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H I G H L I G H T S

• BSA/ASN/Pol407 nanoparticles production by high pressure homogenization.

• Stable nanoparticles with suitable properties for intravenous applications.

• BSA/ASN/Pol407 nanoparticles hydrolyze asparagine retaining the ammonia produced.

• Immobilization decreases the negative effect of free asparaginase on zebrafish.

• The ZET assay supports the safety of the BSA/ASN/Pol407 formulations.
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A B S T R A C T

During the treatment of acute lymphoblastic leukemia (ALL) with asparaginase (ASN) there is an accumulation
of ammonia in the body as result of asparagine hydrolysis. This accumulation known as hyperammonemia is one
of the main side-effects of this therapy. To avoid hyperammonemia is urgent to develop new strategies for
ammonia retention. Herein is presented the immobilization of ASN into bovine serum albumin/poloxamer 407
(BSA/Pol407) nanoparticles. The ability of the developed nanoparticles to hydrolyze asparagine while retaining
the forming ammonia is also explored. Different percentages of ASN were entrapped into BSA nanoparticles
coated with Poloxamer 407 and were prepared by high-pressure homogenization. The nanoparticles were
characterized regarding their physico-chemical properties, stability, capacity to retain ammonia and safety using
zebrafish embryos as an in vivo model of toxicity. The BSA/ASN25%/Pol407 nanoparticles were selected as the
best formulation to hydrolyze asparagine using the lowest nanoparticle concentration. These nanoparticles
presented physical characteristics suitable for an intravenous application and were capable to retain the forming
ammonia decreasing the negative effect of free ASN on zebrafish survival. These nanoparticles could potentially
be used to prevent hyperammonemia during ALL treatment with ASN.

1. Introduction

Acute lymphoblastic leukemia (ALL) is a malignant cancer of the
blood and bone marrow, affecting the white blood cells responsible to
fight infections. This disease is characterized by an uncontrolled in-
crease and excessive multiplications of malignant and immature lym-
phoblast in bone marrow. It alters the normal blood cells function and,
in many instances, can lead to death [1,2]. Among the antitumor drugs
used for the ALL treatment, there is one chemotherapeutic agent in
pediatric oncotherapy specific for ALL that is the bacterial enzyme as-
paraginase. This enzyme has been employed as the most effective

chemotherapeutic agent in pediatric ALL and improved the survival
rate of pediatric ALL to approximately 90% in recent trials [3].

Asparaginase (ASN) belongs to an amidase group responsible for the
hydrolysis of the amide bond in asparagine, forming aspartic acid and
ammonia. This catalysis reaction is responsible for ASN’s antileukemic
activity because normal cells are able to synthesize asparagine while
leukemic lymphoblasts are sensitive to the depletion of this extra-
cellular amino acid [4,5]. Malignant cells either express low levels of
asparagine synthetase or lack the capacity to upregulate the expression
of this enzyme in the absence of serum asparagine. Therefore, admin-
istration of ASN leads to asparagine depletion, inhibiting protein and
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RNA synthesis, which results in starvation and cancer cell death [6,7].
However, there are several side effects associated with this therapy like
hyperammonemia, defined by serum ammonia levels above 50 μmol/L
in the absence of liver disease [8–10]. Currently, hyperammonemia is
treated by reducing blood nitrogen levels by lower exogenous nitrogen
intake through protein restriction, by hemodialysis or ammonia-trap-
ping therapy with sodium benzoate and sodium phenylacetate [9]. In
this way, it is important to develop new strategies to avoid this side-
effect, like asparaginase entrapment into protein nanoparticles.

Previously, we reported the ability of albumin/asparaginase cap-
sules prepared by ultrasound to retain ammonia [11]. Despite the po-
sitive results, the nanoparticles physical properties were not suitable for
an intravenous administration and thus an improvement was essential
regarding the intended application. In this work we present different
BSA/ASN/Pol407 formulations, prepared by high-pressure homo-
genization (HPH), which were optimized for asparaginase entrapment.
Using HPH we aimed to obtain monodisperse particles with sizes close
to 100 nm, ideal for an intravenous application. The nanoparticles were
optimized relatively to enzyme concentration, asparaginase addition
during nanoparticles preparation and toxicity using an in vivo model.

BSA is a protein extensively used in drug delivery systems due to
several characteristics that include nontoxicity, nonimmunogenicity,
biodegradability and low cost. For this system, BSA show ideal features
since albumin nanoparticles allow electrostatic adsorption of charged
molecules due to the charged amino acids at the nanoparticles surface.
Also, this nanoparticles can be chemically functionalized due to the
reactive groups located at the nanoparticles surface [12,13]. The in-
corporation of Pol 407 in the formulations allows the production of
PEGylated nanoparticles without additional chemical surface mod-
ification. It is described that PEGylated nanoparticles exhibit reduced
adsorption of blood opsonins and consequently resist to the ingestion by
phagocytic scavenger cells, promoting their long blood circulation time
and biodistribution [14].

