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A B S T R A C T

Dysphotopsia affects a significant number of patients, particularly after visual correction with multifocal optical
designs.
Purpose: Evaluate light distortion (LD) in two modalities of contact lens (CL) wear: multifocal (MF) and
monofocal (MV).
Methods: This was a randomized, double-masked, crossover study involving 20 presbyopic patients. Patients
were randomized first into either MF or MV for 15 days of use with a 1 week wash-out period between each lens
type. The LD was evaluated with the Light Distortion Analyzer (LDA, University of Minho) under monocular and
binocular conditions. The light distortion index (LDI, %), among other parameters were analyzed. Subjective
quality of vision was assessed with the Quality of Vision (QoV).
Results: The LD showed an increase in all parameters in both CL modalities being significant for MV in the non-
dominant eye (p < 0.030, for all LD parameters). For the MF, there was also a significant increase in LDI
(p=0.016) and in BFCrad (p= 0.022) in the non-dominant eye. After 15 days of MF lens wear, there was a
significant decrease in all LD parameters (p < 0.002) in the dominant eye. Binocularly, a significant im-
provement from 1 to 15 days was observed for LDI (p=0.009) and BFCrad (p=0.0013) with MF. The QoV
questionnaire showed no significant changes with neither CL. Conclusions. Adaptation to light disturbances
induced by MF CL is more effective compared to MV. Practitioners will have greater success if they prepare their
patients for the adaptation required as their vision will get better and have less of an issue with light disturbance.

1. Introduction

A consequence of the progressive ageing of the population is the
significant growth in the ng number of contact lens (CL) wearers re-
quiring presbyopic correction. The availability of multifocal CLs, the
improved materials/wetting agents and generally better management
of dry eyes, together with the improved marketing and familiarity of
practitioners with the products, largely contribute to this growth [1,2]

Currently, patients have a variety of options for correcting presby-
opia with CL, based on different principles: monovision, bifocal or tri-
focal alternating vision and multifocal simultaneous vision CLs. Within
the multifocal lens category, two different types of designs are currently
available: concentric spherical or progressive aspheric designs [3,4]
Whereas in monovision one eye is corrected for distance and the other
eye is enhanced for near vision, [5] multifocal designs of simultaneous
vision provide clear vision at various distances, widening the depth of

focus of the lens-eye system [3,6].
Monovision modality is independent of pupil size, and vision is

lesser compromised in dim lighting or at low contrast [7–9]. On the
other hand, the optical principle of multifocal contact lens is based on
the formation of multiple images along different foci in each eye, which
implies some compromise in visual performance, particularly under
low-light conditions [10,11].

Although current multifocal strategies provide satisfactory distance,
intermediate and near visual acuity, adverse subjective visual dyspho-
topic phenomena such as haloes, ghosting, or glare, are often reported
by patients fitted with multifocal modalities [12–15].

Positive dysphotopsia is a photic light disturbance (LD) of vision
that includes specific phenomena generally described in academic lit-
erature as glare, starburst, and haloes. Frequently might also involve
hazy vision, monocular diplopia, polyopia, and defocus [16]. Glare
refers to a bright and intense light source caused by scattered rays in the
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light path from media opacities and optical discontinuations. It can be
divided into discomfort glare and disability glare [17]. The former is a
subjective discomfort sensation induced by a bright light without
causing significant losses in vision. Disability glare is associated to a
significant loss in retinal image contrast due to an inappropriate dis-
tribution of light [18]. Halos and starburst, commonly referred as night
visual disturbances, degrades the size and shape of the point source of
light. Halos are perceived as circular shadows and starburst as a radial
or regular scattering of light from a point source [19].

The measurement of these symptoms have been carried out with
different methodologies beyond the use of subjective questionnaires
and psychometric methods [20–25].

However, some of the commercially available techniques are lim-
ited in their ability to discriminate the light disturbance in all directions
or do not measure the detailed shape and irregularity features. Previous
studies showed an increase of about 15–23% in light distortion by
multifocal intraocular lens (IOL) when compared to monofocal IOL
implantation, with trifocal IOL inducing lower values of light distortion
than extended depth of focus IOL [26] or bifocal IOLs.15 So far, few
studies evaluated the perception of light disturbances in multifocal CL
wearers. Besides, the contribution of dominance and the difference in
optical design within the same multifocal CL, as well as the binocular
summation effect are not completely known [27]. The quantification of
such disturbances is relevant to a better understanding of complains
and adaptation of simultaneous vision multifocal CL to avoid fitting
failure and dropout.

