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Raghu Venkataramana,∗, Péter Bauerb, Peter Seilera, Bálint Vanekb

aDepartment of Aerospace Engineering and Mechanics, University of Minnesota,
107 Akerman Hall, 110 Union Street SE, Minneapolis, MN 55455, United States

bSystems and Control Laboratory, Computer and Automation Research Institute, Hungarian Academy of Sciences,
Kende utca 13.-17., Budapest H-1111, Hungary

Abstract

This paper compares three model-based methods for detecting and isolating control surface faults on a small unmanned
aircraft. The first method is parity-space based and compares a sensor measurement against a model-based prediction
of the same quantity. The second method is observer-based and involves robust estimation for linear parameter-varying
systems. The third method is also observer-based and involves multiple model adaptive estimation. The performance
of the three methods are compared using flight data. The comparison shows that the three methods have different
detection performance and runtime. The selection of a particular method depends on the application requirements and
implementation constraints.
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1. Introduction

Fault detection and isolation (FDI) is one of several
technical challenges facing the widespread use of small un-
manned aircraft systems (UAS). The traditional approach
to this problem involves checking the parity between the5

outputs of multiple sensors that measure the same quan-
tity. This approach, commonly called as hardware re-
dundancy (Collinson, 2003), is not well-suited for small
UAS because they have constraints on their size, weight,
and power. The modern approach is to use mathematical10

models and algorithms to detect faults. This approach,
commonly called as analytical redundancy (Isermann and
Ballé, 1997), does not require additional hardware and is
thus a viable alternative for small UAS.

Textbooks such as Gertler (1998); Chen and Patton15

(1999); Isermann (2006); Ding (2013, 2014) address the
general subject of fault diagnosis using either model-based
or data-driven methods. Most fault detection methods
make use of the so-called residual to draw inferences re-
garding the presence of a fault. A typical algorithm con-20

sists of a residual generation step, which may be either
observer-based or parity space-based, and a residual eval-
uation step. The generation step produces residuals that,
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bauer.peter@sztaki.mta.hu (Péter Bauer), seile017@umn.edu
(Peter Seiler), vanek@sztaki.mta.hu (Bálint Vanek)

in some cases, are insensitive to noise and model uncer-
tainties and sensitive to the faults under consideration.25

The evaluation step uses the residual and thresholds to
draw inferences regarding the presence of a fault and its
characteristics. Isermann (1984); Gertler (1997); Isermann
and Ballé (1997); Isermann (2005); Hwang et al. (2010);
Gertler (2014) present literature surveys of this area.30

Fault diagnosis for aircraft applications has been widely
investigated (Patton and Chen, 1994). The EU ADDSAFE
program investigated the applicability of advanced model-
based fault detection and diagnosis methods to a com-
mercial aircraft benchmark (ADDSAFE, 2012; Goupil and35

Marcos, 2014). In addition, Goupil (2011) explains the
state of practice of fault detection at Airbus and Goupil
(2010) provides a specific example of analytical redun-
dancy on-board the A380. The methods considered in
the literature include neural networks (Napolitano et al.,40

1993), H∞ optimization (Edelmayer et al., 1994; Marcos
et al., 2005; Freeman et al., 2011, 2013b; Vanek et al.,
2011a), geometric methods (Bokor et al., 2010; Seiler et al.,
2011; Vanek et al., 2011b), LPV-based methods (Hecker
et al., 2011; Vanek et al., 2014; Varga and Ossmann, 2014),45

and sliding-mode (Edwards et al., 2000; Alwi and Ed-
wards, 2008). Fault diagnosis using analytical methods
takes on additional significance for small UAS, given their
payload constraints. The methods considered include multiple-
model Kalman filtering (Rago et al., 1998), the superim-50

position of an excitation signal on the actuator commands
(Bateman et al., 2007), H∞ filtering (Rotstein et al., 2006;
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Pandita, 2010; Freeman and Balas, 2013; Freeman et al.,
2013a), and multiple model adaptive estimation (Bauer
et al., 2018). Some of these methods have also been vali-55

dated using flight tests, either online or offline.
The effect of the feedback controller is important when

designing the FDI methods. For example, a well-designed
feedback controller may suppress the fault of interest, thus
making it harder to detect. Stoustrup et al. (1997) showed60

that in the presence of model uncertainty, the designs of
the controller and the FDI filter are coupled. However,
since this paper compares different FDI methods, such an
integrated approach is not feasible. Thus this paper fol-
lows a sequential approach wherein each FDI method is65

designed in consideration of a given nominal controller.
The interested reader may refer to Pandita et al. (2011,
2013), and the references therein, for more information on
FDI performance under closed-loop control.

