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Abstract

Spreadsheets are used in industry and academia across all domains
and their application ranges from simple accounting to sequencing
of amino acids. Some businesses re-use and extend spreadsheets
over years and not only complexity but also performance becomes
a problem.

In the last two decades, parallel shared-memory multiprocessor
computers have become abundant, but they remain notoriously
difficult to program correctly. Therefore, it is often not possible for
end-users to make full use of their parallel hardware.

Declarative, functional programming languages are an alterna-
tive to imperative programming languages that makes program-
ming shared-memory multiprocessors much easier: due to the ab-
sence of side effects in these languages, compilers and libraries can
parallelize programs automatically. The formula language of spread-
sheets is a declarative, first-order functional language and therefore
potentially allows for an automatic parallelization of spreadsheet
calculations.

This thesis explores the design space of automatically paral-
lelizing spreadsheet recalculations. Often times, computations in
spreadsheets are structured in a way that corresponds to declarative
high-level programming on arrays. Therefore, the focus of this
thesis lies on practical data-parallelism in a spreadsheet model of
computations. This thesis makes the following contributions:

• we show how to automatically re-write high-level spreadsheet
structures into higher-order functional programs for parallel
execution;

• we contrast and combine our re-writing technique with a
recalculation algorithm that dynamically exploits dataflow
parallelism in spreadsheets;

• we describe a representation of two-dimensional arrays that
pragmatically caters to the needs of high-level array program-
ming; and

• we explore a hypothetical approach to array fusion and lazi-
ness in a purely functional, strict spreadsheet language.
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Resumé

Regneark bruges i forretning og forskning bland alle domæner og
deres anvendelse rækker fra enkle regnskaber til sekventering af
aminosyrer. Nogle virksomheder genbruger og udvider regneark
over mange år, og ikke blot kompleksiteten, men også hastigheden
af beregningerne kan blive til et problem.

I de sidste tyve år er processorer med mange regnekerner og
delt hukommelse blevet udbredt overalt. Det er dog fortsæt svært at
programmere disse maskiner korrekt. Det er derfor ofte ikke muligt
for slutbrugere at udnytte deres parallelle udstyr.

Deklarativ funktionsprogrammering er et alternativ til impera-
tive programmeringssprog og gør programmering af regnekerner
med delt hukommelse meget nemmere: takket være fraværet af
sideeffekter i disse sprog kan oversættere og biblioteker automatisk
parallelisere programmer. Formelsproget i regneark er et deklarativt
første-ordens funktionssprog og har derfor potentiale for automatisk
parallelisering af beregninger i en regneark.

Denne afhandling udforsker designrummet for automatisk pa-
rallelisering af regnearksberegninger. Det sker ofte at beregningerne
i en regneark er struktureret på en måde, som svarer til deklarativ
højere-ordens programmering på matricer. Derfor ligger vores fo-
kus i denne afhandling på praktisk anvendelig data-parallelisme i
regneark. Denne afhandling indeholder følgende bidrag:

• vi viser hvordan visse strukturer i regneark kan omskrives
til højere-ordens funktionsprogrammer som kan eksekveres i
parallelt;

• vi sammenligner og derefter kombinerer vi vores omskriv-
ningsteknik med en genberegningsalgoritme som dynamisk
udnytter datastrømparallelisme i regneark;

• vi beskriver en repræsentation af matricer af to dimensioner,
som ganske pragmatisk imødekommer matrixprogrammering
på et abstrakt niveau; og til sidst

• udforsker vi en hypotetisk tilgang til en teknik til elimination
af mellemresultater på matricer og dovnskab i et funktions-
programmeringssprog i regneark uden sideefekter.
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Zusammenfassung
Kalkulationstabellen, im allgemeinen Sprachgebrauch oft “Excel
Tabellen”, werden in allen Disziplinen, sowohl in der Industrie
als auch an der Akademie, genutzt, und ihre Nutzung reicht von
einfacher Buchhaltung bis zur Sequenzierung von Aminosäuren.
Manche Firmen benutzen und erweitern Kalkulationstabellen über
Jahre hinweg und nicht nur deren Komplexität, sondern auch die
Geschwindigkeit der Berechnungen wird problematisch.

In den letzten beiden Jahrzehnten sind Multiprozessoren mit
gemeinsam genutztem Speicher allgegenwärtig geworden, aber
ihre korrekte Programmierung ist weiterhin notorisch schwierig.
Deswegen ist es für Endnutzer oft nicht möglich ihre parallele
Computerhardware vollständig auszunutzen.

Deklarative, funktionale Programmiersprachen bilden eine Al-
ternative zu imperativen Programmiersprachen und machen es
einfacher, Multiprozessoren mit gemeinsam genutztem Speicher zu
programmieren: dank der Abwesenheit von Nebeneffekten können
Kompiler und Bibliotheken Programme automatisch parallelisieren.
Die Formelsprache in Kakulationstabellen ist eine deklarative, funk-
tionale Programmiersprache erster Ordnung und erlaubt deswegen
potentiell, Tabellenkalkulationen zu parallelisieren.

Diese Dissertation erforscht den Gestaltungsraum der automa-
tischen Parallelisierung von Tabellenkalkulationen. Die Struktur
von Kalkulationstabellen korreliert oft mit deklarativen, höheren
Programmkonstrukten auf Matrizen. Deswegen konzentrieren wir
uns auf praktisch anwendbarer Datenparallelität in Tabellenkalku-
lationen. Diese Dissertation macht die folgenden Beiträge:

• wir zeigen, wie höhere Strukturen in Kalkulationstabellen
automatisch in höhere funktionale Programme umgeschrieben
werden können um deren Berechnung zu parallelisieren;

• wir stellen unserer Umschreibetechnik einen Algorithmus zur
Neuberechnung von Kalkulationstabellen gegenüber, der dy-
namisch deren parallelen Datenfluss ausnutzt;

• wir beschreiben eine Darstellung von Matrizen die pragma-
tisch die Anforderungen von höherem Matrizenprogrammie-
ren erfüllt; und schließlich

• erkunden wir eine hypothetische Herangehensweise zur Eli-
minierung von Zwischenergebnissen auf Matrizen und deren
Bedarfsauswertung in einer rein funktionalen, strikten Tabel-
lenkalkulationssprache.
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Chapter 1

Introduction

Among programmers and other IT professionals, it is well-known that
“real programmers don’t use spreadsheets” [26]. But everybody else does!
Scaffidi [91] estimates that 72 million American knowledge workers use
spreadsheets at least monthly.

The two-dimensional layout and the formula language of spreadsheets
seem to be easily understood by non-programmers and professional
software developers alike. Spreadsheets are versatile: they pose as
data storage, are used for ad-hoc computations and experiments and
organizations often rely on spreadsheets to perform computations on
which they base business-critical decisions—for example to assess the
risk of giving a bank loan to a particular customer.

Spreadsheet programs can be slow. Swidan et al. [103] report on a case
study of refactoring a large spreadsheet that originally would have taken
ten hours or more to recompute when edited. The refactored spreadsheet
is highly parallel and runs on a high-performance cluster. However,
refactoring business critical spreadsheets comes at a high risk: often, lack
of documentation and absence of testing tools make it simply unfeasible
and it is expensive to hire experts to perform manual refactoring and
parallelization.

Is it possible to enable spreadsheet end-users to run their spreadsheets
on parallel hardware without adding this engineering overhead?

Nowadays, multi-core processors are abundant. Commodity comput-
ers are equipped with shared-memory multiprocessors, but programming
them correctly remains notoriously difficult. One model of computation
that relieves the burden of shared-memory multicore programming is
declarative functional programming, where programmers describe what the
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algorithm should compute instead of specifying how it should work [4].
Spreadsheets are declarative, first-order functional programs [26] and
concepts from the array-oriented programming language APL [65] di-
rectly map to the spreadsheet paradigm [112]. These concepts allow for
an implicit parallelization of operations that requires no effort from the
programmer.

This thesis explores how well concepts from parallel functional pro-
gramming apply to the spreadsheet paradigm in practice to allow end-
users to write fast, parallel programs without any additional engineering
overhead. Our overall conceptual contribution is the systematic appli-
cation of well-known techniques from declarative data-parallel array
programming to a spreadsheet model of computation and the experimen-
tal evaluation of their performance in spreadsheet programs.

Our focus is performance: we target large spreadsheets containing lots
of data and complex models. We validate our approach experimentally,
using both artificial and real-world spreadsheets. The techniques de-
scribed in this thesis are all implemented in Funcalc [93], an experimental
spreadsheet engine for end-user programming.

1.1 Contributions

1.1.1 Published Work

This thesis builds on the work presented in the following peer-reviewed
articles (in order of publication date):

Quad Ropes: Immutable, Declarative Arrays With Parallelizable
Operations. Joint work with Peter Sestoft [13], presented at AR-
RAY’17. This paper describes the quad rope data structure, a high-
level representation of two-dimensional arrays that pragmatically
caters to the needs of end-user array programming. Chapter 6.

Rewriting High-Level Spreadsheet Structures into Higher-Order
Functional Programs. Joint work with Wensheng Dou and Peter
Sestoft [14], presented at PADL’18. This paper describes a rewriting
semantics for extracting higher-order array expressions from high-
level spreadsheet structures for parallel execution. Chapter 4.

Puncalc: Task-Based Parallelism and Speculative Reevaluation
in Spreadsheets. Joint work with Alexander Asp Bock [12], to be
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presented at HLPP’18. This paper describes a parallel evaluation
strategy for spreadsheets that dynamically extracts parallelism
without prior analysis. Chapter 5.

Additionally, this thesis uses material from the following informally
published text:

Declarative Parallel Programming in Spreadsheet End-User
Development: A Literature Review. Technical report [11]. A liter-
ature review that surveys literature on array programming tech-
niques and spreadsheet research. Section 2.4 and 3.3.

1.1.2 New Contributions

This thesis makes the following new contributions and updates to pub-
lished work:

• An extension to the cell array rewriting semantics to handle cell
range expressions; Sec. 4.3.5.

• A clear distinction between the formalism and the actual Funcalc
implementation of cell array rewriting; Sec. 4.4.1.

• An extension of the performance evaluation of cell array rewriting;
Sec. 4.5.

• A combination of cell array rewriting with dynamic dataflow paral-
lelism and performance evaluation; Sec. 5.6.

• A discussion of the implementation and performance of quad ropes
in Funcalc; Sec. 6.7

• A method for eliminating intermediate arrays in a spreadsheet
model of computations, combining laziness and deforestation;
Chapter 7.

1.2 Thesis Outline

This section gives a high-level overview over the structure and contribu-
tions of the dissertation.
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In Part I, we provide the reader with relevant background information
and define appropriate terminology that will be used throughout the
remainder of the dissertation.

In Chapter 2, we give background on spreadsheet technology, “stan-
dard” spreadsheet features, a “standard” formula language and its se-
mantics as well as an overview over related work. In particular, we
introduce the Funcalc spreadsheet engine [93] in which most of the tech-
niques presented in this thesis are implemented. We do not discuss user
interfaces or any other visual features of spreadsheet systems.

Chapter 3 provides background information and related work on
declarative array programming. That is, we discuss the most commonly
used higher-order functions on arrays, how they can be parallelized and
how they fit into a spreadsheet model of computations.

In Part II of the dissertation, we present and discuss the contributions
made over the course of the PhD project.

In Chapter 4, we describe how we can directly apply techniques from
array programming to structured formulas in spreadsheets via cell array
rewriting. Spreadsheet models usually have some high-level structure
that can be exploited to improve performance by running independent
computations in parallel. In this chapter, we show how to map high-level
spreadsheet structure to data-parallel functions on arrays such that we
can compute parts of a spreadsheet in parallel without changing the
recalculation algorithm of the spreadsheet engine itself.

Chapter 5 describes the implementation of a spreadsheet recalculation
engine that dynamically exploits available parallelism on the fly without
prior analysis. Moreover, the algorithm that we present maintains the non-
strict semantics of cyclic references in spreadsheets without prior static
analysis. We combine this dynamic approach with statically rewriting
cell arrays and show that there are some limitations when combining the
two approaches.

In Chapter 6, we focus on more traditional forms of array program-
ming, namely the declarative specification of algorithms on arrays. We
describe the quad rope data structure, a representation of immutable two-
dimensional arrays that avoids many of the performance pitfalls of plain
C-style two-dimensional arrays. Our motivation is that, for end-user
development in high-level declarative programming languages, it is im-
practical to let users choose between different array-like data structures.
Instead, end-users should use the same, somewhat performance-robust,
representation for every programming task.
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Chapter 7 treats a hypothetical optimization of array programming
in a spreadsheet formula language. We describe a technique to perform
fusion of operations on arrays across independent spreadsheet cells,
such that intermediate arrays only materialize when the user implicitly
requires them to.

Finally, in Chapter 8 we summarize the results of this dissertation
and give an outlook on future work and open problems.

1.3 Experiments

Throughout this thesis, we report results from running benchmark exper-
iments to verify our approach.

For the majority of these experiments, we have used an Intel Xeon
E5-2680 v3 with 24 physical cores, 48 virtualized, at 2.5GHz and 32GB
memory, running 64 bit Windows 10 and .NET Framework 4.7.1. The
Intel Xeon consists of two chips of twelve processors each; there is no
shared cache between the two chips and they communicate via main
memory. We call this machine the P3 server. We have used the P3 server
in this configuration for all experiments throughout this dissertation
unless noted otherwise.

Moreover, we have compiled all .NET code for that we report perfor-
mance results to 64 bit.





Part I

Background





Chapter 2

Spreadsheets

This chapter provides background information on spreadsheet technol-
ogy that is sufficient for understanding the main part of the dissertation
and introduces relevant definitions and terminology.

2.1 Basic Concepts

A spreadsheet is a two-dimensional grid of cells whose rows are labeled
numerically starting from 1 and whose columns are labeled alphabeti-
cally starting from A. The uppermost leftmost cell in the spreadsheet is
denoted A1, the cell to the right of it B1 and the cell below it A2. In mod-
ern spreadsheet software, multiple spreadsheets are usually organized
in so-called workbooks. Each spreadsheet in a workbook has a unique
name.

A cell can contain a value constant, such as a string, e.g.
"spreadsheets", a number, e.g. 42.0, or an error such as #VALUE!; or
a formula expression, indicated by a leading equals sign, e.g. =1 + 2. A
formula may evaluate either to a proper value or to an error and the user
can switch between displaying either values or formulas on a spread-
sheet. A formula can reference one or more cells by naming their address,
e.g. =A1 * 2. The resulting value of the cell that contains this formula
will depend on the expression in cell A1. A formula can also refer to
a cell range or cell area by naming two opposing corners of a rectangle
using the : operator. For example, the formula =SUM(A1:A10) computes
the sum of all values in the first ten rows of column A. Note that cell
areas are always rectangular. A formula may also refer to cells on other
spreadsheets in the same workbook.
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A B C D E
1 Year Revenue Expenses Result Total Earnings
2 1992 45 23 22 22
3 1993 1644 412 1232 1254
4 1994 12081 8041 4040 5294

A B C D E
1 Year Revenue Expenses Result Total Earnings
2 1992 45 23 =B2 - C2 =SUM($D$2:D2)
3 1993 1644 412 =B3 - C3 =SUM($D$2:D3)
4 1994 12081 8041 =B4 - C4 =SUM($D$2:D4)

Figure 2.1: A spreadsheet for accounting of a small business. The top
sheet shows the computed results; the lower sheet shows the underlying
formulas.

A cell references may be part of a reference cycle. It is legal to define
the formula for cell C2 as =C2 * 2. Spreadsheet software will in this
case usually notify the user of the presence of a cyclic dependency and
abort recalculation (see Sec. 2.2.1). Moreover, spreadsheet formulas are
dynamically typed. If a function is called with the wrong argument type,
e.g. =C2 * "two", the cell will evaluate to an error value indicating this,
e.g. #VALUE!.

An expression may be volatile, which means that it must be evaluated
anew every time a recalculation is requested, whether explicitly through
the GUI or by editing a cell. Volatile expressions are non-deterministic
and may evaluate to different values every time they are recalculated. An
expression is volatile if it calls a volatile function. An example of such
a volatile function is NOW: it returns the current time as a single number.
We discuss the semantics of recalculation in Sec. 2.2.4.

2.1.1 Absolute and Relative Cell References

A cell reference can be absolute or relative. This distinction is only
relevant when copying a cell reference to another cell. An absolute cell
address is written by prefixing column and row with the $ character. If
the user copies the absolute cell reference $A$1 to any other cell, it will
still refer to cell A1. A relative cell address is just written plainly, e.g. A1.
When copied to a different cell, the relative cell address will be adjusted.
Copying the reference A1 from cell B1 to cell B2 will adjust it to A2. It is
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A B C
1 10 23 =$A$1 * B1
2 42 =$A$1 * B2
3 99 =$A$1 * B3

A B C
1 10 23 =R1C1 * R[0]C[-1]
2 42 =R1C1 * R[0]C[-1]
3 99 =R1C1 * R[0]C[-1]

Figure 2.2: A spreadsheet in A1 format (left) and in R1C1 format (right).
In R1C1 format, it is straightforward to see that all formula expressions
in column C are the same.

A1 R1C1 Description
A1 R[-1]C[-1] Relative: one row up, one column left.
A2 R[0]C[-1] Relative: same row, one column left.
B3 R[1]C[1] Relative: one row down, one column right.
A$1 R1C[-1] Row-absolute: one column left, always row 1.
$A$1 R1C1 Absolute: always cell A1.

Table 2.1: Cell references in A1 and R1C1 format. We assume the formula
containing the cell address is located in cell B2.

possible to make a cell reference only column- or row-absolute. The cell
reference $A1, for example, always refers to column A when copied.

In the alternative reference format called R1C1, both rows and
columns are numbered, starting from one, and their order is reversed.
While the A1 format is easier to read for users, the R1C1 format makes it
explicit when adjacent cells use the same relative address, as shown in
Fig. 2.2. A R1C1 cell reference such as R1C1 is absolute and references
the cell in row one, column one, i.e. cell A1; whereas R[1]C[1] is relative
and references the cell one row below, one column to the right of the cell
that contains it. Table 2.1 shows how the A1 format translates to R1C1.

2.1.2 Array Formulas

Spreadsheets allow for so-called array formulas: a formula expression that
evaluates to an array and that is shared by multiple adjacent cells. Users
can construct an array formula by first marking a rectangular cell area
and then entering the array formula. The cell area should have the same
shape as the resulting array. We say that a two-dimensional array with m
rows and n columns is of shape m × n. The scalar values of the resulting
array are then unpacked into their respective cells. Figure 2.3 illustrates
this behavior for the TRANSPOSE function. An array formula is denoted as
such by the surrounding curly braces, e.g. {=TRANSPOSE(A1:C2)}.
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A B C
1 1 2 3
2 4 5 6
3
4 {=TRANSPOSE(A1:C2)} {=TRANSPOSE(A1:C2)}
5 {=TRANSPOSE(A1:C2)} {=TRANSPOSE(A1:C2)}
6 {=TRANSPOSE(A1:C2)} {=TRANSPOSE(A1:C2)}

A B C
1 1 2 3
2 4 5 6
3
4

{=TRANSPOSE(A1:C2)}5
6

A B C
1 1 2 3
2 4 5 6
3
4 1 4
5 2 5
6 3 6

Figure 2.3: A spreadsheet containing an array formula that calls the
TRANSPOSE function. Top: the classical visualization of an array formula in
a spreadsheet. Center: a simplified visualization that we use throughout
this thesis; it makes it more obvious that the expression is shared among
the cells. Bottom: the spreadsheet after automatic unpacking of the
resulting array.

Spreadsheet software usually displays the shared formula expression
in each cell of the array formula. Throughout this dissertation, we
simplify this visualization by removing the separating bars between the
cells of an array formula and only display the shared formula once. This
makes it more obvious that the formula expression is shared among a
block of cells.

2.2 Formal Semantics of Spreadsheets

This section describes the formal semantics of spreadsheets and is based
on Sestoft’s [93] formal model of spreadsheet evaluation.

2.2.1 Dependency and Support Graph

Cell references from one cell to another can be modeled as a dependency
graph between cells. A dependency graph is a directed graph and edges
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B2

B3

B4

C2

C3

C4

D2

D3

D4

E2

E3

E4

Figure 2.4: The dependency graph for the accounting spreadsheet from
Fig. 2.1. Arrows go from a cell to all cells that its formula expression
explicitly refers to.

go from a cell to all the cells that its formula expression refers to. If cell
D2 contains the formula expression =B2 - C2, as in Fig. 2.1, then there is
an edge from D2 to B2 and C2, as illustrated in Fig. 2.4. We can use the
dependency graph to construct its inverse, the support graph by inverting
the direction of the edges. The support graph is useful for determining
which cells to recompute after the user has made changes to one or more
cells in a spreadsheet, as we will see in Sec. 5.2.

The support graph defines a support set for each cell. The support set
of a cell is the set of cells that are directly reachable from the cell via the
support graph. For instance, the support set of cell D2 from Fig. 2.4 is
{E2, E3, E4}; the support set of cell B2 is {D2}.

The dependency and support graphs may be cyclic. Detection of
cyclic dependencies in spreadsheet software is usually non-strict. That
is, the presence of a cycle in the dependency graph does not necessarily
evaluate to a cyclic dependency at run time, as illustrated in Fig. 2.5,
where there is a cyclic dependency between cells A2 and A3. In this
example, even though there is a statically cyclic dependency, only when
the call to the random-number function RAND in cell A3 evaluates to a
value greater than or equal to 0.5 and the else-branch of the conditional
is evaluated, recalculation will detect a cyclic dependency. Otherwise,
recalculation will evaluate the then-branch and read the current time
from cell A1.
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A
1 =NOW()
2 =A3+1
3 =IF(RAND()<0.5, A1, A2)

A1

A2 A3

Figure 2.5: A spreadsheet (left) with a statically cyclic reference that
is guarded by a non-deterministic conditional and its corresponding
dependency graph (right). A dynamic cycle only occurs if the call to RAND
in cell A3 evaluates to a value greater than or equal to 0.5.

2.2.2 Types of Recalculation

There are two types of recalculation. Full recalculation unconditionally
reevaluates all formula cells. Minimal recalculation only reevaluates a
subset of all cells. This subset consists of the cells reachable from all
edited and volatile cells via the support graph. The edited cells are those
modified by the user, while volatile cells must always be recalculated
whenever a recalculation is triggered (see Sec. 2.1).

We call the cells that start a minimal recalculation the recalculation
roots. In Fig. 2.1, when a user changes the value in C2 to 0, then C2 is
a recalculation root and, according to the graph in Fig. 2.4, the cells D2,
E2, E3 and E4 must be updated to reflect the change. If a user requests
a minimal recalculation through the GUI without editing a cell (e.g. by
pressing F9 in Microsoft Excel), then the recalculation starts only from
volatile cells.

2.2.3 A “Standard” Formula Language

In this section, we describe the syntax for what we consider a “standard”
formula language, based on the language described in [93, Sec. 1.8], but
we gloss over cell ranges and array formulas. This language is only
intended to inform the reader; we will not use it for technical matters in
Part II of the thesis.

Our language has number values, errors, cell references, conditionals
and function application, as shown in Fig. 2.6. It differs from the formula
language in Microsoft Excel in that it has no boolean values. Instead, we
interpret number values as booleans, where 0 is equivalent to false and
non-zero values are equivalent to true. For instance, the comparison 42
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v ::= n Number constant, e.g. 23 or 1.34.
| err Error constant, e.g. #VALUE! or #CYCLE!.

e ::= v

| ca Cell address, e.g. G5 or $B3.
| IF(e, e, e) Conditional.
| F(e, . . .) Function application.
| RAND() Volatile function call.

Figure 2.6: A "standard" formula expression language.

= 23 returns 0. We omit defining infix operators and instead use them
like functions, i.e. we express what corresponds to 1 + 2 as +(1, 2). We
also make no distinction between relative and absolute cell references in
the A1 format. Their semantic difference is limited to user editing (see
Sec. 2.1.1), which is not part of the formal semantics [93].

Moreover, we need to be able to resolve cell references. We use two
functions to represent a spreadsheet [93]: σ maps from cell addresses
to values; φ maps from cell addresses to formula expressions. Constant
cells are not in the domain of φ. We use an evaluation dynamics [51, Chap-
ter 7] for describing the operational semantics of spreadsheet formula
evaluation. An evaluation has the form

σ ` e ⇓ v

and it is read as “given the spreadsheet σ, formula expression e may
evaluate to value v”. We say “may”, because volatile functions make the
language non-deterministic. Figure 2.7 shows the evaluation rules for
our standard formula language [93]. The rule

(e2e)
σ ` e1 ⇓ err

σ ` IF(e1, e2, e3) ⇓ err

has a premise, written above the line, and a conclusion, written below
the line. It reads as “given a spreadsheet σ, if the expression e1 evaluates
to err (premise), then the expression IF(e1, e2, e3) evaluates to an error err
(conclusion).”

The rules in Fig. 2.7 have the following meaning:

• Rule (e1e) says that if a cell address is not in the domain of σ, i.e. it
is empty, the cell address expression evaluates to 0.
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(e1e)
ca < dom(σ)
σ ` ca ⇓ 0.0

(e1)
ca ∈ dom(σ) σ(ca) = v

σ ` ca ⇓ v

(e2e)
σ ` e1 ⇓ err

σ ` IF(e1, e2, e3) ⇓ err

(e2f)
σ ` e1 ⇓ 0.0 σ ` e3 ⇓ v

σ ` IF(e1, e2, e3) ⇓ v

(e2t)
σ ` e1 ⇓ v

′ v′ , 0.0 σ ` e2 ⇓ v

σ ` IF(e1, e2, e3) ⇓ v

(e3e)
σ ` ei ⇓ vi ∃ j.v j = err

σ ` F(e1, . . . , en) ⇓ err

(e3)
σ ` ei ⇓ vi ∀i.vi , err
σ ` F(e1, . . . , en) ⇓ v

(e4)
0.0 ≤ v ≤ 1.0
σ ` RAND() ⇓ v

Figure 2.7: Evaluation semantics of a “standard” formula expression
language.
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• Rule (e1) says that a cell reference whose cell is not empty evaluates
to the value that has been calculated for the corresponding cell in
σ.

• Rule (e2e) says that if the condition of the conditional evaluates to
an error, then the entire conditional may evaluate to the same error.

• Rule (e2f) says that if the condition evaluates to 0, the conditional
may evaluate to the value that the else-expression e3 evaluates to.

• Rule (e2t) says that if the condition evaluates to a non-zero value,
the conditional may evaluate to the value that the then-expression
e2 evaluates to.

• Rule (e3e) says that if any argument to a function call evaluates to
an error, then this error is propagated and becomes the result of
the entire function call.

• Rule (e3) says that if all of the arguments to a function call evaluates
to proper values, then the function call may evaluate to a value as
defined by the function (whose definition we omit).

• Rule (e4) says that a volatile expression, in this case calling the RAND

function, may evaluate to any number between and including zero
and one. Calling the RAND function never evaluates to an error and
always allows the expression that contains it to be evaluated.

In particular, rules (e2e), (e2f) and (e2t) allow for cyclic dependencies
that are statically present in the formula expressions but not evaluated
dynamically, as described in Sec. 2.2.1.

2.2.4 Semantics of Recalculation

Recalculation is the process of bringing the spreadsheet to a consistent
state [93]. If a user changes the formula in a cell, then the cell and all the
cells that depend on it, directly or indirectly, must be updated. Using the
definitions from Sec. 2.2.3, we can formulate a consistency requirement for
successful spreadsheet recalculation as [93, Sec. 1.8.3]:

dom(σ) = dom(φ) (2.1)
∀ca ∈ dom(φ). σ ` φ(ca) ⇓ σ(ca) (2.2)
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Requirement (2.1) states that the domains of φ and σ must be the same.
This implies that a recalculation does not evaluate constants as they
involve no work. Requirement (2.2) states that for every cell ca in the
domain of φ, and thus also in the domain of σ by way of (2.1), its
formula φ(ca) must evaluate to σ(ca). The consistency requirement does
not specify how recalculation must otherwise proceed; sequentially, in
parallel, in which order, or how many times a cell should be evaluated.

In this model, a cyclic dependency can be resolved by assigning the
cell that contains the cyclic reference the #CYCLE! error as a value. The
error is then propagated by rules (e2e) and (e3e) such that the spreadsheet
eventually assumes a consistent state. The semantics does not specify
how cyclic dependencies are detected.

2.3 Funcalc and Sheet-Defined Functions

Funcalc [93] is an experimental spreadsheet engine implemented in C#
for the .NET platform. Funcalc features (1) a core spreadsheet implemen-
tation that recalculates spreadsheets through interpretation (see Sec. 5.2)
and (2) a compiler for user-defined functions to .NET byte code. In
popular spreadsheet software, as for instance Microsoft Excel, defining
new functions requires the use of an external language, e.g. Visual Basic.
Funcalc implements the concept of sheet-defined functions (SDF): users
can define new functions using only familiar spreadsheet concepts [66].
Funcalc’s compiler infrastructure is described in detail in [93, Part II].
Compiling SDFs to .NET byte code is a not a focus of this thesis and we
will largely gloss over its mechanisms.

2.3.1 Sheet-Defined Functions

To define a new SDF, the only new function that users need is the meta-
function DEFINE [93]. Its takes as arguments (1) the name of the function
to define, (2) the address of the cell that will contain the result of the
computation, i.e. the function’s return value, and (3) k ≥ 0 cell addresses
that contain input arguments. The size of k determines the arity of the
newly defined SDF and it is legal to define SDFs of arity 0. An input cell
may be empty; the expression that it contains is irrelevant for the function
definition. Input, output and intermediate cells are highlighted using
different colors. SDFs can only be defined on special function sheets that
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A B
1 =DEFINE("FIB", A2, B1)
2 =IF(B1 <= 1, 1, B2) =FIB(B1 - 1) + FIB(B1 - 2)
3
4 Will evaluate to 34: =FIB(8)

Figure 2.8: The recursive Fibonacci function as SDF in Funcalc. The
formula expression in cell A1 defines the function and makes it available
on all spreadsheets. Cell B1 is the input cell; cell A2 is the output cell;
and cell B2 is an intermediate cell that is only evaluated if the condition
in cell A2 evaluates to false. The function can be called like any other
function, as shown in cell B4.

are indicated by a pink margin. Figure 2.8 illustrates the definition of the
well known recursive Fibonacci function as an SDF.

2.3.2 Higher-Order Programming with Sheed-Defined Functions

Funcalc is a higher-order functional language and there exists a mech-
anism for passing a (sheet-defined) function as a value and to call it
subsequently. We use the CLOSURE function to create a function value, i.e.
a closure, for a function or an operator. Its arguments are (1) the name
of the function that we want to create a closure for as a string constant
or a function value, and (2) a list of arguments that is either empty or
of length k for a k-ary function. By passing additional arguments to
CLOSURE we perform partial application.1 Moreover, we can perform
out-of-order partial application by passing instead a not-available error
by calling the NA function in place of a real value.

We can call a function value by passing it to the APPLY function. The
caller must supply the missing arguments; APPLY returns an error value
if the number of supplied arguments does not match the arity of the
function value. Figure 2.9 illustrates different uses of CLOSURE and APPLY.

Funcalc has additional array-related higher-order functions built into
it and we discuss these in Sec. 3.2.

1Partial application is not the same as partial evaluation. Partial application binds
a value to a variable name without executing the function; partial evaluation also
performs execution. Funcalc also supports partial evaluation [93, Chapter 10]. Partial
evaluation is not discussed further in this thesis.



20 Chapter 2. Spreadsheets

A B
1 =CLOSURE("*") =APPLY(A1, 3, 2)
2 =CLOSURE("*", NA(), NA()) =APPLY(A2, 3, 2)
3 =CLOSURE("*", 3, NA()) =APPLY(A3, 2)
4 =CLOSURE("*", NA(), 2) =APPLY(A4, 3)
5 =CLOSURE("*", 3, 2) =APPLY(A5)

Figure 2.9: A spreadsheet that illustrates the creation of different closures
from the multiplication operator *. All formula expressions in column B
evaluate to the value 6.

2.4 Related Work

The majority of this section is based on the technical report “Declarative
Parallel Programming in Spreadsheet End-User Development” [11,
Sec. 3]. Sestoft [93] gives an even more thorough review of the liter-
ature on spreadsheet technology.