HPH is frequently used to obtain particles with small size and high
stability [15]. During the HPH process, the liquid is forced to pass
through a thin gap under high pressure. Thus, it leads to fast accel-
eration and, as the fluid exits the homogenization valve, the pressure
suffers an extreme pressure drop. The effects caused by the HPH cannot
be produced by one single physic phenomenon. At high pressure, it
involves a combination of high hydrostatic pressure, shear stress, ca-
vitation collapse, strong impacts, high-speed friction and heating that
are responsible for emulsion formation [16]. The mechanical force in-
volved in the HPH process can cause structural changes and dena-
turation of proteins while is able to disrupt the oil droplets into uniform
dispersion, adsorbing the denatured proteins into the oil droplets sur-
face. The high shear forces are able to modify protein conformation by
affecting intramolecular hydrogen, hydrophobic and electrostatic in-
teractions and it alters the tertiary and/or quaternary structure of most
globular proteins with relatively low influence on their secondary
structure. This method is able to disrupt the disulfide bonds in protein
molecules and the new disulfide bonds are formed by cysteine of intra-
and inter- albumin molecules. These formulations are electrostatically
stabilized due to the repulsion forces between the nanoparticles since
all nanoparticles are negatively charged in the dispersing media [14].
The BSA/ASN/Pol407 nanoparticles produced by HPH were character-
ized with respect to their stability, physical properties, in vivo toxicity
and capacity to retain ammonia. The new BSA/ASN/Pol407 nano-
particles will potentially have the capacity to simultaneously increase
enzyme stability over time in order to decrease the number of in-
travenous administrations, while retaining the free ammonia resulting
from asparaginase activity (Scheme 1). The ammonia retention on the
nanoparticles interface could result from the electrostatic interaction
between the positively charged ammonia and the superficial negatively
charged groups of the nanoparticles; and from the entrapment of am-
monia in the surface of the nanoparticles.

The BSA/ASN/Pol407 nanoparticles along with the adsorbed

ammonia are expected to be cleared from the body by the mononuclear
phagocyte system [17]. It was already demonstrated by some authors
the capacity of albumin particles to be phagocytosed by cells of the
mononuclear phagocyte system and completely degraded within 7 days
[18].

2. Materials and methods

2.1. Chemicals and reagents

ASN was obtained from Changzhou Qianhong BioPharma Co., Ltd.
(Jiangsu, China). Asparagine, aspartic acid, and Pol 407 were obtained
from Sigma (USA). BSA and Nessler reagent were obtained from Sigma-
Aldrich (USA). All other chemicals including eluents for high perfor-
mance liquid chromatography-mass spectrometry (HPLC-MS) and salts
were of analytical reagent grade.

2.2. BSA-based nanoparticles prepared by high pressure homogenization

The preparation of BSA/ASN/Pol407 nanoparticles was achieved by
emulsification using high-pressure homogenization [15]. All the com-
ponents were dissolved in phosphate buffered saline (PBS) 1x, pH 7.4,
with a final protein concentration (BSA plus ASN) of 10mg/mL and
emulsified with 0.5% (v/v) vegetable oil by subjecting the mixture to
26 cycles of high pressure homogenization (240 and 580 bar). The
PEGylated nanoparticles were composed by Pol407 on a concentration
of 5mg/mL and a percentage of enzyme varying from 5 to 25% (w/w)
relatively to the BSA concentration. The enzyme was added to the
formulation after 5 homogenization cycles. The nanoparticles were
collected by centrifugation using Vivaspin® 6 (Sartorius, Germany)
provided of a membrane with a molecular weight cut-off of 300.000 Da.

To characterize the immobilization process for the different for-
mulations, two parameters were evaluated: nanoparticles formation
efficiency and nanoparticles encapsulation efficiency [11]. For both
parameters, only the protein in the aqueous phase, obtained after na-
noparticles centrifugation, was used for quantification. For nano-
particles formation efficiency, the proteins in the aqueous phase was
quantified by Lowry method using the formula:

=

−

×Formation effieciency
Protein Protein

Protein
(%)

[ ] [ ]
[ ]

100total free

total

where [Protein]total and [Protein]free is the total concentration of pro-
tein added in formulation and the free concentration of protein in the
aqueous phase solution after centrifugation, respectively.

For the encapsulation efficiency, the aqueous phase was analyzed by
SDS-PAGE, using a 12.5% acrylamide/bis-acrylamide gel, and the
bands of free asparaginase identified. The gel was then examined with
the image process software ImageJ 1.50i. Comparing the intensities of
the molecular marker bands and the bands of asparaginase monomer, it
was possible to determine the relative intensity per μg of protein and
calculate the encapsulation efficiency [19].

