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ABSTRACT: Organic photodetectors based on printing technologies will allow to 

expand the current field of photodetector applications towards large-area and flexible 

applications in areas such as medical imaging, security and quality control, among 

others. Inkjet printing is a powerful digital tool for the deposition of smart and functional 

materials on various substrates, allowing the development of electronic devices such as 

photodetectors on various substrates. In this work, inkjet-printed photodetector array, based 

on organic thin-film transistor (OTFT) architecture, have been developed and applied for 

the indirect detection of X-ray radiation using a scintillator ink as X-ray absorber.  

The over 90% increase of the photocurrent of the photodetectors under X-ray radiation, 

from about 53 nA without scintillator film to about 102 nA with the scintillator located on 
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top of the photodetector, proves the suitability of the developed printed device for X-ray 

detection applications. 

 

Keywords: inkjet, organic photodetectors, printed photodetectors, radiation detectors, X-

ray imaging 

 

1. Introduction 

Photodetectors allow the conversion of light into measurable current signals, being a 

common component of optoelectronic systems. Photodetectors are thus found in many 

applications such as automated gates and doors, digital versatile discs (DVD), blue-ray 

devices, night vision systems, and remote controls 1-2. Further, they are also implemented 

in radiation medical imaging3, including  systems for radiography4, mammography5, 

computed tomography (CT)6
  , spectroscopy devices and integrated sensors for lab-on-a-

chip applications 7. Miniaturization, large-area applicability, selectivity, and high 

responsivity are key factors that need to be take into account for new developments in this 

field8-9.  

The materials typically used for X-ray radiation detection, i.e., conversion of the ionizing 

radiation into an electrical signal, are mainly based on charge-coupled device (CCD) and 

complementary metal-oxide-semiconductor (CMOS) technology2. However, these 

methods show limitations regarding the processing into pixelated photodetector matrices 

applied to large and non-flat areas 10. The most common material used for this type of 

radiation photodetector is silicon 11. Silicon shows limitations related to the low radiation 

absorption coefficient 12, which results in the need of high thickness silicon layers in order 

to obtain high performing devices 11, 13. Nano-structuring of silicon layers can be used to 

improve the photon absorption, but this approach results in a remarkable cost increase 

which limits the commercial implementation 14.  
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Thus, there has been an increasing interest on the development of alternative materials for 

detecting radiation. In particular, efforts are being directed to the development of a new 

generation of photodetectors for radiation detection, combining easy manufacturing, 

flexible and seamless integration capabilities and mechanical flexibility 15. Besides that, 

several applications, ranging from security control to industrial and medical diagnostics 16, 

require thin, conformable sensor panels, with a lower exposure to radiation dose of X-ray 

imaging systems and for large-area 17. Printed photodetectors based on organic materials 

are well-qualified candidates to fulfil the above-mentioned requirements. 

All recent investigations related with printed photodetectors have been directly connected 

with the improvement of light sensitivity yield, the compatibility with silicon and flexible 

electronics for integration, and should be adapted to low-temperature solution processing 

18. Printed photodetectors show significant advantages in comparison to solid-state devices. 

They can have large active areas, can be processed at low temperatures, offer an well-

adjustable spectral sensitivity, and they are inexpensive and easily fabricated 13. Printing 

technologies are additive processes that allow a patterned material deposition, the 

economizing of material usage and the  manufacturing at competitive costs 19.  

Among the different printing techniques, inkjet printing 20-22 is a fully digital technology 

where the print image is formed by the ejection of single droplets on pre-defined positions 

of a substrate. The droplets are directly transferred to the substrate without the need for 

masks which facilitates varying pattern design and customization. 

Printed photodetectors are being produced by e.g., inkjet 23, spraying 24-25 and screen 

printing 26 based on materials such as polymers, silver nanoparticles, carbon nanotubes 24, 

metal oxide and even colloidal quantum dots. The combination of low-cost fabrication 

methods such as printing technologies, represent key advantages of organic semiconductor 

photodetectors over their silicon-based counterparts 23.  
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The deposition of multilayer stacks of different functional materials provides a simple form 

of depositing thick films (some nanometers) layer-by-layer onto a surface of any kind or 

any shape. Multilayers stacks allow to fabricate a sequence of layers, each layer with 

specific structure and properties, being a rather general approach for the fabrication of 

devices. This approach has been successfully applied for the development of multilayer 

ink-jet printed passive components27. 