This study aimed to evaluate how different presbyopic corrections
with contact lenses affect the LD phenomena. For this purpose, the
Light Distortion Analyzer (LDA, CEORLab, University of Minho, Braga,
Portugal) [25,28] was used. This device allows measuring light dis-
turbance under more realistic conditions, using hardware with physical
LEDs designed to be able to quantify and analyze the size, shape and
irregularity of positive dysphotopsia in multiple directions around a
central source of glare, under laboratory conditions.

2. Methods

2.1. Sample

This was a randomized double-masked crossover study involving
participants recruited from the staff of the University of Minho and
performed at the Clinical and Experimental Optometry Research Lab
(CEORLab). Following the tenets of the Declaration of Helsinki, all
participants provided informed consent after they received an ex-
planation of the nature, procedures, and consequences of the study. The
inclusion criteria were: age between 45 and 65 years; lens opacities
under grade II in LOCS III cataract grading scale; maximum spectacle
astigmatism of 0.75 diopters (D) in either eye, best-corrected distance
visual acuity (VA) of at least 0.00 logMAR in each eye. Patients could
not have binocular vision anomaly, no ocular or systemic disease, and
no need for medication that might interfere or contraindicate contact
lens wear.

Macedo-de-Araújo et al. 29 reported that the induction of +0.15 μm
spherical aberration (SA) leads to an increase between 10 and 20% in
light disturbance index (LDI). Considering that the mean induced SA by
multifocal CL are in that order of magnitude, the sample size required
was 18 subjects, to warrant an 80% power (type II error risk of 20%)
and to detect 10% differences in LDI between follow-up visits, for a
statistical significance level of p= 0.05 (type I error risk of 5%).

2.2. Outcome measures

After confirming subjects’ suitability, a crossover study was con-
ducted. Participants were randomized first into either multifocal or
monovision for 15 days of wear for each modality with a 1 week wash-
out period between each lens type.

For both modalities, the contact lens used were of silicone hydrogel
material (Comfilcon A, Biofinity, Cooper Vision, Fairport, NY) with
48% of water content, 14.0 mm diameter and a base curve of 8.60mm.
Subjects were fitted with multifocal (Biofinity® Multifocal) contact
lenses according to the manufacturer’s fitting guidelines for the initial
lens selection, and all participants received the same add power in both
eyes; the near add power in the non-dominant eye for monovision also
matched the add power of multifocal modality.

The Biofinity multifocal combine spherical and aspheric optics to
yield a “center-distance” lens for the dominant eye. It comprises a
spherical central zone (2.3-mm in diameter) for distance vision, sur-
rounded by a 5.0-mm annular aspheric zone and an 8.5-mm spherical
annular zone, both increasing in add power to emphasize distance vi-
sion. The “center-near” lens for the non-dominant eye (center-near
design) has a 1.7-mm spherical central zone dedicated to near vision
followed by a 5.0-mm aspheric annular zone and an 8.5-mm spherical
annular zone, both with decreasing add. For monovision, the contact
lens used was the single-vision lens (Biofinity) with an aspheric design.

Ocular dominance was identified using the sensory dominance
method [30,31], and natural pupil size measured with the NeurOptics®

VIP™-200 Pupillometer (Irvine, California, USA) in the same illumina-
tion conditions of light distortion measurements.

Once the fitting procedure was completed, subjects were dispensed
with the first modality (multifocal or monovision, randomly assigned)
and asked to return 14 days later for a follow-up visit to evaluate the fit,
vision and comfort, and after a 1-week wash-out period for dispensing
the other lens modality. Since the phenomenon of neuronal adaptation
to dysphotopsia is unknown, and the time of wear of each lens was
short, a 1-week washout seemed as the sufficient time to ensure that
adaptive phenomena did not interfere between the different modalities.