2.3. Nanoparticle characterization

The nanoparticles were dispersed in PBS 1×, pH 7, and analyzed at
25 °C for their size distribution and polydispersity index (PdI). For the
Z-potential analysis, the same conditions were used with the nano-
particles dispersed in ultra-pure water. The parameters were de-
termined by photon correlation spectroscopy, using dynamic light
scattering (DLS) (Malvern Instruments, Nano-ZS) [11]. The values for
viscosity and refractive index were 0.8872 cP and 1.330, respectively.
Each sample was measured in triplicate and the results are presented as
mean value ± standard deviation (SD).
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2.4. Nanoparticles morphological characterization

The morphology of BSA/ASN/Pol407 nanoemulsions was evaluated
by SEM and STEM analysis. For SEM the particles were coated with
80% Au and 20% Pd before observation at 5.0 kV. For STEM the diluted
nanoemulsions suspension were dropped on copper grids with a 400
mesh carbon film, 3mm in diameter. The shape and morphology of the
microspheres were observed using a NOVA Nano SEM 200 FEI instru-
ment.

2.5. Determination of ASN enzymatic activity

The hydrolysis reaction of asparagine was performed with 0.001 g/L
of ASN or the corresponding concentration of immobilized enzyme and
100mM of asparagine, at 37 °C, in 50mM Tris−HCl, pH 8.0, or ultra-
pure water, for 240min. When the reaction was performed in ultra-pure
water, the enzyme was inactivated on ice and removed from the
medium by ultra-centrifugation (10,000 RCF, 30min) in microtubes
with a membrane cut-off of 5000 Da. After ultra-centrifugation, the
membrane was washed with ultra-pure water to prevent amino acid
retention in the membrane, and quantification of ammonia and aspartic
acid was performed [11]. Ammonia quantification was determined by a
stopped assay using Nessler’s reagent. The ammonia produced in 10 μL
of the reaction mixture was determined by adding 990 μL Nessler’s
reagent. The optical density of the solution was read at 436 nm
(BioTek®, Synergi MX), and the ammonia concentration was de-
termined on the basis of a standard curve previously obtained with
ammonium sulfate as a standard [20,21].

2.6. Aspartic acid quantification by HPLC-MS without derivatization

2.6.1. Mass spectrometer method
Mass spectrometer analysis was performed on Finnigan LXQ mass

spectrometer in a positive ionization mode. The aspartic acid solution
was prepared in ultra-pure water with 20% of acetonitrile and then
filtered with 0.2 μm filters. High flow source conditions were optimized
for aspartic acid with a flow rate of 5 μL/min. Source voltage was
4.95 kV, and source current was 0.60 μA. Sheath gas, aux gas and sweep
gas were 40, 20 and 19.98 arb, respectively. Capillary voltage was
17.77 V, capillary temperature was 274.88 °C and the tube lens voltage

was 25.01 V [11].

2.6.2. HPLC-MS method
A reverse-phase HPLC-MS system with the column Synergi Hydro-

RP, 80 Å, 4 μm and 150×4.60mm (Phenomenex®) was used to isolate
aspartic acid. As eluent, the selected solvent was ammonium bicarbo-
nate 0.01M with the pH adjusted to 6.0, with formic acid (A) and
acetonitrile (B). A sample volume of 25 μL was injected with a flow rate
of 0.3mL/min for 20min. The gradient program started with 95%
solvent A during the first 8 min, decreased linearly to 40% solvent A in
the next 7min, and returned to the initial 95% during the next 5min. In
consequence, the solvent B started with 5% during the first 8 min, in-
creased linearly to 60% solvent A in the next 7min, and returned to the
initial 5% during the next 5min. The peak identification was performed
through the MS detector and compared to the elution times obtained
when the amino acids were analyzed separately, in the same conditions.
For a more correct calculation of the peak area, the ‘Base Peak’ control
from Xcalibur program was used. With this control, it is possible to
obtain the peak from each amino acid individualized by selecting their
mass weight [11].

2.7. ZET protocol and collected data

In vivo nanotoxicity and bioactivity of ASN enzyme, either free or
immobilized in BSA/Pol407 nanoparticles, was assessed with the zeb-
rafish embryo toxicity (ZET) assay, as described in Oliveira et al. 2016
[22]. All experiments were conducted in agreement with the applicable
European legislation on animal welfare, i.e. Directive 86/609/EEC,
which allows zebrafish embryos to be used up to 120 h post-fertilization
(hpf). As the ZET experiments were carried out up to 56 hpf, no license
was required.