There are many different topics in spreadsheet research, e.g. error
detection [58] and automatic repair [39, 40, 41], visualization [59, 89] or
analysis of “real-life” spreadsheet corpora [42, 56]. In this section we
focus on research on end-user programming and its different incarnations
in a spreadsheet model of computations.

One major topic in research on spreadsheet end-user programming is
the lack of abstraction: spreadsheets bundle data and computations in a
single representation [64]. Moreover, spreadsheets encourage copying of
formulas across cells to replicate computations rather than using high-
level expressions [7, 82]. Miller [81] claims that the lack of abstraction
makes spreadsheets less powerful than general purpose programming
languages.

Another major topic is general programming paradigms in a spread-
sheet model of computation. Researchers have augmented spread-
sheets with object orientation [7] and more declarative programming
approaches [96, 99] that we will look at in greater detail in Section 2.4.2.
Even though we cannot strictly separate abstraction and programming
paradigms, this categorization is convenient for the discussion of how
researchers have proposed to handle the complexity of spreadsheet mod-
els.
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2.4.1 Abstraction

Abstraction is the separation of data and computation. It is useful to
define two kinds of spreadsheet abstraction. That is (1) manual abstrac-
tion, where users have the means to use language-provided abstraction
mechanisms to hide implementation details; and (2) automatic abstrac-
tion, where users construct spreadsheets in a familiar way and later use
static analyzers to infer the underlying model and subsequently separate
it from the data.

Manual Abstraction

Many researchers observed that spreadsheets lack the most basic abstrac-
tion of general-purpose programming languages: named functions [66].
Named functions make it possible to encapsulate and hide implementa-
tion detail that is unimportant for the overall computations of a specific
model. Therefore, Jones et al. [66] proposed to allow end-users to define
their own abstractions in terms of spreadsheet computations. Each newly
introduced function is essentially a spreadsheet “prototype” that has one
or more designated input cells and a designated output cell. Each time
the user calls such a sheet-defined function, a new spreadsheet instance
of this spreadsheet prototype is generated to perform the computation.

Sestoft [93] extended upon this idea by allowing sheet-defined, recur-
sive, run-time compiled functions. This approach is more general and
alleviates the need for instantiating explicit spreadsheets. This approach
is implemented in the experimental spreadsheet engine Funcalc which is
described in great detail in [93] and discussed in this thesis in Sec. 2.3
and 5.2.

Automatic Abstraction

Automatic analysis of spreadsheets to infer their model and to subse-
quently separate this model from the data allows users to build spread-
sheets in a familiar manner using familiar tools. Isakowitz et al. [64]
developed a system that automatically performs such a separation and
manages spreadsheet logic for modular re-use. They observe that the
majority of spreadsheet errors they encounter are not simple off-by-one
reference errors and typos but severe errors in the model. They relate
them to classic programming errors where the programmer has not
chosen an adequate level of abstraction.
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The visual layout of spreadsheets is often regarded as implicit doc-
umentation of the spreadsheet’s logic. Mittermeir and Clermont [82]
however, observe that this visual layout often leads to misconceptions if
another user takes over the spreadsheet. Therefore, they developed a set
of logical and semantic equivalence classes for cells. These equivalence
classes help visualizing repetitions in spreadsheet grids, which are the
high-level structures a user needs to understand in order to be able to
maintain the spreadsheet [57].

Types are useful abstractions over spreadsheets. The literature in-
cludes different type inference systems that make the user aware of
formulas where the expected type differs from the actual type [1, 31].
Researchers have proposed different solutions to handle types in spread-
sheets and a common problem is efficient typing of cell areas [1, 30]. We
classify types as a kind of automatic abstraction because the types often
are inferred rather than annotated.

2.4.2 Programming Paradigms

The literature contains a variety of approaches to bringing different
programming paradigms to the spreadsheet domain with a focus on
raising the abstraction level.

Object Orientation

Functional Model Development (FMD) [7] is a domain-specific language
for Microsoft Excel and exposes objects to spreadsheet users. Objects are
accumulations of data with functions defined on them. FMD provides
a special syntax for declaring variables that model input parameters
for user-defined functions. Functions are defined inline on the same
spreadsheet using prototype formulas where the cell that would yield the
result actually evaluates to the newly defined function. As spreadsheets
encourage copying of formulas over the same column or row, FMD
introduces a high-level map construct that applies the same user-defined
function across a column or row.

To apply stronger separation of implementation and instantiation,
Mendes [80] developed ClassSheet. The logic of a computation is defined
in a model-spreadsheet, while each common spreadsheet that performs
the computations is an instance of this model. This approach resembles
a manual version of the abstraction model by Isakowitz et al. [64].
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Constraint Programming

Stadelmann [99] proposed to let spreadsheet users express their models
by providing the system with constraints to solve. This approach con-
siderably reduces the amount of code required to model complicated
logic [99]. However, due to the requirement of being able to name a cell
multiple times in a particular constraint, it is infeasible to let constraints
directly replace cell formulas. Instead, the system provides a second
window that contains constraints. This side-steps the spreadsheet model
slightly.

By Example

Programming by example allows users to explain how to transform
data by performing a few transformations manually, from which the
system can infer general transformation rules. This is useful for bulk-
processing similar items. Barowy et al. [5] and Singh and Gulwani [96]
extended Microsoft Excel with a domain-specific language (DSL) that
allows users to provide such example transformations such that Excel
then can automatically transform additional items. They combine a
probabilistic approach of parsing with learning of transformation rules.
Their approach is related to formula copying but more general, because
the data in the input cells is not required to be uniform; e.g. a column of
dates can be transformed by giving more than one example if the format
of the date varies from cell to cell. The transformation function, however,
is not reified in the spreadsheet formula itself.
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Declarative Array Programming

Array programming, sometimes referred to as array-oriented program-
ming, focuses on operations on arrays. When we talk about array-
oriented languages, what we often really mean are collection-oriented
languages [97]; however, arrays are abundant in nearly all programming
languages and a well understood concept among programmers, hence
we stick to the name.

In array-oriented languages, we distinguish between scalar values,
such as a single floating point number, and non-scalar values, such as
arrays of floating point numbers. Programs written in array-oriented
languages are often highly data-parallel and parallelism is extracted via
a single-instruction-multiple-data (SIMD) model: operations are applied
to all elements of an array and therefore may be executed in parallel.

There are two major strands of array programming. One is imperative
and loop-based where each iteration of a loop can run in parallel if
there are no dependencies between any two iterations. Examples of such
languages are Single-assignment-C (SaC) [49] and Fortran.

The other strand, which this thesis focuses on, is declarative array
programming, where scalar operations are lifted to work on arrays. Lifting
happens either implicitly, as for instance in APL [65], where it is legal
to apply the binary addition operator either to two scalar values or to
two arrays and where the latter sums the two arrays element-wise and
returns a new array; or explicitly by using higher-order functions over
arrays, such as map or reduce.

It is arguably easier to parallelize programs written in a declarative
language without side-effects [20]. In the remainder of this dissertation,
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we will only concern ourselves with declarative array-oriented program-
ming.

3.1 Array Combinators

The array programming model that we focus on uses higher-order func-
tions to express bulk-operations on arrays. Throughout the remainder
of this thesis, we call a higher-order function that lifts a function from
operating on scalar values to operate on arrays an array combinator. In
this section, we briefly introduce three of the most important array com-
binators: map, reduce and scan. Note that we write function application
without parenthesis. The expression f x y means function f is applied to
arguments x and y.

3.1.1 Map

The map f xs combinator has type (α → β) → [α] → [β] which means
that it accepts as arguments (1) a function f that takes values from type
α to type β (written α → β) and (2) an array xs containing values of type
α (written [α]) and applies f to each element of the array; the result is a
new array that contains values of type β:

map f [x1, x2, x3, . . . , xn] ≡ [ f x1, f x2, f x3, . . . , f xn]

Since all applications of f are independent from each other, map is allowed
to perform each application in parallel. Moreover, map can be naturally
extended to take more than one array as argument, such that we can use
a binary (2-ary) function, or operator, ⊕ to combine two arrays element-
wise. We call this combinator zipWith, or sometimes map2 and it has type
(α → β → γ) → [α] → [β] → [γ]. It behaves as follows:

zipWith ⊕ [x1, x2, . . . , xn] [y1, y2, . . . , yn] ≡ [x1 ⊕ y1, x2 ⊕ y2, . . . , xn ⊕ yn]

In principle, we can define a map-like combinator for any number of
arrays, e.g. map3, map4 and so on. The mapk combinator would take a
k-ary function as an argument and k arrays of the same shape. Two one-
dimensional arrays are of the same shape if they have the same length;
two two-dimensional arrays are of the same shape if they have the same
number of rows and the same number of columns; and so on.
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3.1.2 Reduce

Often, it is useful to compute a single scalar value from an array. In
array programming, this is usually done by using the reduce ⊕ ε xs
combinator of type (α → α → α) → α → [α] → α. It takes (1) a binary
operator ⊕ that combines two scalar values of type α and returns a
scalar result of type α, (2) a “default” value ε of type α from where the
reduction begins and (3) an array to reduce:

reduce ⊕ ε [x1, x2, . . . , xn] ≡ ε ⊕ x1 ⊕ x2 ⊕ . . . ⊕ xn

We can use reduce to implement summation of an array of numbers in
a straightforward fashion as reduce (+) 0 using the addition operator +
and its identity, which is 0.

The reduce combinator does not specify an order of application.
Assuming that the operator ⊕ is associative and that ε is the identity
element for ⊕ such that ε ⊕ x ≡ x ⊕ ε ≡ x then the order of the ⊕
applications does not matter and reduce can run in parallel:

reduce ⊕ ε [x1, x2, . . . , xn−1, xn] ≡ ε ⊕ (x1 ⊕ x2) ⊕ . . . ⊕ (xn−1 ⊕ xn)

The sub-expressions x1 ⊕ x2 and xn−1 ⊕ xn and all sub-expressions in-
dicated by the ellipses can be evaluated in parallel and combined by
recursive application of ⊕. If the argument array is empty, reduce just
returns ε.

There exists a popular generalization of reduce which is called fold

and it has type (β → α → β) → β → [α] → β. Its type is more general,
but this increased generality comes at a cost. An implicit parallelization
of fold is not possible, because here the binary function requires one
argument of type β and one of type α: it has no way of combining two
values of type β and therefore cannot combine partial results. Hence,
fold cannot be parallelized [101].

One way to achieve greater generality of reduce is to combine it with
map to a single combinator mapReduce of type (α → β) → (β → β → β) →
β → [α] → [β]:

mapReduce f ⊕ ε [x1, x2, . . . , xn−1, xn] ≡ ε ⊕ ( f x1 ⊕ f x2) ⊕ . . .⊕ ( f xn−1 ⊕ f xn)

It can be curried with the identity function id to elegantly implement
reduce as mapReduce id.
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3.1.3 Scan

The scan combinator is a generalization of computing the prefix sums [16]
for a list of numbers [17]. For instance, the prefix sums of the list [1, 2, 3, 4]
are [1, 3, 6, 10]. The idea is to reduce a collection and to also return the
intermediate reduction results. There are variations in naming and
definition in literature and popular use. We define scan ⊕ ε xs as follows.
The combinator has type (α → α → α) → α → [α] → [α]:

scan ⊕ ε [x1, x2, x3, . . .] ≡ [ε ⊕ x1, ε ⊕ x1 ⊕ x2, ε ⊕ x1 ⊕ x2 ⊕ x3, . . .]

Even though scan seems inherently sequential, Blelloch [17] showed
how to parallelize this combinator for associative operators. If (x ⊕ y) ⊕
z ≡ x ⊕ (y ⊕ z), it is possible to use a divide-and-conquer approach to
parallelization by recursively applying ⊕ to partial results. The parallel
scan combinator is also used in hardware: Hinze [60] and Sheeran [95]
have used the principles behind parallel scan to design optimal parallel
prefix-sum circuits.

3.1.4 Scanning Two-Dimensional Arrays

It is trivial to generalize map and reduce to two-dimensional arrays.
Generalizing scan takes more effort. We could choose to only scan in
vertical or horizontal direction, but this seems not sufficiently general.
Instead, we take some inspiration from computer graphics, where it is
common to work with two-dimensional arrays. In computer graphics,
prefix sums in two dimensions are called summed-area tables [36] and
are used to compute the integral image of an input image. We define
the combinator scan2d as a generalized summed-area table: a wavefront
computation for arbitrary 4-ary functions over a two-dimensional array,
starting at the upper-left of the array and progressing towards the lower-
right. A basic definition of this wavefront computation could be

scan2d′ f xs ≡ ys

where

ys [i, j] = f ys[i, j − 1] ys[i − 1, j − 1] ys[i − 1, j] xs[i, j].

This definition, however, does not define what to do in the case of i = 0,
i.e. the first row, and j = 0, i.e. the first column. We could just skip the
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first row and column, but this seems rather limiting. Instead, we use
multiple ε values to initialize the fringes of the two-dimensional scan. A
more general definition scan2d f γ δ ρ xs takes a 4-ary function f , an
m × 1 single-column array γ, a scalar value δ and a 1 × n single-row array
ρ as well as an input array xs of shape m × n. Its result is a new m × n
array

scan2d f γ δ ρ xs ≡ ys

where:

ys[0, 0] = f γ[0] δ ρ[0] xs[0, 0] (3.1)
ys[0, j] = f ys[0, j − 1] ρ[ j − 1] ρ[ j] xs[0, j] (3.2)
ys[i, 0] = f γ[i] γ[i − 1] ys[i − 1, 0] xs[i, 0] (3.3)
ys[i, j] = f ys[i, j − 1] ys[i − 1, j − 1] ys[i − 1, ] xs[i, j] (3.4)

We use the values from γ, ρ and δ as if they were positioned around
the upper and left fringes of xs (see Fig. 3.1). Equation (3.1) defines
the first element of ys at (i, j) = (0, 0), on which all other values of ys
depend. Since no values precede it, we must refer to values from γ, δ
and ρ instead. Equation (3.2) defines the first row and hence refers to
ρ; Eq. (3.3) defines the first column and therefore refers to γ. Finally,
Eq. (3.4) is the general case for all remaining index pairs (i, j).

The next question to ask is how to parallelize scan2d. Again,
this is rather trivial for two-dimensional generalizations of map and
reduce, because there is no sequential dependency between any two
sub-computations.

Scanning a two-dimensional array only row- or column-wise gives
us the opportunity to run each row- or column-wise scan independently
from one another and hence in parallel, even without requiring an
associative operator as function argument. In the general case, however,
later rows and columns depend on both earlier rows and columns.

Instead of trying to parallelize row- or column-wise, we can split
up the argument array xs into quadrants, as shown in Fig. 3.1. Even
though both q2 and q3 depend on q1, there is no sequential dependency
between q2 and q3. We can therefore compute the prefix of q2 and q3 in
parallel. When both are computed, we can proceed to compute q4. We
can implement this parallelization scheme recursively on each sub-array
until either a minimum size is reached or we have exploited all available
cores. Figure 3.2 illustrates the recursive parallel computation graph
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q1

q2

q3

q4

· · · ρ · · ·
δ

...
γ

...

Figure 3.1: Wave front scheme of the scan2d combinator. We process
from the top left to the bottom right of the two-dimensional array, as
indicated by the red arrows. The quadrants q2 and q3 depend on q1,
while q4 depends on all of these, as indicated by the blue arrows. Values
γ, δ and ρ are initial values at the fringes. Note that quadrant numbers
are not as in plane geometry.

q1
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q31
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q331
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q24

q324 q334

q34

q4

Figure 3.2: The parallel computation graph of scan2d. The number of
nodes at each level indicates the available parallelism. The node labeled
q21 is the first quadrant at level two of the node at the second quadrant
at level one.

for scan2d, which looks much like the graph for parallel scan on one
dimensional arrays [17].

Note that parallel scan2d does not require f to have any special
properties for correct parallelization.

3.2 Array Programming in Funcalc

Using the taxonomy introduced by Sipelstein and Blelloch [97], arrays
in Funcalc are nested, heterogeneous, (two-dimensional) grid-ordered,
finite collections. Funcalc arrays are two-dimensional due to the two-
dimensional cell layout of spreadsheets. Referencing a cell range such as
A1:J10 returns an array of ten rows and ten columns. Therefore, some
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Type Short Description
NumberValue n A number.
ArrayValue arr An array containing values.
FunctionValue f A closure of a function.
Value v Subsumes all other types.

Table 3.1: Some Funcalc types and their abbreviations.

operations on arrays are duplicated and operate either on the vertical
(row-wise) or the horizontal (column-wise) dimension; for instance, we
can reverse an array either vertically using VREV or horizontally using
HREV, as described in Sec. 3.2.1. Arrays in Funcalc are 1-based, unlike
C-style arrays which are 0-based. Unlike Microsoft Excel, Funcalc allows
an array value to be stored in a single cell. If this was not allowed, it
would be impossible to define SDFs over arrays, as illustrated in Sec. 3.2.2
and 3.2.3.

3.2.1 Functions and Combinators on Arrays

In the following, we list all the relevant functions and combinators on
arrays, their signature and give a brief description of their semantics. We
use the type abbreviations listed in Table 3.1 for conciseness. A type
annotated with a + symbol, e.g. arr+, means “one or more values of this
type”. The function signature f × arr+ → arr means that the function
accepts as arguments a function and one or more arrays and returns an
array.

COLUMNS : arr→ n
Returns the number of columns of the array.

CONSTARRAY : v × n × n → arr
Calling CONSTARRAY(v, m, n) returns a new array of shape m × n
with value v at every index position.

HCAT : arr × arr→ arr
Concatenates two arrays with an equal number of rows column-
wise.

HPREFIX : f × arr × arr→ arr
Computes the row-wise generalized prefix-sum (see Sec. 3.1.3) for
an array of shape m × n (last argument). The first array (second
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argument) is of shape m × 1 and contains initializer values for each
row.

HREP : arr × n → arr
Takes an array of shape r × 1 and returns a new array of size r × n
by repeating the single column of arr exactly n times.

HREV : arr→ arr
Reverses the order of values in column-direction.

INDEX : arr × n × n → v

Calling INDEX(arr,r,c) returns the value at row r, column c or a
#REF! error if r or c are less than 1 or greater than the number of
rows, columns respectively, in arr.

MAP : f × arr+ → arr
Funcalc’s MAP combinator is variadic and takes a k-ary function and
k arrays that must all have the same shape; see Sec. 3.1.1.

PREFIX : f × arr × v × arr × arr+ → arr
Computes a generalized two-dimensional prefix sum for a 3+ k-ary
function and k arrays of shape m × n; see Sec. 3.1.4.

REDUCE : f × v × arr→ v

Exactly as described in Sec. 3.1.2.

ROWS : arr→ n
Returns the number of rows of the array.

SLICE : arr × n × n × n × n → arr
SLICE(arr,i, j,m,n) returns a sub-array of array arr that starts at
the upper-left corner (i, j) and ends at the lower-right corner (m, n).

SUM : arr→ n
Computes the sum of all elements in the array.

TABULATE : n × n × f → arr
Calling TABULATE(m,n, f ) returns a new array arr of shape m × n
such that INDEX(arr,r,c) ≡ f (r,c) where 1 ≤ r ≤ m and 1 ≤ c ≤ n.

TRANSPOSE : arr→ arr
Transposing an array arr of shape m × n returns a new array arr’ of
shape n ×m such that INDEX(arr′,r,c) ≡ INDEX(arr,c,r).



3.2. Array Programming in Funcalc 33

VCAT : arr × arr→ arr
Concatenates two arrays with an equal number of columns row-
wise.

VPREFIX : f × arr × arr→ arr
Computes the column-wise generalized prefix-sum (see Sec. 3.1.3)
for an array of shape m × n (last argument). The first array (second
argument) is of shape 1 × n and contains initializer values for each
column.

VREP : arr × n → arr
Takes an array of shape 1× c and returns a new array of shape n× c;
it works like HREP but by repeating rows.

VREV : arr→ arr
Reverses the order of values in row-direction.

3.2.2 Example: Matrix Multiplication

A useful numeric function is matrix multiplication. In this section, we
show how to implement matrix multiplication in Funcalc and we start
with a reference implementation in F# [104] that is free of side-effects
and operates on immutable, two-dimensional arrays. In F#, the type of a
two-dimensional array of type α is written as 'a [,].

Our implementation uses higher-order array combinators. Function
mmult (Fig. 3.3) takes two arguments of type float [,] of shape k × n
(lm) and m × k (rm) and returns a new value of type float [,] of shape
m × n. To compute the value at index (i, j), we can compute the dot-
product of row i of lm (r_i) and column j of rm (c_j). The inner function
dot implements this by (1) combining r_i and c_j, which are both of
type float [,] and of shape 1 × k, point-wise using zip_with and the
multiplication operator and (2) summing the resulting array. The types
of the used functions and array combinators are listed above function
mmult in Fig. 3.3.

The Funcalc formula language is expressive enough to follow this
reference implementation closely, as shown in Fig. 3.4. There are two
major differences: (1) MAP in Funcalc has variadic arity and accepts as
arguments a k-ary function and k arrays of equal shape, as described in
Sec. 3.2.1; and (2), Funcalc does neither have syntax for anonymous nor
for inner functions, which is why the DOT function has four parameters—
the two arrays from which it should slice sub-arrays and a row and a
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1 val columns : 'a[,] → int
2 val init :
3 int → int → (int → int → 'a) → 'a[,]
4 val rows : 'a[,] → int
5 val slice :
6 'a[,] → int → int → int → int → 'a[,]
7 val sum : float[,] → float
8 val transpose : 'a[,] → 'a[,]
9 val zip_with :
10 ('a → 'b → 'c) → 'a[,] → 'b[,] → 'c[,]
11

12 let mmult lm rm =
13 let trm = transpose rm in
14 let dot = fun i j →
15 let r_i = slice lm i 0 1 (columns lm) in
16 let c_j = slice trm j 0 1 (columns trm) in
17 sum (zip_with ( * ) r_i c_j)
18 in
19 init (rows lm) (columns rm) dot

Figure 3.3: An implementation of functional matrix multiplication in F#.

column index. We can use partial application to generate a closure of
DOT where both arrays are already provided (Fig. 3.4, cell C7). Hence, the
signature of the residual DOT closure is n × n → n. Therefore, we can pass
it as function argument to TABULATE to generate a new array.

Furthermore, note that the SLICE function in Funcalc takes absolute
row and column indices for the upper-left and the lower-right corner,
whereas the function slice xs r c m n in F# returns a sub-array of xs
starting at the upper-left corner (r, c) with m rows and n columns.

3.2.3 Example: Batcher Sort

Batcher Sort [6] or bitonic sort is a sorting algorithm whose structure
resembles that of a bitonic sorting network. Sorting networks are highly
parallel but not necessarily more efficient that other standard sorting
algorithms [54]. We say that a sequence x1, . . . , xk , . . . , xn is bitonic if

x1 ≤ . . . ≤ xk ≥ . . . ≥ xn.



3.2. Array Programming in Funcalc 35

A B C
1 lm: =SLICE(B1, B3, 1, B3, COLUMNS(B1))
2 trm: =SLICE(B2, B4, 1, B4, COLUMNS(B2))
3 r: =SUM(MAP(CLOSURE("*"), C2, C3))
4 c: =DEFINE("DOT", C3, B1, B2, B3, B4)
5
6 lm: =TRANSPOSE(B7)
7 rm: =CLOSURE("DOT", B6, C6, NA(), NA())
8 =TABULATE(C7, ROWS(B6), COLUMNS(B7))
9 =DEFINE("MMULT", C8, B6, B7)

Figure 3.4: Functional matrix multiplication in Funcalc as SDF. Funcalc
has no syntax for defining anonymous or inner functions, so we must
make the DOT function public. Moreover, the implicit parameters (lm and
trm) to the dot function from Fig. 3.3 are made explicit. Here, we bind
these to the closure of DOT using partial application (cell C7).

For instance, the sequences 3, 6, 9, 5, 2, 1 and 4, 3, 2, 1 are bitonic, but
3, 6, 4, 5 is not.

We can implement a repeating network structure using recursion [34,
61]. Function bitonic_sort in Fig. 3.5 sorts a bitonic sequence of length
2k recursively by (1) splitting the input array into two equally sized
sub-arrays, (2) comparing the two sub-arrays point-wise such that mins
contains a bitonic sequence of values that are all strictly smaller than
the values in maxs, (3) sorting these bitonic sequences recursively and (4)
combining the resulting arrays by concatenation.

Function bitonic_sort only works for bitonic sequences. To gener-
alize to sequences that are arbitrarily ordered, function batcher_sort

exploits that all sequences of length 2 are bitonic. If we have two sorted
sequences xs and ys, we can sort the values from both by concatenating
xs to ys reversed and passing the result to bitonic_sort. Conatenating
two sorted arrays and reversing the latter array produces a new bitonic
array. This is what function batcher_sort in Fig. 3.5 does.

Again, Funcalc’s formula language is expressive enough that we can
implement Batcher’s sorting algorithm as an SDF, as shown in Fig. 3.6.
There are two major differences.

First, there is no tuple type in Funcalc and we therefore split function
split from Fig. 3.5 into two functions UPPER and LOWER in that return
the respective upper and lower half of a vertical column array. It would
be possible to implement a function SPLIT in Funcalc that returns an
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1 val ( @ ) : 'a[] → 'a[] → 'a[]
2 val init : int → (int → 'a) → 'a[]
3 val len : 'a[] → int
4 val rev : 'a[] → 'a[]
5 val zip_with :
6 ('a → 'b → 'c) → 'a[] → 'b[] → 'c[]
7

8 val split : 'a[] → 'a[] * 'a[]
9

10 let rec bitonic_sort xs =
11 if len xs <= 1 then xs
12 else
13 let lhs , rhs = split xs in
14 let mins = zip_with min lhs rhs in
15 let maxs = zip_with max lhs rhs in
16 bitonic_sort mins @ bitonic_sort maxs
17

18 let rec batcher_sort xs =
19 if len xs <= 1 then xs
20 else
21 let lhs , rhs = split xs in
22 let lhs' = batcher_sort lhs in
23 let rhs' = batcher_sort rhs in
24 bitonic_sort (lhs' @ rev rhs')

Figure 3.5: An implementation of Batcher Sort in F#. The definition of
split has been omitted; it splits an array xs at len xs / 2 and returns
the left and the right half of xs as a tuple. The @ operator performs
concatenation.
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A B C
1 xs: =DEFINE("BITONIC",B5,B1)
2 lhs: =UPPER(B1) =MAP(CLOSURE("MIN"),B2,B3)
3 rhs: =LOWER(B1) =MAP(CLOSURE("MAX"),B2,B3)
4 =VCAT(C4, C5) =BITONIC(C2)
5 =IF(ROWS(B1)<=1,B1,B4) =BITONIC(C3)
6
7 xs: =DEFINE("BATCHER",B11,B7)
8 lhs: =UPPER(B7) =BATCHER(B8)
9 rhs: =LOWER(B7) =BATCHER(B9)

10 =BITONIC(C11) =VCAT(C8, VREV(C9))
11 =IF(ROWS(B7)<=1,B7,B11)

Figure 3.6: Batcher Sort in Funcalc as SDF. The definitions of functions
UPPER and LOWER have been omitted; they return the respective upper and
lower half of a two-dimensional array.

array containing exactly two values to simulate tuples; we have decided
against this approach in the interest of clarity.

Second, all arrays in Funcalc are two-dimensional. Therefore, the
Funcalc implementation of batcher sort is slightly more general than the
F# implementation: there is no requirement on the number of columns
of an input array, so the SDF sorts the elements of each column of a
two-dimensional array in parallel.

Moreover, it is possible to implement Batcher sort in a normal spread-
sheet by unrolling the recursion and calling BITONIC directly. The trick
here is to use array formulas to unpack the values from the sorted
sub-arrays into single cells, as shown in Fig. 3.7.

3.3 Related Work

The majority of this section is based on the technical report “Declarative
Parallel Programming in Spreadsheet End-User Development” [11,
Sec. 2].

We have identified three key topics within (parallel) array program-
ming: nested data parallelism, array fusion and array representation.
While these are obviously connected and therefore cannot be discussed
in isolation, we will use them to structure the review of the relevant
research body on parallel array programming.
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A B C D
1 42

{=BITONIC(A1:A2)}
{=BITONIC(B1:B4)}

{=BITONIC(C1:C8)}

2 23

3 66
{=VREV(BITONIC(A3:A4))}

4 534

5 123
{=BITONIC(A5:A6)}

{=VREV(BITONIC(B1:B4))}
6 56

7 8
{=VREV(BITONIC(A7:A8))}

8 21

A1

A2

A3

A4

B1

B2

B3

B4

C1

C2

C3

C4

Figure 3.7: Implementing Batcher Sort in a standard spreadsheet by
unrolling the recursion. Top: We can use array formulas to unpack the
result of each call to BITONIC into single cells. Bottom: The support graph
(or dataflow graph) of the above spreadsheet for the first two iterations;
it roughly resembles a bitonic sorting network without any distinction
between comparison and “flow” edges. The gray ellipses group cells that
are part of the same array formula.
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There are some key languages that appear in the literature. The two
oldest are Fortran, which is an imperative high-performance language,
and APL [65], which is a high-level declarative language. Furthermore,
much research has focused on Single-assignment-C (SaC) [49], which
is a C-like functional language, and Data Parallel Haskell (DPH) and
REPA [68], both of which are library and compiler extensions for Haskell.
Another important language is NESL [18], which introduced the idea of
statically flattening irregularly nested arrays to load-balance work.

The opportunity for parallelism in these languages stems from array
combinators. Where imperative languages like Fortran use iterative loops,
functional languages depend on higher-order combinators such as map

or reduce to express data-parallel computations. Ching [33] argues that
it is easier for programmers to express parallelism declaratively than by
explicitly scheduling work to different processors.

The only requirement for implicit parallelization is that the program-
mer writes idiomatic code which the compiler or libraries knows how to
parallelize efficiently [9]. Not only is parallelism much easier to extract,
but sequential programs written in such a high-level style will often
perform better, too [9].

3.3.1 Nested Data Parallelism

Nested data parallelism describes the nesting of parallel operations over
an array. For instance, the functional matrix multiplication algorithm
described in Sec. 3.2.2 nests calls to sum and zip_with in a call to init,
all of which can be executed in parallel.

A naive way of implementing such nested parallelism would be to
start new threads from within each parallel thread which, naively done,
would add an immense overhead to the program and prohibit parallel
speedup. Early work on the parallel language Actus [88] recognizes
the difficulty of nested data parallelism and, as a temporary solution,
restricts the level of parallelism to a dimension that the programmer
has to choose explicitly ahead of time. Further research on nested data
parallelism has focused on eliminating this overhead in two different
ways, which we discuss in the following.

Flattening

Flattening nested data parallelism statically flattens homogeneous com-
putations on possibly irregularly nested arrays. Blelloch et al. [22] in-
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troduced the idea of statically flattening irregularly nested arrays for
optimal parallelization. The key to flattening is the right choice of array
representation. Blelloch et al. [22] showed that there exists a represen-
tation that enables flattening of irregularly nested arrays in constant
time and space. In the first-order functional language NESL, flattening
requires the generation of lifted versions of all functions to the next
rank. For instance, if the + operator performs addition on scalars, then
its lifted variant performs point-wise addition of arrays. Blelloch and
Greiner [21] showed, based on NESL’s cost semantics, that NESL actually
can be implemented without any additional run-time overhead due to
flattening.

Other researchers have since taken up the idea of flattening nested
parallelism again [77] and implemented it in Haskell. In contrast to
NESL, Haskell is a higher-order functional programming language with
a static type system that is compiled instead of interpreted.

As it turns out, flattening nested data parallelism is much harder in
higher-order languages [76]. Flattening in higher-order languages often
introduces additional intermediate arrays that cost both time and space.
Therefore, Keller et al. [69] developed a technique to avoid flattening in
such cases.

Flattening nested data parallelism is tightly coupled to array fusion,
or deforestation [111], which we will discuss in more detail in Sec. 3.3.2.

Dynamic Scheduling

Dynamic scheduling leaves the distribution of work to the run-time
of the program. SaC [49] and the .NET Thread Parallel Library [74]
both use work-stealing queues [28] to dynamically schedule work. Such
scheduling schemes work well in practice, but they can result in some
overhead at run-time that otherwise could have been alleviated by using
compile-time transformations. To minimize the overhead of scheduling
different kinds of computations, Fluet et al. [47] argue for a mix of
schedulers and to let the run-time choose dynamically which scheduler
to use for distributing work.