In layer-by-layer deposition, the precise structure of each layer depends on a precise set of 

deposition parameter, which will determine the structure and properties of each layer, but 

that will allow high level of reproducibility, if the processing parameters are maintained 

strictly constant27-28. 

Several concepts have been proposed to promote the advantages of organic semiconductors 

in medical flat-panel X-ray photodetectors, such as easy processing, flexibility and the 

possibility of large area fabrication with a low effective cost29. Organic photodetectors 

(OPDs) are very attractive for this application as they are inexpensive and can be flexible 

showing a promising alternative to silicon-based photodetectors 25, 30. Organic 

photodetectors show a strong absorption coefficient, enabling the operation with thin 

layers. Furthermore, these materials can be tuned to improve the absorption spectra 

selectivity, as well as the optical bandgap and the electronic transport properties 31-32. Most 

importantly, organic materials are advantageous in terms of processing since they can be 

formulated as inks and fabricated by printing technologies, which reduces photodetectors 

cost 13, 32.   

There are two different approaches for medical X-ray detection systems classified as direct 

and indirect methods 33. The direct method uses photoconductive materials with high X-

ray sensitivity and typically requires high operation bias voltage. The indirect method uses 

scintillator materials that absorb the X-ray radiation and convert it into visible light 34. The 
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photodetectors sensitive to visible light convert the light from the scintillator located on 

top of them into electric signals, thus allowing the indirect detection of X-ray radiation.  

Both direct and indirect methods still face limitations and high costs when large areas or 

flexible applications are required. Polymer composites based on scintillator nanoparticles 

allow the design and overcome such limitations as well as innovative, novel applications 

thanks to their high efficiency, flexibility and low-cost production 35.  

Several works have explored the use of photodetectors for indirect X-ray detection based 

either on polymer thin-films filled with scintillator and fluorescence molecules35-36, 

inorganic high-Z nanocomposites37 or carbon nanotubes38 to enhance the sensitivity to X-

rays and consequently reduce the radiation dose. However, consistent approaches are still 

required to reach unfailing and reproducible deposition of multilayer stacks of diff erent 

functional materials.  

In this work, a novel device for X-ray indirect detection was developed based on a thin-

film transistor organic photodetector architecture fabricated by inkjet printing and screen 

printed scintillator inks. A further interesting feature for applications is that the devices 

were manufactured in a standard laboratory environment (no cleanroom) and at low 

temperatures compatible with polymer substrates.  

 

2. Experimental details 

2.1. Materials for the fabrication of the photodetectors 

Polyethylene naphthalate (PEN) films (Dupont Teijin Q65FA) with a thickness of 125 μm 

were employed as flexible polymeric substrates. UTDAgIJ1 conductive silver nanoparticle 

ink from UT DOTS (UT Dots Inc., USA) was applied for the manufacturing of the 

electrodes. The applied dielectric material was cross-linked poly-4-vinylphenol (c-PVP, 

PVP purchased from Sigma Aldrich with a Mw. of about 25000). PVP was dissolved at 

room temperature in 10 mL propylene glycol monomethyl ether acetate (PGMEA), and 



6 
 

magnetically stirred for 3 hours. Poly(melamine-coformaldehyde) methylated (PMFM, 

from Sigma Aldrich, Mw. of about 432, 84 wt.% in 1-butanol) was added as a crosslinking 

agent under stirring for 2h. The ratio of PVP to PMFM was 2:1. Before printing, the 

conductive silver nanoparticle and the dielectric inks were filtered through 0.2 µm syringe 

filters to ensure the removal of residual agglomerations. FS0096, a p-type polymer from 

Flexink (Flexink Ltd., UK) dissolved in mesitylene and tetralin mixture was used as 

amorphous organic semiconductor (OSC). 