Zebrafish zygotes within 2 hpf were randomly allocated into 24-well
microplates (5 eggs per mL), with continuous waterborne exposure of
free and immobilized ASN at different concentrations (7 and 70 μg/
mL), for 56 hpf. All the ASN solutions were prepared in autoclaved PBS
1x, pH 7.4, filtered with 0.22 μm polystyrene membrane and pre-
warmed before application. Stock solutions were kept overnight at 4 °C
and re-warmed for solution renewal prior use at 24 and 48 h of in-
cubation. All zebrafish embryos were derived from the same eggs
spawn. Autoclaved and filtered (via 0.22 μm polystyrene membrane)

Scheme 1. BSA based nanoparticles for hyperammonemia prevention during acute lymphoblastic leukemia treatment with asparaginase.
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freshwater was used in all treatments, obtaining a zebrafish embryonic
maximum mortality of 25% in the control group. To ensure optimal
incubation temperature of the zebrafish embryos, all the test solutions
and suspensions were pre-heated to 28 ± 1 °C. To investigate the effect
of ASN exposure on zebrafish embryos, survival rates were investigated
and multiple sub-lethal parameters were collected. Morphometrically,
the chorion and yolk volumes were measured at 8 and 32 hpf. In ad-
dition, the head-trunk angle (HTA) of 32 hpf zebrafish embryos was
measured in order to detect atypical straightening [23]. 20 embryos
from each test condition (10 per quadruplicates) were randomly se-
lected and the number of heart beats were counted during 10 s at 32
and 56 hpf. In order to avoid bias, “blind” observations were performed
by a single person. At 8, 32 and 56 hpf, 20 zebrafish embryos from each
condition were photographed using a Nikon Eclipse TS 100 inverted
microscope with Nikon digital sight camera DS-Fi1. All morphometric
analysis was performed using the image processing program ImageJ
1.46 r. The following developmental endpoints were further assessed:
developmental delay, phenotypical malformations and hatching rate. In
all ZET experiments, dead embryos were removed to avoid cross-con-
tamination, a process repeated three times every 24 h [24].

2.7.1. Zebrafish embryogenesis statistical analysis
All assumptions were met prior to data analysis. Shapiro-Wilk test

was used for normality evaluation and Levene’s test was applied for
homogeneity of variances certification. To investigate differences
among ASN concentrations in the overall survival of zebrafish embryos,
a chi-square test was performed with the observed values for each test
condition. The null hypothesis of “no differences among ASN con-
centrations” was assumed for the consideration of the expected values
(average survival of all treatments, for a given hpf). The effect of ASN
exposure on egg volume (8 hpf), head-trunk angle (32 hpf) and heart
rate (32 hpf and 56 hpf) of zebrafish embryos, was evaluated through a
six-level one-way ANOVA analysis. In order to test for differences
among ASN concentrations on zebrafish embryos hatching rate (56
hpf), a chi-square analysis was conducted. The null hypothesis of “no
differences among ASN concentrations” was considered for the estab-
lishment of the expected values (average hatching rate of all treat-
ments). To avoid biases associated with covariates, ANCOVA model was
applied to determine the influence of ASN on zebrafish embryos yolk
volume (8 hpf and 32 hpf; egg volume was used as co-variable) and yolk
extension (56 hpf; body length was used as co-variable). Post hoc
comparisons were conducted using Student-Newman-Keuls. A P value
of 0.05 was used for significance testing. Analyses were performed in
STATISTICA (StatSoft v.7, US) [22].

3. Results

3.1. Effect of enzyme concentration on nanoparticles physical properties

To study the effect of enzyme concentration on nanoparticles phy-
sical properties (mean size, surface charge and size distribution), five
different BSA/ASN/Pol407 nanoparticles were obtained varying ASN
concentration in the nanoparticles formulation. Generally, a size below
75 nm was observed for all the formulations 1 day after synthesis

(Table 1). The nanoparticles with smaller size (62.8 ± 1.41 nm) were
obtained for the formulation containing 25% ASN, and the formulations
with 15 and 25% of enzyme presented a more homogeneous population
(PdI< 0.13). Relatively to the Z-potential, all formulations presented a
surface charge close to neutrality. All formulations were characterized
regarding their stability along time of storage and in Fig. 1 is re-
presented the data regarding the most stable formulation – BSA/
ASN25%/Pol407 – which was selected for further assays. This formula-
tion was stable over time in terms of size and the measured PdI was
always lower than 0.2, demonstrating the homogeneity of the for-
mulation (Fig. 1-B). Regarding the Z-potential (Fig. 1-A), it was verified
that the nanoparticles become more negative over time. For this for-
mulation, the nanoparticle formation efficiency was 91.11 ± 1.6% and
the encapsulation efficiency was 85.38 ± 1.5%. Encapsulation effi-
ciency for the other BSA/ASN/Pol407 formulations ranged between 70
and 80% (Table 2). The small size of the BSA/ASN25%/Pol407 nano-
particles was confirmed by STEM analysis, which recorded a population
diameter ranging between 87.5 and 134.1 nm (Fig. 2-A). These values
are slightly higher than those measured with DLS (Table 1) which may
result from differences between techniques. Also, using SEM technology
(Fig. 2-B), it was also demonstrated the nanoparticles spherical shape.