A notable scheduling heuristic is lazy binary splitting [106, 107]. In
this scheme, every thread gets assigned some part of the workload.
Threads communicate with other threads via a technique inspired by and
as efficient as work-stealing queues. When a worker thread iterates over
an array, it checks at every n-th iteration step whether any of the other
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threads are idle. If yes, it splits its remaining array in half, dispatches
the latter half to the idle threads and continues to the next iteration step.
This heuristic shows low overhead in experimental settings [106].

3.3.2 Fusion

Fusion, or deforestation [111], refers to avoiding the materialization of
intermediate data structures for consecutive applications of higher-order
combinators. For instance, we can combine two succeeding applica-
tions of map into a single application as follows, where ◦ is the function
composition operator (we give a more thorough overview over fusion
techniques in Chapter 7):

map f (map g xs) ≡ map ( f ◦ g) xs

This optimization is valuable for both sequential and parallel programs,
and for example also in sequential Fortran 90 programs [63].

Chakravarty and Keller [27] express fusion transformations as straight-
forward equational rewrite rules in the Glasgow Haskell Compiler (GHC).
They also observe that flattening nested arrays makes fusion a much
more straightforward task, which emphasizes the connection between
flattening and fusion. Some researchers have been focusing on making
such optimizations visible to the programmer via types [76]. This enables
programmers to reason about the performance of their declarative code.

More aggressive fusion is possible if the compiler performs a more
complex analysis. Henriksen and Oancea [52] use a dataflow based graph-
reduction to analyze functional programs with second-order combinators
on arrays for fusion possibilities. Their analysis can detect code structures
that inhibit fusion, subsequently re-writes the program in such a way
that fusion becomes possible and avoids duplicate computations; this
technique, among others, is implemented in the Futhark language [53]

A special variant of fusion is destructive update analysis. Since data
structures in purely functional languages are immutable, writing to a
single index of an array produces a new array. The update operation
copies all elements from the original array with exception of the index
that it updated. If the updated array is not referenced again throughout
the program, we can perform the update in-place, or destructively, with-
out the overhead of copying all data. Sastry and Clinger [90] developed
an analysis for destructive array updates using live-variable dataflow
analysis.
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3.3.3 Array Representations

Choosing the right data structure is a key element to high-performance
array programming where the performance of individual operations on
arrays is the main concern. For instance, arrays should be able to perform
constant-time lookup and preferably also constant-time update [84]. It
is well-known that data structure designers often must make a trade-off
between the asymptotic complexity of different operations, like random
access, update and concatenation. Nevertheless, Stucki et al. [102] devel-
oped a general-purpose, immutable, array-like data structure, the relaxed
radix-bound (RRB) tree and proved the asymptotic complexity for all oper-
ations and for practical sizes of RRB trees, bounded by the maximal word
size of the underlying machine architecture, to be constant or amortized
constant.

Arvind et al. [3] developed I-Structures that conceptually are write-
once arrays. Each index can be written to exactly once during the entire
run-time of the program. Reads from and writes to indices can be re-
ordered according to re-write rules at the cost of sacrificing referential
transparency.

Type-based run-time specialization of functions and optimization of
data structures is a widely applicable technique in functional program-
ming [50]. REPA [68] uses types in order to represent irregular shapes of
arrays and to specialize higher-order functions accordingly. REPA arrays
consist of unboxed values and are lazy. Accessing a particular element of
an array forces the evaluation of the entire array, where the individual
elements of the array can be evaluated in parallel.
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Chapter 4

Rewriting Cell Arrays

This chapter is based on the paper “Rewriting High-Level Spreadsheet
Structures into Higher-Order Functional Programs” [14] which is joint
work with Wensheng Dou and Peter Sestoft.

4.1 Introduction

The lack of abstraction in spreadsheet formula languages encourages
formula copying across columns and rows [7, 82]. In fact, Dou et al.
[41] report that 69% of all spreadsheets with formulas in the Enron [56]
and EUSES [46] spreadsheet corpora contain cell arrays. A cell array
is a rectangular block of copy equivalent formulas [82], like the cell
areas B2:F6 and B8:F12 in Fig. 4.2. Such a cell array is created when the
spreadsheet user writes a formula, typically with a carefully crafted mix
of absolute and relative references, and copies it to a rectangular cell
range.

Can we exploit the presence of cell arrays to speed up spreadsheet
recalculations? In functional languages, disjoint computations on values
of an array can be expressed explicitly by means of higher-order functions.
For instance, the array combinator map explicitly applies a pure function
to each element of an array individually. Hence, map can easily be
parallelized (see Sec. 3.1.1).

In this chapter, we design a source-to-source rewriting semantics for
converting cell arrays into parallel higher-order functional programs to
improve recalculation performance. Our idea is based on the observation
that the references in cell arrays often form a pattern that corresponds to
one of two combinators on 2D arrays [112, 113].
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Our rewriting semantics uses a common feature of spreadsheet soft-
ware, called array formulas (see Sec. 2.1.2). An array formula must evaluate
to an array of the same size and shape as the spreadsheet cell range that
contains the formula. The array is then unpacked and its scalar values
are placed directly in the cells according to their position in the array,
such that the containing array disappears.

To our knowledge, there is no previous work on exploiting parallelism
in cell arrays to improve recalculation performance. Some researchers
have investigated whole-sheet graph parallelism on spreadsheets [110,
112, 113]. Prior work on high-level spreadsheet structures has either
focused on making the user aware of high-level models [57, 82, 89]; on
correcting errors in cell formulas by analyzing the structure around given
cells [32, 39, 41, 59]; or on synthesizing templates from spreadsheets to
allow for reuse of the high-level structure [1, 64].

With our rewriting semantics, Funcalc can exploit implicit parallelism
in spreadsheets dominated by large or computation-heavy cell arrays. We
compare the performance of our approach on idealized and real-world
spreadsheets from the LibreOffice Calc [48] benchmark suite and the
EUSES [46] corpus. Our results show that, by parallelizing cell arrays
on 48 cores, spreadsheet recalculation becomes up to 25 times faster if
the spreadsheets are sufficiently large and their computations sufficiently
parallel. However, our results also show that the achievable speedup is
limited by the sequential dependencies of the spreadsheet models and
that, on small spreadsheets, our technique can even make performance
worse.

4.2 From Spreadsheets to Higher-Order Functional Programs

In this section, we describe our overall idea: how to rewrite the copy-
equivalent formulas of a cell array into a single call to one of two higher-
order array combinators, namely MAP and PREFIX, as defined in Sec. 3.2.1.
We illustrate our idea by means of a small but complete example, using
a specialized formula language, λ-calc.

4.2.1 A Formal Spreadsheet Language

For presentation purposes, we use a formal spreadsheet language, λ-calc,
as shown in Fig. 4.1. Terms in e include lambda-expressions of arbitrary
arity with named parameters. All expressions must be closed. Users are
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only allowed to write expressions in u which is a subset of e without
anonymous functions and variable names. References r to cells and to
cell ranges are shown in the R1C1 format, but translated to the “usual”
A1 format in examples. See Sec. 2.1.1 for a detailed explanation of both
address formats.

Function φ ∈ r → e maps a cell address r to the formula e = φ(r)
in that cell (as described in in Sec. 2.2.3). When r1 : r2 is a cell array of
copy equivalent formulas, we write φ(r1 : r2) for the common formula
(see Sec. 4.3.1).

4.2.2 Example: DNA Sequence Alignment

We illustrate the rewriting of cell arrays with the spreadsheet shown in
Fig. 4.2. It computes the optimal local alignment of two DNA sequences
using the standard algorithm by Smith and Waterman [98] that is based
on dynamic programming. A substitution matrix s is defined in cell
range B2:F6 (light-blue cells), and the scoring matrix H in cell range
B8:F12 (green cells). The substitution matrix assigns score +3 to identical
nucleotides (DNA “letters”) and score −3 to distinct nucleotides.

The scoring matrix (B8:F12) computes the best score H (i, j) for any
alignment between the i-length prefix of one sequence with the j-length
prefix of the other. This can be defined recursively as:

H (i, j) = max(H (i − 1, j − 1) + s(i, j), H (i − 1, j) − 2, H (i, j − 1) − 2, 0)

By backtracking through the scoring matrix H from its maximal entry,
we obtain the optimal local alignment of the two sequences.

4.2.3 Intuitive Rewriting of Cell Arrays

The formulas in range B2:F6 are copy equivalent [82]: the range could be
filled by copying the formula from B2 to all other cells in B2:F6, making
use of the automatic adjustment of relative row and column references,
as described in Sec. 2.1.1. The formulas in B8:F12 are copy equivalent,
too. In R1C1 reference format, the range B2:F6 (light blue cells) can be
written as:

φ(R2C2 :R6C6) := IF(R[0]C1 = R1C[0], 3, − 3)

The row- and column-relative structure of the two references builds a
cross-product of the column and the row containing the input sequences.
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n ::= Number
t ::= String
i ::= Integer
f ::= λ(x, . . .).e Anonymous function.
| F Built-in function.

v ::= n | t

r ::= R[i]C[i] Relative cell address.
| R[i]C i Row-relative.
| R i C[i] Column-relative.
| R i C i Absolute.

e ::= v | r | f
| x Variable name.
| r :r Cell range.
| IF(e, e, e) Conditional.
| f (e, . . .) Function application.
| e ⊕ e Short-hand for ⊕ (e, e).

u ::= v | r
| r :r
| IF(u, u, u)
| F(u, . . .)
| u ⊕ u

Figure 4.1: The λ-calc syntax with variables and lambda-expressions.
Form u is a subset of e and contains “user expressions”, i.e. expressions
that a user is allowed to write.
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A B C D E F
1 A G C T A
2 T =IF($A2=B$1,3,-3) . . . . . . . . . =IF($A2=F$1,3,-3)
3 G . . . . . . . . . . . . . . .
4 T . . . . . . . . . . . . . . .
5 T . . . . . . . . . . . . . . .
6 T =IF($A6=B$1,3,-3) . . . . . . . . . =IF($A6=F$1,3,-3)
7 0 0 0 0 0 0
8 0 =MAX(A7+B2,A8-2,B7-2,0) . . . . . . . . . =MAX(E7+F2,E8-2,F7-2,0)
9 0 . . . . . . . . . . . . . . .
10 0 . . . . . . . . . . . . . . .
11 0 . . . . . . . . . . . . . . .
12 0 =MAX(A12+B6,A11-2,B11-2,0) . . . . . . . . . =MAX(E12+F6,E11-2,F11-2,0)

Figure 4.2: A spreadsheet to compute a best local DNA sequence align-
ment. One DNA sequence is in cells B1:F1, the other in cells A2:A6. Cells
B2:F6 defines a substitution matrix. Cells B8:F12 compute the scoring
matrix. Ellipses denote repeated formulas. Cell areas with the same
background color are copy-equivalent.

While it is straightforward to build such an ad-hoc cell structure, this
has two disadvantages. First, this implementation does not generalize to
sequences with more than five elements. Second, and more important to
us, the formula itself does not capture the structure of the computation.
This structure is implicit in the cell references and only emerges from the
context—the entire spreadsheet and the location of the formulas in it—in
which it is computed.

Ideally, we would like to retain high-level information about the
computation that we want to perform inside the expression, and also
find the most general way to express it. Our intuition as functional
programmers is to rewrite the formulas as a two-dimensional MAP over
repeated row and column values:

φ(R2C2 :R6C6) := {MAP(λ(x, y).IF(x = y, 3, − 3)),
HREP(COLUMNS(R1C2 :R1C6), R2C1 :R6C1),
VREP(ROWS(R2C1 :R6C1), R1C2 :R1C6))}

The curly braces around the expression denote an array formula: a formula
that evaluates to an array and whose values are unpacked into the
individual cells of the cell array B2:F6 (R2C2 :R6C6) , as described in
Sec. 2.1.2.

Now, this expression may look convoluted at first sight, especially to
someone without a functional programming background. But indeed,
it does exactly what the entire cell array B2:F6 did by replicating the
formula:



50 Chapter 4. Rewriting Cell Arrays

• HREP(n, x) creates a new two-dimensional array of size n ×
COLUMNS(x) by repeating x exactly n times.

• VREP(m, x) creates a new two-dimensional array of size ROWS(x) ×m;
it works exactly like HREP but in the vertical direction.

• MAP( f , x1, x2) combines x1 and x2 element-wise by applying f to
pairs of their respective elements.

Concretely, the new expression extends the one-dimensional ranges B1:F1
and A2:A6 into two matrices of size 5 × 5 and combines them element-
wise using the function originally written in each cell. All three functions
are described in detail in Sec. 3.2.1.

What have we gained from this transformation? First, we have found
a generalized expression of the algorithm that was originally distributed
over a number of cells and we can use it to write a more general version
of the algorithm.

Second, and more importantly, we now have an expression which
describes the structure of the computation independently from its context.
This is useful, as we have recovered some high-level information that we
can exploit to improve performance: there is no dependency between the
individual points in this combination of two matrices, or two-dimensional
arrays. Hence, it is now straightforward to parallelize the computation
of the result matrix.

4.2.4 Different Kinds of Cell Arrays

Now consider the cell array B8:F12 (green cells), which contains the
following formula in R1C1 format:

φ(R8C2 :R12C6) := MAX(R[−1]C[−1] + R[1]C[−6],
R[0]C[−1] − 2,
R[−1]C[0] − 2,
0)

We cannot use MAP to rewrite this cell array. There is a sequential dependency
between the cells of the cell array because the cell E10 (R10C5) depends
on E9 (R9C5), D10 (R10C4) and D9 (R9C4). These cells are inside the cell
array itself. We therefore call this kind of cell array transitive, as opposed
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to intransitive cell arrays which can be rewritten using MAP, as in Sec. 4.2.3.
Hence, we need to target the other array combinator, namely PREFIX:

φ(R8C2 :R12C6) := {PREFIX(λ(x, y, z, w).MAX(y+ w, x − 2, z − 2, 0),
R8C1 :R12C1,
R7C1,
R8C1 :R8C6,
R2C2 :R6C6)}

Rewriting transitive cell arrays requires a bit more work: a transitive cell
array could be written in either orientation (e.g. starting at the bottom
right instead at the top left); and cell references in the expression might
not occur in the same order as required by the semantics of PREFIX for
the argument function (see Sec. 3.2.1), as we can see in our rewritten
expression above. Hence, we must order the variable names correctly.

In the remainder of this chapter, we formally define properties of cell
arrays and show how to rewrite them systematically using a straightfor-
ward rewriting semantics.

4.3 Systematically Rewriting Cell Arrays

The overall idea of rewriting cell arrays, is to (1) rewrite the cell array’s
expression by systematically replacing non-absolute cell references with
fresh variable names, consistently using the same variable name for
multiple occurrences of the same cell reference; (2) use the fresh variable
names as parameters of an anonymous function whose body is the
rewritten expression; (3) infer an input range for each replaced cell
reference by looking it up at the upper left and lower right cell addresses
of the array that we are rewriting; and (4) create a new expression in
which we pass the anonymous function as an argument to an array
combinator, together with the inferred input cell ranges.

For brevity, we gloss over rotated and mirrored cases of transitive
cell references. Hence, we assume that all transitive references are of
the form R[0]C[−1], R[−1]C[−1] or R[−1]C[0], referring to the same row,
previous column; previous row, previous column; or previous row, same
column. It is straightforward to implement rules for rotated and mirrored
cases via array reversal using HREV and VREV in either dimension, or both.
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4.3.1 Cell Arrays and Transitive and Intransitive Cell References

The formal definition of intransitive and transitive cell references extends
set-notation to operate on cells and cell ranges. To state that a cell
reference r is inside a cell array r1 :r2, we write r ∈ r1 :r2. A cell array is a
cell range r1 :r2 satisfying ∀ri, r j ∈ r1 :r2. φ(ri) = φ(r j ), i.e. all cells of the
cell range are copy equivalent [82].

The meta-function lookup converts relative cell references (first argu-
ment) into absolute cell references by adding the row- and column-offset
to their own location in the sheet (second argument):

lookup[[R[ir1]C[ic1], R ir2 C ic2 ]] = R (ir1 + ir2) C (ic1 + ic2)
lookup[[R ir1 C[ic1], R ir2 C ic2 ]] = R ir1 C (ic1 + ic2)
lookup[[R[ir1]C ic1 , R ir2 C ic2 ]] = R (ir1 + ir2) C ic1
lookup[[R ir1 C ic1 , _ ]] = R ir1 C ic1

A cell reference is intransitive if it never refers back into the cell array,
no matter the location of the cell that contains it. We formulate this as
follows:

{lookup[[r , r0]] | r0 ∈ r1 :r2} ∩ r1 :r2 = ∅ ⇒ r is intransitive in r1 :r2.

Conversely, we can define transitive cell references by inverting the
equation:

{lookup[[r , r0]] | r0 ∈ r1 :r2} ∩ r1 :r2 , ∅ ⇒ r is transitive in r1 :r2.

Absolute references RiCi are neither transitive nor intransitive and we
treat them like constants during rewriting.

4.3.2 Rewriting Semantics

We use an evaluation context L (see Fig. 4.3) and a reduction relation 
to formalize the rewriting process [43]. The relation in Fig. 4.4 defines
rewriting cell arrays from plain spreadsheet formulas to higher-order
functional programs in λ-calc. More precisely, the relation rewrites an
expression u to an expression l without relative references; see Fig. 4.3.

We introduce the meta-functions rows and columns that both take a
cell range expression r : r and return its number of rows or columns,
respectively. This allows us to access the size of a cell array that is
currently being rewritten without introducing a cyclic dependency.
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l ::= v | x
| l ⊕ l
| IF(l, l, l)
| F(l, . . .)
| RiCi Only absolute references.
| RiCi :RiCi

L ::= ◦ Hole.
| L ⊕ u Expressions are lifted from left to right.
| l ⊕ L
| F(l, . . . ,L, u, . . .)
| IF(L, u, u)
| IF(l, L, u)
| IF(l, l, L)

Γ ::= done( φ(r :r) := {e} )
| more( [(r , x) . . .]︸       ︷︷       ︸

Transitive

; [(r , x) . . .]︸       ︷︷       ︸
Intransitive

; φ(r :r) := L )

Figure 4.3: Rewriting context L and transformation language for λ-calc.
Terms in l are a subset of terms in e with only absolute cell references.

A term in Γ describes a rewriting in progress. It is either more with
transitive cell references and their substitutions, intransitive cell refer-
ences and their substitutions, a cell range and the expression that it
contains; or it is done with a cell range and its rewritten expression. We
use (rT , xT ) to denote a substitution pair of a transitive cell reference and
(r I , x I ) to denote a substitution pair of an intransitive cell reference.

We write
Γ

(
L [u]

)
 Γ

′ (L [k]
)

to say that the reduction relation reduces u to l in a context L in the
rewriting state Γ that we update to Γ′. We use ellipses to denote zero or
more repetitions of the leading term.

In plain English, the rules in Fig. 4.4 perform the following operations:

• Rule [exist-i] replaces a cell reference r with an already existing
variable name x from the list of intransitive substitutions.
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• Rule [exist-t] replaces a cell reference r with an already existing
variable name x from the list of transitive substitutions.

• Rule [subst-i] replaces an intransitive cell reference r with a fresh
variable name x and records the substitution (r, x) in the list of
intransitive substitutions.

• Rule [subst-t] replaces a transitive cell reference r with a fresh
variable name x and records the substitution (r, x) in the list of
transitive substitutions.

• Rule [synth-map] takes a rewritten expression l and wraps it in a
λ-expression whose parameters are the variable names from the
list of intransitive substitutions in Γ. It places the resulting function
as first argument to a call to MAP; the remaining arguments are the
substituted cell references, converted to cell ranges by performing
a lookup at rul and rlr for each of them and extended to match
the size of the cell array. The result is an expression that can be
plugged into an array formula.

• Rule [synth-pfx] takes a rewritten expression l and wraps it in a
λ-expression whose first three parameters are the variable names
from the list of “sorted” transitive substitutions in Γ. The remaining
parameters are taken from the intransitive substitutions, as in rule
[synth-map]. The rule constructs the initial row- and column-array
by combining the result of the lookup of the first and last transitive
reference at rul and the row, or column, of rlr . The transitive cell
references are converted as in rule [synth-map]. The result is an
expression that can be plugged into an array formula.

Both rules [synth-map] and [synth-pfx] make use of the meta-function
extd, short for “extend”. It returns an expression that, if necessary,
replicates the intransitive input arrays to match the cell array sr1 :r2 that
is being rewritten:

extd[[r I
1 :r I

2, r1 :r2]] = VREP(n, r I
1 :r I

2) where n = rows[[r1 :r2]],
rows[[r I

1 :r I
2]] = 1

extd[[r I
1 :r I

2, r1 :r2]] = HREP(m, r I
1 :r I

2) where m = columns[[r1 :r2]],
columns[[r I

1 :r I
2]] = 1

extd[[r I
1 :r I

2, r1 :r2]] = r I
1 :r I

2 otherwise.
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Finally, rule [synth-pfx] uses the meta-function fill&sort. Recall that the
PREFIX combinator requires that the argument function accepts three ar-
guments for the value from the previous column, same row; the previous
“diagonal” value; and the value from the previous row, same column (see
Sec. 3.1.4). Hence, we require in [synth-pfx] that there are three tran-
sitive substitutions in the order R[0]C[−1], R[−1]C[−1] and R[−1]C[0]. The
meta-function fill&sort (1) generates placeholder substitutions for each
not encountered transitive reference and (2) sorts the three substitutions
after their respective references to match the requirements of the PREFIX

combinator.

4.3.3 Preemptive Cycle Detection

Rewriting cell arrays to array formulas changes the dependency structure
of the spreadsheet: where before a cell of the cell array may only have
depended on a single cell the of input range, it now depends on the
entire range. The rewritten cell has become part of an unpacked array
whose formula explicitly references the aforementioned range. It is
straightforward to come up with an example that would lead to the
creation of cyclic dependencies if rewritten. We require two or more
cell arrays that refer to cells of each other. Rewriting the contrived
spreadsheet shown in Fig. 4.5 leads to the creation of cyclic dependencies.

To avoid this, we perform a preemptive detection of cyclic references.
We walk the dependency graph from each intransitive cell reference and
each cell from the initial row and column and check that we never arrive
at a cell that is part of the cell array. We use a depth-first search without
repetition to detect possible cyclic references. If we detect one, we do not
rewrite the cell array.

For better performance, we can apply a simplifying heuristic. Instead
of traversing the dependency graph for each cell of a cell array, it is often
sufficient to only do so for the four corners of a cell array. This is possible
thanks to the often highly regular structure of spreadsheet models.

4.3.4 Correctness

We do not currently have a formal proof of correctness for our rewriting
semantics. However, the slightly informal semantics for MAP and PREFIX

(see Sec. 3.1.1 and 3.1.3) directly match those of the original cell array
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more( [(rT , xT ) . . .]; [(r I1 , xI
1) . . . (r , x)(r I2 , xI

2) . . .]; φ(rul :rlr ) := L[r ] ) [exist-i]
more( [(rT , xT ) . . .]; [(r I1 , xI

1) . . . (r , x)(r I2 , xI
2) . . .]; φ(rul :rlr ) := L[x] )

more( [(rT1 , xT1 ) . . . (r , x)(rT2 , xT2 ) . . .]; [(r I , xI ) . . .]; φ(rul :rlr ) := L[r ] ) [exist-t]
more( [(rT1 , xT1 ) . . . (r , x)(rT2 , xT2 ) . . .]; [(r I , xI ) . . .]; φ(rul :rlr ) := L[x] )

more( [(rT , xT ) . . .]; [(r I , xI ) . . .]; φ(rul :rlr ) := L[r ] ) [subst-i]
more( [(rT , xT ) . . .]; [(r I , xI ) . . . (r , x)]; φ(rul :rlr ) := L[x] )

where r is intransitive in rul :rlr
x fresh

more( [(rT , xT ) . . .]; [(r I , xI ) . . .]; φ(rul :rlr ) := L[r ] ) [subst-t]
more( [(rT , xT ) . . . (r , x)]; [(r I , xI ) . . .]; φ(rul :rlr ) := L[x] )

where r is transitive in rul :rlr
x fresh

more( [ ]; [(r I , xI ) . . .]; φ(rul :rlr ) := l ) [synth-map]
done( φ(rul :rlr ) := {MAP(λ(xI , . . .).l, r I+

ul
:r I+

lr
, . . .)} )

where [(r I , xI ) . . .] is non-empty
r I
ul
. . . = lookup[[r I , rul ]] . . .

r I
lr
. . . = lookup[[r I , rrl ]] . . .

r I+
ul

:r I+
lr

. . . = extd[[r I
ul

:r I
lr

, rul :rlr ]] . . .

more( [(rT , xT ) . . .]; [(r I , xI ) . . .]; φ(rul :rlr ) := l ) [synth-pfx]
done( φ(rul :rlr ) := {PREFIX(λ(xT1 , xT2 , xT3 , xI , . . .).l,

rc0 :rc1, rd, rr0 :rr1, r I+
ul

:r I+
lr

, . . .)} )
where [(rT , xT ) . . .] is non-empty

r I
ul
. . . = lookup[[r I , rul ]] . . .

r I
lr
. . . = lookup[[r I , rrl ]] . . .

r I+
ul

:r I+
lr

. . . = extd[[r I
ul

:r I
lr

, rul :rlr ]] . . .
(rT1 , xT1 ), (rT2 , xT2 ), (rT3 , xT3 ) = fill&sort[[(rT , xT ) . . .]]
rd = lookup[[rT2 , rul ]]
rc0 = lookup[[rT1 , rul ]]
rr0 = lookup[[rT3 , rul ]]
rc1 = R(rows[[rlr ]])C(columns[[rc0]])
rr1 = R(rows[[rr0]])C(columns[[rlr ]])

Figure 4.4: The  relation for rewriting cell array formulas in λ-calc.
The rules are explained in detail in Sec. 4.3.2.
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A B
1 =B1 1

2 =B2 =A1+B1

3 =B3 =A2+B2

A B
1

={MAP(λ(x).x,B1 :B3)}
1

2
={PREFIX(λ(x,y,z).x+y,A2 :A3,A1,B1 :B1)}

3

Figure 4.5: A spreadsheet (top) whose rewritten variant (bottom) contains
cyclic dependencies. Rewriting the cell arrays A1 :A3 and B2 :B3 using the
rewriting relation results in an explicit cyclic dependency between the
array formulas: φ(A1 :A3) refers to B1 :B3 and φ(B2 :B3) refers to A2 :A3.

structure, so we believe that our rewriting semantics are correct. More-
over, we have formalized our rewriting semantics using PLT Redex [44]
(see Appendix B) and performed extensive testing.

The proof would require a formal semantics for spreadsheet recal-
culation and arrays combinators, which at the time of writing was out
of the scope of the original paper [14]. Even though we have defined
an evaluation semantics for a “standard” spreadsheet formula language
(see Sec. 2.2.3), we cannot use it for a correctness proof: it does not
formalize array formulas. Without defined semantics for array formulas,
the correctness proof cannot succeed.1

With a complete evaluation semantics, however, we believe that we can
show that spreadsheets with rewritten cell arrays behave observationally
equivalent to the original formulas for cell arrays with and without
transitive cell references and hence prove that the rewriting semantics is
correct. More formally, if φ(r1 :r2) := u ⇓ v and

more([]; []; φ(r1 :r2) := u) done(φ(r1 :r2) := {e})

then we want to show that φ(r1 :r2) := {e} ⇓ v for all e and r1, r2.

4.3.5 Extension to Cell Range Expressions

In real-life spreadsheets, cell arrays often include references to cell ranges,
such as =SUM(A1 :B1) to compute the sum of the values in the same row

1At the time of writing, a technical report that formulates a complete operational
semantics of Funcalc including array formulas is underway.
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A B C
1 3 1 =SUM(A1 :B1)
2 6 1 =SUM(A2 :B2)
3 9 1 =SUM(A3 :B3)

Figure 4.6: A spreadsheet with a relative cell range expression in col-
umn C.

as the formula cell, as illustrated in Fig. 4.6. Assuming that the cell array
is in column C, this expression translates to R1C1 format as follows:

φ(R1C3 :R3C3) := SUM(R[0]C[−2] :R[0]C[−1])

Our rewriting semantics (as defined in the original paper [14]) has until
now ignored cell arrays with cell range expressions.

We can adapt the rewriting semantics by observing that the cell array
actually maps SUM to rows of the cell range A1:B3. We can use the SLICE

function (see Sec. 3.2.1) to extract single rows (or columns) from arrays.
This means that the λ expression that we generate during rewriting must
take as arguments a row and a column index; then, we can use it together
with the TABULATE combinator to create an array formula expression.

In the following, we sketch an extension to the  relation from
Sec. 4.3.2 where we replace a cell range expression with a call to SLICE

for the reserved names xr and xc that stand for the row and column index,
respectively. If an expression only contains a cell range sub-expression,
 will make sure to use TABULATE with the resulting λ expression. If the
expression contains one or more cell range expressions and one or more
cell references, then it chooses the MAPI combinator: a combination of
TABULATE and MAP, where the argument function also accepts the current
row and column index as parameters.

The rule for substituting a cell range is defined as follows:



4.3. Systematically Rewriting Cell Arrays 59

more( [(rT , xT ) . . .]; [(r I , xI ) . . .]; φ(rul :rlr ) := L[r1 :r2] ) [subst-a]
more( [(rT , xT ) . . .]; [(r I , xI ) . . .]; φ(rul :rlr ) := L[SLICE(r1ul :r2lr ,

xr ,
xc,
rows[[r1ul :r2ul ]],
columns[[r1lr :r2lr ]])] )

where r1ul = lookup[[r1, rul ]]
r2ul = lookup[[r2, rul ]]
r1lr = lookup[[r1, rlr ]]
r2lr = lookup[[r2, rlr ]]

Rule [subst-a]

1. infers the size of the target cell range for the cell array by looking
up the upper-left and lower-right corners at the upper-left and
lower-right corners of the cell array (r1ul and r2lr);

2. computes the shape of the slice (i.e. its rows and columns) by
looking up its upper-left and lower-right corners also at the lower-
right and upper-left corners (r1lr and r2ul) of the target array—this
infers the correct slice shape also for partially absolute cell ranges
(e.g. R1C1 :R[0]C[−1]); and

3. injects the inferred target cell range and the inferred shape into
a call to SLICE that starts at row xr and column xc, which are the
aforementioned reserved variables for row and column indices.

Finally, we can formulate a rule that plugs a lifted cell range expression
into a call to TABULATE:

more( []; []; φ(rul :rlr ) := L[l] ) [synth-tab]
done( φ(rul :rlr ) := {TABULATE(λ(xr , xc).l, rows[[rul :rlr ]], columns[[rul :rlr ]])} )

Rule [synth-tab] generates an expression that, when evaluated, instanti-
ates the lifted expression that slices over a cell range for each row and
column index of the array formula. This rule requires that the original
formula expression does not contain any other relative cell addresses.

It is possible to define a rule that combines the behavior of rules
[synth-map] and [synth-tab] using a function MAPI that accepts a func-
tion that takes index parameters as well as values. We omit a rule
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for synthesizing a call to MAPI for brevity; such a rule would require
additional modifications to the lifting language.

By applying the rules [subst-a] and [synth-tab], the cell array from
Fig. 4.6 rewrites to:

φ(R1C3 :R3C3) := {TABULATE(λ(xr , xc).SUM(SLICE(R1C1 :R3C2, xr , xc, 1, 2)))}

4.4 Implementation

We have implemented the rewriting semantics from Sec. 4.3 in Fun-
calc [93]. Instead of writing our own detection of cell arrays, we piggy-
back on Funcalc’s algorithm for rebuilding the support graph [93, Sec.
4.2.9], a heuristic algorithm for detecting rectangular blocks of copy-
equivalent cells that runs in linear time in the number of cells in the cell
array.

4.4.1 Differences to λ-calc

The λ-calc language differs from Funcalc in that it allows anonymous
functions, i.e. lambda-expressions, where Funcalc does not. The only
way to define new functions in Funcalc is via sheet-defined functions
(see Sec. 2.3). Superficially, this is not a problem: we can just generate a
new SDF on the reserved function sheet *Generated* and assign unique
names to generated SDFs by counting, i.e. GEN0, GEN1, and so on.