 

2.2. Fabrication of the printed photodetectors. 

Inkjet printing was performed with a Dimatix Materials Printer (DMP) 2831 (Fujifilm 

Dimatix Inc., USA), equipped with a 16 nozzles piezoelectric printhead with a nominal 

drop volume of about 10 pL and a nozzle-to-nozzle spacing of 254 µm. For all the inks, the 

printing process was carried out with a maximum jetting frequency of 5 kHz and a well-

adjusted, optimized control signal (waveform) for each individual ink formulation, as 

represented in figure 1. 
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Figure 1. Silver nanoparticles, dielectric and OSC ink jetting waveform. 

 

Figure 1 shows the optimized jetting waveforms used for the different ink formulations. 

The adjustment of the print waveform can be divided into three parts, represented in Figure 

1: rising time, dwelling time and falling time. The rising time setting allows to define the 

amount of ink that will be ejected through the nozzle, defining the drop size. The setting of 

the dwelling time parameters allows to define how the drop leaves the nozzle. Finally, it is 

necessary to define the shape of the falling time, corresponding to the process of separating 

the drop from the nozzle, this step being critical to ensure that there is no formation of 
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satellite drops. The maximum drop ejection voltage was 35 V and the drop ejection 

frequency was limited to 5 kHz for higher repeatability.  

Figure 2a shows the organic thin-film transistor (OTFT) architecture of the printed 

photodetectors consisting of four different layers: (i) a bottom gate layer using the silver 

nanoparticle ink, (ii) an insulating dielectric layer based on c-PVP, (iii) 12 interdigitated 

source-drain (S-D) electrodes using the silver nanoparticle ink, and (iv) a semiconducting 

layer on top of the stack. Further, the 5 x 5 sensors matrix layout is presented in Figure 2b. 

The spacing between S-D electrode fingers in the digital design was 120 µm and represents 

the channel length of the TFT. The width of the individual finger electrodes in the design 

was 26000 µm and the channel length was 40 µm.  

 

Figure 2. a) Schematic image of the TFT-based photodetector device structure; b) layout of the 

inkjet printed 5 x 5 photodetector matrix. 

 

Before printing, the PEN substrate was cleaned with ethanol and then dried by a nitrogen 

flow to remove any remaining particles. For the deposition of the bottom gate, the silver 

ink was jetted using a print resolution of 635 dpi that corresponds to a drop space of 40 µm. 

During the process of printing, the cartridge and substrate temperature was set to 35 ºC and 

40 ºC respectively. The post-printing procedure for the printed silver layer consisted of 
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drying and sintering in an oven (JP Selecta 2005164) at 150 °C for 30 minutes. 

Subsequently, two layers of c-PVP were printed using a print resolution of 1270 dpi (drop 

space of 20 µm), with both the substrate and printhead temperature set to room temperature 

(~ 28 ºC). Finally, curing of the dielectric layer took place at 150 °C for 30 minutes in an 

oven. For the S-D electrodes, the silver nanoparticle ink was jetted with print resolution of 

635 dpi and just 1 nozzle, in order to achieve higher print accuracy. The post-printing 

treatment of the silver layer was the same as indicated earlier. The final layer for the OTFT 

stack (photodetector) was the OSC, that was printed with a substrate temperature of 35 ºC 

and printhead temperature set to room temperature (~ 28 ºC). Then, the layer was cured in 

an oven at 100 ºC for 10 minutes. During the printing, the used drop space was 20 µm and 

the quality check of the printed patterns was performed using the microscope Leica 

DM4000 M.  