3.2. Effect of enzyme concentration on BSA/ASN/Pol407 nanoparticles
activity over time

ASN activity of all formulations was evaluated over the 4 months of
storage at 4 °C, using the Nessler method that quantifies the produced
ammonia in solution resulting from asparagine hydrolysis (Fig. 3). The
starting values (i.e. 0 months) correspond to the activity determined
one day after synthesis. As it is possible to observe in Fig. 3, ASN ac-
tivity of immobilized enzyme was lower when compared to the free
enzyme in PBS. After 1 month of storage, a 70% decrease in the activity
of the free enzyme in PBS was verified. The formulation BSA/ASN5%/
Pol407 showed 30% less hydrolytic activity, which is significant but less
drastic when compared to the free enzyme. The remaining formulations
either maintained or displayed increased enzyme activity over this
period.

After 4 months of storage, the formulations with higher enzyme
stabilization evaluated in terms of enzyme activity were those with
higher ASN concentration, namely the formulations with 15, 20 and
25% of enzyme. These formulations can be stored up to 4 months at 4 °C
while maintaining a high asparaginase activity. Considering the ASN
activity over time and the nanoparticles physical properties, the BSA/
ASN25%/Pol407 formulation was selected to study ammonia retention
and in vivo toxicity. Also, with this formulation it will be possible to use
lower nanoparticles concentration in order to achieve higher rates of
asparagine hydrolysis.

3.3. Nanoparticles capacity to retain ammonia

The main objective of this work was the development of a new
system capable to simultaneously hydrolyze the free asparagine from
serum but also retain the ammonia formed during the hydrolysis re-
action. In this way, two different concentrations of ASN, free or im-
mobilized into BSA/ASN25%/Pol407 nanoparticles, were incubated with
100mM asparagine in ultra-pure water at 37 °C, for 4 h. Then, the na-
noparticles were removed from the reaction medium. The free am-
monia was quantified using the Nessler reagent and the aspartic acid
quantified by an HPLC-MS method developed previously by our group
[11] - Table 3.

For this assay, two different concentrations of ASN (7 and 70 μg/
mL) were tested. 70 μg/mL of ASN was chosen according to the highest
BSA concentration (300 μg/mL) tested in vivo via a ZET assay (data not
shown).

Analyzing Table 3, it is possible to note that almost all the aspar-
agine in the medium was hydrolyzed when incubated with the

Table 1
Physical properties of BSA/ASN/Pol407 nanoparticles one day after synthesis
and 4 °C storage. The values were calculated and expressed as mean ± SD
(n=3).

Formulation Size (nm) PdI Z-potential (mV)

BSA/ASN5%/Pol407 71.11 ± 0.88 0.20 ± 0.00070 −2.13 ± 0.099
BSA/ASN10%/Pol407 69.09 ± 0.67 0.19 ± 0.027 −1.28 ± 0.034
BSA/ASN15%/Pol407 72.53 ± 1.15 0.11 ± 0.021 −0.33 ± 0.014
BSA/ASN20%/Pol407 73.99 ± 3.74 0.23 ± 0.0028 −1.96 ± 0.078
BSA/ASN25%/Pol407 62.80 ± 1.41 0.13 ± 0.010 −3.79 ± 0.20
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nanoparticles, which was not observed when testing free enzyme. It is
thus possible to conclude that enzyme entrapment leads to a higher
activity when compared to the free enzyme due to its stabilization by
the system. Relatively to the ratio aspartic acid/ammonia, this ratio was
above 1 only with nanoparticles, which indicates that the ammonia is
retained in the nanoparticles.

3.4. In vivo toxicity evaluation of ASN nanoparticles using the ZET protocol

Zebrafish embryos represent an attractive model for preclinical drug
discovery applications since they offer the possibility to perform small-
scale high-throughput analyses [25]. The main advantages of using
zebrafish embryos for compound screening are their rapid develop-
ment, small size, easy maintenance, transparency and capacity to ab-
sorb compounds dissolved in the water [26]. Zebrafish embryos are
thus used as a powerful, alternative model for toxicity testing to provide
an in vivo assessment of new compounds and nanoparticles at an early
stage in drug discovery [27,28]. Taking in account all these char-
acteristics, zebrafish embryos were used as a model to test the BSA/
ASN/Pol407 nanoparticles toxicity.

Controls for this experiment (effect of the free compounds that
compose the nanoparticles) were included and no significant differ-
ences were observed relatively to the control of untreated zebrafish
embryos (data not shown). For simplicity, in this section, the free

enzyme will be represented by ASN and the BSA/ASN25%/Pol407 na-
noparticles by Np.

When analyzing the effects of ASN, free or immobilized in Np, on
zebrafish embryos survival (Fig. 4), a significant interaction was ob-
served among different groups for a given hpf (χ2=12.266; DF=4;
P < 0.05). The significant difference for the Np 7μg/mL is due to an
increase in the zebrafish embryos’ survival rate, pointing that the ASN
entrapment into BSA/ASN/Pol407 nanoparticles decreased the toxic
effect observed for the free enzyme. The time-window from 8hpf to
32hpf showed an increased zebrafish embryotoxicity for all conditions
tested, including control (see Fig. 4), with all the conditions with a
survival rate higher than 55%. The overall survival of zebrafish eleu-
theroembryos (embryos post-hatch, but prior to external feeding i.e. at
56 hpf) did not vary significantly from the survival rate exhibited at
developmental stages immediately prior to hatching (i.e. 32 hpf).