All the clinical measurements of visual function were performed
45min after finishing the fitting process (day 1) and 14 days after (day
15). Visual function analysis was measured using a high-contrast
(100%) and low-contrast (10%) LogMAR chart (Precision Vision, USA).
All VA values reported refer to high (HCDVA) or low (LCDVA) contrast
distance VA while HCNVA and LCNVA refer to for high- and low-con-
trast near VA, respectively. Stereopsis (Stereo Fly SO-001, StereoOptical
Co, Inc., Chicago, IL) and contrast sensitivity function (Vision Contrast
Test System VCTS 6500, Vistech Consultants, Dayton, OH).
Measurements were conducted monocularly and binocularly, under
constant photopic (85 cd/m2) illumination as previously described [7].

2.3. LDA measurements

Measurements of light disturbance were performed with an ex-
perimental device, Light Disturbance Analyzer (LDA, CEORLab,
Portugal) [28]. It consists of central 5 mm white LED (glare source)
surrounded by an array of 240 smaller LED (1mm), distributed in
twenty-four semi-meridians. These smaller LEDs have a linear separa-
tion of 10mm to cover an angular field of 10° at the distance of 2m.
Fig. 1a to c represents the physical arrangement of the device. For
technical specifications of the LEDs characteristics and examination
procedures consult the previously published work [25,28]. In brief; in a
darkened room, the instrument presents the central source of glare at
maximum fixed intensity, while the peripheral LEDs are randomly
presented at the different semi-meridians. Peripheral LEDs turn-on and
turn-off sequentially around the central source of light using different
sequences at random times (from 250 to 750ms) and the semi-mer-
idians explored in random order (Fig. 1c). The patient always fixates
the central LED and gives feedback when sees the peripheral stimuli by
clicking on a remote actuator. Then, the system automatically evaluates
the following semi-meridian and examines each semi-meridian three
times. If the standard deviation (SD) of these three measurements is
above 20% of the mean value, the device automatically repeats the
measurements in those semi-meridians until it reaches values of SD
below 20% of the mean (Fig. 1b). After data collection and storage, a
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software tool calculates the indices that determine the size, shape, and
regularity of the distortion surrounding the central source of light
(Fig. 1c). The light disturbance index (LDI) is calculated as the ratio of
the area of points missed by the subject and the total area explored,
expressed as a percentage (%). Higher values of distortion represents a
lower ability to discriminate surrounding small stimuli hidden by the
distortion induced by the central source of light. The Best Fit Circle
Radius (BFCRadius) is the circle that best fits the distortion area be-
cause of the linear binding of all external points not seen by the subject
along each meridian. This parameter linearly correlates with LDI and is
expressed in millimeters. The Irregularity of the distortion area derives
from the deviation of the actual polygonal shape obtained from the
BFCRadius fit and is called the BFC Irregularity (BFCIrregularity). The
standard deviation of BFCIrregularity called BFCIrreg.SD measures how
asymmetric is the departure of the actual distortion limits from the
perfectly circular shape of the BFCIrregularity. Together, BFCIrregularity and
BFCIrreg.SD infer the deviation of the actual distortion from a perfectly
rotational symmetric shape. The higher the value of this parameter, the
larger the deviation from a circular shape.

2.4. Quality of Vision (QoV) measurements

The QoV questionnaire, administered at the final visit for both
contact lens modalities, explore the subjective quality of vision [24]
afforded by the different contact lens modalities. The QoV ques-
tionnaire addresses 10 specific visual symptoms: glare, halos, star-
bursts, hazy vision, blurred vision, distortion, double or multiple
images, fluctuation in vision, focusing difficulties and difficulty in
depth perception. The first 7 symptoms have an associated image for
easier comprehending. The tool, scored across three subscales, provides
a QoV score of frequency, severity, and bothersome nature of symp-
toms. The scoring is Rasch scaled onto a 0–100 linear scale, with lower
scores indicating superior quality of vision [32].