 

2.3. Development and application of the scintillator ink 

A polymer based scintillator ink formulation based on gadolinium oxide doped with 

europium (Gd2O3:Eu3+) as scintillator material and the fluorescence molecules 2,5-

dipheniloxazol (PPO) and 1,4-bis-(2-(5-phenioxazolil))-benzol (POPOP) was formulated 

following the procedure described in 36.  Gd2O3:Eu3+ was selected as scintillator 

nanoparticles due to its, high density (≈7.4 g·cm-3), high atomic number and good light 

yield (≈2×104 photons/MeV) 39-41 39-41 39-41 39-41 39-41. The thermoplastic elastomer 

copolymer Styrene-Ethylene/Butylene-Styrene (SEBS) Calprene CH-6120, with a 

molecular weight of 245.33 g/mol and a ratio of Ethylene-Butylene/Styrene of 68/32, 

supplied by Dynasol was used as the polymer matrix to develop a flexible ink with suitable 

adhesive properties. It has been proven that this combination of materials is able to 

efficiently convert X-ray radiation into visible light 34. Thus, the formulation of the 
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scintillator ink was as follows: 0.5 wt.% of Gd2O3:Eu3+ scintillator nanoparticles 

(Nanograde) and 1 wt% of PPO (Sigma-Aldrich D210404) and 0.01wt.% of POPOP 

(Sigma-Aldrich P3754) were added to toluene (Panreac with a density of 0.86 g/cm3 at 20 

oC) and placed for dispersion in an ultrasound bath for 3 hours. After the complete 

dispersion of the scintillator nanoparticles and fluorescence molecules, SEBS was added 

with a ratio of 1:4 (1 g of polymer was added to 4 ml of solvent) to the solution and placed 

in a Teflon™ mechanical stirrer at 150 rpm until complete dissolution and homogeneous 

mixing of all components. Finally, a scintillator ink formulation was obtained with a 

viscosity between 2 and 5 Pa.s suitable for screen printing.  

 

 

Figure 3. Schematic representation of the printing processes used for the fabrication of 

the photodetector array and respective cure conditions: inkjet printing of 1) silver 

bottom layer; 2) dielectric layer of c-PVP ink; 3) silver layer corresponding to the drain 

and source electrodes; 4) OSC layer and screen-printing of 5) the scintillator ink.  
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The scintillator ink was deposited on top of the photodetectors by the screen printing 

technique as represented in Figure 3 - process 5, using a home-made manual screen-

printing machine. The screen-printer was fabricated in stainless steel and presents a support 

for the substrate that can be adjusted on the x and y axis. Further, it shows a frame to add 

and fix the screen mesh that can be adjusted in the z axis to ensure the required distance to 

the substrate support.  A polyester mesh screen was used in the printer. The dimensions of 

the aluminum frame attached to the mesh was 450 x 350 mm2 with a profile of 20 × 20 mm2. 

The mesh count for the printing screen was 65 threads/cm, the thread diameter was 52 μm, 

and the square-edged mesh opening was 102 μm. The squeegee orientation angle was set 

to 45º relative to the print substrate and the tension on the mesh was 20 N. After printing, 

the samples were oven-cured at 80 °C for 30 minutes. Figure 3 summarizes the different 

steps for the fabrication of the X-ray detection devices. 

 

2.4. Characterization of the printed photodetectors 

Scanning electron microscopy (SEM) images were obtained with a Zeiss Auriga 

microscope. The system is equipped with a focused ion beam (FIB) tool Zeiss 1560XB 

Cross Beam. FIB cuts were performed to obtain cross-sectional images of the layer stack 

in order to determine the thickness and the structure of the individual layers. Micro Raman 

spectroscopy experiments were performed under green and infrared laser excitations, 514.7 

nm and 532 nm, and 785 nm, respectively. Absorption spectra of the active layers were 

obtained by using the UV/Vis microreflectance spectrometer TIDAS S MSP 800 (J&M 

Analytik AG, Esslingen, Germany) connected to a Zeiss Axio Imager M2m microsope. 

The light source of the microscope was used to illuminate the samples through the 

microscope objective lenses. The reflected light was collected by the same lenses and 

guided to the spectrometer by optical fibres. The electrical characterization of the 
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photodetectors is equal to the electrical characterization of an organic thin-film transistor 

(OTFT). In order to ensure the uniformity and reproducibility of the results, the 

functionality of the printed photodetectors array was analysed for all 25 OTFT within the 

array. The percentage of functional OTFTs was over 80% relative to the total number of 

printed OTFT. This is also the same for different printed OTFT arrays. Furthermore, the 

photodetector and especially the active, semiconducting layer was exposed to a light source 

as shown in Figure 4. 

