peak, it was seen, by analysing the Ge-Sn peak position, that the 

changes in the lattice parameter are more significant and directly related to the Sn 

content, increasing with the increase of the Sn concentration. Since α-Sn lattice 

constant is bigger than that of Ge, the increase of the Sn content in the GeSn layer 

leads to an increase of the lattice parameter of the solid solution. 

From the angular position of the (004) diffraction peak, obtained by fitting the 

diffractogram and using the Bragg´s law, it is possible to determine the inter-planar 

distance, d004, and then the out-of-plane lattice constant using Eq. (7). As expected, 

we found that it increases with the increase of Sn content. Yet, we notice that the 

measured out-of-plane lattice constant for each Sn content is lower than the 

corresponding average lattice parameter value predicted by the Vegard´s law, Eq. (2).  

Using the lattice constant obtained through Bragg’s law and the lattice constant of 

relaxed Ge crystal, the strain perpendicular to the GeSn layer has been calculated 

using Eqs. (8). Upper limit of the in-plane strain can be evaluated using Eq. (9) (that 

assumes pseudomorphic strain). Figure 7 shows the measured perpendicular strain 

values obtained for the samples #2, #3, #4, #5 and #6 as a function of the Sn content, 

the corresponding linear fit to these values and the line obtained by applying Eq. (9) 

to the latter (the upper limit of the in-plane strain). These results show that the linear 

variation of the measured out-of-plane deformation component with x, the slope of 

                                                 
4 Since the used system does not have a monochromator, the measured XRD spectra contain 
contributions of two Cu wavelengths (Kα1 and Kα2) for each diffraction peak. The XRD analysis was 
performed in the 2θ region between 24o and 69o, so both peaks were used to verify the analysis. 
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this line (≈ 0.028), is much smaller than the expected one for the case of 

pseudomorphic strain (≈ 0.103, see Appendix). Thus, we conclude that our Ge-Sn 

layers are almost fully relaxed. 

 

4.3. Experimental Raman spectra and their analysis 

Figure 8 shows the Raman spectra obtained with the same acquisition conditions and 

normalized to the Ge-Ge phonon mode intensity, for three samples, bulk c-Ge 

(wafer), reference layer of germanium without Sn (#0) and GeSn sample #6 (the one 

with the highest Sn content). According to the previous studies [11-14, 27, 33-35], for 

this system it is expected to observe several Raman features, namely: (i) Ge-Ge 

phonon mode (near 300 cm-1), either from the GeSn layers or from the Ge buffer layer 

or both, (ii) the TO-LO phonon mode of the Si substrate (521 cm-1), (iii) a vibration 

mode due to the Ge-Sn bonds (around 260 cm-1), and (iv) possibly a weak band 

around 185 cm-1, which has been tentatively attributed to Sn-Sn vibrations by some 

authors [11], supported mostly by its proximity to the Γ point TO-LO phonon mode in 

grey tin [46].  

From Fig. 8 it is seen that the reference sample (without tin) exhibits the Ge-Ge 

phonon mode (the only one seen for the c-Ge) and also the bulk Si-Si phonon mode 

from the substrate (≈ 520 cm-1). The Si-Si mode is strong because this sample is 

thinner than the others (no GeSn layer, only the Ge buffer layer is present). Also seen 

is the Raman phonon mode at about 385 cm-1 assigned to the Ge-rich SiGe alloy. The 

presence of this Ge-Si phonon mode is probably related to the contamination of the 

buffer layer with Si due to the use of a silicon crucible for germanium precursor 

during the MBE growth. 

 
Concerning the Raman spectrum of the GeSn sample #6, besides the Ge-Ge and the 

Ge-Si phonon modes it indeed exhibits two peaks (absent in the other samples’ 

spectra), namely, peaks at ≈ 260 and ≈ 185 cm-1 that we assign as above. Indeed, the 

Sn-Sn Γ point phonon peak position for α-Sn is ≈ 195 cm-1[46]. In Ge-Sn alloys with 

low tin content, the presence of the Sn-Sn mode can be attributed to small sized Sn 

clusters originating mechanical confinement effects, which results in a shift of the 

mode to lower frequencies, similar at what happens to phonons when confined in 

nanocrystals [31]. However, D’Costa et al. [27] expressed a different opinion: based 

on their polarized Raman spectroscopy studies, they associated this feature with a 
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disorder activated longitudinal acoustic (DALA) mode. In fact, the Sn-Sn mode does 

not show up in our calculated results even for considerably higher Sn contents (Sec. 