Taking only into account the egg volume (Fig. 5-C), a decrease was
detected at 32 hpf for the ASN 70 μg/mL and Np 7 μg/mL, although not
statistically relevant. In this way, none of the tested conditions showed
significant differences on egg volume during embryonic development (F
(4131)= 1.1031, P=0.35793).

In addition, an acceleration of the zebrafish embryonic hatching
rate was verified at 56hpf for all the tested conditions (χ2=13.270;
DF=4; P < 0.05) (Fig. 5-F). It is important to notice that the results
for Np 7 μg/mL and Np 70 μg/mL are equal, so the graphic overlaps for
these two conditions.

When considering the effects of free and immobilized ASN on zeb-
rafish head-trunk angle, no significant interaction between the con-
sidered factors was observed (F(4.33)= 0.689, P=0.60450). Although
not significant, a slightly decrease was observed in the head-trunk angle
when incubated with higher concentration of free ASN. This did not
occur when the enzyme was immobilized into the nanoparticles, which
lead to a profile similar to the control group (Fig. 5-D).

Yolk extension is a developmental module formed in the phylotypic
period of zebrafish embryogenesis, overlapping trunk straightening at

Fig. 1. Characterization of BSA/ASN25%/Pol407
nanoparticles during storage at 4 °C. a) Z-po-
tential, b) Z-average and PdI. The data re-
presents the mean ± SD from three in-
dependent experiments. Data were analyzed by
one way-ANOVA: P-value ≤0.05 (asterisk), P-
value ≤0.01 (circle), P-value ≤0.001 (dia-
mond), P-value ≤0.0001 (square), compared
to the results obtained at day 1.

Table 2
Nanoparticles formation efficiency and nanoparticles encapsulation efficiency.
The values were calculated and expressed as mean ± SD (n=3).

Formulation Formation efficiency (%) Encapsulation efficiency (%)

BSA/ASN5%/Pol407 93.10 ± 0.58 70.33 ± 1.91
BSA/ASN10%/Pol407 90.89 ± 0.98 82.48 ± 4.96
BSA/ASN15%/Pol407 90.42 ± 1.35 81.85 ± 3.60
BSA/ASN20%/Pol407 90.67 ± 1.97 72.77 ± 4.17
BSA/ASN25%/Pol407 91.11 ± 1.60 85.38 ± 1.50

Fig. 2. STEM picture of BSA/ASN25%/Pol407 nanoparticles at 100000× (A); SEM picture of BSA/ASN25%/Pol407 nanoparticles at 50000× (B).
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the pharyngula stage [29]. When analyzing the effects of ASN in zeb-
rafish embryos yolk extension (adjusted for total body length), it was
verified that the presence of free or immobilized ASN tended for a re-
lative increase of the yolk extension, with a significant increase for the
ASN 70 μg/mL and Np 7 μg/mL (F(4, 50)= 2.849, P < 0.05) (Fig. 5-
B).

ANCOVA results on effects of ASN free or immobilized in Np on
zebrafish embryos yolk volume (adjusted for egg volume) showed no
significant interaction among groups (F(4130)= 1.0101,
P=0.40473), independently of the hpf (Fig. 5-A).

Increased heart rate of zebrafish embryos (Fig. 5-E) was observed

from 32 hpf to 56 hpf, which is expected during normal heart devel-
opment [23]. Nested ANOVA results on effects of ASN (free and im-
mobilized in Np) on zebrafish embryos heart rate showed no significant
interactions for each tested time point in relation to the control group
(32 hpf: one way ANOVA: F(4, 44)= 0.72812, P=0.57756; 56 hpf:
one way ANOVA: F(4, 42)=1.4972, P=0.22033). At 32 hpf, it was
verified a slightly increase for the lowest concentration of immobilized
ASN, although the differences are not statistically significant (F(444)
=0.728, P=0.57756). For the 56 hpf, it was verified a small decrease
on zebrafish embryonic heart rate for the highest concentration of free
ASN, but the interaction was not significant (F(442)=1.497,
P=0.22033).

4. Discussion

In order to develop a new strategy to retain the free ammonia
forming during asparagine hydrolysis, different formulations with im-
mobilized asparaginase were developed and characterized. All the
formulations presented, at day 1, a small size (lower than 75 nm) which
is an advantage for intravenous application [30] and an improvement
when comparing with the BSA/ASN2%/Pol407 previously obtained by
ultrasounds [11]. Relatively to the Z-potential, all the formulations
demonstrated a superficial charge close to neutrality, what was ex-
pected due to the incorporation of Pol 407, a non-ionic surface active
compound that exhibits a tendency to accumulate at the interface be-
tween the aqueous and organic phase, stabilizing the system [15]. This
co-polymer is responsible for the nanoparticle’s coating, which shields
the surface charge [31].