Unfortunately, doing so naively leads to a change to the recalculation
semantics of the spreadsheet. When we rewrote cell arrays in λ-calc, we
implicitly assumed that the generated anonymous function is reevalu-
ated as part of the formula expression whenever the dependencies of
the formula are updated. This includes dependencies via absolute cell
references. In Funcalc, however, generating a new SDF will remove the
absolute reference from the formula expression: it is now part of the
body of the generated SDF. Sheet-defined functions are not part of the
dependency graph in Funcalc. Hence, the explicit dependency between
the cell array and the cells that it refers to via absolute references are
removed from the dependency and support graph. Changing the sup-
port graph in such a way is problematic for minimal recalculation (see
Sec. 2.2.1). In Fig. 4.7, if cell A1 were to be changed, this would trigger
reevaluation of the cell array in B2:C2 in λ-calc; but in Funcalc, because
the explicit dependency has been removed, the spreadsheet would enter
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A B C
1 11 22 33
2 =$A$1+B1 =$A$1+C1

λ-calc:
A B C

1 11 22 33
2 ={MAP(λ(x).A1+x, B1 :C1)}

Funcalc:
A B C

1 11 22 33
2 ={MAP(CLOSURE("GEN0"), B1 :C1)}

Figure 4.7: Differences of rewriting a cell array (top) in λ-calc (center) and
a naive approach to cell array rewriting in Funcalc (bottom). In λ-calc,
absolute references remain part of the expression and therefore also in
the support graph. In Funcalc, the absolute reference disappears into the
body of the generated SDF GEN0, which corresponds to λ(x).A1+x.

an inconsistent state and violate the consistency requirement described
in Sec. 2.2.4.

Our implementation of cell array rewriting in Funcalc circumvents this
problem by using the partial application feature of the CLOSURE function
(see Sec. 2.3.2). The general rule is that every reference to a cell or a cell
range in the expression is replaced by a variable name during rewriting,
including absolute cell references. If a cell reference is absolute, we bind
the absolute reference to the newly generated closure directly. Hence,
the correct expression for the rewritten array in Fig. 4.7 that preserves
the dependency graph is

={MAP(CLOSURE("GEN0", A1, NA()), B1 :C1)}

where the generated SDF GEN0 corresponds to λ(x,y).x+y. We use
a similar approach for cell range expressions. For a cell array that
references cell ranges, we compute the cell range that subsumes all
partial cell ranges and apply it partially to the generated function. The
generated function will then slice it as described in Sec. 4.3.5.



62 Chapter 4. Rewriting Cell Arrays

4.4.2 Handling Over-Generalization

We can describe relative references in terms of their stride:

stride[[R[i1]C[i2]]] = max(|i1 |, |i2 |)

In real-world spreadsheets, it may happen that a transitive reference has
a stride larger than one, but the PREFIX combinator and its variants do
not generalize to such references. Hence, we cannot directly rewrite cell
arrays with transitive cell references of a stride larger than one.

A stride larger than one seems to be an artifact of the generality of the
support graph rebuilding algorithm [93, Sec. 4.2.2]. Our key observation
here is that one can turn transitive cell references into intransitive cell
references by splitting the cell array into two sub-arrays. Consider
the cell array R5C1 :R15C5 whose expression contains the transitive cell
reference R[−5]C[0]. We can split it into the two sub-arrays R5C1 :R10C5
and R11C1 :R15C5, in both of which the reference R[−5]C[0] is intransitive.

We call the rewriting algorithm recursively on each of the sub-arrays
until we either end up with a cell array that has transitive cell references
with stride at most one, or until we reach a lower limit on cell array size,
in which case we abort.

4.4.3 Parallelization Strategies

Since Funcalc runs on the .NET platform, we use the parallelization
mechanisms from the Task Parallel Library [74]. The TPL achieves paral-
lelization via a work-stealing thread pool [74]. We can parallelize MAP by
iterating over either rows or columns in a parallel for-loop. Parallelizing
the PREFIX combinator is implemented exactly as described in Sec. 3.1.4
using recursive task spawning.

4.5 Performance

To demonstrate the feasibility of our technique, we have conducted
performance benchmarks on synthetic and real-world spreadsheets. To
avoid the overhead of excess parallelism, we impose a minimum of 64
cells per cell array on the rewriting algorithm, such that smaller cell
arrays will not be rewritten. Since we consider cell array rewriting a one-
time operation, times for rewriting are not included in the benchmarks
and we report them separately. The raw data are available online.2

2https://github.com/fbie/funcalc-array-benchmarks

https://github.com/fbie/funcalc-array-benchmarks
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We report the average speedup of 30 full recalculations of the entire
spreadsheet on the P3 server (see Sec. 1.3). Full recalculation is easier to
control during automatic benchmarks, but does not reflect how rewriting
cell arrays may affect the dependency structure of spreadsheets negatively
for efficient minimal recalculation.

Funcalc runs on the .NET platform. To trigger JIT compilation, we ran
three warm-up iterations which we do not count prior to benchmarking.

4.5.1 Spreadsheet Selection

Idealized Spreadsheets We use two idealized spreadsheets to measure
the effect of rewriting transitive and intransitive cell arrays in isolation.
Each spreadsheets contains a single cell array of size n × n and we in-
stantiate each spreadsheet once for n = 200 and once for n = 400. The
first spreadsheet contains a single intransitive cell array that applies the
FIB function (see Sec. 2.3.1) on each input cell. The second spreadsheet
computes a summed-area table by applying the FIB function to each
input cell and adding it to the sum of the prefix. The input cells contain
the constant 22; computing FIB(22) takes roughly 1.5ms.

LibreOffice Calc Spreadsheets LibreOffice Calc [48] provides a set of
large, real-world benchmark spreadsheets, which is available online.3

These spreadsheets contain large cell arrays and are realistically struc-
tured. Funcalc’s formula syntax differs from that of Microsoft Excel
and LibreOffice Calc in a number of ways that require modifications
of the spreadsheets. To be able to run the spreadsheets in Funcalc, we
have implemented some standard Excel and Visual Basic functions as
sheet-defined functions. Recalculating LibreOffice Calc spreadsheets
sequentially takes between 32 and 168 seconds.

EUSES Spreadsheets Finally, we use real-world spreadsheets from the
EUSES spreadsheet corpus [46]. We have selected 21 spreadsheets with
relatively large and relatively many cell arrays. Selection criteria were
(1) applicability of our rewriting technique and (2) effort required to
make the spreadsheets compatible with Funcalc. The Funcalc-compatible
spreadsheets from the EUSES corpus are available online.4 Sequential

3https://gerrit.libreoffice.org/gitweb?p=benchmark.git
4https://github.com/popular-parallel-programming/funcalc-euses

https://gerrit.libreoffice.org/gitweb?p=benchmark.git
https://github.com/popular-parallel-programming/funcalc-euses
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Figure 4.8: Average speedup for rewriting idealized spreadsheets. Values
are speedup factors over sequential full recalculation without rewriting,
averaged over 30 full recalculations; higher is better. The gray dashed
line indicates 1-core performance.

Funcalc recalculates all selected EUSES spreadsheets in less than 100
milliseconds on average, so we expect little to no speedup.

4.5.2 Results

Idealized Spreadsheets

Figure 4.8 shows recalculation performance relative to sequential recal-
culation after rewriting idealized spreadsheets with only intransitive or
only transitive cell references.

Parallelizing intransitive cell arrays with an average of 1.5ms per cell
achieves more than four times speedup on 16 cores, but performance
declines afterwards. There are no dependencies between the single cells,
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Figure 4.9: Performance results for rewritten LibreOffice Calc spread-
sheets. Values are average speedup factors of 30 iterations over sequential
full recalculation of the unchanged spreadsheets; higher is better.

so it is reasonable to assume that the communication cost of work-stealing
between chips dominates parallel performance.

Parallelizing transitive cell arrays produces at most a 2.5-fold speedup
on 16 cores; since the speedup is rather small, the cost of inter-chip
communication for more than 16 cores affects performance less.

LibreOffice Calc Spreadsheets

Figure 4.9 shows the speedup for rewriting and parallelizing LibreOffice
Calc spreadsheets. Overall, we achieve good speedups, with a maximum
of roughly 25 times speedup on stock-history. We achieve the best
speedup on average at 16 cores. Inter-chip communication cost seems to
not affect all spreadsheets equally.

Table 4.1 shows how many cell arrays per spreadsheet have been
rewritten. Overall, our rewriting technique is able to rewrite nearly
all cell arrays in the LibreOffice Calc spreadsheets. It rewrites only 20
out of 22 cell arrays in stock-history; nevertheless, this is the spread-
sheet whose performance scales nearly linearly. At the same time,
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Spreadsheet Found Intrans. Trans. Rewrite (s)
building-design 6 6 0 56.14
energy-markets 76 76 0 44.58
grossprofits 9 9 0 110.1
ground-water 12 12 0 126.9
stock-history 22 20 0 235.19
stocks-price 8 8 0 35.6

Table 4.1: Statistics for rewriting LibreOffice Calc spreadsheets at load-
time. Note that none of the spreadsheets contains transitive cell arrays.
Cell arrays are only rewritten if they contain at least 64 cells. Rewriting
times are in seconds and averaged over 30 runs. Standard deviation is
less than 0.01ms for each spreadsheet.

both energy-markets and stocks-price exhibit the lowest speedup, even
though all of their cell arrays have been rewritten. This indicates that
the sheer number of rewritten cell arrays is not a useful predictor for
performance. None of the LibreOffice Calc spreadsheets contains transi-
tive cell arrays of more than 64 cells and that can safely be lifted without
introducing a cyclic dependency.

Moreover, Table 4.1 shows that our rewriting algorithm is rather
slow. We believe that this is due to preemptively checking for cyclic
dependencies, as described in Sec. 4.3.3, as well as to actually having to
traverse the spreadsheet again and update the cells after rewriting. In
addition to that, rewriting triggers the SDF compiler, which also may
add some overhead.

EUSES Spreadsheets

Figure 4.10 shows the speedup of parallelizing rewritten EUSES spread-
sheets. Overall, we achieve only little speedup over sequential recalcula-
tion, as expected for small spreadsheets.

Moreover, the achievable speedup is bound by Amdahl’s law [54,
Sec. 1.5]. If a spreadsheet contains 4500 cells with formulas and a single
intransitive cell array of size 500, then the maximum speedup factor
we can expect to see on 32 cores is roughly 1,26. Unless rewriteable
cell arrays either dominate the spreadsheet, as in PLANCK, the overall
performance will be determined by the sequential computations.

Table 4.2 shows the number of transitive and intransitive cell arrays
that could be rewritten for the EUSES spreadsheets. There are five spread-
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Figure 4.10: Average benchmark results for full recalculation of 21 sys-
tematically rewritten EUSES spreadsheets [46] over 50 runs. Values are
speedup factors over sequential performance for the original spreadsheets
on the same machine; higher is better. The dashed gray bar indicates
baseline single-core performance.

sheets out of 21 that could not be rewritten at all, either due to the absence
of cell arrays that contain more than 64 cells or because rewriting would
have introduced a cyclic dependency. There is only one spreadsheet,
MRP_Excel, that contains transitive cell arrays that could be rewritten. We
conjecture that transitive cell arrays are a rather rare phenomenon in
real-world spreadsheets, but our study is not representative.

It is notable that we already achieve a speedup of only rewrit-
ing cell arrays without parallelizing them. The spreadsheets 02rise,
2004_PUBLIC_BUGS_INVENTORY, EUSE and PLANCK can be recalculated about
50% faster when their cell arrays have been rewritten. This shows that
rewriting is a kind of spreadsheet specialization: recalculation does not
have to pay for repeatedly interpreting an expression; instead, it gets
lifted into a generated SDF, which is then compiled and hence can be
executed much faster when applied repeatedly.
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Spreadsheet Found Intrans. Trans. Rewriting (ms)
02rise 273 1 0 98.33
2000_places_School 40 0 0 1.81
2002Qvols 32 5 0 7.95
2004_PUBLIC_BUGS_INVENTORY 5 4 0 78.73
Aggregate Governance 36 31 0 129.64
DNA 4 4 0 24.65
EducAge25 42 0 0 2.21
EUSE 8 4 0 0.18
financial-model-spreadsheet 191 0 0 40.61
Financial-Projections 78 4 0 139.9
funding 57 7 0 8
iste-cs-2003-modeling-sim 40 2 0 6.23
modeling-3 7 0 0 4.5
MRP_Excel 82 7 6 –
notes5CMISB200SP04H2KEY 4 3 0 15.26
ny_emit99 68 65 0 1954.65
PLANCK 3 2 0 6.86
Test Station Power 106 9 0 0.58
Time 73 1 0 18.29
v1tmp 35 0 0 539.62
WasteCalendarCalculate 9 4 0 0.08

Table 4.2: Statistics for rewriting EUSES spreadsheets. Spreadsheet
MRP_Excel is the only spreadsheet that contains transitive cell arrays. Cell
arrays are only rewritten if they contain at least 64 cells. Rewriting times
are in milliseconds and averaged over 30 runs. Standard deviation is less
than 0.14ms for each spreadsheet.

4.6 Alternative Usages and Related Work

Neither parallel recalculation of spreadsheets nor high-level structure
analysis is a new idea. To our knowledge, however, no prior work
has combined both in a practical application of functional program-
ming. Hermans and Dig [55] implemented a rule-based rewriting
system for formula refactoring to replace awkward expressions, such
as IF(A1<B1,A1,B1), with more canonical expressions, e.g. MIN(A1,B1).
Their system allows users to extend the set of rewrite rules within the
spreadsheet, but does not allow inter-cell formula rewriting.

Wack [110] focused on a dataflow approach to whole-spreadsheet par-
allelization, in contrast to our idea that harnesses local array parallelism.
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Yoder and Cohn [112, 113] investigate spreadsheets from a theoretical
point of view, also with dataflow parallelism in mind. They observe that
high-level array programming intuitively maps to spreadsheets [113];
this is the core of our technique.

Much research on high-level spreadsheet structures focuses on user
understanding; either by highlighting areas with equal or similar formu-
las [82] whose definition is closely related to cell arrays, or by drawing
dataflow diagrams [57] to illustrate relations between sheets and between
cell arrays. Our rewriting technique could be adapted to give such a
high-level overview over operations on cell arrays by displaying the
synthesized function.

Rewriting cell arrays is related to template synthesis from spread-
sheets. Isakowitz et al. [64] describe a method to synthesize either a
model from a spreadsheet or instantiate a spreadsheet from a model.
The notable difference to our work is that they generate a whole-sheet
model. Furthermore, they use an external language to describe the model,
whereas we perform source-to-source rewriting. Generating local high-
level abstractions, as opposed to whole-sheet models, could be useful
for expert spreadsheet developers when devising algorithms, similar to
spreadsheet generation.

Abraham and Erwig [1] infer templates by analyzing references across
cell arrays to prevent errors during modification, also using copy equiva-
lence. Our technique is only concerned with individual cell arrays.

Others [32, 40, 59] focus on detecting clones of cell arrays or tables on
the same spreadsheet, which is, again, a whole-sheet analysis.

4.7 Conclusion

In this chapter, we presented a rewriting semantics to rewrite cell arrays
that consist of copy equivalent cells to higher-order functional expressions
using array combinators. We are able to exploit the implicit parallelism
of these rewritten cell arrays and achieve a maximum of 25 times parallel
speedup on 48 cores for spreadsheets where cell arrays dominate.

There are drawbacks to our technique. Naively rewriting all cell
arrays in a spreadsheet can introduce cyclic references and hence change
the semantics of the original spreadsheet. Detecting possible cyclic
dependencies before rewriting comes at the cost of traversing (at least
parts of) the dependency graph. Moreover, the parallel speedup we can
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achieve is limited by the ratio of parallelizable cell arrays to inherently
sequential dependencies in the spreadsheet.

The main shortcoming of our work is the lack of a formal proof that
our rewriting semantics preserves the semantics of the cell array.

Our experimental results show that only spreadsheets consisting of
large cell arrays achieve good speedups. Moreover, our current rewriting
algorithm is slow. This suggests that our rewriting approach should not
be applied automatically. Instead, it could be implemented as a tool
for expert spreadsheet developers that should be applied manually and
judiciously. We believe that there is room for improving the performance
of our rewriting algorithm, in particular preemptive cycle detection.



Chapter 5

Spreadsheet Dataflow Parallelism

This chapter is based on the paper “Puncalc: Task-Based Parallelism
and Speculative Reevaluation in Spreadsheets” [12] which is joint work
with Alexander Asp Bock.

5.1 Introduction

In Chapter 4, we showed how local parallelism can be exploited by means
of statically rewriting cell arrays in spreadsheets. A shortcoming of this
technique is that two or more independent cell arrays still are evaluated
sequentially, even though there possibly is more parallelism that can be
extracted. Moreover, cell array rewriting requires a static check for cyclic
dependencies ahead of recalculation.

In this chapter, we present an algorithm for parallel evaluation of
spreadsheets using a dynamic dataflow approach. We can interpret the
support graph as a dataflow graph [112] and use it to parallelize the
evaluation of independent cells. If a cell that has just been evaluated
supports two or more cells, then these two cells can be computed in
parallel, if there is no direct dependency between them. Our algorithm
detects such cases dynamically during recalculation and hence adds no
overhead of statically analyzing the spreadsheet ahead of time.

The main challenge of such a dynamic approach is to detect cyclic
dependencies correctly without creating deadlocks. Our algorithm uses
speculative evaluation to prevent deadlocks and to detect cyclic depen-
dencies. The main advantage of this approach is that we do not have to
perform a more strict detection of cyclic dependencies than e.g. Microsoft
Excel does.
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We have implemented this algorithm in the experimental spreadsheet
engine Funcalc [93]. Our key contributions are:

• a parallel, task-based, topology-agnostic algorithm for minimal
recalculation of spreadsheets;

• a method for detecting cyclic references during parallel recalcula-
tion using speculative reevaluation;

• a thread-local evaluation optimization that exploits a specific
spreadsheet topology on the fly; and

• an evaluation of our algorithm on a set of benchmarks for different
types and sizes of spreadsheets with different characteristics and
topologies.

To our knowledge, no such algorithm for parallel evaluation of spread-
sheets with dynamic cycle detection has previously been proposed. Ex-
periments show that we achieve between 1.4 and 6.5 times speedup on
16 cores and nearly a 16-fold speedup on 48 cores.

The C# code in the remainder of this chapter uses LinQ extension
methods [94, Sec. 28.5].

5.2 Funcalc: Sequential Implementation

In this section, we describe a simplified variant of the minimal recalcula-
tion algorithm as implemented in sequential Funcalc [93].

Minimal recalculation is a breadth-first traversal of the support graph.
Funcalc uses a global work queue to maintain all cells that have been
encountered during traversal and that have not yet been computed. The
minimal recalculation algorithm RecalculateMinimal() in Fig. 5.1 (1)
recursively marks the cells reachable from the recalculation roots (see
Sec. 2.2.2) dirty by setting the state of all encountered cells to Dirty

(method MarkDirty() in Fig. 5.3); (2) adds the recalculation roots to the
global work queue; and (3) dequeues cells from the head of the queue
and evaluates them by calling Eval() on them until the queue is empty
(Line 11).

In Funcalc, cells are assigned a cell state, which is either Dirty,
Enqueued, Computing or Uptodate. During a single recalculation, cell state
changes only monotonically—e.g. a cell cannot go back from Uptodate to
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1 public class Workbook {
2 public readonly Queue <Cell > queue;
3 readonly List <Cell > roots;
4

5 public void RecalculateMinimal () {
6 // Mark cells reachable from roots dirty.
7 foreach (Cell c in roots) { c.MarkDirty (); }
8 // Enqueue recalculation roots.
9 foreach (Cell c in roots) { c.Enqueue (); }

10 // Evaluate via support graph.
11 while (queue.Count > 0)
12 queue.Dequeue ().Eval();
13 }}

Figure 5.1: A simplified Workbook class.

Dirty

Computing

Enqueued

Uptodate

Figure 5.2: The possible state transitions of a cell. The dashed connection
denotes marking dirty the cells reachable from the recalculation roots at
the beginning of a particular recalculation.

Computing, according to the state transitions in Fig. 5.2. During recalcu-
lation, the cell state indicates whether a cell should be evaluated anew.
Moreover, cells cache the value that their formula expression evaluates
to. A cell that is Uptodate has cached its most recent value.

Figure 5.3 details the Formula class that models formula cells. During
the evaluation of a formula, its state is Computing (Line 34). After evalu-
ation, the evaluation method Eval() updates the formulas value cache
and sets its state to Uptodate (Line 35ff.). It enqueues supported cells
to the global work queue wb.queue if their state is Dirty and changes
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their state to Enqueued correspondingly by calling Enqueue() on them
(Line 37).

If a cell is being evaluated and one of its dependencies d is not
yet Uptodate, the call to e.Eval() in Line 35 will recursively evaluate
the dependency by calling d.Eval(). If the state of the dependency is
Computing, recalculation has detected a cyclic reference.

If the global work queue is empty, all cells in the spreadsheet are
Uptodate.

5.3 Puncalc: Parallel Implementation

Puncalc, short for parallel Funcalc, is a parallel variant of Funcalc based
on the .NET Task Parallel Library (TPL) [74] using a work-stealing thread
pool.

In the following sections, we introduce thread safety requirements on
the underlying mutable state of cells; our approach to parallel, minimal
recalculation and cycle detection; and how Puncalc complies with the
consistency requirement from Sec. 2.2.4. We then extend the algorithm
with a thread-local optimization that exploits a specific spreadsheet
topology on the fly.

5.3.1 Thread Safety

Conceptually, Funcalc is a strictly evaluated, purely functional language.
However, the implementation uses mutable state to make the language ef-
ficient, which we must make thread safe to enable correct parallelization:
the global recalculation queue in Workbook must be thread safe; formula
cells cache the result of their evaluation, and all threads should agree on
the cached result due to the consistency requirement from Sec. 2.2.4; a
cell also has a cell state that should be consistent among all threads; and
each formula cell should only be evaluated once. We will relax the latter
requirement in Sec. 5.3.3.

We handle the underlying mutable state of formula cells using the
following scheme. If multiple threads try to evaluate the same cell, one
thread takes ownership of the cell and sets the cell state to Computing. We
call the thread that set the cell to Computing the cell’s owner. The thread
will then evaluate the formula expression, write the result to the value
cache and finally set the cell state to Uptodate. The remaining threads
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1 enum CellState {
2 Dirty ,
3 Enqueued ,
4 Computing ,
5 Uptodate
6 }
7

8 public class Formula : Cell {
9 readonly Expr e; readonly Workbook wb;

10 CellState state; Value cached;
11 public readonly List <Cell > supported;
12

13 public void MarkDirty () {
14 if (state != CellState.Dirty) {
15 state = CellState.Dirty;
16 foreach (Cell c in supported) { c.MarkDirty (); }
17 }}
18

19 public void Enqueue () {
20 if (state == CellState.Dirty) {
21 state = CellState.Enqueued;
22 wb.queue.Enqueue(this);
23 }}
24

25 public Value Eval() {
26 switch (state) {
27 case CellState.Uptodate:
28 break; // Nothing to do.
29 case CellState.Computing:
30 throw new Exception("Cycle!");
31 case CellState.Dirty:
32 case CellState.Enqueued:
33 // Evaluate cell , protect with state.
34 state = CellState.Computing;
35 cached = e.Eval();
36 state = CellState.Uptodate;
37 foreach (Cell c in supported) { c.Enqueue (); }
38 break;
39 }
40 return cached;
41 }}

Figure 5.3: A simplified Formula class and its Eval() method.
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block until the cell is Uptodate and then read the result of evaluating the
formula from the value cache.

We could use intrinsic locks on cells to implement this scheme, but as
it turns out, locking on cells comes at the cost of (1) performance: threads
that wait for locks are de-scheduled, but often times, the result of evaluating
the formula will be available soon, since the average computation time per
cell is usually rather low, making de- and re-scheduling a waste of time;
and (2) correctness: it is legal to create cyclic references in spreadsheets
(see Sec. 2.2.1), but such cyclic references can lead to deadlocks. Suppose
thread t1 locks cell c. When another thread t2 examines c, it sees that c is
locked by thread t1 and blocks. If threads t1 and t2 both evaluate cells
that are part of a cycle, they will wait for each other and deadlock.

Instead of using locking, we implement our scheme using compare and
swap on cell state. Its semantics can be described as follows [54, Sec. 5.8]:

public static bool CAS <T>(ref T r, T v, T c) {

if (r == c) { // Is r equal to c?

r = v; // If yes , update r to v.

return true; // Report success.

} else
return false; // Otherwise , report failure.

}

Method CAS() checks whether the value of the reference r is equal to
some comparand c. If yes, it updates r to value v and returns true.
Otherwise, it returns false and performs no update. It does all of that
atomically, i.e. in a single CPU instruction, such that no other threads can
interfere.1

Class MaybeThreadSafeFormula in Fig. 5.4 implements our thread
safety scheme. Note that all reads from and writes to state are lock-free;
calls to Eval() are lock-free if the formula cell is Uptodate.

The overall idea of our recalculation algorithm is to let threads com-
pete for setting the cell state to Computing using CAS() (Line 24). The
thread that wins the race proceeds with evaluating the formula expres-
sion, while the other threads enter a busy-wait loop, waiting for the
result of the evaluation to become available.

We try to minimize races when it comes to accessing the support set
of a cell. Only the thread whose call to CAS() in Line 24 succeeded is

1We implement CAS in C# via Interlocked.CompareExchange().
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1 class MaybeThreadSafeFormula : Cell {
2 readonly Expr e; readonly Workbook wb;
3 volatile CellState state; Value cached;
4 public readonly List <Cell > supported;
5

6 public void MarkDirty () { ... }
7

8 public void Enqueue () {
9 if (CAS(ref state , // Atomically update state
10 CellState.Enqueued , // to Enqueued and enqueue
11 CellState.Dirty)) // only if successful.
12 wb.queue.Enqueue(this);
13 }
14

15 public Value Eval() {
16 int s = state; // Store locally for consistency.
17 switch (s) {
18 case CellState.Uptodate:
19 case CellState.Computing:
20 break; // Another thread may be evaluating.
21 case CellState.Dirty:
22 case CellState.Enqueued:
23 // Attempt to take ownership and evaluate.
24 if (CAS(ref state , CellState.Computing , s)) {
25 cached = e.Eval();
26 State = CellState.Uptodate;
27 foreach (Cell c in supported) { c.Enqueue (); }
28 }
29 break;
30 }
31 while (state < CellState.Uptodate)
32 ; // Block until state is Uptodate.
33 return cached;
34 }}

Figure 5.4: A fist attempt at making the simplified Formula class thread
safe. The main difference to class Formula in Fig. 5.3 is that critical
updates to state are done via CAS(). This implementation cannot detect
cyclic dependencies in the Computing case.
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allowed to enqueue the supported cells to the global work queue. The
cells in the support set may however also be part of some other cell’s
support set, so there still is a possibility for races. Note that the Enqueue

() method from Fig. 5.4 makes sure that each cell gets added to the end
of the global work queue at most once by using CAS() to update the cell
state.

This first attempt at implementing a thread safe Formula class live-
locks when encountering a cyclic reference. We describe an approach to
correctly detecting cyclic dependencies without livelocking in Sec. 5.3.5.

5.3.2 Parallel Minimal Recalculation

Figure 5.5 shows the main loop of parallel minimal recalculation in
method RecalculateMinimal() that handles termination. The empti-
ness of the global work queue (now of type ConcurrentQueue<Cell>)
alone is no longer a sufficient termination criterion: the queue may be
empty while there are still cells being evaluated by other threads, which
may in turn enqueue more cells. Therefore, we use a concurrent and
scalable atomic LongAdder class, inspired by the Java 8 LongAdder im-
plementation [86], to keep track of the number of cells currently being
evaluated.

Parallel minimal recalculation begins similarly to its sequential coun-
terpart by (1) marking all cells reachable from the recalculation roots
Dirty and (2) enqueuing the roots and changing their state to Enqueued.

If the main thread has successfully dequeued a cell from the queue
(Fig. 5.5, Line 17), it increments counter (Line 18) and spawns a new
TPL task to compute it. The task evaluates the cell and subsequently
decrements counter (Line 25).

The termination condition of the while loop in RecalculatePartial()

in Fig. 5.5, Line 14 states that it should keep running as long as (1) there
is at least one cell being evaluated or (2) queue is not empty; and (3) no
cycles have been detected.

It is crucial that the checks for termination (1) and (2) are ordered
as they are. Imagine we were to swap (1) and (2) and initially, queue
is empty and counter.Value is 1. The time line in Fig. 5.6 illustrates
an interleaving of operations that would then cause premature termina-
tion of the recalculation algorithm. The main thread tm would, when
evaluating the first half of the termination condition, i.e. check (2), see
that queue is empty. Before tm continues, a worker thread tw could finish
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1 class ParallelWorkbook {
2 public readonly ConcurrentQueue <Cell > queue;
3 readonly List <Cell > roots;
4 readonly LongAdder counter;
5

6 public void RecalculateMinimal () {
7 // Mark cells reachable from roots dirty.
8 foreach (Cell c in roots) { c.MarkDirty (); }
9 // Enqueue recalculation roots.

10 foreach (Cell c in roots) { c.Enqueue (); }
11 // Evaluate via support graph.
12 // Continue while work left and no cycle found.
13 bool cycle = false;
14 while ((0 < counter.Value || 0 < queue.Count)
15 && !cycle) {
16 Cell next;
17 if (queue.TryDequeue(out next)) { // Might be empty.
18 counter.Increment (); // Now 0 < counter.
19 Task.Run(() => { // Start a new task to evaluate.
20 try {
21 next.Eval();
22 } catch (Exception e) {
23 cycle = true; // Notify main loop on cycle.
24 }
25 queue.Decrement (); // Now 0 <= counter.
26 });}}}}

Figure 5.5: A simplified implementation of parallel recalculation. The
main difference to class Workbook from Fig. 5.1 is the while-loop in
RecalculateMinimal(): it only terminates if there are no cells currently
being evaluated and no cells left in the queue. Moreover, it starts a new
TPL task for each cell it pops from the work queue.
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tm
tw

queue.Count == 0

c.Enqueue(); counter.Decrement()

counter.Value == 0

Figure 5.6: A time line (from left to right), showing the interleaving of
actions that would cause premature termination of the algorithm if the
termination condition were to be reversed. Thread tm is the main thread
and thread tw is a worker thread.

evaluating a cell and enqueue one or more cells such that queue would
be non-empty. Thread tw then decrements the counter such that its value
becomes 0. Now tm sees that no cells are currently being evaluated and
therefore exits the main loop, even though there are still cells in the
queue. This subtle race does not occur when we order the checks as in
RecalculatePartial() in Fig. 5.5.

5.3.3 Cyclic Dependency Detection

To detect a cyclic dependency during sequential recalculation, it is suffi-
cient to check whether a cell is Computing before evaluating it. Detecting
cycles in parallel is less straightforward. If any thread sees a cell that is
Computing, it has not necessarily found a cyclic dependency as another
thread may currently be computing the cell. In this section, we discuss
the challenges of parallel cycle detection and then outline our solution.

We could circumvent the problem by sequentially checking for cycles
before initiating a parallel recalculation, but this would defeat the pur-
pose of recalculating in parallel in the first place. Moreover, a sequential
static cycle check would be too conservative and not allow for dynamic
cyclic dependencies that never actually get evaluated. Alternatively, a
thread that encounters a Computing cell could immediately report a cyclic
dependency, but that would be overly pessimistic and therefore useless.

What we need is a tie-breaker that allows at least one thread to
proceed even if the cell is Computing, such that it can discover any actually
existing cyclic dependencies. During parallel recalculation, a cyclic
dependency occurs only if a thread ti encounters a cell that is Computing

and whose owner is ti itself. If a cell is Computing but owned by another
thread, ti waits until the cell becomes Uptodate and then reads the cell’s
cached value.
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1 static class BCellState {
2 public const int Dirty = 0,
3 Enqueued = 1,
4 Computing = 2,
5 Uptodate = 3;
6

7 const int bitMask = Enqueued | Computing | Uptodate;
8

9 public static int Computing () {
10 return (CurrentThread.Id << 2) | Computing;
11 }
12

13 public static int Owner(int state) {
14 return state >> 2;
15 }
16

17 public static int State(int state) {
18 return state & bitMask;
19 }}

Figure 5.7: The BCellState (short for “bit cell state”) class and its auxil-
iary methods for encoding a thread ID in a state.