 

 

  

Figure 4. a) Schematic representation of the electrical and functional characterization 

setup of the transistor-based photodetectors for X-ray detection. The OTFT 

characterization parameters, voltage drain-source (VDS), current drain-source (IDS) and 

voltage gate-source (VGS) were measured, using the terminals drain (D), source (S) and 

gate (G); b) schematic representation of the experimental procedure with the final device, 

with the scintillator placed on top of the photodetectors, and representation of the main 

physical process taking place in the all-printed device. 

 

a) b) 
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The electrical measurements were performed with the QuadTech 1920 Precision LCR 

Meter. The electrical operation properties of the printed photodetectors were characterized 

with a 2400 source/meter and a 6457 picoammeter with integrated voltage source from 

Keithley (Keithley Instruments, Cleveland, OH, USA) controlled by LABView program 

developed for current vs. voltage (I-V) characteristic measurements. The probe station was 

directly connected to the photodetector using gold-coated round tips.  The IEEE1620 

standard test method was used for the characterization of the organic transistors. All 

measurements were performed at room temperature, in dark and multi-wavelength 

light conditions, achieved with a broadband Xenon arc lamp (Xenon XBO 75W/2 OFR, 

Osram, Munich, Germany) coupled via a 44-position bandpass filter wheel and appropriate 

focusing optics to a 100 μm core diameter multimode fibre, that allows to obtain a 

wavelength variation between 362 nm and 1000 nm. The IDS-VDS curve was obtained 

applying a fixed VGS when a light source was focused on the active area of the 

photodetector. The process was made for each wavelength (between 400 nm to 700 nm) 

and for each different applied VGS (from 5 to 45 V).  

The performance of the printed photodetector under X-ray radiation with and without the 

printed scintillator layer was measured by subjecting the samples to the X-ray radiation 

produced by a Bruker D8 Discover diffractometer using Cu Kα incident radiation 

(wavelength of 1.54056 angstroms) and powered with a voltage of 40 kV and a current 

ranging from 0 to 40 mA (output power changes from 0 to 1600 W). The efficiency of the 

X-ray to visible conversion was evaluated with an electronic measurement system that 

allows to quantify the emitted visible wavelength radiation, as described in 35.  

 

 

3. Results and discussion 



14 
 

The microstructure and the thickness of the printed layers for the printed photodetectors 

were obtained by the scanning electron microscopy (SEM) as shown in Figure 5 a).  The 

cross-sectional images were obtained by partial material removal using a focused gallium 

ion beam (FIB).  

  

 

Figure 5. a) Cross-section analysis by scanning electron microscopy of the organic 

printed photodetector showing the different layers of the heterostructure. b) photograph 

of the TFT channel with a width of about 26000 µm and a channel length of about 57 

µm. 

 

In Figure 5 a), it is observed that the silver electrodes are comparably rough and depending 

on the lateral position with different microstructural morphology, e.g. silver nanoparticle 

agglomerations are observed along the layer. The average layer thickness of the gate 

electrode is about 200 ± 40 nm. The average layer thickness of the S-D electrodes is just 

half of the gate electrode with about 100 ± 30 nm. The dielectric has a thickness of about 

1500 ± 30 nm and the organic semiconductor a thickness of about 300 ± 30 nm. The 

different layer thicknesses are caused by the substrate ink interaction of the different ink 

formulations and by the different print parameters indicated in the experimental section.  
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The UV/Vis micro-reflectance spectroscopy was performed for the OSC layer and is show 

in figure 6a. The OSC layer absorbs radiation with a wide and large band in the range of 

approximately 550 nm to 700 nm and narrower less intense bands below 430 nm and in the 

range of about 830 to 950 nm. 