The BSA/ASN25%/Pol407 formulation was selected for further assays
because it permits to use a lower concentration of nanoparticles to at-
tain a defined enzyme activity. This in turn reduces the risk of a po-
tential toxic effect. Also, this formulation was stable in terms of size and
PdI for more than 4 months when stored at 4 °C. When analyzed the Z-
potential, it was verified that the nanoparticles become more negative
over time, which could result from the desorption of some Pol 407
molecules from their surface [11]. Pol 407 is a non-anionic surfactant
that forms a matrix with the BSA surrounding the oil phase. The re-
moval of some molecules from the nanoparticle surface will shift the Z-
potential to more negative values [15]. The formulation’s ideal prop-
erties for intravenous application was corroborated by STEM and SEM
analysis where it was confirmed the small size of BSA/ASN25%/Pol407
nanoparticles as well as its spherical shape, another positive feature for
the intended application.

For the effect of enzyme concentration on BSA/ASN/Pol407 nano-
particles activity over time, it was verified that the activity of aspar-
aginase immobilized into the nanoparticles was lower when compared
to the free enzyme in PBS. This could be related to the harsh conditions

Fig. 3. Activity of free ASN in PBS and im-
mobilized on BSA/ASN/Pol407 nanoparticles
prepared by high pressure homogenization.
Activity was determined for 4 months during
storage at 4 °C. The reaction was performed
with 0.001 g/L of ASN and 100mM of aspar-
agine for 240min, at 37 °C, in 50mM Tris-HCl,
pH 8.6. Absorbance of the solutions after
Nessler method was measured at 436 nm and
compared with the absorbance of a calibration
curve (Absorbance= 0.03598 [ammonia]
mM). The data represents the mean ± SD from
three independent experiments. Data were
analyzed by one way-ANOVA: P-value ≤0.001
(diamond), P-value ≤0.0001 (square), com-
pared to the results obtained for the free en-
zyme in PBS.

Table 3
Evaluation of ammonia retention by BSA/ASN25%/Pol407 nanoparticles. The
values were calculated and expressed as mean ± SD (n= 3).

Samples [Aspartic Acid]a

mM
[Ammonia]b mM Ratio [aspartic

acid]/[ammonia]

BSA/ASN25%/
Pol407 (ASN
7 μg/mL)

98.64 ± 2.30 97.31 ± 1.15 1.01

BSA/ASN25%/
Pol407 (ASN
70 μg/mL)

99.78 ± 1.99 84.29 ± 2.99 1.19

ASN free (7 μg/mL) 89.47 ± 7.71 91.89 ± 1.91 0.97
ASN free (70 μg/

mL)
93.91 ± 4.75 97.74 ± 0.12 0.96

a
Aspartic acid quantified by HPLC-MS comparing the peak area with the calibration curve: Peak

area = -2.26x10
5

([aspartic acid]
2
mM) + 7.62x106 [aspartic acid] mM.

b
Ammonia quantified by Nessler method considering the calibration curve: Absorbance = 0.0309

[ammonia] mM.

Fig. 4. The effects of ASN as free drug (ASN) and BSA/ASN25%/Pol407 nano-
particles (Np) exposure on Danio rerio embryos survival. Results shown are
means of quadruplicate wells ± SD. Error bars represent the coefficient of
variation for the findings.
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employed during the homogenization process (high pressure and a
temperature nearing 50 °C), with diffusional problems between the
substrate and the enzyme, with steric hindrance blocking enzyme ac-
cess to the substrate, with the loss of enzyme conformational freedom
or due to the retention of ammonia on the particles surface [32,33].
After 1 month of storage, some formulations exhibited an increase on
asparaginase activity associated with the stabilization of the nano-
particles or the loss of some Pol407 molecules from the nanoparticles
surface, corroborated by the more negative values of the nanoparticles
Z-potential. The loss of the Pol407 molecules could facilitate access to
the substrate which would result in increased enzyme activity.

The BSA/ASN25%/Pol407 nanoparticles were studied regarding their
capacity to retain ammonia and a ratio of aspartic acid/ammonia
higher than 1 was verified which supports their capacity to retain
ammonia. The capacity to retain the forming ammonia could be due to
a conjugation of several phenomena: electrostatic interactions between
the positive charge of ammonia and the negative charge on nano-
particles interface and the retention of ammonia on nanoparticles sur-
face. In this way, the ammonia will be preferentially entrapped into the
nanoparticles, rather than free in the serum. It is important to refer that,
for this assay, were used enzyme concentrations much higher than the
ones used in the determination of enzyme activity’ for free or im-
mobilized asparaginase – Fig. 3. Generally, all the substrate was hy-
drolysed within the 4 h of incubation and the differences between the
free and immobilized asparaginase at month 0 were not verified.