How do we decide which thread is allowed to proceed? We use thread
IDs, that impose an arbitrary numerical order on threads to determine
thread precedence. A thread ti has precedence over t j if its ID is lower than
that of t j . If ti and t j wait for a cell that the respective other thread owns
due to a cyclic reference, then ti may at some point proceed and discover
the cycle.

5.3.4 Encoding Ownership in Cell State

We want to manipulate state and ownership of a cell using a single
atomic operation to avoid adding logic for handling partial state, e.g. a
cell that is Computing but that has no owner yet. Internally, cell state is
represented by two bits of an integer, encoding four cell states, as shown
in class BCellState in Fig. 5.7.

We can encode the ID of the current thread in the unused bits along
with the Computing cell state to claim ownership of the cell. This allows
us to manipulate both using a single CAS(). Calling State(s) returns
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the state bits of s and Owner(s) returns the ownership bits. For all other
cell states except Computing, the ownership bits are always zero. The
following holds:

State(s) ≡ s (5.1)
Owner(Computing()) ≡ CurrentThread.Id (5.2)

5.3.5 Cycle Detection via Speculative Reevaluation

This section describes the implementation of a dynamic resolution of
cyclic dependencies that uses speculative evaluation. We only want to re-
port cycles that actually exist and occur dynamically during recalculation.

Figure 5.8 shows the ThreadSafeFormula class. It differs from the
MaybeThreadSafeFormula class in some obvious and some more subtle
ways. The Enqueue() method remains unchanged, while the logic in
Eval() becomes more convoluted to enable the speculative evaluation
scheme described in Sec. 5.3.3. Most importantly, it uses the methods
from the BCellState class in Fig. 5.7 to encode thread IDs in state.

Detecting Cyclic Dependencies

In the case that state is Computing, Eval() checks whether the current
thread is the owner of the cell (Line 29). If it is, a cyclic dependency has
been detected and recalculation must abort. To allow any threads that are
waiting for the current cell to finish up, Eval() sets the state to Uptodate.
These threads may then continue their computation, possibly reading
a stale value. Due to the exception, the main loop in ParallelWorkbook

will terminate. While this approach may seem simplistic, it elegantly
terminates the recalculation process in case of a cyclic dependency.

If the current thread does not own the cell, Eval() checks whether
it has precedence over the current owner (Line 32) and, if so, jumps to
the Enqueued case. If the current thread is neither the owner of the cell
nor has precedence over the current owner, it spins until it can retrieve
the cached value (Line 47). If the cell is either Dirty or Enqueued, the
thread attempts to evaluate it directly (Line 38). If the cell is Uptodate,
the function just returns the cached result.

Whenever a thread attempts to evaluate, it claims ownership of the cell
(Line 14). This reduces the number of redundant speculative evaluations
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1 class ThreadSafeFormula : Cell {
2 readonly Expre e; readonly Workbook wb;
3 volatile int state; Value cached;
4 public readonly List <Cell > supported;
5
6 public void MarkDirty () { ... }
7 public void Enqueue () { ... }
8
9 public bool TakeOwnership(int oldState) {

10 return CAS(ref state , BCellState.Computing (), oldState);
11 }
12
13 private bool TryEval(Value vo, int so) {
14 if (TakeOwnership(so)) {
15 Value v = e.Eval();
16 if (CAS(ref cached , v, vo)) {
17 state = BCellState.Uptodate;
18 return true;
19 }}
20 return false;
21 }
22
23 public Value Eval() {
24 int s = state; // Store locally for consistency.
25 switch (s) {
26 case BCellState.Uptodate: break;
27 case BCellState.Computing:
28 int id = CurrentThread.Id;
29 if (id == BCellState.Owner(s)) { // Cycle case: release
30 state = BCellState.Uptodate; // cell and notify
31 throw new Exception("Cycle!"); // main loop.
32 } else if (id < BCellState.Owner(s)) {// Precedence case:
33 goto case BCellState.Enqueued; // attempt evaluation.
34 } else
35 break;
36 case BCellState.Dirty: // Evaluation case:
37 case BCellState.Enqueued: // attempt evaluation.
38 while (BCellState.State(s) < BCellState.Computing
39 || (id < BCellState.Owner(state)
40 && BCellState.State(state)) < BCellState.Uptodate) {
41 if (TryEval(state , cached)) { // Evaluate and enqueue.
42 foreach (Cell c in supported) { c.Enqueue (); }
43 break; // Leave while -loop.
44 }}
45 break;
46 }
47 while (BCellState.State(state) < BCellState.Uptodate)
48 ; // Block until state is Uptodate.
49 return cached;
50 }}

Figure 5.8: A thread safe implementation of the simplified Formula class
with dynamic cycle detection. The Enqueue() method remains unchanged
from MaybeThreadSafeFormula in Fig. 5.4.
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and is important for cycle detection. Let us focus on the condition of the
while-loop in the Enqueued case (same as in Fig. 5.8, Line 11 ff.):

while (CellState.State(s) < Cell.Computing

|| (id < CellState.Owner(state)

&& CellState.State(state)) < Cell.Uptodate) {

if (TryEval(state , cached)) { // ...

An evaluation should be attempted if

1. the local cell state is Dirty or Enqueued; or

2. the current thread has precedence over the owner of the cell and

3. the cell state is not yet Uptodate.

This captures all cases in which a thread should attempt to evaluate a
cell, i.e. (1) the current thread is the first thread to arrive at the cell, or (2)
the current thread has precedence and is therefore the only one that can
detect a possible cyclic dependency while (3) the cell is not yet computed.

Why does a thread have to re-try evaluating a cell if it has precedence
over the current owner? If a thread ti has precedence over thread t j and
claims ownership of cell c, and another thread tk has precedence over t j

but not ti, such that ID(ti) < ID(tk ) < ID(t j ), then tk can claim ownership
of c before ti.

Imagine now that cell c has a cyclic dependency on cell u owned by ti

and tk successfully took ownership of c, while ti failed to take ownership
of c and waits for the ongoing evaluation to finish. As soon as tk arrives
at cell u, it would detect that it does not have precedence over ti and
recalculation would become stuck. This situation can only be resolved by
ti trying again to evaluate the cell c speculatively.

If thread t with ID(t) = n does not return from evaluating a cell due
to a cyclic reference, then in the worst case n − 1 threads with lower IDs
can evaluate the same cell speculatively before one of them detects the
cyclic dependency. Therefore, every cyclic dependency will eventually be
discovered.

Ensuring Consistency

It is now possible that two or more threads attempt to evaluate the same
cell, as illustrated in Fig. 5.9. In Sec. 5.3.1, we discussed that all threads
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A B
1 =B1 =NOW()
2 =B1

B1

A1

A2

Figure 5.9: A spreadsheed (left) and its dependency graph (right). Two
cells depend on the same cell containing a call to NOW(). If both cell
A1 and A2 are evaluated in parallel and both recursively attempt to
evaluate B1, their respective threads must agree upon which value B1
has evaluated to.

should agree on the cached value of each cell, so we must ensure that
only one of the evaluating threads gets to set the cached value; the other
threads must discard the result of their own evaluation and continue
using the now updated cached value. Method TryEval() in Fig. 5.8
ensures that only one thread writes a new value to the cache via CAS().

In the absence of cyclic dependencies, our algorithm for parallel
minimal recalculation retains the consistency requirements stated in
Sec. 2.2.4. Calling CAS() in Line 16 makes sure that all threads will agree
on the value of each cell in σ (Sec. 2.2.4).

The formal semantics described in Sec. 2.2.4 assigns a #CYCLE! error to
cells that contain a cyclic dependency which is then propagated to other
cells. This would not be useful when detecting cyclic dependencies via
speculative reevaluation. For instance, a non-deterministic conditional,
as illustrated in cell A4 in Fig. 5.10, could leave the spreadsheet in an
inconsistent state. Imagine we were to assign #CYCLE! to cells that have
a cyclic reference. Now assume that two threads that arrive at cell A4
evaluate both branches of the conditional in parallel, since calling RAND

is non-deterministic; the thread that evaluates the then-branch would
detect a cyclic reference from A1 to A4 and assign #CYCLE! to A1 and
then, by propagation, to cell A2 as well. When it arrives back at cell A4,
it could have happened that the thread that evaluated the else-branch
was faster and already has written to the value cache, making the result
of the speculative then-branch computation obsolete. However, there are
now two cells in the spreadsheet whose value is #CYCLE!, even though
the cyclic dependency cannot be observed by the user.

Our solution is to throw an exception as soon as any thread detects
a cyclic dependency. This is slightly conservative and therefore suffi-
ciently precise. Throwing an exception also leaves the spreadsheet in an
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A
1 =A3+1
2 =A1
3 =NOW()
4 =IF(RAND()<0.5, A2, A3)

A1 A2

A3 A4

Figure 5.10: A spreadsheet (left) with a statically cyclic reference that
is guarded by a non-deterministic conditional and its corresponding
dependency graph (right). A cyclic error only occurs if the call to RAND in
cell A4 evaluates to a value < 0.5.

inconsistent state; threads that are still busy evaluating cells may read
stale values. Therefore, Puncalc only retains the consistency requirement
from Sec. 2.2.4 in the absence of cyclic dependencies. Sequential Funcalc
behaves exactly equivalent.

Delayed Speculative Evaluation

In practice, we do not want to allow a thread with precedence to imme-
diately evaluate a cell speculatively as in Line 33 in Fig. 5.8. Instead, it
makes sense to briefly delay speculative evaluation while continuously
checking the cell state. If the cell becomes Uptodate during this delay, the
waiting thread does just reads the computed result; otherwise it proceeds
by speculatively evaluating the cell. This heuristic makes sure that we do
not needlessly start evaluating when the result is about to be available.

5.3.6 Thread-Local Evaluation

If a cell only has a single outgoing support edge, i.e. only a single cell in
the spreadsheet refers to it, our algorithm will still spawn a new task for
the single supported cell, even though there is no parallelism that we can
exploit. Instead, the current thread could evaluate the cell locally, circum-
venting the global queue, thereby saving on communication overhead
and avoiding spawning a new task.

We can implement an optimization for such sequential chains by
detecting when a cell supports only a single cell. If so, we evaluate the
supported cell locally on the current thread which continues to evaluate
cells locally, until it reaches a cell that supports either zero or more than
one cell, or is already Uptodate:
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if (TryEval(state , cached)) {

if (supported.Count == 1) {

supported.Single ().Eval();

} else {

foreach (Cell c in supported) { c.Enqueue (); }

}}

In the actual implementation, we use a while-loop to avoid overflowing
the call stack. From a functional point of view, there is no difference.

5.4 Results and Validation

5.4.1 Benchmark Spreadsheets

We use the following spreadsheet suites to benchmark Puncalc:

Real-World Spreadsheets We use the LibreOffice Calc [48] benchmark
sheets, as already describe in Sec. 4.5.1. We detect all formula cells
that have no formula dependencies and use them as recalculation roots
(column “Roots” in Table 5.1) to simulate minimal recalculation. As a
result, they are initially enqueued in the global work queue, and the
main thread can then dequeue cells from the queue without interference
from enqueueing threads. This may have a positive effect on parallel
performance and is unrealistic since users usually only edit one cell at a
time.

Artificial Spreadsheets To explore Puncalc’s behavior in a controlled
and systematic fashion, we use six programmatically generated spread-
sheet topologies as shown in Fig. 5.11. Each cell calls a recursive SDF
implementation of the Fibonacci function FIB (see Fig. 2.8 in Sec. 2.3.1)
which allows us to control the amount of work per cell. We pass a
parameter to FIB that corresponds to roughly 0.7ms evaluation time per
call, which is the maximum average time per cell from all LibreOffice
Calc spreadsheets.

5.4.2 Experimental Setup

Our test machine is the P3 server (see Sec. 1.3). We initially performed
three warm-up runs and ran each benchmark for five iterations. The
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Sheet Cells Roots Support edges Span Seq. (s)
building-design 108 332 18 378 488 351 887 3 32.12
energy-markets 534 507 35 198 287 818 610 3 168.16
grossprofit 135 073 15 301 112 612 549 3 102.19
ground-water 126 404 31 601 1 099 366 302 1 81.26
stocks-history 226 503 23 402 317 049 3 64.9
stocks-price 812 693 10 876 233 376 389 3 102.74

binary-join 262 146 1 393 215 18 138.63
binary-tree 266 145 1 262 143 17 141.14
fork 300 001 1 300 301 1001 160.14
fork-join 300 002 1 300 600 1001 158.92
map 300 001 1 300 001 1 160.82
prefix 300 000 1 745 009 1100 161.32

Table 5.1: Spreadsheet statistics for the real-world spreadsheets (top) and
the synthetic spreadsheets (bottom). The last column is the average time
of 50 sequential minimal recalculations in seconds.

(a) Binary fork (b) Binary join (c) Fork

(d) Fork-join (e) Map (f) Prefix

Figure 5.11: Illustrations of the underlying support graph structures
of extreme, synthetic spreadsheets for benchmarking. Edges go from
supporting cells to supported cells. Black nodes mark recalculation roots.
We only use one recalculation root per sheet to simulate editing a single
cell.
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raw data are available online.2 For each iteration, we ran the benchmark
ten times and computed the average execution time. Sequential (1-core)
running times are measured without volatile reads and writes, or any
other thread safe primitives or data structures to ensure a fair comparison.

We limit the number of TPL threads to match the number of available,
logical cores for each run. Additionally, we disable the TPL heuristics for
thread creation and destruction so that all threads are created at start-up.

5.4.3 Validation

We have validated that our algorithm for parallel minimal recalculation
in Puncalc produces the same result as sequential minimal recalcula-
tion in Funcalc for all sheets from the real-world benchmark suite by
repeated testing. Hence, we believe that parallel recalculation respects
the consistency requirements described in Sec. 2.2.4.

5.4.4 Performance Evaluation

There are three main observations to be made from the performance
benchmarks:

Observation 5.1 Figure 5.12 and 5.13 show that our approach scales for the
majority of tested spreadsheets up to 16 cores, where we gain the largest speedup
on average.

The relative speedup decreases for all spreadsheets for more than 16
cores, except for building-design, ground-water and stocks-history

from the LibreOffice benchmarks. The performance decline after 16 cores
may be caused by increased contention and more speculative evaluations.
Another explanation relates to the architecture of the Intel Xeon, which
consists of two chips with twelve cores each. Up to 24 “logical” cores
(i.e. including hyper-threading), communication does not happen across
chips. Therefore, we do not have to pay an excessive synchronization
cost when threads wait for Computing cells whose owners are scheduled
off-chip. As already mentioned in Sec. 4.5.2, the structure of the three
aforementioned sheets might correct for such expensive communication.

2https://github.com/popular-parallel-programming/puncalc-benchmarks/tree/
xeon

https://github.com/popular-parallel-programming/puncalc-benchmarks/tree/xeon
https://github.com/popular-parallel-programming/puncalc-benchmarks/tree/xeon
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Figure 5.12: Average benchmark results over 50 runs per spreadsheet
from the LibreOffice Calc spreadsheet suite. Top: without thread-local
evaluation. Bottom: with thread-local evaluation. Values are speedup
factors over sequential performance on the same machine; higher is better.
The gray dashed line indicates 1-core performance.
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Figure 5.13: Average benchmark results over 50 runs per spreadsheet
from the synthetic spreadsheet suite. Top: without thread-local evaluation.
Bottom: with thread-local evaluation. Values are speedup factors over
sequential performance on the same machine; higher is better. The gray
dashed line indicates 1-core performance. The standard deviation is ≤ 0.1
for all benchmarks.
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Observation 5.2 Thread-local evaluation does not improve performance com-
pared to eagerly spawning a task for each cell for real-world spreadsheets, as
shown in Fig. 5.12, and often leads to worse performance than eagerly spawning
tasks for synthetic spreadsheets, as shown in Fig. 5.13.

This may be due to two factors. First, thread-local evaluation is a depth-
first traversal, while eagerly spawning tasks is akin to breadth-first traver-
sal. Therefore, thread-local evaluation makes recursive evaluation of de-
pendencies more likely, which is slower than using the global work queue.
For heavily sequential spreadsheets such as prefix (Fig. 5.11f), thread-local
evaluation can alleviate the overhead of parallelization, which may be
favorable for a robust implementation. However, recursive evaluation can
lead to stack overflow errors. Second, the TPL uses an implementation of
work-stealing [74]: idle threads steal work in the form of tasks from other
threads. If we spawn fewer tasks and, hence, have more idle threads,
they will attempt to steal work more often. Frequent work-stealing is
more costly if it happens across chips.

Observation 5.3 Neither the number of cells, roots, support edges or span (i.e.
the longest sequential path) of a spreadsheet are good indicators for parallel
performance.

There is no apparent correlation between the performance results shown
in Fig. 5.12 and 5.13 and the statistics in Table 5.1. This is much to our
surprise. Unfortunately, these statistics do not inform us on the overall
structure of the dataflow graph. Are there “bottleneck cells”, i.e. cells
that refer to a large number of cells and support a large number of cells
again? Such structural properties are not captured by the statistics in
Table 5.1 and therefore, a manual analysis of the structure may be needed
to discover the causes behind the observed results.

5.5 Related Work

Little research deals with parallel recalculation of spreadsheets. The
general focus has instead been on detection and handling of errors [23].
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5.5.1 Research Literature

There exist multiple distributed systems for spreadsheet computations,
such as ActiveSheets3 [71] and Nimrod [2]. Both systems require re-
engineering of the spreadsheet, which may take a substantial amount of
time and require expert engineers [103]. In contrast, Puncalc runs on a
shared-memory multiprocessor and automatically exploits the machine’s
available processors without the need to change the spreadsheet itself.

Wack [110] bridges the gap between distributed systems and auto-
matic parallelization. His dissertation describes an improved spreadsheet
model that statically partitions and schedules a set of predefined pat-
terns and parallelizes them via message-passing in a network of work
stations. Apart from using a different machine model, his work disallows
cyclic dependencies [110, Sec. 2.8.3], which corresponds to static cycle
detection.

5.5.2 Commercial and Open Source Applications

Microsoft Excel is probably the most well-known commercial spreadsheet
application. Being closed-source, little information is available about its
recalculation engine. Its GUI shows an option that allows users to enable
multi-threaded recalculation, but its mechanics are unclear. Sestoft [93]
gives some additional information on the internals on Excel.

AMD has, in collaboration with the LibreOffice open source project,
implemented GPU parallelization for LibreOffice Calc by automati-
cally compiling formulas involving cell ranges, such as =SUM(A1:A100),
into OpenCL kernels [105]. They report between 30-fold to 500-fold
speedups [79], but do not take additional improvements to Libre Office
Calc’s internal data representation into account.

None of the applications above report results for systematic perfor-
mance benchmarks or give a detailed description of the underlying
algorithms.

5.6 Combining Dataflow with Cell Array Rewriting

It seems straightforward to combine Puncalc’s parallel recalculation al-
gorithm with rewriting of cell arrays, which we described in Chapter 4.

3Not to be confused with ActiveSheets by Vaziri et al. [109].



94 Chapter 5. Spreadsheet Dataflow Parallelism

This combination essentially shrinks the dependency graph of the spread-
sheet by merging cells arrays into array formulas and thereby introduces
nested parallelism. Cells that are part of an array formula are not put
on the global work queue; only the formula that represents the shared
formula expression is enqueued.

5.6.1 Enabling Nested Parallelism

Our design of the Puncalc algorithm is not geared towards nested parallel
operations. Threads wait for not-yet computed cells in a busy-wait loop.
When a large array formula is computed by one thread, it can happen
that many threads wait for values of this array formula and just waste
their time spinning. That means that there are no threads left that can
evaluate the array formula in parallel and ultimately, the algorithm only
pays for the overhead of distributing parallel work without gaining the
benefits from parallelization.

There are two changes that we have to make to Puncalc to enable
nested parallelism. First, we must allow for more software threads than
hardware threads. This is a trivial change to the program configuration
and we now run twice as many threads as there are processors.

The second change allows threads to yield their time slice every once
in a while when waiting to let the processor they run on perform some
useful work instead. We achieve this by using a heuristic that puts a
thread to sleep every n iterations that it has spun. The .NET framework
implements this heuristic in the SpinWait class in the System.Threading

namespace. We change the code in Line 47, Fig. 5.8 to:

public Value Eval() {

int s = state;

switch (s) {

// ... as before.

}

SpinWait.SpinUntil(

() => BCellState.State(state) == BCellState.

Computing);

return cached;

}

Method SpinWait.SpinUntil() returns when the anonymous function
that is has been called with returns true.
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Figure 5.14: Average benchmark results over 30 runs per spreadsheet
from the LibreOffice Calc spreadsheet suite with cell array rewriting
and without thread-local evaluation. Values are speedup factors over
sequential minimal recalculation on the same machine; higher is better.
The gray dashed line indicates 1-core performance without cell array
rewriting. The standard deviation is ≤ 0.19 for all benchmarks.

5.6.2 Performance Results

We use the same experimental setup as described in Sec. 5.4.2. We use
the LibreOffice Calc benchmarking suite and report the average speedup
of running 30 iterations for each configuration.

The graph in Fig. 5.14 shows that the performance of rewritten spread-
sheets is worse already for single core minimal recalculation (Processor
Count = 1). Except for grossprofits and stock-history, all spreadsheets
take twice as much time for a minimal recalculation. Moreover, none
of the spreadsheets except for stock-history, which already performed
best for cell array rewriting with full recalculation (see Sec. 4.5.2), gain
any speedup from combining Puncalc with cell array rewriting.

We already noted in Sec. 4.5 that measuring the performance of full
recalculation does not reflect how cell array rewriting affects the support
graph. The observation that we can make from the results in Fig. 5.14
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is that cell array rewriting indeed affects the performance of minimal
recalculation negatively.

However, it is surprising that Puncalc is unable to harness any nested
parallelism. We believe that this is due to speculative evaluation: Puncalc
attempts to parallelize sequential chains of parallel array formulas and
threads spend most of their time waiting for the result of the array
formulas to become available. If it takes sufficiently long to compute an
array formula, speculative evaluation will trigger and threads begin to
compute large chunks of the spreadsheet twice, even though there is no
cyclic dependency that can be uncovered and effectively waste their time
slice on performing redundant work. It would be useful to investigate
more dynamic heuristics for delaying speculative evaluation, such as
estimating the time it will take to evaluate a particular cell ahead of time.

5.7 Conclusion

In this chapter, we presented Puncalc, a spreadsheet engine that targets
shared-memory multiprocessors and automatically extracts parallelism
from spreadsheets via their underlying support graph. Puncalc obtains
overall satisfactory speedups of up to nearly 16 times on 48 proces-
sors without adding any engineering overhead on the end-user’s side.
To our knowledge, this is the first algorithm for parallel spreadsheet
recalculation with dynamic cycle detection that has been described in
literature.

We have given a number of possible explanations for the performance
results in Sec. 5.4.4. Furthermore, we are lacking a direct comparison of
the performance of Puncalc to that of other frameworks for spreadsheet
parallelization, such as those mentioned in Sec. 5.5.

Combining Puncalc with rewriting cell arrays does not allow us
to harness nested parallelism from spreadsheets. We suspect that the
static heuristic that we use for delayed speculative evaluation allows too
many threads to speculatively evaluate large cell arrays, which often is
redundant work. However, we need a more sophisticated approach to
estimate how long the evaluation of a particular cell will take to improve
our heuristic, which we regard as future work.



Chapter 6

End-User Array Programming

This chapter is based on the article “Quad Ropes: Immutable, Declar-
ative Arrays with Parallelizable Operations” [13] which is joint work
with Peter Sestoft.

6.1 Introduction

Programmers choose data structures for the programs they write based
on their performance properties. For instance, arrays allow random
access and update in constant time and higher-order combinators are
easily parallelizable, whereas linked lists are inherently sequential and
random access takes linear time, but adding a value to the beginning
of the list takes constant time. The choice of data structure often has a
crucial impact on the performance of the entire program.

For end-user development in high-level declarative programming
languages it is impractical to let users choose between different data
structures, because end-users are often not primarily educated as pro-
grammers. Instead, they should be able to use the same, somewhat
performance-robust, representation for every programming task.

In this chapter, we describe the design of the quad rope data structure,
a representation of immutable two-dimensional arrays. It avoids many
of the performance pitfalls of naively using C-style two-dimensional
arrays to represent immutable data collections in high-level declarative
programming languages, such as repeated concatenation and update.
Quad ropes roughly retain array efficiency, as long as programmers
express their programs using high-level constructs.
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Quad ropes are a combination of ropes [24] and quad trees [45]: a
quad rope is a binary tree with one concatenation constructor for each
dimension and with small, contiguous, two-dimensional arrays at its
leafs.

6.1.1 Choosing a Declarative Array Representation

To find a representation of immutable, two-dimensional arrays that
efficiently and pragmatically caters to the needs of high-level declarative
array programming, let us begin by considering some requirements for
such a representation:

1. The data structure must be immutable; immutabillity gives us con-
siderable freedom for the implementation and allows for implicit
parallelization, constant-time slicing, caching, speculative evalua-
tion and evaluation order independence. It is also straightforward
for end-user developers to reason about.

2. It should gracefully handle array programming anti-patterns, such
as gradual array construction by repeated concatenation.

3. Higher-order combinators should be efficient and able to exploit
data-parallelism.

4. Users should not experience seemingly arbitrary performance dif-
ferences between operations in different dimensions, e.g. horizontal
and vertical. We call this performance symmetry.

Random-access arrays are highly efficient for the majority of use cases,
except for repeated concatenation, so it is difficult to design a data
structure that behaves like immutable arrays and is equally fast. Most
prior research focused on efficient immutable arrays using versioning
approaches [38, 72] without efficient concatenation. Kaplan and Tarjan
[67] showed how to implement fast concatenation of persistent deques,
which, however, do not grant random access.

Stucki et al. [102] designed the one-dimensional relaxed radix-bound
(RRB) tree with constant-time indexing and concatenation, fulfilling re-
quirements 1–3. Extending RRB trees to two dimensions is not feasible:
performance symmetric two-dimensional concatenation requires manag-
ing many corner cases and often leaves us in situations where we cannot
avoid excessive re-allocations.



6.1. Introduction 99

Finkel and Bentley [45] designed quad trees to allow for multi-
dimensional key retrieval. The main idea is to recursively subdivide
the rectangle that contains values into further rectangles, where empty
rectangles are simply not represented. They fulfill all requirements, but
may exhibit excess parallelism.

The discontinued Fortress language used ropes to implement parallel
collections [100, 101]. A rope is an immutable binary tree with strings or
arrays at its leafs [24]. The idea is to group scalar values at the leafs into
small contiguous arrays and to extract parallelism by forking threads at
each tree branch, where a well chosen minimum leaf size avoids excess
parallelism. The binary tree structure also allows for constant-time
concatenation.

We can generalize ropes to two dimensions to fulfill all four require-
ments, in the same way in which quad trees generalize binary trees. We
call the resulting data structure a quad rope. Quad ropes have only a mod-
est performance overhead compared with immutable two-dimensional
arrays, except for indexing, which runs in logarithmic instead of constant
time. Since we want to encourage a high-level style of array program-
ming using higher-order combinators, we deem this acceptable. For small
array sizes, quad ropes fall back to the default array implementation,
eliminating any overhead whatsoever.

Quad ropes are conceptually similar to hierarchically tiled arrays
(HTA) [15]. HTAs, however, have only been researched for largely imper-
ative languages. Our approach is to define higher-order combinators on
quad ropes that match the signatures of typical array combinators and use
quad ropes as a “drop-in” replacement for other array representations.

6.1.2 Contributions

In the remainder of this chapter, we give an operational semantics for the
quad rope data structure and discuss the implications for performance;
we show that it is straightforward to use quad ropes to represent sparse
matrices; we discuss balancing and parallelization of operations and show
that it is not possible to use a lazy tree splitting scheduler [8] on quad
ropes; and we discuss implementation and performance benchmarks of
quad ropes in F# and in Funcalc.
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6.2 Quad Rope Semantics

We use a straightforward operational semantics to describe quad ropes,
with the usual semantics for arithmetic operations, lambda abstraction
and function application. Abstractions accept an arbitrary number of
arguments. We illustrate most rules using only hcat. The rules for vcat
are analogous and operate on the values that describe columns.

We use the judgment e qr to say that an expression e is a quad rope
value and e arr to say that an expression e is an array. The judgment
e ↓ e′ says that there is a complete transition sequence from e to e′.
Combinators on arrays are written in gray; e.g. map denotes the map

combinator on two-dimensional arrays. We do not give the semantics
for combinators on arrays and instead focus on the semantics of quad
ropes. However, we use array combinators to signify that we “escape” to
array semantics and to avoid modeling any implementation details that
are irrelevant for our overall idea.

Figure 6.1 shows the language used to describe quad ropes and
Fig. 6.2 shows evaluation judgments for basic functions on them. A
quad rope is either a leaf, represented by a two-dimensional array xs
(rule leaf); or one of hcat or vcat, which model horizontal and vertical
concatenation, respectively (rules hcat and vcat). We could generalize
quad ropes to more than two dimensions, either by statically adding
further concatenation constructors, or by using a single concatenation
form with an additional “dimension” parameter. However, we focus on
the two-dimensional case in the remainder of this chapter.

We have two basic forms for constructing a new quad rope from the
ground up: the form init(r, c, f ) generates a new leaf of shape r × c
where the value at index i, j is generated by calling f (i, j) via rule init;
the form rep(r , c, v) creates a quad rope that contains the same value v at
all indices via rule rep.

The rows construct allows to query a quad rope for its number of
rows. Both branches of a hcat node have the same number of rows, so
it does not matter which branch we recurse on. Rules for computing
the number of columns with cols are analogous, and both branches of a
vcat must have the same number of columns. We define a shape operator
· on quad ropes for that we use throughout this chapter:

q = (rows(q), cols(q))
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a ::= xs A two-dimensional array.
| get(xs, i, j) Random access at index i, j.
| rows(xs) Number of rows in xs.
| cols(xs) Number of columns in xs.
| map( f , xs) Apply function f to all elements in xs.
| slice(i, j, r , c, xs) Build a rectangular sub-array.
| reduce(⊕, ε, xs) Reduction for binary operator ⊕.
| scan( f , f , v, f , xs) Generalized prefix-sum.

e ::= a Expressions on arrays.
| v Scalar value.
| x Variable name.
| λ(x1, x2, . . .).e Function abstraction.
| f (e1, e2, . . .) Function application.
| e ⊕ e Binary application, short for ⊕(e, e).
| rows(q) Number of rows in q.
| cols(q) Number of columns in q.
| get(q, i, j) Random access at index i, j.
| set(q, i, j, v) Update the value at index i, j to v.
| reduce(⊕, v, q) Reduction for binary operator ⊕.
| leaf(i, j, r , c, xs) Quad rope leaf over xs.
| rep(r , c, v) Replicated quad rope of size r × c.
| init(r , c, f ) Build quad rope leaf of size r × c.
| hcat(q, q) Concatenate horizontally.
| vcat(q, q) Concatenate vertically.
| slice(i, j, r , c, q) Build a rectangular subset of values.
| map( f , q) Apply function f to all elements in q.
| zipWith( f , q, q) Combine two quad ropes pointwise using ⊕.
| scan( f , f , v, f , q) Generalized prefix-sum.