The interface between the metal contact electrode, the dielectric and the organic 

semiconductor at the device channel plays a crucial role with regard to the performance of 

any organic semiconductor device 42. In organic photodetectors, a field in which electrons 

and holes play various roles in determining the functionality and performance of organic 

devices, e.g., charge injection/extraction, charge separation, and charge transport are highly 

dependent on the quality and reliability of the interface of the printed devices. Carrier 

injection from metal electrodes to semiconductors and its electrical transport are important 

key factors in electronic devices 43-45. Thus, the choice of the electrodes is as important as 

the selection of organic semiconductor (OSC).  In order to evaluate the metal 

electrode/polymer interface, Raman spectroscopy was performed (Figure 6b). It was 

observed that the interaction with the metal electrode affects some of the Raman modes 

marked by asterisks (*) in Figure 6b. It is also observed from the photoluminescence (PL) 

spectra averaged over the channel and electrode regions (excitation wavelength of PL 

spectra is 532 nm), Figure 6c and Figure 6d, respectively, that the photon emission from 

the organic semiconductor gets quenched for the polymer located at the electrode region. 

This slight quenching is spectrally selective affecting the emission band located around 

733 nm. This is contrary to the case of the band at 775 nm that experiences a slight increase 

over the electrode region with respect to the channel. Figure 6e shows the PL intensity map 

averaged over the emission range from 660 nm to 830 nm, where the PL quenching over 

the electrode at the bottom side of the image is clearly visible. In figure 6f it is shown the 

intensity ratio map between the bands at 733 nm and 778 nm. These results are particularly 
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interesting because they show a way to increase the light emission and so the performance 

of the device as an X-ray detector, for example, by decreasing the lateral dimensions of the 

interdigitated electrodes. Indeed, the Ag electrodes act as a pool of charge carriers that 

result in a de-doping effect on the polymer quenching the emission band 46. According to 

the position of Raman modes that are affected, we can tentatively attribute these vibrations 

to 

the carbon vibrations shown in figure 6b. 

Figure 6. a) UV/Vis micro-reflectance spectra of OSC layer; b) Raman spectra averaged 

over the Ag electrode and channel regions. The different modes affected by the interaction 
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of the polymer with the electrode are marked by asterisks (*); The photoluminescence 

emission spectra (light blue curve) averaged over the channel region c) and the electrode 

region d) with different modes deconvolved by fitting with 4 different emission bands 

(blue, red, green and purple curves); e) The emission map shown for the intensity within 

the spectral region around 733 nm. f) Map obtained from the intensity ratio between the 

emission around 733 nm and 775 nm. 

 

The absorbance spectrum of the OSC layer is very important for the operation principle of 

photodetector, since the indirect detection method is used with a scintillator, positioned or 

printed over the photodetector array, converting X-ray radiation in visible light 47. The 

emitted visible light from scintillator interacts with the active material of the photodetector 

and should be converted into electron-hole pairs, which represents the imaging charge 48. 

Therefore, the OSC layer of the printed photodetector needs to generate photo-activated 

charge carriers because of the radiation of the scintillator. Most of the available OSC with 

Highest Occupied Molecular Orbital - Lowest Unoccupied Molecular Orbital (HOMO-

LUMO) band gap energy ranging from 1.5 - 3.0 eV show photo-induced charge carrier 

effects in the visible light spectrum of about 400 nm to 700 nm. Based on the maximum 

absorbance of the OSC layer, the band gap energy is about 1.70 eV.  

The photodetector needs to be functional in the range of the visible radiation wavelength. 

Thus, a correct selection of the OSC is necessary which should be suitable for the required 

application and the detected light should also have a matching within a wavelength range 

that matches the absorption spectrum of the active layer and scintillator material 49-50. In 

this case, the OSC should be suitable to wavelengths on the visible light range. This fact is 

due to the absorption/emission spectra and quantum efficiency of the scintillator material, 

which converts the X-ray radiation into visible radiation. During the scintillation process, 
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several relaxation processes occurs and leads to a large number of relaxed electron-hole 

pairs which are transferred to states of lower energy and the corresponding emission of 

light (Figure 4b). Then, the electrons migrate to the activator excited state and the holes in 

the valence band migrate to the activator ground state 51. These transitions leads to the 

production of a scintillation photon 51. The fluorescence molecules (POPOP and PPO) 

absorb this scintillation energy and re-emits at higher wavelength, in the visible wavelength 

range that should be detected for the active material of the photodetector, inducing the 

photogenerated charge carriers in the OSC. Under a potential difference (external bias on 

the device) those carriers will result in a current increase, as represented on Figure 4b. 