2.5. Statistical analysis

Statistical analysis was performed using SPSS for Windows software
(version 19, SPSS, Inc.) and the normality of the data checked with the

Kolmogorov-Smirnov test. Friedman test with post-hoc correction was
used for the multiple comparisons between the light disturbance at
baseline and with each multifocal contact lens (LDI, BFCRadius,
BFCIrregularity, and BFCIrreg.SD). Considering the related non-parametric
nature of the data, Wilcoxon signed ranks test was applied for pairwise
comparison between pairs of multifocal or between baseline measures
and each multifocal modality. Spearman Correlation was performed to
find the relationship between light disturbance parameters and VA.
Differences were considered statistically significant when the P value
was less than 0.05.

3. Results

There were twenty-three subjects (8 men; 15 women) included in
the study. Of the 23 participants enrolled, three (1 men; 2 women) were
lost to follow-up and excluded, with no data at the 15-day visit with the
first randomly assigned modality. Of the 20 subjects who completed the
study (mean age, 48.7 ± 3.3 years; range, 45–57 years), 65% were
women and 35% were myopic (SE≤−0.50D). Two subjects had pre-
vious contact lens experience, but both stopped using them for over a
year. Any participant had previously worn presbyopic contact lenses.
The mean (± standard deviation) distance spherical equivalent re-
fraction was −0.91 ± 2.25 Diopter (D) (range, −6.88 to +1.63) in
the dominant eye and −0.83 ± 2.35 D (range. −7.38–2.00) in the
non-dominant eye. The mean add power was +1.5 ± 0.3 D (five
subjects with add of +1.00 D, 10 with add of +1.50D and 5 with add
+2.00D). At baseline, the mean pupil size was 5.30 ± 0.75mm and
5.33 ± 0.79mm for the dominant and non-dominant eye, respectively
(p= 0.933) and it was 5.32 ± 0.77mm vs 5.28 ± 0.81mm at the 15-
day visit (p= 0.962). No significant differences between the pupil size
with the two contact lens modalities were found (p= 0.941).

3.1. Visual function

Binocular VA showed no significant differences neither between the
contact lens modalities (p > 0.05 in all contrast conditions) nor be-
tween follow-up visits (p > 0.05 in all comparisons). At the 15-day
visit, HCDVA of the dominant eye did not change significantly, from

Fig. 1. Illustration of the distribution of main central
source of light and peripheral stimuli in accordance
with an exemplary embodiment of the present in-
vention. On the above right: the experimental device
LDA with the central LED light with one peripheral
LED turned ON (a); on the above left an illustration
of layout appearance of the size and shape of the
light disturbance measured (b) and the size and
shape and regular related parameters derived from
the Light Distortion Analyzer (c).
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−0.06 ± 0.08 LogMar at baseline to −0.06 ± 0.08 LogMar and
−0.05 ± 0.09 LogMar in monovision and multifocal, respectively. In
the non-dominant eye, it changed from −0.02 ± 0.14 LogMar at
baseline to 0.26 ± 0.16 LogMar (p < 0.001) and 0.16 ± 0.14
LogMar (p < 0.001) for monovision and multifocal, respectively.
LCDVA showed significant changes in the non-dominant eye, which
changed from 0.17 ± 0.15 LogMar at baseline to 0.43 ± 0.19 LogMar
(p < 0.001) and 0.35 ± 0.13 LogMar (p < 0.001) for monovision
and multifocal, respectively. Regarding near visual acuity, HCNVA
changed significantly in dominant eye, from 0.10 ± 0.11 LogMar at
baseline to 0.38 ± 0.17 LogMar and 0.20 ± 0.09 LogMar in mono-
vision and multifocal, respectively (p < 0.001 all conditions). In the
non-dominant eye, it changed from −0.08 ± 0.14 LogMar at baseline
to 0.07 ± 0.13 LogMar (p= 0.835) and 0.06 ± 0.07 LogMar
(p=0.820) for monovision and multifocal, respectively. LCDVA
showed significant changes in the dominant eye, which changed from
0.28 ± 0.12 LogMar at baseline to 0.53 ± 0.18 LogMar (p < 0.001)
and 0.37 ± 0.12 LogMar (p < 0.001) for monovision and multifocal,
respectively, while non-dominant eye showed no significant changes
(0.25 ± 0.08 LogMar at baseline vs 0.28 ± 0.15 LogMar and
0.23 ± 0.09 LogMar, p= 0.232).