From the literature cited thus far, it is clear that sev-70

eral methods have been proposed for fault diagnosis. This
paper compares three such model-based methods for de-
tecting and isolating stuck control surface faults on a small
UAS. The first method is parity-space based and compares
a sensor measurement against a model-based prediction of75

the same quantity. It is the simplest of the three methods
and serves as a baseline. The second method is observer-
based and involves the concept of robust estimation for lin-
ear parameter-varying (LPV) systems. The third method
is also observer-based and involves the concept of multiple80

model adaptive estimation (MMAE). The fault detection
problem considered in this paper was previously reported
in Bauer et al. (2018) using the third method. This pa-
per advances the results of Bauer et al. (2018) by: (1)
presenting two additional methods and (2) comparing the85

industrial relevance of all the methods using flight data.
The paper begins with a description of the aircraft

model and the scope of the particular FDI problem con-
sidered (Section 2). Then the three methods are presented
(Section 3) and compared (Section 4) using a common set90

of flight data. The conclusions are presented in Section 5.
Although the paper discusses one particular UAS, the re-
sults are relevant to other UAS configurations.

2. Preliminaries

2.1. Aircraft Model95

The aircraft (Figure 1) is called the Vireo and is com-
prised only of a wing and a fuselage. This aircraft was
originally built by Sentera, LLC and is currently main-
tained and operated by the University of Minnesota. The
fully integrated aircraft has a gross mass of 1.28 kg, a wing100

span of 0.97 m, and a fuselage length of 0.52 m. Control
is provided via a pair of independently actuated elevons
and a tractor-type electric motor that drives a fixed-pitch
propeller. Since the aircraft does not have a rudder, di-
rectional control is achieved indirectly via lateral control.105

Sensing is provided via an inertial measurement unit, a

GPS receiver, a magnetometer, and a pitot-static system.

Figure 1: The UAS considered in this paper.

Since this aircraft is assumed to be rigid and the model
assumes zero wind, the pertinent states are the Euler an-110

gles (φ, θ, ψ), the angular velocity in the body axes (p, q, r),
the airspeed in the body axes (u, v, w), and the position of
the aircraft in a local North-East-Down frame (pN , pE , pD).
The models used to design the FDI algorithms make use
of only some of these states, as described shortly. The115

nonlinear equations of motion of rigid, fixed-wing aircraft
are documented in several textbooks (Nelson, 1998; Cook,
2007) and are thus not repeated here. The throttle δt
is normalized to the interval [0, 1]. The left δl and the
right δr elevons each have a physical deflection range of120

[−30,+20] ◦, where positive values correspond to trailing-
edge down deflections. As such, each elevon excites both
the longitudinal and the lateral-directional dynamics. There-
fore, for modeling convenience, these dynamics are decou-
pled by expressing the elevons in terms of the traditional125

elevator δe and the aileron δa via the relations δl = δe− δa
and δr = δe + δa.

In order to design the FDI algorithms, the nonlinear
equations of motion are linearized around steady, wings-
level, constant altitude, and constant airspeed trim condi-130

tions. At any given trim condition, the aircraft dynamics
is described by a linear time-invariant (LTI) model:

ẋ? = A?x? + B?u?,

y? = C?x? + D?u?, (1)

where the subscript ? is replaced with either lon or lat. The
longitudinal model Glon uses: xlon = [q, w]

T
, ulon = δe,

and ylon = q. Glon only accounts for the short period135

mode because the phugoid mode of this aircraft is not ac-
curately characterized. The lateral-directional model Glat
uses: xlat = [v, p, r, φ]

T
, ulat = δa, and ylat = [φ, p, r]

T
.