To evaluate the electrical response and performance of the printed photodetectors, the I-V 

characteristics were measured in dark and under illumination. The wavelength for the 

illuminated measurement method (about 630 nm) was selected in order to match the 

maximum absorbance of the active layer present in the photodetector, in order to absorb in 

the spectral region were the emission of the scintillating material. The spectral peak of the 

photodetector absorbance should be matching with the visible light radiation as an assumed 

requirement to maximize application sensitivity to the application 1, 52.  
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Figure 7. a) I–V characteristics of the printed photodetectors (PD) measured in dark and under 

light radiation (630 nm) as a function of the applied drain-source voltage; b) I-V output curved 

for the PD under illumination; c) Electrical response of randomly-selected PD from the 5 x 5 

TFT matrix (channel: length of 57 µm, width of 26000 µm (image in the inset)), under X-ray 

radiation (PX-ray beam = 1600 W and a voltage applied on system of 45 V), as a function of the 

gate-source voltage; d) I-V curves of one of the single PD present in the PD array in dark (black 

curve), and under X-ray radiation with (green curve) and without (red curve) scintillator (SC) 

film (B2, B3, B4 and C3 are the nomenclature used to identify each PD: the different PD on 

the array are identified by a letter, which corresponds to the line, and with a number, which 

indicates the column of the 5 x 5 PD array), as a function of the drain-source voltage (Px-ray beam 

= 1600 W and a voltage applied bias of 45 V). 

 

Figure 7a shows the electrical characteristics of the photodetector array obtained from I–V 

measurements in dark and under light radiation with a wavelength of about 630 nm.  At -

45 V bias, the dark current was about 300 nA, while under illumination the photocurrent 
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was more than doubled with about 660 nA. It is concluded that the photodetector under 

illumination shows an increase in the drain-source current of approximately 120 % with 

respect to the device under dark. This indicates a good performance of the printed device 

to be used as a photodetector, relative with the photodetectors present in literature, which 

present photocurrents in the range of 20 to 200 nA 23, 53-54. The wavelength of illumination 

is in the spectral range response of the active layer (OSC layer) present on the photodetector 

array. The performance of the photodetector array was measured considering different 

applied negative voltages, 5, 15, 25, 35 and 45 V, respectively. Figure 7b shows that the 

printed photodetector array has its maximum response at 45 V.  

After that, the electrical response of the photodetector array (PD in Figure 7. Image in the 

inset of Figure 7c) was evaluated under X-ray radiation. The Figure 7c shows that the 

photodetector matrix has a consistent response, with the same electrical behavior when the 

radiation was applied independently of the single pixel, i.e. when the radiation is applied 

to every single photodetector, the electrical response is the same, independently of the 

photodetector within the array. The consistent response demonstrates the uniformity of the 

photodetectors response within the array, which is also extended to different photodetector 

arrays, as expected due to the reproducibility of printing technologies for device 

fabrication. For the indirect detection, the scintillator material used (SC in the graph, Figure 

7d) was printed on top of the photodetector matrix by screen printing technology as 

described in experimental section. The printed film has a thickness of around 30 µm and a 

transmittance of about 70 %, measured by Ultraviolet–Visible (UV-VIS) spectroscopy in 

a range between 200 to 800 nm with a 1 nm step in a UV-2501PC spectrometer, in order 

to allow the light passing through it to the OSC layer. The intensity of the converted visible 

radiation of this scintillator printed film increases with increasing X-ray output power. The 

scintillator nanoparticles content was optimized for this specific scintillator based on the 
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work already reported 36 in order to have a higher number of produced visible photons 55. 