3.2). The 260 cm-1peak (Ge-Sn mode) is also too weak to help making any useful 

conclusions. Therefore, we shall concentrate on the Ge-Ge mode. 

First, we notice that this mode in Ge buffer layer is almost not shifted with respected 

to relaxed germanium wafer (see inset in Fig. 8). This looks surprising since the 

buffer layer is strained, %15.0  according to the XRD data. From the theory 

developed in Ref. [32] it follows (see Appendix) that the relative shift of this mode is 

related to the strain components as 

  



85.015.2 ||
0


. (10) 

Therefore, we are to conclude that the effects produced by the parallel and 

perpendicular strain components compensate each other in this case, which requires 

  4.0||  (or slightly more if we take into account the 0.5 cm-1 blue shift yielded 

by fitting the Raman peaks). Thus, Eq. (9) is not valid and the pseudomorphic strain 

model does not apply to this layer. 

Turning to the GeSn layers, their Raman spectra (of which only one is shown in Fig. 

8) were fitted, in the vicinity of the Ge-Ge mode, and the obtained peak positions are 

presented by points in Fig. 9. Here both composition (i) and strain (ii) effects are 

present, yielding an increasing shift to lower wavenumbers as the Sn content 

increases. In general, the experimental data follow rather well Eq. (6). It corroborates 

our conclusion that the studied GeSn layers are almost fully relaxed. Indeed, plugging 

x147.0||   and x0.103 , characteristic of pseudomorphic strain into Eq. (10) 

we obtain for the strain induced term in Eq. (1): 

]cm[1.67 1 xstrain     (11) 

Some authors prefer to express this relation in the form || kstrain  , where the 

coefficient k  corresponding to Eq. (11) would be equal to −456.5 cm-1. 

Experimentally, a somewhat lower value was obtained [13], k −375 cm-1. It should 

be noted, however, that the strain value in Ref. [13] was determined indirectly.  

Using strain , from Eq. (11) and the composition contribution according to Eq. (6), 

overall Ge-Ge Raman band shift versus Sn content in pseudomorpic-strained SnGe 

layers can be evaluated as 
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]cm[5.249.300 1
GeGe


  xstrained .   (12) 

The dependence predicted by Eq. (12) is shown in Fig. 9. A similar weak dependence 

of the Ge-Ge peak position upon x  for fully strained samples was reported in Ref. 

[33]. Raman studies performed on strained Ge-Sn solid solutions [35] revealed a 

linear relationship between the Ge-Ge phonon peak position and the Sn concentration 

with a much larger composition shift coefficient of −76.8 cm-1. Assuming that their 

layers were pseudomorphic-strained led the authors of Ref. [35] to the suggestion of a 

very large composition effect for unstrained Ge-Sn solid solutions (shown by the 

dash-dotted line in our Fig. 9, which, to the best of our knowledge, has never been 

observed. As mentioned in Sec. 3.2, other authors [12, 27, 33, 47] reported much 

smaller (in modulus) values for the composition shift coefficient in relaxed samples, 

between −82 and −95 cm-1. Our results, both calculated and experimental, support this 

estimate. 

 

5. Conclusions 

The calculated results obtained by applying semi-empirical Tersoff potentials to Ge-

Sn alloys are in good qualitative agreement with the available low x experimental data 

and the results of DFT calculations. In particular, it applies to the deviations from the 

Vegard’s law for the alloy lattice parameter. From the calculations one readily obtains 

further structural information such as the atomic pair correlation function and 

distributions of bond lengths and angles. Furthermore, studies of the lattice dynamics 

of alloys are possible since the dynamical matrix can be constructed in a 

straightforward way using the derivatives of the Tersoff potentials calculated in the 

new equilibrium positions of the atoms in the alloy. The proposed algorithm, here 

applied to tin-containing group IV solid solutions for the first time, also allows for 

studying strained alloys by directly imposing the desired deformation. It can be 

extended to ternary group IV alloys (experimentally investigated in Ref. [11]) or to 

quantum dot heterostructures [48].  

Applying the classical bond polarizability model [39], we studied numerically the 

composition and strain effects on the principal (Ge-Ge) Raman mode of the alloys. 