Figure 6.1: The language which we use throughout this chapter to
describe the quad rope semantics: xs and ys range over two-dimensional
arrays; q ranges over quad ropes; f , g and k range over functions; and i,
j, r and c range over integers.
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leaf

xs arr
leaf(xs) qr

hcat

q1 qr q2 qr

hcat(q1, q2) qr
rows(q1) = rows(q2)

vcat

q1 qr q2 qr

vcat(q1, q2) qr
cols(q1) = cols(q2)

init

init(r , c, f ) ↓ xs
init(r , c, f ) ↓ leaf(xs)

0 ≤ i ∧ 0 ≤ j

rep

rep(r , c, v) ↓ init(r , c, λ(x, y).v)

rows-l
q ↓ leaf(xs)

rows(q) ↓ rows(xs)
rows-h

q ↓ hcat(q1, q2)

rows(q) ↓ rows(q1)

rows-v
q ↓ vcat(q1, q2)

rows(q) ↓ rows(q1) + rows(q2)

slice-l

q ↓ leaf(xs)
slice(i, j, r , c, xs) ↓ ys

slice(i, j, r , c, q) ↓ leaf(ys)

slice-h

q ↓ hcat(q1, q2)
slice(i, j, r , c, q1) ↓ q′1

slice(i, j − cols(q1), r , c − cols(q′1), q2) ↓ q′2
slice(i, j, r , c, q) ↓ hcat(q′1, q′2)

get-l
q ↓ leaf(xs)

get(q, i, j) ↓ get(xs, i, j)
0 ≤ i < rows(q) ∧ 0 ≤ j < cols(q)

get-h1
q ↓ hcat(q1, q2)

get(q, i, j) ↓ get(q1, i, j)
j < cols(q1)

get-h2

q ↓ hcat(q1, q2)
j − cols(q1) ↓ j′

get(q, i, j) ↓ get(q2, i, j′)
j ≥ cols(q1)

Figure 6.2: Operational semantics for quad ropes. The rules for cols are
analogous to those of rows with hcat and vcat swapped. For every rule
on hcat nodes with an “h”-suffix, there exists an analogous rule on vcat
nodes, suffixed with “v”. The only case where we show this explicitly
are the rows rules.
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hcat

vcat

q1 q2

vcat

q3 q4

vcat

hcat

q1 q3

hcat

q2 q4

q1

q2

q3

q4

Figure 6.3: A quad rope illustrated twice as binary tree and once as box
diagram. To simplify the example, we assume that ∀qi, qj ∈ q[1,4]. qi =
qj .

The form slice(i, j, r , c, q) describes a rectangular sub-set of a quad rope
q, starting at index (i, j) and taking r rows and c columns. It adheres to
the slicing semantics of one-dimensional ropes [24]. Finally, indexing via
get takes logarithmic time in the hcat and vcat case on balanced quad
ropes, which we will take a closer look at in Sec. 6.5.2. We omit rules for
persistent update via set; they follow the get rules closely, but update
the leaf node at the given index with the new value and reconstruct all
nodes on the path from the leaf to the root node, re-using the unchanged
sibling nodes.

It is useful to think of quad ropes not only as binary trees, but also as
rectangles that are composed of smaller rectangles. Figure 6.3 illustrates
the relationship between quad ropes as binary trees and quad ropes as
two-dimensional arrays. There does not exist a single canonical term
to describe a particular quad rope. This is a consequence of using one
concatenation form for each dimension, i.e. hcat and vcat. Two quad
ropes that are element-wise equal and that have the same external shape
do not necessarily have the same internal structure.

It is straightforward to support additional operations on quad ropes,
such as transpose and row- and column-wise reversal.

6.2.1 Projection

The map( f , q) combinator lifts a scalar unary function f to operate on a
quad rope q and applies it recursively to all branches and each of their
elements, by rules map-l and map-h in Fig. 6.4. The zipWith combinator
is the usual binary variant of map; however, we need to distinguish
between the external shape and the internal structure of two quad ropes,
since there is no canonical term for a quad rope of a given shape. If the
structure of two quad ropes matches, we can use rules zip-l to directly
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map-l

q ↓ leaf(xs)
map( f , xs) ↓ ys

map( f , q) ↓ leaf(ys)

map-h
q ↓ hcat(q1, q2)

map( f , q) ↓ hcat(map( f , q′1), map( f , q′2))

zip-l

q1 ↓ leaf(xs)
init(λ(x, y).(get(xs, x, y) ⊕ get(q2, x, y)), rows(q1), cols(q2)) ↓ q

zipWith(⊕, q1, q2) ↓ q

zip-h

q1 ↓ hcat(q11, q12)
q2 ↓ hcat(q21, q22)

zipWith(⊕, q1i, q2i) ↓ q′i
zipWith(⊕, q1, q2) ↓ hcat(q′1, q′2)

cols(q1i) = cols(q2i)

zip-gen-h

q1 ↓ hcat(q11, q12)
slice(0, 0, rows(q2), cols(q11), q2) ↓ q21

slice(0, cols(q11), rows(q2), cols(q12), q2) ↓ q22
zipWith(⊕, q1i, q2i) ↓ q′i

zipWith(⊕, q1, q2) ↓ hcat(q′1, q′2)

Figure 6.4: Operational semantics for quad rope combinators. The zip

rules have side condition q1 = q2 .

combine leaf forms and zip-h for recursing on the branches of hcat
forms.

When this is not the case, we must rely on slicing. It is then sufficient
to recurse on the structure of the left hand side argument and to slice the
right hand side to match the shape of the left hand side, as in zip-gen-h.
Figure 6.5 illustrates this case for a hcat node and another quad rope of
different structure.
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zipWith(⊕, hcat( q1 , q2 ) , q3 )
↓

hcat(zipWith(⊕, q1 , q3a ), zipWith(⊕, q2 , q3b ))

Figure 6.5: Zipping two quad ropes of equal external shape but differ-
ent internal structure. The boxes illustrate the shape of the respective
branches. Branch q3a is the left part of q3, sliced to match the width of q1;
branch q3b is the respective right part and sliced to match the width of
q2.

red-l
q ↓ leaf(xs)

reduce(⊕, ε, q) ↓ reduce(⊕, ε, xs)

red-h
q ↓ hcat(q1, q2)

reduce(⊕, ε, q) ↓ reduce(⊕, ε, q1) ⊕ reduce(⊕, ε, q2)

Figure 6.6: Operational semantics for reduction of a quad rope to a scalar
value via the reduce combinator.

6.2.2 Reduction and Scan

We focus on parallelizable reduction to a single scalar value and therefore,
we require the operator ⊕ that we reduce with to be associative and have
an identity element. Thus all reduction rules (red) in Fig. 6.6 have these
side conditions:

• ⊕ is associative; and

• ε ⊕ e = e ⊕ ε = e, so ε is the identity element for ⊕.

Reduction of an empty quad rope gives ε. We can use generalized two-
dimensional reduction and slicing to implement row- and column-wise
reduction.

One-dimensional scan is usually defined for a binary operator. To
make scan on quad ropes as general as possible, our semantics uses a
function that accepts four arguments instead of only two. Let us recall
the definition of the general scan2d combinator from Sec. 3.1.4: it takes a
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scan-l

q ↓ leaf(xs)
scan( f , γ, δ, ρ, xs) ↓ ys

scan( f , γ, δ, ρ, q) ↓ leaf(ys)

scan-h

q ↓ hcat(q1, q2)
scan( f , γ, δ, ρ, q1) ↓ q′1

λ(x).(get(q′1, x, cols(q′1) − 1)) ↓ γ′

λ(y).(ρ(y + cols(q′1))) ↓ ρ′

ρ(cols(q1) − 1) ↓ δ′

scan( f , γ′, δ′, ρ′, q2) ↓ q′2
scan( f , γ, δ, ρ, q) ↓ hcat(q′1, q′2)

Figure 6.7: Operational semantics for computing two-dimensional prefix-
sums via scan.

4-ary function f , a m × 1 single-column array γ, a scalar value δ and a
1 × n single-row array ρ as well as an input array xs of shape m × n. Its
result is a new m × n array

scan2d f γ δ ρ xs ≡ ys

where:

ys[0, 0] = f γ[0] δ ρ[0] xs[0, 0] (6.1)
ys[0, j] = f ys[0, j − 1] ρ[ j − 1] ρ[ j] xs[0, j] (6.2)
ys[i, 0] = f γ[i] γ[i − 1] ys[i − 1, 0] xs[i, 0] (6.3)
ys[i, j] = f ys[i, j − 1] ys[i − 1, j − 1] ys[i − 1, ] xs[i, j] (6.4)

We describe scan semantics for quad ropes in Fig. 6.7. We model γ and
ρ using unary functions to translate prefix values from the upper-left
branches to the lower-right branches of hcat and vcat nodes in rule scan-
h. For each right-hand side branch, we construct two new functions
γ′ and ρ′ that perform a lookup on the already scanned left-hand side
branch.

The scan semantics does not exhibit any obvious possibilities for
parallel execution. We will however see in Sec. 6.5 that there are config-
urations where it is possible to recursively evaluate some branches in
parallel.
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rep’
rep(r , c, v) qr

rows-r
q ↓ rep(r , c, v)

rows(q) ↓ r

get-r
q ↓ rep(r , c, v)

get(q, i, j) ↓ v
0 ≤ i < r ∧ 0 ≤ j < c

slice-r

q ↓ rep(r′, c′, v)
r′′ = min(r , r′ − i)
c′′ = min(c, c′ − j)

slice(i, j, r , c, q) ↓ rep(r′′, c′′, v)
0 ≤ i ∧ 0 ≤ j

map-r
q ↓ rep(r , c, v)

map( f , q) ↓ rep(r , c, f (v))

red-r
q ↓ rep(r , c, v)

red(⊕, ε, q) ↓ ε ⊕ v ⊕ . . . ⊕ v︸       ︷︷       ︸
r ·c

Figure 6.8: Additional operational semantics for a canonical rep form.

6.3 Block-Sparseness

6.3.1 Making Replication Canonical

In Sec. 6.2 we have defined the rule rep, saying that rep(r, c, v) ↓
init(r, c, λ(x, y).v). We can optimize the representation of such con-
stant or replicated quad ropes by making the rep form canonical and
thereby introducing sparse blocks to our quad rope data structure. That is,
we replace rule rep by rep’ in Fig. 6.8, such that the replication form is
a proper quad rope itself. This retains the information that all elements
in the resulting quad rope are equal. It is straightforward to show that
∀i ∈ [0, r), j ∈ [0, c) :

get(rep(r , c, v), i, j) ≡ get(init(r , c, λ(x, y).v), i, j),

since the only value that we can ever access via get is v.
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The rule map-r shows the benefit of making replication canonical: we
only need to apply the lifted function once, instead of to each individual
value in the quad rope via rules map-h and map-l. Similarly, when
we want to reduce a replicated quad rope with some binary associative
operator ⊕ and an identity element ε, we can avoid all computation if the
replicated quad rope only contains ε. Since we assume ε ⊕ e = e ⊕ ε = e
it holds that ε ⊕ ε = ε.

6.3.2 Block-Sparse Numerical Operations

More well known optimizations for numeric operators apply to replicated
quad ropes. For instance, element-wise combination using the zipWith
combinator can make use of sparseness. If we combine two quad ropes
element-wise using the addition operator + and one of them is of the
form rep(r, c, 0.0), it is sufficient return the other quad rope as a result;
this is correct since zero is the identity element for addition.

q1 ↓ rep(r , c, 0.0)

zipWith( + , q1, q2) ↓ q2
(6.5)

We can proceed similarly for element-wise multiplication using the · oper-
ator. This is useful when implementing functional matrix multiplication
on quad ropes.

q1 ↓ rep(r , c, 1.0)

zipWith( · , q1, q2) ↓ q2
(6.6)

These optimizations can be generalized to any ring. Furthermore, the
zipWith combinator reduces to map when one of the argument quad ropes
is sparse:

q1 ↓ rep(r , c, v)

zipWith( ⊕ , q1, q2) ↓ map(λ(x).(v ⊕ x), q2)
(6.7)

All sparseness optimizations can also be applied if the right-hand side q2
is sparse. For the optimization in (6.7), if q2 is of form rep, the right-hand
side argument to ⊕ is fixed to the v from q2.

6.4 Two-Way Nodes vs. Four-Way Nodes

As stated in Sec. 6.2, a particular quad rope does not necessar-
ily have a canonical form. In particular, due to having both hor-
izontal and vertical concatenation, hcat(vcat(q1, q2), vcat(q3, q4)) and
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q1

q2

q3

q4

Figure 6.9: A four-way node configuration node(q1, q2, q3, q4). The red
rectangle illustrates the size of the slice we want to compute. The number
in columns in q′4 depend on q2. Furthermore, the resulting slice consists
of only three branches, node(q′1, q′2, ε , q′4).

vcat(hcat(q1, q3), hcat(q2, q4)) are two representations of the same quad
rope. This section explains why we do not use the “obvious” four-way
construction operator to avoid this ambiguity.

Suppose we have a four-way node construct node(q1, q2, q3, q4) that
is a proper quad rope and let ε be the canonical empty quad rope. We
define hcat(q1, q2) ↓ node(q1, ε , q2, ε ) and vcat(q1, q2) ↓ node(q1, q2, ε , ε ).

All expressions on quad ropes can now neglect special rules for
each dimension, but must take ε into account. Hence, the number of
overall rules remains the same. Furthermore, slicing becomes vastly
more complex. If we slice a node, we would first slice branch q1, and then
branches q2 and q3 in arbitrary order, where we offset the slicing indices
accordingly to the size of q1 and the desired height and width by the size
of the slicing result q′1.

Finally, we want to slice q4. It becomes clear that the index offsets
depend on the structure of the node. If cols(q1) < cols(q2), we can use
the number of columns of q1 and q′1 in order to compute the number of
columns of q′4. If cols(q2) < cols(q1), as illustrated in Fig. 6.9, then we
must use the number of columns of q2 and q′2 instead of q1 and q′1.

Furthermore, without additional adjustments, we would be able
to construct a new quad rope node(q′1, ε , ε , q′4), q′4 , ε for the case
slice(0, 0, r, c, q), where q ↓ node(q1, q2, q3, q4), ∀qi. qi , ε and r ≤
rows(q1), c ≤ cols(q1), again as illustrated in Fig. 6.9. This happens
regardless of the original structure of q. Slicing q1 results in empty q′2
and q′3. If we naively try to use the size of the latter two to compute the
desired size of q′4, the result will be a quad rope that has no rectangular
shape and therefore cannot be a valid quad rope instance.

One solution to these problems is to introduce additional rules for
slice with side conditions for handling the above cases, which would
complicate the semantics considerably. Another solution is to make this
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situation impossible and to duplicate rules for each dimension; which is
why we have chosen hcat and vcat over a four-way node.

6.5 A Reference Implementation

We have written a reference implementation of the quad rope data
structure in F#. The source code is available online.1 The inductive
type definition for a quad rope with a sparse node constructor looks as
follows:

type 'a qr =

| Leaf of 'a [,]

| HCat of 'a qr * 'a qr

| VCat of 'a qr * 'a qr

| Sparse of int * int * 'a

Thanks to the immutability of quad ropes, we can implement slicing using
views. This allows for constant time slicing, which ultimately allows for
a fast implementation of zipWith that directly follows the operational
semantics from Sec. 6.2.1. Materialization of slices directly follows from
the operational semantics for slice. We use explicit materialization
internally where appropriate:

type 'a qr =

| ... (* As before. *)

| Slice of int * int * int * int * 'a qr

Our quad rope implementation uses the .NET Task Parallel Library [74]
and pushes a new task to the work-stealing thread pool for each branch
of a HCat or VCat node. Leaf nodes have at most smax rows and smax
columns. We merge small leafs when their combined number of rows or
columns is less than or equal to smax by copying, as for one-dimensional
ropes [24]. The choice of smax determines the maximum amount of work
that can be executed sequentially [8, 101]. Limiting leaf size to smax
allows for a uniform parallelization scheme for all quad rope instances
and for fast performance of persistent update.

Most combinators, such as map and reduce, can be parallalized in a
straightforward fashion. Running two closures in parallel by starting

1https://github.com/popular-parallel-programming/quad-ropes

https://github.com/popular-parallel-programming/quad-ropes
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1 val par2 : (unit → 'a) → (unit → 'b) → 'a * 'b
2 val mat : int → int → int → int → 'a qr → 'a qr
3

4 let rec map f = function
5 | Leaf xss → Leaf (Array2D.map f xss)
6 | HCat (q1, q2) →
7 HCat (par2 (fun () → map f q1)
8 (fun () → map f q2))
9 | VCat (q1, q2) →
10 VCat (par2 (fun () → map f q1)
11 (fun () → map f q2))
12 | Sparse (r, c, a) → Sparse (r, c, f a)
13 | Slice (r0, c0, r1, c1, q) →
14 map f (mat r0 c0 r1 c1 q)

Figure 6.10: A parallel implementation of map on quad ropes in F#.
Function mat materializes a quad rope slice.

new tasks is wrapped in function par2, as illustrated in Fig. 6.10. Note
that slicing is an inherently sequential operation and hence cannot be
performed in parallel.

As noted in Sec. 6.2.2, the operational semantics for scan does not
exhibit any obvious opportunities for parallelization because each scan

rule is inherently sequential. Still, there are two configurations of hcat
and vcat nodes for which scan can be parallelized:

hcat(vcat(a, b), vcat(c, d)) (6.8)
vcat(hcat(a, c), hcat(b, d)) (6.9)

Since scan computes the prefix sum from the top left of a quad rope
to its bottom right, the sequential dependency for these configurations
is a ≺ {b, c} and {b, c} ≺ d. If rows(c) ≤ rows(a) and cols(b) ≤ cols(a),
then there is no sequential dependency between b and c. In that case, b
and c may be scanned in parallel, as described earlier in Sec. 3.1.4.

6.5.1 Lazy Tree Splitting Does Not Apply

Lazy tree splitting [8] is a scheduling technique based on lazy binary
splitting [106] and uses ropes [24] to represent parallel collections. The
basic idea is to spawn new tasks on a by-need basis instead of eagerly:
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hcat

vcat

a b

c

Figure 6.11: Trying to split a quad rope into two valid quad ropes during
lazy tree splitting. In this example, the focus is currently on node b. The
dashed red line marks where we want to split the quad rope in two.

during traversal, whenever a worker thread is idle, a new task is spawned
off to handle half of the not yet traversed part of the rope. The check for
idle worker threads piggy-backs on efficient work-stealing queues [28]
and reads from the global work queue in a non-synchronized fashion.
Thereby, no communication overhead is introduced and synchronization
happens whenever other functions force synchronization, e.g. worker
threads stealing tasks. If the global work queue is empty, it is likely that
spawning new tasks will pay off performance-wise [8].

At any time, we must be able to stop execution, store the already
performed work and then evenly distribute the remaining work across
two tasks. When the work is stored in a random-access array, lazy binary
splitting is a matter of adjusting indices; already processed work remains
in the target array and the remaining index range is split in two [106].

If the work is stored in some kind of tree, e.g. a rope, we can use
a zipper [62] to navigate over the tree and to keep track of the work
already performed and what still remains to be done. When a worker
thread is idle, we need to stop execution and split the zipper context into
the processed part and the remaining part. Afterwards, we can split the
remaining part of the tree in two equally sized trees and process them in
parallel [8].

Thus, we must be able to take the zipper context apart in an arbitrary
fashion and construct two valid trees from it. This is possible on one
dimensional ropes, because two ropes can always be concatenated to
each other. Unfortunately, this is not the case for quad ropes due to the
existence of two concatenation constructors, hcat and vcat. Figure 6.11
shows an example where the current focus is on the node b that is the
second argument to a vcat node. This means that its left neighbor a has
already been processed, while the last node c is not yet processed.
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Due to the side condition of rule hcat, we know that rows(a) +
rows(b) = rows(c) and rows(a) , 0. If we try to remove a from the quad
rope, we cannot use hcat to combine the not yet processed leafs since
rows(b) < rows(c). It follows that lazy tree splitting does not apply to
quad ropes, because we cannot split a quad rope into two valid quad
rope instances at arbitrary positions during traversal.

Regarding lazy tree splitting, ropes are a special case of quad ropes,
where the maximum height or width is fixed at one. Because quad ropes
of maximum height 1 can only be concatenated by vcat, the problem
does not occur and lazy tree splitting is possible again.

As a result, we must rely on the effectiveness of the underlying task
parallel library and perform eager splitting at each node.

6.5.2 Balancing

If the quad rope tree is highly imbalanced our recursive parallelization
scheme achieves only sequential execution. Moreover, indexing opera-
tions would require linear time, which is unacceptable. Hence, a quad
rope should always be balanced.

Rebalancing of a binary tree can be implemented via rotation in
logarithmic time after insertion or deletion. We use a depth-metric to
determine whether to rotate a quad rope, as illustrated by the following
function:

let rec depth = function
| Leaf _ | Sparse _ | Slice _ → 0

| HCat (a, b)

| VCat (a, b) → (max (depth a) (depth b)) + 1

In terms of parallelism, the depth of a quad rope is equal to its span [19]
modulo leaf size. Hence, balancing ought to keep the depth low.

A quad rope can be rotated only in limited ways: we can rotate nested
HCat nodes and nested VCat nodes, but not alternating chains of HCat

and VCat:

let is_skewed a b c =

depth a <> depth b

&& max (depth a) (depth b) > depth c

let rec balance = function
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| HCat (HCat (a, b), c) when is_skewed a b c →

HCat (a, balance (HCat (b, c)))

| VCat (VCat (a, b), c) when is_skewed a b c →

VCat (a, balance (VCat (b, c)))

| ... (* Mirror cases omitted. *)

| qr → qr (* Otherwise , do nothing. *)

This pattern never increases depth. The initial depth is (HCat case):

max(max(depth a, depth b) + 1, depth c) + 1

If is_skewed evaluates to true, then at least one of a and b is deeper than
c. It follows that the initial depth is equal to

max(depth a, depth b) + 2

If depth a > depth b, the balanced quad rope

HCat (a, HCat(b, c))

has a depth of depth a+ 1, which is an improvement over the initial
depth. If, however, depth a < depth b, the depth of b defines the depth of
both, the initial and the balanced quad rope, which is depth b+ 2:

depth (HCat (HCat(a, b), c)) = depth (HCat (a, HCat(b, c)))

Even though we cannot balance across dimensions, it is useful to look
into adversarial cases in which a quad rope is composed of a chain of
alternating HCat and VCat nodes. It is not obvious to us whether this
adversarial pattern is common. If one of the branches is a Sparse (i.e.
rep) leaf, as illustrated in Fig. 6.12, we can use slicing and redistribute the
sliced Sparse leafs. Note that this is not possible for HCat or VCat nodes:
slicing does not actually reduce the depth of a node and materializing a
slice would take O(n log n) time at each recursive balancing step, where
n = max(r , c) of the resulting r × c quad rope. With this insight, we can
extend the balancing algorithm as follows:

let rec balance = function
| ... (* Cases for HCat and VCat omitted. *)

| HCat (VCat(a, b) as q, Sparse(r, c, v))

when depth q > 2 →

let s_1 = Sparse(rows a, c, v) in
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hcat
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Figure 6.12: A quad rope constructed in adversarial manner without bal-
ancing, using hcat and vcat alternatingly, where the right-hand children
ri are instances of rep. The size of the box indicates the shape of the rep
quad rope that it represents.

let s_2 = Sparse(rows b, c, v) in
VCat (balance (HCat(a, s_1))),

balance (HCat(b, s_2))))

| VCat (...) (* Swap HCat and VCat. *)

| ... (* Mirror cases omitted. *)

| qr → qr

The result of this extended balancing algorithm, applied to the quad
rope from Fig. 6.12, is shown in Fig. 6.13. We never perform balancing
if the remaining depth of the dense node is less than or equal to 2. The
worst-case complexity of balancing a r × c shaped quad rope is O(n log n)
where n = max(r , c). Since balance is called recursively along the rotated
branch and never increases depth, repeated concatenations of quad ropes
in the same dimension result in a balanced tree that maintains a balancing
invariant at least as strong as the AVL-tree balancing invariant.

6.5.3 Memory Allocation

Enforcing smax during quad rope initialization via init requires allocation
of multiple leaf arrays of shape at most smax × smax. When implementing
init(r , c, f ), we alternately split row and column counts in two until they
are at most smax. At this point, a naive implementation would allocate
a new two-dimensional array as a leaf and initialize it with f for the
appropriate offsets. The leafs are then concatenated via hcat and vcat.
This results in O

(
r ·c

smax2

)
array allocations.



116 Chapter 6. End-User Array Programming
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Figure 6.13: The adversarial quad rope from Fig. 6.12 after balancing.
The quad rope r′3 is the “upper two thirds” and r′′3 is the “lower third” of
r3.

Allocating a single large array on .NET is just as fast as allocating
a single small array, but allocating many small arrays is much slower
than allocating a single large array. Hence, it pays off to make use of
the imperative features of F#: we pre-allocate a single large array that
matches the shape of the quad rope and fill it imperatively. We use
array pre-allocation to implement all combinators that construct a new
quad rope, i.e. init, map, zipWith and scan. We store an additional
sparseness flag at each node that we check at each recursive step to
not unnecessarily allocate an array for sparse branches of a quad rope.
Using a single underlying array allows us to implement scan without
passing explicit prefixes γ, δ and ρ recursively, since all prefix values are
accessible in constant time via the underlying array.

We use an immutable view abstraction, a so-called strided array, over
the underlying array to share it among Leaf nodes. A positive side effect
is that we can slice views on arrays in constant time. Hence, materializing
a quad rope slice, as discussed in Sec. 6.5, only requires re-allocation of
the tree structure, which takes logarithmic time on balanced quad ropes.
We define the strided array type as follows:

type 'a array_slice = { offset : int;

row_stride : int;

col_stride : int;

rows : int;

cols : int;

data : 'a [] }

All data are stored in the one-dimensional array data; this also allows us
to transpose and reverse an array_slice instance in constant time. We
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implement random access on the array_slice type by multiplying each
argument index with its stride and adding the overall offset to the result:

let get xs r c =

let i = xs.offset

+ r * xs.row_stride

+ c * xs.col_stride in
xs.data[i]

6.6 Performance

We use an extended version of the .NET benchmarking infrastructure
by Biboudis et al. [10].2 Our test machine is the P3 server (see Sec. 1.3).
The presented benchmark results are the mean of 10 runs, preceded
by three warm-up runs to trigger JIT compilation. We use automatic
iteration count adjustment to guarantee a minimum running time of 0.25
seconds [92]. We choose smax = 128 for all benchmarks.

6.6.1 Individual Functions

Table 6.1 shows average performance results for individual combinators
on two-dimensional arrays and quad ropes of unboxed double precision
floating-point numbers.

Observation 6.1 Quad ropes perform slower than standard two-dimensional
arrays when the combinator reads from and writes to memory; only reduce
exhibits a slight speedup of roughly 1.5 times.

This behavior may partially be due to our strided array implementation:
it may access the underlying array in a pattern that inhibits prefetching
or that requires frequent cache invalidation when writing. We believe
that the improved performance of reduce is due to increased locality of
reference that comes with grouping values at leaf nodes. The branch-
matching logic in zipWith may furthermore add some overhead, which
could explain the three-fold slowdown.

Figure 6.14 shows the average speedup that the quad rope imple-
mentation achieves on our test machine for an increasing number of
cores.

2https://github.com/biboudis/LambdaMicrobenchmarking.

https://github.com/biboudis/LambdaMicrobenchmarking
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Benchmark Arrays (ms) Quad ropes (ms) Relative
init 5.94 ± 0.029 5.4 ± 0.205 1.1
map 7.42 ± 0.019 12.29 ± 0.08 0.6
reduce 8.54 ± 0.002 5.66 ± 0.003 1.51
scan 9.47 ± 0.028 21.77 ± 0.095 0.43
zipWith 3.66 ± 0.030 13.63 ± 0.078 0.27

Table 6.1: Average running times of combinators on two-dimensional
arrays and quad ropes of double precision floating-point numbers for
smax = 128 and size 1000 × 1000.

Observation 6.2 Only map, reduce and zipWith achieve notable speedups for
up to 16 cores, of which only reduce scales for more than 16 cores as well.

The speedups for map and zipWith are moderate and decline for more
than 16 cores, which is again likely due to cross-chip communication
cost. The reduce combinator scales well and gains a nearly 12-fold
speedup on 48 cores. Its performance increases slower for more than
16 cores, which is probably due to hyperthreading as well as off-chip
communication. The combinators init and scan do not reach more than
a two-fold speedup on any number of cores.

We compare the performance of random access (get) and persistent
update (set) on immutable two-dimensional arrays and quad ropes in
Table 6.2. Recall that set(xs, i, j, v) returns a new array ys that contains v

at index (i, j) and that is otherwise equivalent to xs. Persistent update is
more than 1725 times faster on quad ropes than on arrays. In the worst
case, persistent update on quad ropes only needs to allocate a new array
of size smax × smax and a new tree of logarithmic depth (the remaining
branches can be shared with other versions of the quad rope thanks to
immutability); on immutable arrays, we must copy the entire array of
size m × n to update a single value.

Note that random access on quad ropes is only one order of magni-
tude slower. Since zipWith is two thirds slower on quad ropes than on
two-dimensional arrays, it may be useful to consider a zipWith imple-
mentation that only traverses one quad rope and indexes into the other
without shape matching or slicing.

We do not compare the run-time performance of concatenation: on
quad ropes, the asymptotic complexity of concatenation is best-case
constant and, due to balancing, worst-case logarithmic in both time and
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Figure 6.14: Parallel speedup for operations on quad ropes from Table 6.1
for an increasing number of processors. Values are average speedup
factors; higher is better. The gray dashed line indicates single core
performance.

Benchmark Relative
get 0.1
set 1725.2

Table 6.2: Average performance of indexing operations on quad ropes
with smax = 128 of size 1000× 1000, relative to that of standard immutable
two-dimensional arrays; higher is better. Both get and set use pseudo-
randomly generated index pairs.

space; on immutable arrays, it is always linear in time and space. A
direct comparison would be unfair, which is why we omit it.

6.6.2 Declarative Algorithms

We use the following declarative algorithms for benchmarking:

• construction of the Fibonacci sequence of length n via recursive
concatenation;

• dense matrix multiplication, as described in Sec. 3.2.2 on page 33;
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1 val single : 'a → 'a qr
2

3 let (@) = hcat
4

5 let next i is =
6 let is' = map (fun j → i + j) is in
7 is @ (single i) @ is'
8

9 let rec vdc n =
10 if n <= 1.0 then single 0.5
11 else
12 let n' = 2.0 ** -n in
13 next n' (vdc (n - 1.0))

Figure 6.15: Computing the van der Corput sequence in F#.

• sparse matrix multiplication, using upper-triangular sparse quad
ropes as arguments to the functional matrix multiplication algo-
rithm for dense matrix multiplication;

• computing a van der Corput sequence [108], as shown in Fig. 6.15 [93,
Sec. 6.2]; and

• the Smith and Waterman [98] algorithm for sequence alignment, as
described in Sec. 4.2.2 on page 47.

The five algorithms represent different aspects of array programming.
The algorithms for computing the Fibonacci and the van der Corput
sequences recursively concatenate arrays to each other, which we expect
to be faster on quad ropes; dense and sparse matrix multiplication
exhibit nested regular parallelism; and the Smith-Waterman algorithm is
a practical application of the scan combinator.

Table 6.3 shows the average performance results of benchmarking
the high-level algorithms on two-dimensional immutable arrays and on
quad ropes.

Observation 6.3 Quad ropes outperform standard immutable two-dimensional
arrays in three out of five and perform roughly as fast as arrays in two out of
five tested algorithms.
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Benchmark Input size Arrays (ms) Quad ropes (ms) Relative
Fibonacci 1600 7.77 ± 0.004 1.08 ± 0.001 7.16
Matrix mult. dense 1000 × 1000 1376.14 ± 1.235 1236.62 ± 3.302 1.11
Matrix mult. sparse 1000 × 1000 – 637.36 ± 0.385 2.16
Smith-Waterman 1000 × 1000 405.02 ± 1.469 457.17 ± 1.776 0.89
Van Der Corput 20 24.95 ± 0.068 11.31 ± 0.034 2.21

Table 6.3: Average running times and their standard deviation of high-
level algorithms on two-dimensional arrays and on quad ropes for smax =
128. We have no algorithm for sparse matrix multiplication on two-
dimensional arrays. Therefore, we compare sparse matrix multiplication
on quad ropes with dense matrix multiplication on arrays.

Even though individual combinators on quad ropes do not generally
outperform arrays, these practical examples demonstrate the benefit of
using a quad ropes to represent two-dimensional arrays: declarative algo-
rithms need not be implemented taking the performance of a particular
operation, for instance hcat, into account.

Figure 6.16 shows the performance for executing functional matrix
multiplication with nested parallelism on quad ropes for an increasing
number of cores. Parallelism in functional matrix multiplication is nested,
because the algorithm calls the parallel zipWith combinator in a closure
that is passed to the parallel init combinator. The graph shows that
our recursive parallelization scheme does not scale well with nested
parallelism on quad ropes. This may be due to (1) the work-stealing
queue being filled with too many short-running tasks whose only job it
is to spawn more tasks; and (2) that, because of nested slicing in init,
there is not enough sequential work to do at each leaf task. We achieve at
most a 1.5-fold speedup for dense matrix multiplication. Again, overall
performance degrades for more than 16 cores as seen in many previous
examples before. What is new here is that the performance already
degrades from 8 cores and upwards. This indicates excess parallelism
(2), as described above.