To evaluate the BSA/ASN25%/Pol407 nanoparticles in vivo toxicity,
zebrafish embryos were selected as a model. Taking in account all the
advantages of this model [34], zebrafish can also be used as a model to
study hyperamonemmia since its pathophysiology appears to be similar
to that in mammals. Moreover, zebrafish brains cells appear to be as
sensitive to ammonia as the human brain, so they are suitable to study
drugs that can act as a neuro-protector against ammonia [35]. During
embryonic stages, urea production has an important role in protecting
the embryo from toxic effects of ammonia produced from a highly

nitrogenous yolk. Also, in embryos, ammonia excretion is limited by the
chorion so fish must detoxify ammonia by synthesizing urea [36,37].
All this similarities with mammals could be an indication of how zeb-
rafish embryos could be used as a model to study the nanoparticles
capacity to retain ammonia [38,39].

During the incubation of zebrafish embryos with the asparaginase,
free or encapsulated, the number of live and dead embryos was re-
corded during 80 hpf. A significant difference in the zebrafish embryos’
survival rate when incubated with Np 7 μg/mL was observed. This
decrease in the toxicity could be due to the nanoparticles’ capacity to
retain ammonia. It was already described for Gobiocypris rarus (a spe-
cies that shows features similarities with zebrafish) that high levels of
ammonia decreased growth, retarded development and increased
mortality [40]. The retention of ammonia by the nanoparticles will
decrease the ammonia concentration and avoid its potentials side-ef-
fects. Increasing the survival rate observed for the zebrafish embryos.
The significant effect verified at 56 hpf as an acceleration in the
hatching rate for all the tested conditions could be explained as, upon
hatching, the chorion is digested by event-related proteolytic enzymes,
which are thought to be responsible for the chorion softening process
[41]. A potential solubilization via ASN of minor portions of the zeb-
rafish egg envelop glycoproteins could underlie an acceleration of
chorion softening process and, thus, explain the relative increased
percentage of hatched embryos. For the effect on embryos yolk exten-
sion, it was verified a significant increase in this parameter when the
embryos were incubated with ASN 70 μg/mL and Np 7 μg/mL. Inter-
estingly, the extracellular matrix protein laminin α-5 has been im-
plicated in yolk extension formation and fins development at zebrafish
trunk edges [29,42]. As for the membrane protein of zebrafish chorion,
potential catalysis of ASN over asparagine residues from laminin α-5 is
a reasonable assumption.

Generally, the BSA/ASN25%/Pol407 nanoparticles proved to be safe
to the zebrafish embryos. The enzyme entrapment decreased the ne-
gative effect of free ASN on zebrafish survival and this formulation did

Fig. 5. The effects of ASN as free drug (ASN) and BSA/ASN25%/Pol407 nanoparticles (Np) exposure on Danio rerio embryos’: A) yolk volume; B) yolk extension; C) egg
volume; D) head trunk angle; E) heart rate and F) hatching rate. Results shown are means of quadruplicate wells ± SD. Error bars represent the coefficient of
variation for the findings in the replicate wells.

A. Tinoco et al. Biochemical Engineering Journal 141 (2019) 80–88

86



not affect the development process of zebrafish embryos in any of the
tested parameters, except for the hatching rate.

5. Conclusion

A new system for the entrapment of asparaginase was successfully
developed by high pressure homogenization using BSA and Pol 407 as
core nanoparticle constituents. The systems with higher enzyme per-
centage (15, 20 and 25%) were capable to maintain the initial ASN
activity for at least 4 months and in some cases, there was an increase
on enzyme activity. The formulation BSA/ASN25%/Pol407 exhibited
features (size and PdI) appropriated for an intravenous application and
was able to retain ammonia when compared with the free enzyme. To
reduce the ammonia levels in blood, nowadays, it is used several
techniques like hemodialysis capable to increase the nitrogen excretion,
or therapy with sodium benzoate and sodium phenylacetate that are
known nitrogen scavengers [9,43]. The BSA/ASN25%/Pol407 nano-
particles in vivo toxicity was evaluated using the ZET protocol. Although
a significant effect of the free ASN in the zebrafish embryonic survival
was verified, this negative effect was avoided when the enzyme was
immobilized into the nanoparticles, supporting the advantage of using
this system instead of the free enzyme. Overall, the ZET results sup-
ported the safety of the BSA/ASN25%/Pol407 nanoparticles using an in
vivo model.

The BSA/ASN25%/Pol407 nanoparticles here presented have a great
potential to be used for the treatment of ALL since ASN activity is stable
for a higher period of time. Moreover, the formulation has the capacity
to retain the forming ammonia, which could avoid hyperammonemia.
Additional studies will be performed in the future to characterize the
nanoparticles antileukemic activity in vitro and in vivo using cells and
animal models.
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