Comparing the experimental results (Fig. 9) with the modelling ones obtained for this 

system without applying strain (see Fig. 5), a good agreement on the Ge-Ge peak 

position variation with the increase of the Sn content can be certified. Both the 

experimental and modelling results show a shift of the Ge-Ge mode to lower 
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wavenumbers, accompanied by an increase of the full width half maximum of the 

Raman mode with the increase of Sn. Our layers deposited on a Ge buffer layer are 

characterised by quite low strain (according to the XRD data). The composition shift 

(i.e. the vibration mode frequency change due to local changes of atomic mass and 

bond strength) is described by the numerically established Eq. (6). However, in real 

samples that are epilayers, it is always accompanied by the second composition 

dependent effect caused by the macroscopic strain. It depends differently upon the in-

plane and out-of-plane strain components. The lack of samples that are either fully 

relaxed (where all strain components are equal to zero) or pseudomorphic-stained 

(where the relation between the strain components is simple) leads to a rather broad 

range of composition shift coefficient values reported in the literature [33-35]. It also 

makes the quantitative comparison between the numerically calculated and 

experimental results difficult. Yet, the different examples of deformation shown in 

Fig. 6 qualitatively agree with the trends predicted by the macroscopic theory [32]. 

Interestingly enough, the splitting of the Raman peak seen in Fig. 6 for uniaxial 

traction (curve 6) was observed for Ge epilayers [49] and also for graphene [50]. With 

the help the macroscopic theory [32] it is possible to establish a simple numerical 

relation (Eq. (11)) between the strain effect and the composition. However, it should 

be used with care because of the complexity of the system from the point of view of 

the macroscopic elasticity theory and the pseudomorpic strain model may not be valid 

and strain  may have any sign depending on the relative value of the different 

components of the strain tensor. The understanding of the composition and strain 

contributions to the Raman peak shift will help achieving the properties needed, such 

as direct band gap in a Si-compatible group IV material, via composition and strain 

engineering. 
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APPENDIX  

Pseudomorphic strain and optical phonon frequency shift 

Here we present some details concerning the pseudomorphic strain and also the 

essential part of the analytical theory for the strain induced Raman shift in a cubic 

crystal that was developed in Ref. [32].  

Pseudomorphic strain related to lattice mismatch between a film and a substrate can 

be described by the theory analogous to that of thermal expansion induced 

deformations. Non-zero stress components are given by [51]: 
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and  xa GeSn  is the average lattice constant of the uniform Sn-Ge alloy with Sn 

content x , according to Vegard’s law. In Eq. (A1), Y  and   are the Young modulus 

and Poisson coefficient, respectively. For simplicity, the isotropic approximation is 

used, with 
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where 11C  and 12C  are the elastic constants of the crystal. Applying the generalized 

Hooke’s law, 
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one obtains: 
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The second equality uses cubic crystal elastic constants instead of the Poisson 

coefficient used for isotropic media and corresponds to Eq. (9) of the main text. 

In Ref. [32] it is assumed that the strain affects the atomic vibrations only through the 

effective force constants that determine the vibrational frequencies. In the presence of 

elastic strain, the frequencies of optical phonons are given by the following secular 

equation: 
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where 
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2    (A9) 

with  0  denoting the unshifted (shifted) optical phonon frequency and p , q  and 

r  are deformation potentials introduced in Ref. [32]. Thus, strain-induced shift is 

given by 

 
0

0 2
  , (A10) 

where   is obtained by solving Eq. (A8). 

A simple example is hydrostatic strain/stress: 

   zzyyxx  (A11) 

with 

   2
02   qp  (A12) 

 00   , (A13) 

where   is the Grüneisen parameter,   2
062  qp  . So, we have a blue shift 

( 00   ) for compression ( 0 ) and a red shift for expansion ( 0 ). 

For a biaxial strain with x, y and z axes along the principal axes [(001), etc] of the 

cubic crystal, all non-diagonal components ij  are equal to zero and one has from Eq. 

(A8): 

      02 ||
2

||    pqqqp  (A14) 

So, two solutions exist: 

     qqp ||1  (A15) 

(double-degenerate) and 
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   pq ||2 2  . (A16) 

Here   2
02 qp   is another dimensionless parameter. The parameters   and   

have been determined in [32]; for Ge 23.0  and 1 . 

Expressing p  and q  in terms of   and   we obtain: 
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With strain components (A6), the singlet phonon mode (A16) corresponds to the 

displacement vector along z, while the doublet mode (A15) corresponds to the 

displacement vector within the x-y plane. If the Raman scattering experiment was 

performed in a backscattering geometry with the scattering vector k


  || (001), then 

the singlet mode corresponds to LO phonon and the doublet represents two TO 

phonon modes. According to the selection rules for the (001) surface of a diamond 

crystal, scattering is precisely due to LO phonons [52] (so called  zxyz  

configuration). Therefore, we should use Eq. (A18) to evaluate the strain-induced 

shift. 