6.7 Quad Ropes in Funcalc

6.7.1 Implementation

In addition to the F# reference implementation from Sec. 6.5, we have
implemented quad ropes for Funcalc in C#. Instead of an inductive
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Figure 6.16: Average parallel speedup for dense and sparse matrix mul-
tiplication on quad ropes with smax = 128 for an increasing number
of processors; higher is better. The dashed gray line indicates 1-core
performance.

definition, this implementation uses class inheritance to model quad rope
nodes, as shown in Fig. 6.17, using method overloading to implement
the particular behavior for each node type according to the operational
semantics from Sec. 6.2. Furthermore, we add a new node type SheetView

that represents the result of a cell range expression, e.g. A1:C3. This
allows us to avoid copying of otherwise unchanged data, an idea already
implemented for Funcalc arrays [93].

One obstacle is that Funcalc’s MAP combinator has variadic arity (see
Sec. 3.2.1): it accepts a k-ary function parameter and k arrays of equal
shape. Quad ropes would require a new definition for each k to traverse k
quad ropes together efficiently. Our implementation only takes measures
to handle small values of k efficiently. For k = 1, we use map; for k = 2 we
use zipWith; and for k ≥ 3, we use init and logarithmic-time indexing
via get.

6.7.2 Performance

The performance of quad ropes in Funcalc is dominated by a new factor:
in Funcalc, number values are heap-allocated objects of type NumberValue.
That means that, for every number value that the quad rope contains or
that is generated to call a generator function with the appropriate index
pair, as in TABULATE (see Sec. 3.2.1), memory must be allocated on the
heap. Even though these intermediate NumberValue objects are likely to
be of generation one and are garbage-collected quickly, they dominate
the allocation cost compared to allocating quad rope nodes. For instance,
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1 // The basic type.
2 interface QuadRope <T> {}
3

4 class Leaf <T> : QuadRope <T> {
5 readonly ArraySlice <T> slice;
6 }
7

8 // Cat contains functionality
9 // shared by HCat and VCat.
10 abstract class Cat <T> : QuadRope <T> {
11 readonly QuadRope <T> left , right;
12 }
13

14 class HCat <T> : Cat <T> {}
15 class VCat <T> : Cat <T> {}
16

17 class Sparse <T> : QuadRope <T> {
18 readonly int rows , columns;
19 readonly T value;
20 }
21

22 class Slice <T> : QuadRope <T> {
23 readonly int r0, r1, c0, c1;
24 readonly QuadRope <T> q;
25 }
26

27 // A specialized node type for pointing
28 // at a cell range on a spreadsheet.
29 class SheetView : QuadRope <Value > {
30 readonly int r0, r1, c0, c1;
31 readonly Sheet sheet;
32 }

Figure 6.17: A skeleton implementation of quad ropes in C# with an
additional node type SheetView that represents the result of a cell range
expression, e.g. A1:C3.
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generating a quad rope of shape 100 × 100 for smax = 32 via TABULATE

requires the allocation of 20 000 temporary NumberValue instances to call
the initializing function with, 10 000 result values (of type Value) and
only 27 quad rope nodes.3

The original Funcalc arrays use .NET’s two-dimensional array
type [93]. Slicing returns a view of the original array, similar to the
quad rope reference implementation. Values in arrays are not unboxed;
an array of NumberValue instances is an array of pointers to the memory
location of the heap-allocated objects.

Experimental Setup

We compare the performance of quad ropes implemented in Funcalc to
Funcalc’s standard arrays using the built-in BENCHMARK function [93]. The
BENCHMARK function calls a null-ary closure for n iterations and reports
the average running time in nanoseconds. Our benchmark spreadsheet
performs k times ten iterations for each function and reports the average
running time of all iterations. We set k manually to generate useful
results.

We do not use the P3 server for this benchmark. Our test machine is
an Intel Core i7-5600U with two processors at 2.6GHz and 4GB memory,
running Windows 10 on Oracle VirtualBox version 5.1.38 r122592. All
experiments run on .NET Framework 4.7.1.

Results

Figure 6.18 shows the performance of dense and sparse quad ropes
relative to Funcalc’s standard arrays [93, Sec. 2.1.1]. Our dense quad rope
implementation performs slightly slower than Funcalc’s standard arrays
for init, map and zipWith. We can see that the performance improvement
of reduce on quad ropes, gained by increased locality of reference, as
discussed in Sec. 6.6.1, is lost in the Funcalc implementation. This is
likely due to all values in Funcalc being heap-allocated which results in
a total loss of locality.

The input size and changing smax influence the performance behavior
of our quad rope implementation drastically. For instance, running
zipWith (equivalent to binary MAP in Funcalc) for size 100 × 100 runs

3NumberValue instances for the values 0 and 1 are interned, which we ignore in this
calculation.
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Figure 6.18: Average performance of quad rope combinators for different
values of smax and differently sized inputs, relative to standard Funcalc
arrays of equal sizes; higher is better. A value of one indicates equal
performance, marked by the dashed gray line.

slightly faster than on standard Funcalc arrays for smax = 64 and roughly
20% slower for smax = 128.

The relative performance of functions that change the shape and struc-
ture of a quad rope is shown in Fig. 6.19. The functions transpose, hrev
and vrev are between 13 and 14 times faster for smax = 64 and between
32 and 52 times faster for smax = 128. This is likely due to the underlying
strided array representation that we use for quad ropes (see Sec. 6.5.3),
which allows us to avoid allocating new memory when reshaping a quad
rope. Standard Funcalc arrays implement these operations by copying.
Slicing and materialization of slices is roughly equally fast for quad ropes
and Funcalc arrays, since the latter also uses constant-time views.

6.8 Conclusion

In this chapter, we have presented quad ropes, a two-dimensional exten-
sion of the rope data structure [24] that is inspired by quad trees [45]
for high-level, functional, parallel array programming. Quad ropes do
not generally outperform standard, immutable two-dimensional arrays
on a managed platform, but gracefully handle array programming anti-
patterns. This makes them a useful array representation in high-level
functional languages where expressiveness is of importance.
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Figure 6.19: Average performance of structural functions on quad ropes
of size 500 × 500 for different values of smax, relative to standard Funcalc
arrays of equal sizes. Higher is better. A value of one indicates equal
performance, marked by the dashed gray line.

We have given an operational semantics to describe the quad rope
data structure and shown that scheduling of parallel work using lazy tree
splitting [8] does not apply to ropes of more than one dimension. We have
also shown caveats in the actual .NET implementation, such as the cost
of allocating many small arrays, which we suggest to solve via memory
pre-allocation. It is possible that a modified pre-allocation mechanism
could allow for gradual flattening of quad ropes during traversals in
combinators, e.g. map. Flattened quad ropes that allow for leafs larger
than smax could allow us to use a lazy scheduling algorithm using pairs
of indexes [106] but might affect locality of reference negatively.

Quad ropes must maintain balancing invariants in order to provide
the typical performance characteristics of binary trees, such as logarithmic
time indexing. Moreover, balancing is required to keep the span low,
which also increases potential parallelism.

The performance of higher-order combinators on our F# reference
implementation of quad ropes is roughly on par with that of immutable
two-dimensional arrays. Concatenation in both dimensions is asymptoti-
cally and practically faster than on arrays. Parallel speedups of individual
functions are sub-linear; nested parallel operations do not scale. Under-
standing these results in detail is future work. Nevertheless, sequential
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quad ropes outperform two-dimensional immutable arrays in three out
of five declarative algorithms.

We also have discussed a Funcalc implementation of quad ropes. The
improved locality of reference that we gained in the F# implementation
is alleviated by the fact that all values in Funcalc are allocated on the
heap. It would require some kind of unboxing analysis to gain the same
performance in Funcalc as in our F# implementation.

A major shortcoming of quad ropes is that intermediate quad ropes
are always materialized. A high-level algorithm implementation that is
straightforward to express is therefore not necessarily fast, or even unac-
ceptably slow when compared to an efficient imperative implementation
of the same algorithm. In the next chapter, we will explore an extension
of quad ropes that eliminates intermediate arrays also across spreadsheet
cells.





Chapter 7

Laziness and Deforestation in Spreadsheets

7.1 Introduction

Fusion, or deforestation [111], is a well researched and frequently applied
program transformation (e.g. [27, 35, 68, 70, 73, 77, 85]) that eliminates
the materialization of intermediate data structures. We can perform
fusion on array combinators as well. For instance, the F# function

let map_twice f g xs = map g (map f xs)

could instead be implemented as

let map_twice' f g xs = map (fun x → g (f x)) xs

such that the intermediate array of mapping f over xs is never material-
ized. Fusion performs this transformation automatically.

Spreadsheets are usually evaluated strictly: the values in all cells
must be available, because the user may want to inspect them at any
time. This inhibits fusion of operations on arrays across cells. The
spreadsheet in Fig. 7.1 illustrates this problem. If we assume that the user
is only interested in the sum in cell C4 as a result, then the arrays B1:B3
and C1:C3 would in principle not have to be materialized to compute
the end result; but because of the visual spreadsheet model, cells must
display their values to the user, so it seems that we cannot eliminate the
intermediate arrays.

Eliminating an intermediate array that is referred to multiple times
can lead to redundant computation and ultimately to worse performance.
Analyzing whether an array is referred to by multiple spreadsheet cells
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A B C
1 "a"

{=MAP(CLOSURE("F"), A1:A3)} {=MAP(CLOSURE("G"), B1:B3)}2 "b"

3 "c"

4 =SUM(C1:C3)

Figure 7.1: A spreadsheet that requires the materialization of the inter-
mediate arrays B1:B3 and C1:C3.

is rather straightforward in Funcalc: we can check the size of the support
set of a cell that contains an array in order to determine how many cells
depend on the array; if the size of the support set equals one, we could
safely eliminate the intermediate array. This leaves us with the challenge
of fusing intermediate arrays across cells.

In this chapter, we explore an approach to array fusion that combines
laziness with deforestation, an idea rooted in REPA arrays [68], by means
of “fusible” thunks that we call funks. The main idea is that we remove
intermediate arrays where possible and materialize them only if the user
requests materialization implicitly—that is, when the user inspects the
cells containing the intermediate arrays and they therefore have to be
rendered.

In this chapter, we show how we can implement funks as a quad
rope constructor (see Chapter 6), drawing ideas from other fusion frame-
works [27]. One advantage of funks is that we can use them for com-
putations on normal spreadsheets and when defining and compiling
SDFs.

7.2 An Algebra of Array Combinators

When looking at the set of operations over arrays, it quickly becomes
apparent that there is an underlying algebra on array combinators. More
[83] formulated a theory of arrays based on APL and set theory. Since
APL is not higher-order and instead lifts operators to the correct array
rank implicitly, we use a different algebra. The algebraic rules of array
combinators form the foundation of array fusion. In this section, we
describe a small algebra of higher-order array combinators that we use
to perform fusion on quad ropes.

We use the array combinators init, map and reduce in a small array
language of one-dimensional arrays as defined in Fig. 7.2. For brevity,
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n := Natural numbers.
f := Functions.
e := [e0, e1, . . . , em−1] Explicit arrays.

| f e1 e2 . . . Function application.
| f ◦ g Function composition.
| e1 ⊕ e2 Binary operator application.
| init n f Initialization.
| map f e Projection.
| reduce ⊕ e Reduction.

Figure 7.2: An array language for which we define an algebra of array
combinators. Note that reduce does not take an initializer value; f and g

range over functions.

we ignore reshaping operations such as transposition and reversal, even
though these have interesting properties as well. Moreover, we assume
that reduce does not take an initializing value ε and ignore the problems
that can arise from this simplification. We also gloss over concatenation.

We give the semantics for the language as equational judgments of
the form e ≡ e′, meaning an expression e is computationally equivalent [51]
to another expression e′; this means that both e and e′ evaluate to the
same result. The rules in Fig. 7.3 mean the following:

• Rule (e1) defines function composition as ( f ◦ g) e ≡ f (g e), such
that function g is applied to the result of applying function f to
expression e. Function application has the usual semantics.

• Rule (e2) states that an expression init n f is equivalent to an array
of length n that consists of values generated by applying f to the
value of the index at each position.

• Rule (e3) states that an expression map f e is equivalent to an array
where f has been applied to each scalar value from the original
array that in turn is equivalent to e.

• Rule (e4) states that an expression reduce ⊕ e is equivalent to
computing the “sum” of all values from the array equivalent to e
for the ⊕ operator.
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(e1)
( f ◦ g) e ≡ f (g e)

(e2)
init n f ≡ [ f 0, f 1, . . . , f (n − 1)]

(e3)
e ≡ [v0, . . . , vn−1]

map f e ≡ [ f v0, . . . , f vn−1]

(e4)
e ≡ [v0, v1, . . . , vn−1]

reduce ⊕ e ≡ v0 ⊕ v1 ⊕ . . . ⊕ vn−1

Figure 7.3: Evaluation semantics for expressions in e. We omit semantics
for function and operator application for brevity; they are as usual for
closed expressions.

We can use this equational semantics to derive some interesting equiv-
alences that allow us to eliminate intermediate arrays and instead to
generate a new expression that is computationally equivalent to the orig-
inal expression. A canonical and straightforward example is the fusion
of two successive applications of map:

e ≡ [v0, . . . , vn−1]

map g e ≡ [g v0, . . . , g vn−1]

map f (map g e) ≡ [ f (g v0), . . . , f (g vn−1)]

It is possible to use the rule for function composition (e1) to eliminate
the intermediate array as follows:

e ≡ [v0, . . . , vn−1] ( f ◦ g) vi ≡ f (g vi)

map ( f ◦ g) e ≡ [ f (g v0), . . . , f (g vm−1)]

This gives rise to the first algebraic rule on array combinators:

map f ◦ map g ≡ map ( f ◦ g) (7.1)

There are two additional algebraic rules of importance that we can derive
from the equivalence semantics: (1) when we map over an initialized
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array, we can move the mapped function into the original initializer; and
(2) when we reduce an initialized array we can avoid to materialize an
array altogether.

Let us begin with (1). We have the following tree of equivalences:

init n g ≡ [g 0, g 1, . . . , g (n − 1)]

map f (init n g) ≡ [ f (g 0), f (g 1), . . . , f (g (n − 1))]

If we move f into the init combinator using function composition we
can eliminate the intermediate array via rule (e1):

init n ( f ◦ g) ≡ [ f (g 0), f (g 1), . . . , f (g(n − 1))]

Hence, the following equivalence holds:

map f (init n g) ≡ init ( f ◦ g) n (7.2)

Finally, let us look at (2) and eliminate intermediate arrays altogether.
This is useful when the program uses arrays only as a vehicle to structure
a computation but never uses the array itself as a result. This is a
combination of init and reduce:

init n f ≡ [ f 0, f 1, . . . , f (n − 1)]

reduce ⊕ (init n f ) ≡ f 0 ⊕ f 1 ⊕ . . . ⊕ f (n − 1)

We can therefore rewrite a reduction of an initialization to the sum of
unpacked values:

reduce ⊕ (init n f ) ≡ f 0 ⊕ f 1 ⊕ . . . ⊕ f (n − 1) (7.3)

This small algebra, consisting of Equations (7.1), (7.2) and (7.3), is suffi-
cient to eliminate a large number of intermediate arrays.

However, we have glossed over more complicated combinators, such
as zipWith and scan. We can implement zipWith by means of init and
indexing, which we have omitted to define for our small array language.
In that case, our algebra also allows for fusion of zipWith. Adding scan is
slightly more complicated; if our language had a mapReduce combinator
that were to accept a start-value ε, we could implement scan using array
concatenation and indexing. However, such an implementation would
be inefficient on immutable arrays.

Now that we have convinced ourselves of the existence of these three
basic equivalences that make up a small algebra of array combinators,
we will proceed to adapt these to quad ropes in the following section.
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7.3 Funky Quad Ropes

We have implemented fusible thunks for quad ropes in OCaml [75]. The
type system of the F# language is not expressive enough to model our
implementation the way we did in Sec. 6.5. In F#, every type variable
that occurs in the constructors of an algebraic data type (ADT) must
also occur in the type of the ADT itself. This makes modeling delayed
execution rather cumbersome. Generalized algebraic data types (GADTs)
in OCaml are more flexible, such that a constructor can have a type
parameter that does not occur in the type of the GADT [29]. While
it would be possible to use F#’s object system, we have chosen to use
OCaml for better readability.

In the following, we use a simplified quad rope implementation that
does not have a special constructor for slices. Note that OCaml and F#
have similar syntax; we only use OCaml from this point on and highlight
keywords in red.

First, we define a quad rope data type qr as a GADT and add a new
constructor Funk:

type _ qr =

| Leaf : 'a array2d → 'a qr

| HCat : 'a qr * 'a qr → 'a qr

| VCat : 'a qr * 'a qr → 'a qr

| Sparse : int * int * 'a → 'a qr

| Funk : (int → int → 'a → 'b)

* 'a qr

* 'b qr lazy_t → 'b qr

The Leaf, HCat, VCat and Sparse constructors are just as before (see
Sec. 6.5). Instead, focus on the Funk (f, p, t) constructor that is a
non-strict representation of a mapping over a quad rope. It takes three
arguments: (1) a function f from row and column indices and some value
of type 'a to a value of type 'b, (2) a source quad rope p of type 'a and
(3) a thunk t of type 'b qr lazy_t. Note that the type parameter 'a does
not occur in the returned type 'b qr.

The Funk constructor models a quad rope at two stages: (1) before it
has been computed, represented by a function that is going to be applied
to each of the scalar values of the source quad rope; and (2) a possibly
materialized result of exactly this computation.



7.3. Funky Quad Ropes 135

The lazy keyword constructs a thunk of type 'a lazy_t from an
expression of type 'a. Function Lazy.force of type 'a lazy_t → 'a

extracts the result from a thunk by evaluating the expression on demand
and caches the result such that the function will only be evaluated once.
The function Lazy.is_val of type 'a lazy_t → bool returns true if a
thunk has already been evaluated and false otherwise.

The overall idea is to keep a funk unmaterialized as long as possible,
i.e. avoid to execute Lazy.force on its thunk. If the thunk t from a
Funk (f, p, t) instance has been evaluated, i.e. it is materialized, every
computation that refers to this Funk will read the cached value from
the thunk t. If the thunk has not yet been evaluated, we will instead
fuse whichever operation is applied to the Funk instance with the stored
function f and keep the source quad rope p.

7.3.1 Non-Strict Map

We implement two versions of each combinator on quad ropes: a strict
one, as described in Sec. 6.5; and a non-strict version that performs fusion
on Funk instances. The core combinator for successful fusion is a variant
of map that we call mapi. Its signature is

val mapi : (int → int → 'a → 'b)→ 'a qr → 'b qr

and it applies its argument function not only to each scalar value in the
quad rope, but also to the according index pair. In the following, we
prefix strict quad rope combinators that do not delay execution with
Strict; for instance, Strict.map is the strict map combinator. We will not
detail strict combinators and assume they are implemented as in Sec. 6.5.

It is useful to begin with defining a composition operator for ternary
functions of type int → int → 'a → 'b:

let ( ◦ ) f g = fun r c x → f r c (g r c x)

The ◦ operator is a shorthand for an anonymous function that applies
function g to row- and column-arguments r and c and an argument
x of type 'a and applies function f to the result, where f also accepts
r and c as arguments. If g has type int → int → 'a → 'b and f

has type int → int → 'b → 'c, then the expression f ◦ g has type
int → int → 'a → 'c.

Using the ◦ composition operator, the non-strict variant of mapi can
be implemented as follows:
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let rec mapi f = function
| Funk (g, p, thunk) →

if Lazy.is_val thunk then
mapi f (Lazy.force thunk)

else
mapi (f ◦ g) p

| q → Funk (f, q, lazy (Strict.mapi f q))

let map f = mapi (fun _ _ x → f x)

We distinguish between three cases, but there is only one case where we
actually perform a fusion of functions by composition. Let us begin from
the bottom. If the argument quad rope q is not a Funk, we construct a
new Funk that records the strict mapping of function f over q.

If the argument quad rope is a Funk, we must distinguish between
a materialized and a not yet materialized Funk. If the quad rope is
materialized, there is no point in performing function composition; in
that case, it is sufficient to recursively call mapi on the cached value.

If the Funk is not yet materialized, we can again use mapi to generate
a new Funk, but we apply it to the source quad rope p. The function that
we map is the composition of functions f and g, namely f ◦ g.

This implementation makes sure that a quad rope consists of at most
one Funk node in direct succession when applying mapi multiple times.
Even though mapi is recursive, its call depth is bounded by the number
of directly nested Funk instances, which is at most one.

7.3.2 From Init to Reduce

We borrow ideas from Keller et al. [68] and use a sparse quad rope of
type unit as a source to call mapi on when implementing non-strict init
with the following type signature:

val init : int → int → (int → int → 'a) → 'a qr

The Sparse constructor takes constant time and space and therefore is
not an actually materialized quad rope. We can use non-strict mapi to
map a function over a Sparse quad rope node that ignores the unit value,
written as (), and only uses the shape of the quad rope to structure the
call to mapi:



7.3. Funky Quad Ropes 137

let init rows cols f =

let p = Sparse (cols , rows , () ) in
let g = fun r c _ → f r c in
mapi g p

Now, we can construct a quad rope and map over it without ever having
to materialize it. This is especially useful when we construct a quad rope
that we later want to reduce.

The reduce combinator cannot be implemented in a non-strict fashion,
because it does not return a new quad rope. Nevertheless, it finalizes the
deforestation process by exploiting the fact that a Sparse quad rope has
no internal structure. Therefore, we can loop over its rows and columns
and generate the value for each row and column index on the fly. We use
the function loop_reduce to implement this behavior. Its type signature
is:

val loop_reduce = (int → int → 'a → 'b) →

('b → 'b → 'b) →

int → int → 'a → 'b

The function argument f generates the value for each index pair. Our
implementation uses OCaml’s pointer type 'a ref that can be updated
via the := operator:

let loop_reduce f g e (Sparse (r, c, x)) =

let acc = ref e in (* Mutable accumulator. *)

for i=0 to r-1 do
for j=0 to c-1 do

acc := g !acc (f i j x);

done;
done;
!acc

We allow the sparse value x to be of any type 'a; this is the most general
type and allows us to use loop_reduce on sparse quad ropes of all types.

To be able to call whatever function f is stored in a Funk (f, p, t)

instance, we need to implement reduce via a combinator mapi_reduce

that works like a combination of mapi and reduce. Its type signature is:

val mapi_reduce : (int → int → 'a → 'b) →

('b → 'b → 'b) →

'a qr → 'b
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In the Sparse case, we call loop_reduce. In the Funk case, we must again
decide whether we should compose the stored function k and the mapped
function f or whether we can read the cached result of the computation
and only map f. In all other cases, we resort to the strict implementation
of mapi_reduce:

let rec mapi_reduce f g e = function
| Sparse (r, c, x) as s → loop_reduce f g e s

| Funk (k, p, t) →

if Lazy.is_val t then
mapi_reduce f g e (Lazy.force t)

else
mapi_reduce (f ◦ k) g e p

| q → Strict.mapi_reduce f g e q

let map_reduce f = mapi_reduce (fun _ _ x → f x)

let reduce = map_reduce (fun x → x)

High-level expressions that generate and reduce arrays, such as sum

(init 1 100 ( + )) which computes
∑100

i=0 i, now effectively reduce to
for-loops that compute the result in constant space.

7.3.3 Materialization

When do we have to materialize a Funk? Only when we want to read
a particular individual scalar; we assume that, if a program reads a
particular scalar, it is likely that other scalars will be read as well, or that
the same scalar will be read multiple times [68]. The get function returns
the scalar at a particular row and column index and is straightforward to
implement:

let rec get = function
| Funk (_, _, t) → get (Lazy.force t)

| q → Strict.get q

This is particularly interesting if a quad rope is backing an array formula
(see Sec. 2.1.2) where individual scalars are read during unpacking. Only
if the values are actually unpacked and displayed, an intermediate Funk

will be materialized.
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7.3.4 Concatenation

Concatenation in either dimension is strict in the sense that it always
returns a new HCat or VCat node. By adding the Funk constructor to
the quad rope type, we allow for fast concatenation of materialized and
delayed quad rope instances. This means that it is possible for quad
ropes to contain multiple Funk nodes, but never in direct succession;
there is always at least one HCat or VCat node that separates them.

Our implementation of Strict.mapi f q performs at most one fusion
step if it encounters a nested Funk (g, p, t) node, that is, it fuses the
function f with the cached function g if the thunk t has not yet been
evaluated and then evaluates the funk strictly. It never returns a new
Funk node.

A downside of allowing concatenation with Funk instances is that
small leafs cannot be merged to Funk nodes without materializing the
latter. This can ultimately lead to a degenerated quad rope with many
small or singleton leafs. As a first line of defense against this behavior,
we can change the non-strict init combinator to return a new Leaf node
if the parameters for row and column sizes are both less than smax, which
is the maximum size of a leaf node. Only if the desired shape of the
quad rope exceeds smax × smax, it returns a Funk node. Moreover, we do
not perform fusion on leafs that are smaller than smax × smax in mapi and
instead call Strict.mapi directly in such cases.

The OCaml implementation of hcat and vcat performs merging of
small leafs as described in Sec. 6.5.

7.4 Initial Performance Evaluation

At the time of writing, we have not yet implemented non-strict quad ropes
in Funcalc. We therefore present an initial performance evaluation using
the OCaml implementation. This implementation does neither balance
sub-trees as described in Sec. 6.5.2 nor does it pre-allocate underlying
arrays as described in Sec. 6.5.3.

7.4.1 Experimental Setting

We test three high-level algorithms on arrays: computing Pearson’s
correlation coefficient [87] (Pearson’s), a simple prime sieve (Primes) and
computing a van der Corput sequence [108]. We do not use the P3 server.
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Our test machine is an Intel Core i7-5600U at 2.6GHz with two physical
processors and 8 GB memory, running Ubuntu 16.04.4 LTS 64-bit and
OCaml version 4.02.3. We use the Core_bench library for benchmarking.1

7.4.2 Results

The results of our initial evaluation are displayed in Fig. 7.4. The dis-
played values are average running time for multiple iterations and for
the given input size n. The Core_bench library chooses an appropriate
iteration count automatically and ensures an overall running time of at
least ten seconds.

For both, Pearson’s and Primes, we can see that the larger the input
becomes, the better non-strict quad ropes perform in comparison. For two
quad ropes of size 1000 × 1000, the non-strict quad rope implementation
computes Pearson’s correlation coefficient about 8.4 times faster. For
Primes to exhibit a visible performance speedup, we have to increase the
input size by another order of magnitude. Still, the speedup here is only
roughly 2.5 times.

The algorithm for computing the van der Corput sequence is the worst
case for non-strict quad ropes due to repeated recursive concatenation
of singletons in the auxiliary function next, as illustrated in Fig. 6.15
on page 119. However, because we only allow fusion on quad ropes
that are larger than smax × smax and because we merge materialized leafs,
non-strict quad ropes are able to compete with strict quad ropes.

7.5 Limitations

We have already encountered one limitation: repeatedly concatenating
small leafs to Funk nodes can lead to a degenerate quad rope. This is
problematic for performance, because traversals of the entire quad rope
take longer. A degenerate quad rope can lead to excess parallelism,
because there is not enough work to be performed sequentially at each
leaf.

Moreover, fusing additional array combinators becomes increasingly
difficult. For instance, fusion of the zip_with combinator with the type
signature

1https://blog.janestreet.com/core_bench-micro-benchmarking-for-ocaml.

https://blog.janestreet.com/core_bench-micro-benchmarking-for-ocaml
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Figure 7.4: Average running time of using strict and non-strict quad ropes
in different declarative algorithms. Each configuration is run repeatedly
for at least ten seconds; the reported time is the overall running time
divided by performed iterations; less is better. Algorithms Pearsons and
Primes are both run on quad ropes of size n × n; Van der Corput is called
with n directly.
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val zip_with : (int → int → 'a → 'b → 'c) →

'a qr → 'b qr → 'c qr

would in principle require another non-strict node type. We can imple-
ment a somewhat efficient approach by using mapi with logarithmic-time
access to construct a new anonymous function of the correct type that can
be stored in a Funk node; however, this is only efficient if the quad rope
that we index into is a not yet materialized Funk instance: we can use its
stored function f to compute the value on demand during traversal. This
is how we have implemented fusion of zip_with for our benchmarks in
Sec. 7.4.

We have not yet defined fusion for the scan2d combinator. Recall
that it is defined recursively and that the value at index (i, j) depends
on the values at (i − 1, j), (i − 1, j − 1) and (i, j − 1) and that we initialize
the fringes with the values γ, δ and ρ (see Sec. 3.1.4). The function that
we apply with scan2d has type 'a → 'a → 'a → 'b → 'a. If scan2d
is the last combinator that we apply to a succession of map applications,
there is no problem: we can compose the mapped functions with the
scanned function.

Fusion of two successive applications of scan2d is more complicated.
There are two apparent problems: (1) we must retain all initialization
values γ, δ and ρ for each application of scan2d; and (2), each function
that we scan for must somehow be able to access all of the intermediate
values from the previous applications at indexes (i − 1, j), (i − 1, j − 1)
and (i, j − 1). It seems that requirement (2) entirely defeats the purpose
of fusing successive applications of scan2d: either we store intermedi-
ate values, or we have to recursively recompute them at every index.
Therefore, we suggest to implement scan2d as a strict combinator only.

7.6 Related Work

As noted in Sec. 7.1, fusion is a well-researched topic in functional
programming, e.g. [27, 35, 68, 70, 73, 77, 85], and there exist much more
sophisticated fusion frameworks for lists, arrays and arbitrary recursive
data structures than the one presented in this chapter. However, none of
these allow for “going back” and to materialize eliminated intermediates.
In standard functional programming languages, this is usually not a
problem: intermediate values cannot be inspected interactively the way
they can in spreadsheets.
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Laziness is a recurring topic in spreadsheet systems research but
seems not to have been investigated in much detail. FunSheet [37] is
a spreadsheet system implemented in the Clean language [25] which
shares many properties with Haskell. Clean is purely functional and
non-strict; as a result, all computations in FunSheet are non-strict, too.
This is an approach that we could adapt in Funcalc as well. However, it
seems wasteful to delay scalar computations in spreadsheets. In Sec. 5.4.4,
we have shown statistics that suggest that, on large spreadsheets, each
cell takes on average less than a millisecond to compute. It is reasonable
to assume that it would take equally long to allocate a thunk.

Lisper and Malmström [78] describe Haxcel, a Haskell interface for
Microsoft Excel, where users can write Haskell expressions that operate
over cell ranges. Haskell is a non-strict language and hence expressions
in Haxcel are non-strict, too. However, the authors are not concerned
with performance but expressiveness and do not discuss whether or how
fusion or laziness impact Haxcel.

Vaziri et al. [109] implemented ActiveSheets2, a system for processing
streams of “live” data in spreadsheets. The idea is that a user can use a
spreadsheet to construct a stream processing pipeline for arbitrary data
sources, such as for instance constantly changing stock market prices.
Moreover, ActiveSheets provides live views of remote data sources. Even
though operations on streams are fusible, the authors do not focus on
fusion, laziness or other performance-related topics.

7.7 Conclusion

In this chapter, we have presented a small framework for fusion on quad
ropes that could be used to perform fusion of array combinators even
across rows or columns in Funcalc. Intermediate arrays can remain un-
materialized until the user explicitly inspects them by navigating to the
containing cells, which will force the materialization of intermediates
on-demand. We have not implemented this technique in Funcalc, but pre-
sented a small proof-of-concept implementation in OCaml that exhibits a
notable performance improvement for some high-level algorithms and
gracefully handles worst-case scenarios.

Our approach to fusion on quad ropes is unified in the sense that it
works for compiled functions, as demonstrated in Sec. 7.4, and it is likely

2Not to be confused with ActiveSheets by Kotler et al. [71].
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that it will work equally well on interpreted spreadsheets. Further re-
search, however, is necessary to validate this claim. Moreover, it remains
to be shown how our fusion approach combines with parallelization,
proper balancing of quad rope trees and pre-allocation of memory. In
particular, parallelization would require that thunks are thread safe and
that each thunk is at most evaluated once.