From 1 to 15 days of contact lens wear, with multifocal modality, a
significant improvement is observed in HCDVA and LCDVA for the non-
dominant eye (p=0.023 and p=0.035, respectively) and in LCNVA in
the dominant (p= 0.026) and non-dominant (p= 0.017) eyes.

Mean stereoacuity was 65 ± 6 (range: 40–400) sec arc at baseline,
51 ± 7 (range: 30–100) sec arc with multifocal and 105 ± 9 (range:
40–400) sec arc with monovision at the 15 day visit (p < 0.001 mul-
tifocal vs monovision).

For contrast sensitivity function, all the values remained within the
normal range and there were no significant changes after multifocal or
monovision compared to baseline, nor between both contact lens
modalities (p > 0.005 between all spatial frequencies).

3.2. Light distortion

Fig. 2 shows the changes over time of LD size-related parameters:
LDI (Fig. 2a) and BFCRadius (Fig. 2b), as well as LD regularity-related
parameters− BFCIrregularity (Fig. 2c) and BFCIrreg.SD (Fig. 2d)− for each
contact lens modality. In general, when compared to baseline and
measured monocularly, there was an increase in all LD parameters with
particular significance in the non-dominant eye for both contact lens
modalities.

With monovision, dominant eye showed no significant differences
in LD (p > 0.001, for all parameters) while non-dominant eye showed
a significant increase in LDI (p= 0.010) and BFCRadius parameters
(p=0.014). Moreover, at the 15-day visit, LDI and BFCRadius still sig-
nificantly higher compared to baseline (p=0.010 and p=0.009, re-
spectively) and showed no trend to decrease (Fig. 2a and b).

An increase in LD was also observed with Biofinity multifocal, being
insignificant in the dominant eye (p > 0.05, for all LD parameters) and
significant for LDI (p= 0.002), BFCRadius (p= 0.004) and BFCIrregularity

(p= 0.012) in the non-dominant eye. In contrast, a significant decrease
in LD was observed with Biofinity multifocal in the Dominant eye
(p < 0.024, for all parameters) and for BFCRadius in the non-dominant
eye (p=0.042) from 1 to 15 days CL wear, as shown in Table 1.

Binocular LD parameters showed an initial increase with Biofinity
multifocal (p < 0.040 for all LD parameters). However,there were a
significant improvement in LDI (p= 0.009) and BFCRadius (p= 0.013)
from 1 to 15 days of multifocal CL wear (Table 1).

With Biofinity multifocal in the dominant eye, a moderate sig-
nificant positive correlation was found between LDI and LCDVA
(Rho= 0.552, p= 0.014) and for BFCRadius with LCDVA
((Rho= 0.523, p= 0.022), while a significant negative correlation was
found between BFCIrregularity and HCNVA (Rho=−0.561, p= 0.013).

3.3. Quality of Vision (QoV) questionnaire results

Fig. 3 shows the results of the QoV questionnaire at 15 days of CL
wear. The increases in QoV scores observed for all three subscales
(frequency, severity and bothersome) were neither statistically sig-
nificant compared to baseline correction (p > 0.141 for all the three
subscales with both CL modalities), nor significantly different between
monovision and Biofinity multifocal in either parameter computed
(p > 0.133 for all the three subscales) (Fig. 3). To better explore the
nature of the slight worsening in quality of vision with the contact lens,
the scores for glare, halos and starbursts symptoms were analyzed in-
dividually (Fig. 4). Although not significant, these symptoms were
greater with both CL modalities, with Biofinity MF presenting the
higher scores for frequency, severity and bothersome symptoms of glare
and starburst (p > 0.481 for all computed scores).

4. Discussion

The present study showed an increase in LD phenomena induced by
the presbyopic contact lens corrections, despite the good levels of visual
acuity, namely under high contrast conditions. This increase in LD
phenomena induced by the contact lens is more significant when
measured monocularly and has particular incidence in the non-domi-
nant eye. However, there was a significant decrease with the Biofinity
multifocal after 15 days of wear, almost reaching baseline values.