It is to notice that other scintillator nanoparticles could be used, such as Gd2O2S:Tb56, 

Lu2O3:Eu57 and Gd2O2S:Eu58 but, in this case, the specific scintillator output spectra 

should be taken into consideration to design and fabricate the specific photodetector in 

order to maximize visible to electrical signal conversion. Figure 7d shows the response of 

the photodetector under X-ray radiation. The conditions of the X-ray power, voltage of 

40kV and a power from 0 to 1600W were optimized based on previous reported works 34-

35. In the following, the results with a Px-ray beam of 1600 W are shown. At lower x-ray power, 

the trend is the same as at 1600 W. After analysing the stability of the of the device upon 

ten X-ray radiation on/off cycles, the printed photodetector shows a stability of the signal 

of 98% for VDS from 20 to 45V, being therefore the variations within experimental error 

and therefore, no radiation aging is detected. The current intensity shows an increase with 

increasing applied voltage. At higher voltages (45 V) a higher electrical response of the 

photodetector under X-ray radiation (53 nA) is observed in comparison with the 

photodetector in dark (19 nA). This increase is more pronounced when the scintillator 

material is on top of the photodetector (102 nA). This represents an increase of the current 

intensity of about 93% and proves the good performance of the printed scintillator material. 

The printed X-ray detector responsivity is approximately 1.457 µA/W, under X-ray 

irradiation. Thus, in this work the development of a novel generation of flexible, all printed, 

and large-area devices applied on fields like security or medical imaging, for the detection 

of X-ray radiation was successfully demonstrated.  

 

4. Conclusions 
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The development of a novel generation of all printed and flexible indirect X-ray detectors 

based on polymer based scintillator inks and inkjet printed photodetector TFT-based array 

has been successfully demonstrated.  

The electrical response of the photodetector shows a dark current about 300 nA, while 

under illumination the photocurrent was about 660 nA, which corresponds to an increase 

of around 120 %, demonstrating the good performance of the printed device as a 

photodetector. Regarding to the performance as X-ray detection, after printing the 

scintillator ink, it was observed a higher electrical response of the photodetector under X-

ray radiation (53.1 nA) in comparison with the photodetector in dark (19.5 nA). This 

increase is strongly improved when the scintillator material is on top of the photodetector 

(102.4 nA).  This increase of 93 % in the current intensity of the device under X-ray 

radiation shows the suitability of the printed scintillator and all the devices for applications 

in the X-ray radiation detection area, concerning the results already reported 29, 59 of 

different photodetectors for indirect X-ray detection. Thus, a novel all-printed X-ray 

detection device for indirect radiation detector was manufactured with a combination of 

two different printing methods, inkjet and screen printing. These devices show a very 

promising performance for emerging large-area and low-cost flexible optoelectronics, 

which can be applied to, e.g., medical imaging or security industry.  
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TFT, thin-film transistor; DVD, digital versatile discs; CCD, charge-coupled device; 

CMOS, complementary metal-oxide-semiconductor; OPDs, organic photodetectors; PEN, 

Polyethylene naphthalate; PGMEA, propylene glycol monomethyl ether acetate; PMFM, 

Poly(melamine-coformaldehyde) methylated; c-PVP, cross-linked poly-4-vinylphenol; 

DMP, Dimatix Materials Printer; OSC, organic semiconductor; PPO, 2,5-dipheniloxazol; 

POPOP, 1,4-bis-(2-(5-phenioxazolil))-benzol; SEBS, Styrene-Ethylene/Butylene-Styrene 

(SEBS); OTFT, organic thin-film transistor; D, drain; G, gate; S, source; VDS, voltage 

drain-source; IDS, current drain-source; VGS, voltage gate-source; FIB, focused ion beam; 

SEM, scanning electron microscopy; PL, photoluminescence; PD, photodetector; HOMO-

LUMO, Highest Occupied Molecular Orbital - Lowest Unoccupied Molecular Orbital;  
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