For low Sn contents all the parameters relevant here can be taken as for pure 

germanium, which are: 1 , 23.0  [32], 212
11 dyn/cm1029.1 C  and 

212
12 dyn/cm1048.0 C  [53]. Substituting them into (A18) we obtain the numerical 

relation presented in the main text, Eq. (10). For pseudomorphic-strained GeSn 

x147.0||   and using (A7) we obtain x103.0 , that yields Eq. (11). 
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Table 1: Tersoff potential parameters used in the present work. 

 

  Ge, Ref. [22]  Sn, Ref. [36] 

A (eV)  1769  2848 

В (eV)  419.23  658.62 

 (Å‐1)  2.4451  2.25 

 ( Å‐1)  1.7047  1.62 

  9.0166 x 10‐7  6.01×10‐7 

n  0.75627   0.74 

с  1.0643×105  1.4×105 

d  15.6652  14.5 

h  ‐0.43884   ‐0.502 

R (Å)  2.8  2.8 

S (Å)  3.1  3.2 

 

 

Table 2: Sn content of the GeSn epilayers obtained by RBS. 

 

Sample Sn (at.%)

#0 0
#1 0.15
#2 0.20
#3 0.55
#4 1.68
#5 3.34
#6 4.30
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Figure captions 

 

Figure 1: Average lattice constant as a function of Sn content. Solid straight line 

represents the Vegard’s law [Eq. (2)], rhombs are our calculated data and dashed line 

is Eq. (5). 

 

Figure 2: Comparison of the average lattice constant in the region of low Sn contents. 

Solid straight line represents the Vegard’s law [Eq. (2)], rhombs are our calculated 

data, squares are experimental data of Ref. [17], circles are experimental data of Ref. 

[6] and triangles and stars are Density Functional Theory (DFT) results for random 

[3] and partially ordered [1] Sn-Ge solid solutions, respectively. 

 

Figure 3: Calculated bond length dependence upon Sn content for three types of 

bonds (Sn-Sn: rhombs, Sn-Ge: squares, Ge-Ge: triangles). Dashed line represents the 

Vegard’s law, Eq. (2). 

 

Figure 4: Pair correlation function for Ge-Sn solid solution with x = 0.2 calculated 

separately for Ge-Ge and Sn-Sn atomic pairs.  

 

Figure 5: Raman scattering intensity calculated for relaxed Ge1-xSnx solid solutions of 

different compositions: (1) x = 0 (pure germanium), (2) x = 0.05, (3) x =0.10, (4) x = 

0.15, (5) x = 0.20. 

 

Figure 6: Effect of different types of strain on the Raman band of Sn0.1Ge0.9: (1)  = 0 

(no strain), (2) xx = yy = zz = - 0.01 (hydrostatic compression), (3) xx = yy = zz = 

0.01 (isotropic expansion), (4) xx = yy = - 0.01, zz = 0 (compression in the plane of 

the layer), (5) xx = yy = - 0.01, zz = 0.005 (compression within the plane of the layer 

and expansion in the perpendicular direction), (6) xx = 0.01, yy = zz = 0 (uniaxial 

traction). The axes x, y and z were chosen along the main crystallographic directions 

of the underlying diamond lattice. 

 

Figure 7: Out-of-plane strain versus Sn content: points obtained from the XRD data 

for samples #2, #3, #4, #5 and #6 (rhombs) and pure Ge layer (full triangle),  linear fit 
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to the experimental data for GeSn layers and calculated upper limit for the in-plane 

strain (dashed-dotted line). The open triangle represents the in-plane strain value for 

Ge buffer layer obtained from the Raman spectra analysis. 

 

Figure 8: Raman spectra of the reference sample #0 (Ge), #6 (GeSn) and a relaxed 

Ge wafer.  

 

Figure 9: Raman peak position of the Ge-Ge phonon mode as a function of Sn 

content of the GeSn samples; squares are the values obtained by peak fitting, the solid 

line is a linear fit to the experimental data represented by the squares, the dashed line 

(dotted line) represents calculated peak positions for fully relaxed (subjected to 

pseudomorphic strain) Ge-Sn solid solutions. The dash-dotted line is the linear 

dependence proposed by Rojas-Lopez et al. [35] for fully relaxed Ge-Sn layers. The 

triangle indicates the peak position for a bulk germanium crystal. 
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