Regarding distance and near VA under high- and low- contrast
conditions in both modalities, the average binocular HCDVA with both
lens types was, two letters worse than the best-corrected spectacle VA,
and the binocular VA was always better than the monocular VA under
all contrast conditions. Stereoacuity was significantly poorer with
monovision rather than with the multifocal contact lens, which was
expected because the effects of monocular blur produced by monovi-
sion on stereoacuity are known to be greater than the effects of bino-
cular blur (e.g., superimposed retinal images in multifocal lenses).
These findings are in agreement with previous studies with identical
presbyopic correction [7–9,27,33] and support the existence of a bi-
nocular summation effect that attenuates the LD phenomena under
binocular conditions, reducing the symptoms reported by subjects. An
interesting finding is that such binocular attenuation of LD occurs in a
similar amount in monovision and multifocal conditions. Considering
the asymmetric vision in the monovision modality, it would expect the
summation effect to be lower compared to multifocal conditions. Such
disruption of summation effect may be caused by the significantly dif-
ferent levels of spherical aberration induced contralaterally, as reported
by Jimenez et al. [34] in anysometropic participants undergoing LASIK
surgery. However, with Biofinity multifocal, both eyes received sig-
nificant different images through the center-distance design and center-
near design, which might explain the similar results of the summation
effect between monovision and multifocal.

Typically, multifocal CL show a reduction in retinal image quality
and contrast VA under mesopic and photopic conditions compared to
single-vision contact lenses or spectacles [8,9]. The discontinuity be-
tween different zones or multiple abrupt changes in the power profile
may significantly increase light scatter and result in an increase of light
disturbance, particularly under low-light conditions and with the in-
crease in pupil size. In the present study, the two multifocal designs
(center-distance vs center-near) differently affected light distortion. The
increase in the LD parameters was more noticeable and significant in
the non-dominant eye that was fitted with center-near design, in the
case of Biofinity multifocal, or with the near vision correction in the
case of monovision.

Sivardeen et al. [27] evaluated glare on four different multifocal CL
designs (Air Optix Aqua, PureVision 2; Acuvue OASYS and Biofinity
MF) using an iPad based halometer (Aston Halometer, Aston Uni-
versity) [22], which quantify the radial glare in eight meridians by
recognizing a 0.3logMAR equivalent letter that is moving eccentrically
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from a central source. They reported that OASYS and AirOptix design
produces the largest halo when measured binocularly, whereas the
PureVision 2 created the smallest halo. Similarly to this study, they also
found no differences between the Biofinity MF and monovision lenses.
There are no differences in LD induced by Biofinity multifocal or
monovision in the variations of size- related parameters, measured by
the LDI and BFCRadius, neither in irregularity-related parameters, mea-
sured by the BFCIrregularity and BFCIrreg.SD, despite the slight increase,
when compared with the baseline correction.

In the study of Sivardeen et al. [27], the halo was binocularly

measured only, and the contribution of dominance and different design
within the same multifocal CL was not evaluated nor the binocular
summation effect. In this study, monocular results of LD were always
worse than the binocular ones, which may suggest that there is a psy-
chophysical capacity to reduce the LD under binocular conditions and
consequently improve the optical quality of LD perception. Binocular
vision improves the visual perception of out-of-focus images to a much
greater extent than for focused images [6,35]. It seems that with the
effect of wearing the multifocal for longer, perceptual processes, such as
binocular sum and neural adaptation to aberration changes, enhances
the interpretation of multiple images superimposed on the retina

Fig. 2. Measurements of size related light disturbance parameters (a) LDI, (b) BFCRad, and irregularity related parameter (c) BFCIrreg, (d) BFCIrregSD, for baseline and with each contact
lens modality at the 1st day and 15th day visit. Error bars represent standard deviation. * Wilcoxon-Signed Rank test.

Table 1
Statistically significant changes in parameters of Light Disturbance for Biofinity MF
overtime (mean difference ± SEM).

Eye Mean change ± SEM P value

Multifocal

LDI (%) 1 day versus
15 days

Bin −0.38 ± 0.20 0.009

1 day versus
15 days

Dom −1.47 ± 0.65 0.005

BFCRadius (mm) 1 day versus
15 days

Bin −0.71 ± 0.38 0.013

1 day versus
15 days

Dom −1.86 ± 0.78 0.012

1 day versus
15 days

NDom −1.83 ± 0.91 0.042

BFCIrreg (mm) 1 day versus
15 days

Dom −0.61 ± 0.36 0.024

LDI= light distortion index; BFCRadius= Best Fit Circle Radius; BFCIrreg=Best Fit
Circle Irregularity; Bin= binocular; Dom=dominant; NDom=non-dominant. *
Friedman test; ¥ WilcoxonSigned Rank test.