Nevertheless, this seems to be the first attempt at cross-cell fusion for
improving spreadsheet performance in literature.
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Conclusion

In this dissertation, we have explored the design space of implicitly par-
allelizing spreadsheet programs on shared-memory multicore processors
using techniques from data-parallel functional programming. Table 8.1
classifies the contributions of this thesis into static or dynamic approaches
that extract parallelism locally or globally by chapter. In this chapter, we
will summarize the results from each contribution and highlight open
problems and future work in bold.

In Chapter 4, we described cell array rewriting, a static approach to
extracting local parallelism from array-like structures in spreadsheets. We
have used the observation that certain naturally occurring, high-level
cell structures correspond to higher-order array combinators [112] to
systematically rewrite spreadsheet formulas to higher-order expressions
on arrays. Our approach achieves up to 25 times speedup on a 48 core
Intel Xeon processor. A downside of our technique is that the rewriting

Static Dynamic

Local Cell array rewriting, Quad ropes,
Chapter 4. Chapter 6 and 7.

Global Puncalc,
Chapter 5.

Table 8.1: A classification of the contributions of this thesis into a design-
space matrix of parallel spreadsheet programming. We can distinguish
between static and dynamic approaches that parallelize spreadsheets
locally or globally. This thesis has not explored the design space for static
approaches to global parallelization of spreadsheets.
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algorithm has to ensure statically that no cyclic dependencies will be
introduced during rewriting by traversing the dependency graph of the
spreadsheet. This check currently takes roughly as long as an entire
recalculation of the target spreadsheet, even when using simplifying
heuristics. An open problem is whether the performance of the pre-
emptive detection of cyclic references can be improved, for instance by
exploiting the underlying support graph data structure [93].

In Chapter 5, we presented Puncalc, a dynamic dataflow approach
to extracting global parallelism from large spreadsheets during evalu-
ation. Our evaluation strategy relies on a work-stealing thread pool
implementation [28, 74]. Our main contribution is the specification of an
adequate termination condition for the evaluation algorithm, a thread
safety scheme that allows for lock-free reads of cached values and a
method for detecting cyclic references during parallel evaluation. A
thread may be allowed to speculatively evaluate a cell dependency recur-
sively if the result of the dependency does not become available within
a predefined delay. To our knowledge, this is the first description of
a parallel spreadsheet evaluation strategy that detects cyclic references
dynamically. We achieve up to 16 times speedup on 48 cores without
having to spend time on a prior analysis.

However, choosing the length of the delay for speculative evaluation
statically can lead to excessively many speculative evaluations: if a cell
takes substantially longer to compute than the specified delay, there is a
high chance that many threads may attempt to evaluate it speculatively,
wasting computing time that instead could be used on other parallel
tasks. This is likely why combining cell array rewriting (Chapter 4) with
Puncalc (Chapter 5) does not yield good parallel speedups. Choosing
the delay for speculative evaluation dynamically is an open problem.
It may be useful to employ a cost model to estimate an appropriate delay
for each cell dynamically. Moreover, we have shown that neither the
count of formula cells in a spreadsheet, the number of dependencies
between them nor the spreadsheet’s span is a good predictor for parallel
performance. Developing a useful predictor for parallelizability of a
particular spreadsheet remains future work.

In Chapter 6 we described the quad rope data structure, a high-
level representation of immutable two-dimensional arrays for end-user
programming that dynamically extracts local parallelism. Quad ropes
allow for block-sparseness, constant-time slicing and fast concatenation
in row- and column-direction. Hence, quad ropes gracefully handle
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typical array-programming anti-patterns and thereby allow for more
expressive algorithms; the idea is that end-users need not to worry about
choosing the “right” data structure for their programs and instead can
focus on solving domain-specific problems using a good “all-rounder”
data structure for every task.

Even though quad rope combinators do not generally outperform
array combinators, they improve the performance of algorithms that
construct arrays recursively without being noticeably slower on other
kinds of algorithms. Individual parallel quad rope combinators scale
well; however, experiments with functional matrix multiplication suggest
that nested parallel operations on quad ropes do not. Gradual flattening
could enable a lazy splitting approach to scheduling to improve the
performance of nested parallel operations. What remains to be shown is
the feasibility of using quad ropes as high-level array representations
in a spreadsheet model of computation via user studies.

In Chapter 7 we presented a fusion framework that allows for elim-
ination of intermediate arrays by recording an application of an array
combinator as a closure and a thunk in a concept that we call funk. When
an array is not materialized, we access the recorded closure and per-
form fusion via function composition; if it is materialized, we access the
cached result of the thunk. The idea is to delay array computations across
spreadsheet cells and to only materialize intermediate arrays when the
user implicitly requires them to by inspecting their values. We described
our prototype implementation of funks on quad ropes and show that our
fusion framework improves the performance of declarative algorithms
that users could implement as a sheet-defined function (SDF). While our
approach seems promising, implementing funks in Funcalc, assessing
their feasibility and evaluating their performance in a full spreadsheet
context remains future work. Moreover, we have not yet investigated
how our fusion framework works together with parallelization.

The field for global and static techniques in Table 8.1 is intentionally
left blank; it is being studied in Alexander Asp Bock’s PhD project.

In conclusion, we believe that we have demonstrated the feasibility
of applying techniques from data-parallel functional programming, in
particular array programming, to a spreadsheet model of computation.
When recalculating highly parallel spreadsheets with the appropriate
technique, we are able to achieve up to 25 and 16 times parallel speedup
without putting additional work on the end-user. Moreover, by freeing
users from performance considerations when implementing declarative
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algorithms on arrays, we allow them to write expressive algorithms
that perform reasonably fast, even if they use array-programming anti-
patterns. We believe that the implicit parallelization of spreadsheet
calculations, together with expressive sheet-defined functions, will pro-
mote the spreadsheet paradigm as a serious computational platform
and allow millions of end-users and domain experts to build even more
advanced spreadsheet models without sacrificing performance for ease
of use.
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Appendix A

Funcalc Source Code

The techniques presented in Chapters 4, 5 and 6 have been implemented
in Funcalc. The code for these implementations is far too large to be
included in print. However, the source code is stored on GitHub and is
accessible upon request. At the time of writing, the Funcalc repository
resides at

https://github.com/popular-parallel-programming/funcalc.

Funcalc runs on .NET for Windows. It is possible to compile using
Mono, but currently, Funcalc will crash due to library incompatibilities.
There is a Windows build script built.bat that can be run with different
compilation flags to combine various techniques. Compile with -r to
build in “release” mode.

For instance, to compile Funcalc with parallel quad ropes and sequen-
tial minimal recalculation, run the following command on the command
line:

> build.bat -r -n -p -q

After compiling, use the following command to benchmark the mini-
mal recalculation for five repetitions on eight cores of the spreadsheet
my-sheet.xml:

> funcalc.bat -r minimal 5 8 my-sheet.xml

The source code is organized as follows:

https://github.com/popular-parallel-programming/funcalc
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Chapter 4 Branch fbie/cell-array-transformation.

-n disables parallel minimal recalculation;

-w enables cell array rewriting at load-time; and

-p enables data-parallel operations on arrays.

Chapter 5 Branch parallel-stable.

-n disables parallel minimal recalculation; and

-l enables thread-local evaluation.

Chapter 6 Branch fbie/quad-ropes-par.

-n disables parallel minimal recalculation;

-q enables quad ropes; and

-p enables data-parallel operations on quad ropes.



Appendix B

PLT Redex Model of Cell Array Rewriting
Semantics

The PLT Redex model for λ-calc and the rewriting semantics (Chapter 4)
is available at:

https://github.com/popular-parallel-programming/funcalc-redex

#lang racket

(require redex)

(define-language mini-calc

(n ::= real)

(i ::= integer)

(t ::= string)

(v ::= n t (err string))

(ca ::=

(rc i i) ; absolute

(rc [i] i) ; row-relative

(rc i [i]) ; column-relative

(rc [i] [i])) ; relative

;; Formula expressions.

(e ::=

v

ca

(ca : ca)

(e + e)

(e = e)

https://github.com/popular-parallel-programming/funcalc-redex
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(IF e e e)

(SUM e ...))

;; A sheet whose cells reduce from expressions to values.

(s ::= (σ (ca := e) ...)))

(define-extended-language mini-calc-S mini-calc

(E ::=

hole

(E + e)

(v + E)

(E = e)

(v = E)

(IF E e e)

(SUM v ... E e ...))

(S ::= (σ (ca_v := v) ... (ca := E) (ca_e := e) ...)))

(define-metafunction mini-calc

lookup : ca ca -> ca

[(lookup (rc [i_1] i_2) (rc i_3 _))

(rc ,(+ (term i_1) (term i_3)) i_2)]

[(lookup (rc i_1 [i_2]) (rc _ i_4))

(rc i_1 ,(+ (term i_2) (term i_4)))]

[(lookup (rc [i_1] [i_2]) (rc i_3 i_4))

(rc ,(+ (term i_1) (term i_3)) ,(+ (term i_2) (term i_4)))]

[(lookup ca _) ca])

(define-extended-language λ-calc mini-calc

(e ::=

....

x

(ca : ca)

(e e ...)

(MAP f e ...)

(PREFIX f e ...)

(TABULATE f e e)

(HREP e e)

(VREP e e)

(SLICE e e e e e)

(INDEX e e e))

(f ::= (λ (x ...) e))

(v ::= .... [[v ... ] ...] f)

(x ::= variable-not-otherwise-mentioned)
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#:binding-forms

(λ (x ...) e #:refers-to (shadow x ...)))

(define-union-language λ-calc-S0 λ-calc mini-calc-S)

(define-extended-language λ-calc-S λ-calc-S0

(E ::=

....

(f v ... E e ...)

(MAP f v ... E e ...)

(PREFIX f v ... E e ...)

(TABULATE f E e)

(TABULATE f v E)

(HREP v ... E e ...)

(VREP v ... E e ...)

(SLICE v .. E e ...)

(INDEX v ... E e ...)))

(define-extended-language λ-calc-L λ-calc

(l ::=

v

x ; Variable names replace relative cell references.

(l + l)

(l = l)

(IF l l l)

(rc i i) ; Only absolute cell references.

((rc i i) : (rc i i)) ; Only absolute cell ranges.

(MAP f l ...)

(HREP l l)

(VREP l l)

(PREFIX f l ...)

(SUM l ...)

(SLICE l l l l l) ; SLICE(arr, r1, c1, r2, c2)

(TABULATE f l l))

(L ::=

hole

(L + e)

(l + L)

(L = e)

(l = L)

(IF L e e)

(IF l L e)

(IF l l L)
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(SUM l ... L e ...))

(c ::=

; A lifting in progress.

(more ((ca x) ...) ; Transitive substitutions

((ca x) ...) ; Intransitive substitutions

(x x)

((ca : ca) := e))

; Lifted result

(done ((ca : ca) := l))))

(define-metafunction λ-calc-L

extd : e e -> e

[(extd e_1 e_2)

(HREP e_1 (COLUMNS e_2))

(side-condition (eq? 1 (term (COLUMNS e_1))))]

[(extd e_1 e_2)

(VREP e_1 (ROWS e_2))

(side-condition (eq? 1 (term (ROWS e_1))))]

[(extd e_1 _) e_1])

(define (intersect?/racket xs ys)

(ormap (λ (x) (member x ys)) xs))

(define-metafunction λ-calc-L

ω : (rc [i] [i]) -> i

[(ω (rc [0] [_])) 1]

[(ω (rc [_] [0])) 3]

[(ω (rc [_] [_])) 2])

(define (sort-trans/racket xs)

(sort xs (λ (x y) (< (term (ω ,x)) (term (ω ,y))))

#:key first))

(define-metafunction λ-calc-L

stride : (rc [i] [i]) -> i

[(stride (rc [i_r] [i_c]))

,(max (abs (term i_r)) (abs (term i_c)))])

(define-metafunction λ-calc-L

isAbs : ca -> boolean

[(isAbs (r i c i)) #t]

[(isAbs _) #f])
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(define-metafunction λ-calc-L

sort&fill : ((ca x) ...) -> ((ca x) ...)

[(sort&fill ((ca x) ...))

,(sort-trans/racket (term ((ca x) ...)))])

(define-metafunction λ-calc-L

row : (rc i i) -> i

[(row (rc i _)) i])

(define-metafunction λ-calc-L

column : (rc i i) -> i

[(column (rc _ i)) i])

(define lift

(reduction-relation λ-calc-L

#:domain c

#:arrow ∼>

; subst-intrans-∃: An intransitive substitution exists already.

(∼> (more ((ca_1 x_1) ...) ; Transitive

((ca_2 x_2) ... (ca x) (ca_3 x_4) ...) ; Intransitive

(x_c x_r)

((ca_ul : ca_lr) := (in-hole L ca)))

(more ((ca_1 x_1) ...) ; Transitive

((ca_2 x_2) ... (ca x) (ca_3 x_4) ...) ; Intransitive

(x_c x_r)

((ca_ul : ca_lr) := (in-hole L x)))

exist-i)

; subst-trans-∃: A transitive substitution exists already.

(∼> (more ((ca_1 x_1) ... (ca x) (ca_2 x_2) ...) ; Transitive

((ca_3 x_4) ...) ; Intransitive

(x_c x_r)

((ca_ul : ca_lr) := (in-hole L ca)))

(more ((ca_1 x_1) ... (ca x) (ca_2 x_2) ...) ; Transitive

((ca_3 x_4) ...) ; Intransitive

(x_c x_r)

((ca_ul : ca_lr) := (in-hole L x)))

exist-t)
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; subst-intrans: The reference is intransitive and there does not

; already exist a substitution.

(∼> (more ((ca_1 x_1) ...) ; Transitive

((ca_2 x_2) ...) ; Intransitive

(x_c x_r)

((ca_ul : ca_lr) := (in-hole L ca))) ; Lifting

(more ((ca_1 x_1) ...) ; Transitive

((ca_2 x_2) ... (ca x)) ; Intransitive

(x_c x_r)

((ca_ul : ca_lr) := (in-hole L x)))

(fresh x)

(where (ca_r ...) (enumerate (ca_ul : ca_lr)))

(side-condition (not (term (isAbs ca))))

(side-condition (not (intersect?/racket

(term ((lookup ca ca_r) ...))

(term (ca_r ...)))))

(side-condition (not (member (term ca) (term (ca_2 ...)))))

subst-i)

; subst-trans: The reference is transitive and there does not

; already exist a substitution.

(∼> (more ((ca_1 x_1) ...) ; Transitive

((ca_2 x_2) ...) ; Intransitive

(x_c x_r)

((ca_ul : ca_lr) := (in-hole L ca)))

(more ((ca_1 x_1) ... (ca x)) ; Transitive

((ca_2 x_2) ...) ; Intransitive

(x_c x_r)

((ca_ul : ca_lr) := (in-hole L x)))

(fresh x)

(where (ca_r ...) (enumerate (ca_ul : ca_lr)))

(side-condition (not (term (isAbs ca))))

(side-condition (intersect?/racket

(term ((lookup ca ca_r) ...))

(term (ca_r ...))))

(side-condition (not (member (term ca) (term (ca_1 ...)))))

(side-condition (= 1 (term (stride ca))))

subst-t)

; subst-area: Substitute an area by a call to SLICE.
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(∼> (more ((ca_t x_t) ...) ; Transitive

((ca_i x_i) ...) ; Intransitive

(x_c x_r)

((ca_ul : ca_lr) := (in-hole L (ca_1 : ca_2))))

(more ((ca_t x_t) ...) ; Transitive

((ca_i x_i) ...) ; Intransitive

(x_c x_r)

((ca_ul : ca_lr)

:=

(in-hole

L

(SLICE (ca_ul1 : ca_lr2)

x_r

x_c

(ROWS

((lookup ca_1 ca_ul) : (lookup ca_2 ca_ul)))

(COLUMNS

((lookup ca_1 ca_ul) : (lookup ca_2 ca_ul)))))))

(where ca_ul1 (lookup ca_1 ca_ul)) ; Upper-left of area.

(where ca_lr2 (lookup ca_2 ca_lr)) ; Lower-right of area.

(side-condition (not (term (isAbs ca_1))))

(side-condition (not (term (isAbs ca_2))))

subst-area)

; synth-map: The expression has been lifted to a λ-body and there

; are no transitive references.

(∼> (more () ; Transitive

((ca_i x_i) ...) ; Intransitive

(x_c x_r)

((ca_ul : ca_lr) := l))

(done ((ca_ul : ca_lr) := (MAP (λ (x_c x_r x_i ...) l)

(extd (ca_ul0 : ca_lr0)

(ca_ul : ca_lr)) ...)))

(where (ca_ul0 ...) ((lookup ca_i ca_ul) ...))

(where (ca_lr0 ...) ((lookup ca_i ca_lr) ...))

(side-condition (not (empty? (term (ca_i ...)))))

synth-map)

; synth-prefix: The expression has been lifted to a λ-body and

; there are transitive references.

(∼> (more ((ca_t x_t) ...) ; Transitive
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((ca_i x_i) ...) ; Intransitive

(x_c x_r)

((ca_ul : ca_lr) := l))

(done ((ca_ul : ca_lr)

:=

(PREFIX (λ (x_c x_r x_t1 x_t2 x_t3 x_i ...) l)

(ca_c0 : ca_c1)

ca_s

(ca_r0 : ca_r1)

(extd (ca_ul0 : ca_lr0) (ca_ul : ca_lr)) ...)))

(where (ca_ul0 ...) ((lookup ca_i ca_ul) ...))

(where (ca_lr0 ...) ((lookup ca_i ca_lr) ...))

(where ((ca_t1 x_t1) (ca_t2 x_t2) (ca_t3 x_t3))

(sort&fill ((ca_t x_t) ...)))

; Construct initial row and column address

(where ca_s (lookup ca_t2 ca_ul))

(where ca_c0 (lookup ca_t1 ca_ul))

(where ca_r0 (lookup ca_t3 ca_ul))

(where ca_c1 (rc (row ca_lr) (column ca_c0)))

(where ca_r1 (rc (row ca_r0) (column ca_lr)))

(side-condition (not (empty? (term (ca_t ...)))))

synth-prefix)

;; synth-tabulate: Generate an array even if there are no

;; input-arrays per-se.

(∼> (more ()

()

(x_c x_r)

((ca_ul : ca_lr) := l))

(done ((ca_ul : ca_lr)

:=

(TABULATE (λ (x_c x_r) l)

(ROWS (ca_ul : ca_lr))

(COLUMNS (ca_ul : ca_lr)))))

synth-tabulate)))
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Quad Rope Reference Implementation

The F# code for the quad rope reference implementation (Chapter 6) is
available at:

https://github.com/popular-parallel-programming/quad-ropes

Compile the reference implementation by running

> build.bat --paket

> build.bat -r

on the command line and then execute the benchmarks via:

> scripts\benchmark-all.bat

https://github.com/popular-parallel-programming/quad-ropes
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Source Code for Quad Rope Fusion

The OCaml code for laziness and fusion of operations on quad ropes
(Chapter 7) is available at:

https://github.com/popular-parallel-programming/funky-quad-ropes

module Shim =

struct
let ( ◦ ) f g =

fun x → f (g x)

let ($) f x = f x

end

(* Signature for two -dimensional collections. *)

module type Collection2D =

sig
type 'a t

val init : int → int → (int → int → 'a) → 'a t

val get : 'a t → int → int → 'a

val rows : _ t → int

val cols : _ t → int

val hcat : 'a t → 'a t → 'a t

val vcat : 'a t → 'a t → 'a t

val map : ('a → 'b) → 'a t → 'b t

val zipWith : ('a → 'b → 'c) → 'a t → 'b t → 'c t

val map_reduce : ('a → 'b) → ('b → 'b → 'b) → 'b

→ 'a t → 'b

https://github.com/popular-parallel-programming/funky-quad-ropes
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val reduce : ('a → 'a → 'a) → 'a → 'a t → 'a

val replicate : int → int → 'a → 'a t

val slice : 'a t → int → int → int → int → 'a t

val transpose : 'a t → 'a t

end

module Array2D =

struct
type 'a t = 'a array array

open Shim

let init rows cols f : _ =

Array.init rows $ fun i → Array.init cols (f i)

let get (xss : _ t) i j =

Array.get (Array.get xss i) j

let rows (xss : _ t) =

Array.length xss

let cols (xss : _ t) = (* Assume all columns are of

equal length. *)

if rows xss = 0 then 0 else Array.length $ Array.get

xss 0

let hcat xss yss =

if rows xss = rows yss then
init (rows xss)

(cols xss + cols yss)

(fun r c →

if c < cols xss then
get xss r c

else
get yss r (c - cols xss))

else
failwith "not same number of rows"

let vcat xss yss =

if cols xss = cols yss then
init (rows xss + rows yss)
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(cols xss)

(fun r c →

if r < rows xss then
get xss r c

else
get yss (r - rows xss) c)

else
failwith "not same number of columns"

let map f xss : _ t =

Array.map (fun xs → Array.map f xs) xss

let mapi f xss : _ t =

Array.mapi (fun i xs → Array.mapi (fun j x → f i j

x) xs) xss

let zipWith f (xss0 : _ t) (xss1 : _ t) : _ t =

mapi (fun i j x → f x (get xss1 i j)) xss0

let zipWithi f (xss0 : _ t) (xss1 : _ t) : _ t =

mapi (fun i j x → f i j x (get xss1 i j)) xss0

let mapi_reduce (f : int → int → 'a → 'b) (g : 'b

→ 'b → 'b) (e : 'b) (xss : 'a t) : 'b =

let acc = ref e in
for r = 0 to rows xss - 1 do

for c = 0 to cols xss - 1 do
acc := g !acc (f r c (get xss r c));

done;
done;
!acc

let map_reduce f =

mapi_reduce (fun _ _ x → f x)

let reduce f =

mapi_reduce (fun _ _ x → x) f

let replicate r c x =

init r c (fun _ _ → x)

let slice xs r c h w =
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init h w (fun r' c' → get xs (r + r') (c + c'))

let transpose xs =

init (cols xs) (rows xs) (fun c r → get xs r c)

end

module QuadRope =

struct

open Shim

type _ quad_rope =

| Funk : (int → int → 'a → 'b) * 'a quad_rope * '

b quad_rope lazy_t → 'b quad_rope

| Leaf : 'a Array2D.t → 'a quad_rope

| HCat : 'a quad_rope * 'a quad_rope → 'a quad_rope

| VCat : 'a quad_rope * 'a quad_rope → 'a quad_rope

| Sparse : int * int * 'a → 'a quad_rope

type 'a t = 'a quad_rope

let rec rows : 'a . 'a quad_rope → int = function
| Funk (_, q, _) → rows q

| Leaf xss → Array2D.rows xss

| HCat (q1, q2) → rows q1 (* rows q1 = rows q2 *)

| VCat (q1, q2) → rows q1 + rows q2

| Sparse (r, _, _) → r

let rec cols : 'a . 'a quad_rope → int = function
| Funk (_, q, _) → cols q

| Leaf xss → Array2D.cols xss

| HCat (q1, q2) → cols q1 + cols q2

| VCat (q1, q2) → cols q1 (* cols q1 = cols q2 *)

| Sparse (_, c, _) → c

let max_size = 32

let hcat q1 q2 =

if rows q1 = rows q2 then
match q1 with
| Leaf l1 →

(match q2 with
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| Leaf l2 when cols q1 + cols q2 <= max_size

→

Leaf (Array2D.hcat l1 l2)

| HCat ((Leaf l2 as q21), q22) when cols q1 +

cols q21 <= max_size →

HCat (Leaf (Array2D.hcat l1 l2), q22)

| _ → HCat (q1, q2))

| HCat (q11 , (Leaf l12 as q12)) →

(match q2 with
| Leaf l2 when cols q12 + cols q2 <= max_size

→

HCat (q11 , Leaf (Array2D.hcat l12 l2))

| _ → HCat (q1, q2))

| _ → HCat (q1, q2)

else
failwith "not same number of rows"

let vcat q1 q2 =

if cols q1 = cols q2 then
match q1, q2 with
| Leaf l1, Leaf l2 when rows q1 + rows q2 <=

max_size →

Leaf (Array2D.vcat l1 l2)

| _ → VCat (q1, q2)

else
failwith "not same number of columns"

let rec get q r c =

match q with
| Funk (_, _, thunk) → get (Lazy.force thunk) r c

| Leaf xss → Array2D.get xss r c

| HCat (q1, q2) → if c < cols q1 then get q1 r

c else get q2 r (c - cols q1)

| VCat (q1, q2) → if r < rows q1 then get q1 r

c else get q2 (r - rows q1) c

| Sparse (_, _, x) → x

let init rows cols f =

let rec init row_off col_off rows cols =

if rows < max_size && cols < max_size then
Leaf (Array2D.init rows cols (fun r c → f (r +

row_off) (c + col_off)))
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else if rows < cols then
let c2 = cols / 2 in
hcat (init row_off col_off rows c2) (init

row_off (col_off + c2) rows (cols - c2))

else
let r2 = rows / 2 in
vcat (init row_off col_off r2 cols) (init (

row_off + r2) col_off (rows - r2) cols)

in init 0 0 rows cols

let mapi f =

let rec mapi_i : 'a 'b . int → int → (int → int

→ 'a → 'b) → 'a quad_rope → 'b quad_rope =

fun r0 c0 f → (function
| Funk (g, q, thunk) →

if Lazy.is_val thunk then
mapi_i r0 c0 f $ Lazy.force thunk

else
let k = fun r c x → f r c (g r c x) in
mapi_i r0 c0 k q

| Leaf xss →

Leaf (Array2D.mapi (fun r c x → f (r0 + r)

(c0 + c) x) xss)

| HCat (q1, q2) →

HCat (mapi_i r0 c0 f q1, mapi_i r0 (c0 +

cols q1) f q2)

| VCat (q1, q2) →

VCat (mapi_i r0 c0 f q1, mapi_i (r0 + rows

q1) c0 f q2)

| Sparse (r, c, x) →

init r c (fun r c → f (r0 + r) (c0 + c) x))

in mapi_i 0 0 f

let map f =

mapi (fun _ _ x → f x)

let zipWithi f q1 q2 =

if rows q1 <> rows q2 || cols q1 <> cols q2 then
failwith "shape mismatch"

else
(* Cheap and slow; materializes Funk nodes. *)
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init (rows q1) (cols q1) (fun r c → f r c (get q1

r c) (get q2 r c))

let zipWith f =

zipWithi (fun _ _ x y → f x y)

let replicate rows cols x =

Sparse (max 0 rows , max 0 cols , x)

let mapi_reduce f g e q =

let sparse_loop rows cols x r0 c0 f g e =

let acc = ref e in
for r = r0 to r0 + rows - 1 do

for c = c0 to c0 + cols - 1 do
acc := g !acc (f r c x);

done;
done;
!acc

in
let rec mapi_reduce_i :

'a 'b . int → int → (int → int → 'a → 'b) →

('b → 'b → 'b) → 'b → 'a quad_rope → 'b =

fun r0 c0 f g e →

(function
| Funk (k, q, thunk) →

if Lazy.is_val thunk then
mapi_reduce_i r0 c0 f g e $ Lazy.force thunk

else
let h = fun r c x → f r c (k r c x) in
mapi_reduce_i r0 c0 h g e q

| Leaf xss →

Array2D.mapi_reduce (fun r c x → f (r0 + r) (

c0 + c) x) g e xss

| HCat (q1, q2) →

g (mapi_reduce_i r0 c0 f g e q1) (

mapi_reduce_i r0 (c0 + cols q1) f g e q2)

| VCat (q1, q2) →

g (mapi_reduce_i r0 c0 f g e q1) (

mapi_reduce_i (r0 + rows q1) c0 f g e q2)

| Sparse (r, c, x) →

sparse_loop r c x r0 c0 f g e) (* TODO: Add

recursive splitting. *)
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in mapi_reduce_i 0 0 f g e q

let map_reduce f =

mapi_reduce (fun _ _ x → f x)

let reduce f =

map_reduce (fun x → x) f

let rec slice q i j h w =

init h w (fun r c → get q (i + r) (j + c))

let rec transpose = function
| Leaf xs → Leaf (Array2D.transpose xs)

| HCat (q1, q2) → VCat (transpose q1, transpose q2)

| VCat (q1, q2) → HCat (transpose q1, transpose q2)

| Sparse (r, c, x) → Sparse (c, r, x)

| Funk (_, _, t) → transpose $ Lazy.force t

end

module Funky =

struct
type 'a t = 'a QuadRope.t

open Shim

open QuadRope

let s_max = QuadRope.max_size

let rows = QuadRope.rows

let cols = QuadRope.cols

let get = QuadRope.get

let hcat = QuadRope.hcat

let vcat = QuadRope.vcat

let is_leaf_size rows cols =

rows <= QuadRope.max_size && cols <= QuadRope.

max_size

let rec mapi : 'a 'b . (int → int → 'a → 'b) → 'a

quad_rope → 'b quad_rope =

fun f → (function
| q when is_leaf_size (rows q) (cols q) →

QuadRope.mapi f q
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| Funk (g, q, thunk) →

if Lazy.is_val thunk then
mapi f $ Lazy.force thunk

else
mapi (fun r c x → f r c (g r c x)) q

| q → Funk (f, q, lazy (QuadRope.mapi f q)))

let map f =

mapi (fun r c x → f x)

let init rows cols f =

if is_leaf_size rows cols then
QuadRope.init rows cols f

else
let p = replicate rows cols () in
let g = fun r c _ → f r c in
mapi g p

let zipWithi f q1 q2 =

let g =

(match q1 with
| Funk (f1, p1, t1) when not (Lazy.is_val t1) →

fun r c → f1 r c (get p1 r c)

| _ → get q1)

in
mapi (fun r c x → f r c (g r c) x) q2

let zipWith f =

zipWithi (fun _ _ x y → f x y)

(* Reduction never results in a new Funk at the

* same hierarchy level , so we use the strict

* implementations. *)

let mapi_reduce = QuadRope.mapi_reduce

let map_reduce = QuadRope.map_reduce

let reduce = QuadRope.reduce

let replicate = QuadRope.replicate

let slice q i j h w =

match q with
| Funk (f, p, t) when not (Lazy.is_val t) →
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mapi (fun r c x → f (r + i) (c + j) x) (QuadRope

.slice p i j h w)

| _ → QuadRope.slice q i j h w

let transpose = function
| Funk (f, p, t) when not (Lazy.is_val t) →

mapi (fun c r x → f r c x) (transpose p)

| q → QuadRope.transpose q

end

module Test(M : Collection2D) =

struct
open Shim

let sum =

M.reduce ( +. ) 0.

let test_f f rows cols =

let xs = M.init rows cols (fun _ _ → Random.float

1000. +. 1.) in
let ys = M.init rows cols (fun _ _ → Random.float

1000. +. 1.) in
f xs ys

let test_pearsons =

let pearsons xs ys =

let size = fun xs → M.rows xs * M.cols xs in
let mean = fun xs → M.reduce ( +. ) 0. xs /.

float (size xs) in
let x_mean = mean xs in
let y_mean = mean ys in
let x_err = M.map (fun x → x -. x_mean) xs in
let y_err = M.map (fun y → y -. y_mean) ys in
let x_sqerr = M.map (fun x → x -. x_mean ** 2.)

xs in
let y_sqerr = M.map (fun y → y -. y_mean ** 2.)

ys in
(sum (M.zipWith ( *.) x_err y_err)) /. (sqrt (sum

x_sqerr) *. sqrt (sum y_sqerr))

in
test_f pearsons
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let test_vdc n =

let singleton =

fun x → M.init 1 1 (fun _ _ → x) in
let next =

fun i is → M.hcat is (M.hcat (singleton i) (M.map

(( +. ) i) is)) in
let rec vdc n =

if n <= 1. then
singleton 0.5

else
let n' = 2. ** -.n in
next n' (vdc (n -. 1.))

in
sum (vdc (float n))

let test_primes n =

let rec sieve p ns =

if n <= 2 then
M.replicate 0 0 (false , 0)

else if p = n then
ns

else
sieve (p + 1) (M.map (fun (f, m) → f || (m <> p

&& m mod p = 0), m) ns)

in
let primes = sieve 2 $ M.init 1 (n - 2) (fun _ m →

false , m + 2) in
M.map_reduce (fun (f, m) → if f then 0 else 1) ( +

) 0 primes

end
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