Fig. 3. Rasch-scaled total scores on frequency, severity and bothersome derived from the
Quality of Vision (QoV) symptoms with Monovision and Biofinity Multifocal and habitual
correction (baseline). The scale extends from 0 to 100, with higher scores indicating
worse quality of vision. Error bars represent standard deviation.
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[7,33]. This may explain the significant decrease in LD observed for
Biofinity multifocal, particularly in the dominant eye. Furthermore, the
moderate correlations observed between LD parameters and VA suggest
that a reduction in the LD parameters may be associated with the im-
provement in distance and near VA, particularly in low- contrast ob-
served at 15 days of multifocal contact lens wear.

Recent studies showed that wearing multifocal contact lens induces
an increase in high-order ocular aberrations (HOA) which is dependent
on the multifocal design and differently affect visual performance.
[7,33,36–38] Indeed, spherical aberration (SA) is the main HOA in-
duced. While center-near MFCL induces large amounts of negative SA,
center-distance MFCL induce an increase in positive SA [31,36].
Moreover, it has been reported that higher amounts of positive SA
significantly increase LD, while a lower increase or even decrease can
be found with negative SA [39–41]. On one level, this may explain the
differences observed in LD between dominant (center-distance design)
and non-dominant (center-near design). However, in contrast to the
results of Macedo-de-Araujo et al. [29], it was found that the increase in
LD was greater with the center-near design (more negative SA) com-
pared to center-distance design. This may be due to the difference for
SA induced by multifocal design compared to those experimentally
induced in previous studies. Additionally, the subjects of present study
were presbyopic, who commonly have smaller pupils and may have
some residual accommodation that can compensate some of the de-
gradation induced by HOA and somehow attenuate the LD effect.
Nevertheless, this needs further investigation with a larger presbyopic
population and with different multifocal contact lens designs.

Some studies reported that the optical properties of different CL
materials might affect ocular straylight [41,42]. In the present study,
the contact lens material (Comfilcon A) for both presbyopic CL cor-
rection were the same to eliminate/minimize the material effect on the
LD and to ensure that the changes were only due to CL design. Increase
in LD overtime might also be related to the presence of deposits or to
hydrophobic areas at the surface, or degradation of the material bulk of
the material. Nevertheless, all participants used hydrogen peroxide and
the lenses replaced much earlier than the expected lifetime of 1 month.
This might explain the stable behavior or even a decrease observed with
multifocal modality, instead of an increase.

Despite the changes observed in LD index, no significant changes
were observed with the QoV questionnaire. The QoV questionnaire did
not show (any) significant change in QoV score from baseline for either
modality of the lens and there were no differences between monovision
and multifocal lenses. Recently, Kang et al. [43] assessed the effects of
soft multifocal contact lens used for myopia control (Proclear multi-
focal, CooperVision, with addition power +1.50 and +3.00) on sub-
jective quality of vision compared to a single vision Proclear spherical
contact lens. They reported a significant increase in QoV scores with

Proclear multifocal with symptoms worsen over the 2-week wearing
period, particularly with the multifocal with +3.00 Add. Differences in
the higher Add power or the larger pupils of young adults might explain
the worse performance when compared to the present study.

In conclusion, multifocal designs and monovision affect differently
LD phenomena. The present results show that monovision performs
worse than multifocal after 15 days of lens wear. While monocular
values experience an improvement from 1 to 15 days with Biofinity
multifocal, such did not happen for monovision. Despite the changes
observed in LD, subjective symptoms assessed with QoV showed no
significant changes. Practitioners will have greater success with multi-
focal CLs if they prepare their patients for the adaptation required as
their vision will get better/have less of an issue with LD. Finally, light
distortion measurement does not predict accurately eventual changes in
visual acuity and this suggests that it might be used as a different in-
dicator of visual performance and adaptation to multifocal contact
lenses.
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