All the signals are expressed in SI units (m, kg, s).
A collection of such LTI models, each of which corre-140

sponds to a different flight condition, constitutes a grid-
ded linear parameter-varying (LPV) representation of the
aircraft dynamics. This paper considers 20 grid points be-
tween the stall speed of 12 m s−1 and the high speed limit
of 20 m s−1. In addition, past flight data indicates that the145

rate-of-variation of the airspeed is bounded by ±8 m s−2
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during typical flight maneuvers. These rate bounds re-
strict the airspeed trajectories to only those that are re-
alistic. Figure 2 shows the Bode diagrams of the aileron-
to-roll rate (left) and the elevator-to-pitch rate (right) re-150

sponses at each grid point in the airspeed domain. As ex-
pected, the frequencies of both the dutch roll mode and the
short period mode increase with increasing airspeed. This
paper uses LPVTools (a Matlab toolbox) for the model-
ing, analysis, and synthesis of LPV systems (Balas et al.,155

2015b; Hjartarson et al., 2015). The Appendix provides
the state-space matrices of Glon and Glat at the nominal
cruise airspeed of 15.4 m s−1.
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Figure 2: The Bode diagrams of the lateral-directional model (left)
and the short period model (right) at each grid point.

The elevon actuator dynamics are given by Ga (s) =
ω2

a

s2+2ζaωas+ω2
a

, where ζa = 0.77 and ωa = 62.8 rad s−1 are160

estimated using system identification experiments. The
experiments also quantify the closed-loop time delay as
τf = 0.05 s, which encompasses delays in the actuators, the
flight computer, and the sensors. In this paper, all of this
delay is grouped at the input to the actuator and modeled165

using Padé approximations. The delay-free approximation
of Gae

−τfs is denoted by GLa and is given in the Appendix.

2.2. Scope of Current Work

Each component on a small UAS can fail in a num-
ber of different ways, thereby contributing to the failure170

rate of the overall aircraft (Freeman, 2014). The scope of
this paper is limited to the detection and isolation of stuck
faults in either of the elevons of the aircraft. The reasons
for this are twofold. First, the servomotors that actuate
the elevons have a high failure rate, e.g. three servomo-175

tors have failed over the course of 35 flights on the UAS
considered in this paper. Second, the stuck failure mode
poses the greatest risk according to a failure modes and

effects analysis (FMEA) of hobby-grade servomotors. The
reader is referred to Appendix A of Freeman (2014) and180

Appendix 1 of Amos et al. (2013) for the FMEA.
Stuck faults impose constraints on the flight envelope

of the aircraft. Section III of Venkataraman et al. (2017)
shows one example of the impact of stuck faults on the
allowable flight envelope of a fixed wing aircraft. In par-185

ticular, there may be fault magnitudes where it is not pos-
sible to trim the aircraft in the conventional sense, e.g. if
an elevon gets stuck at one of its extreme positions (hard-
over). Therefore, this paper only considers stuck faults for
which a steady, wings-level, constant altitude, and con-190

stant airspeed trim condition exists. The subset of tolera-
ble stuck faults is centered at the nominal elevon trim po-
sition and has the range [−7,+5] ◦. The reader is referred
to Venkataraman (2018) for the trim analysis. When one
of the elevons of the aircraft experiences a stuck fault, the195

FDI algorithm: (1) detects that the fault has occurred and
(2) isolates whether the failure is in the left or right elevon.

2.3. Requirements

The fault detection and isolation is followed by a re-
configuration of the flight control law (Bauer et al., 2018)200

or a manual takeover by a human pilot. When a fault oc-
curs, the aircraft will deviate from its trim point. If the
fault is not detected in a timely manner, the aircraft may
not be recoverable. Thus the FDI algorithms are designed
to detect faults within the so-called maximum allowable205

detection time t̄det. This requirement is specified by in-
voking the work of Wilborn and Foster (2004) in the area
of loss-of-control (LOC). This paper makes use of three
of the five flight envelopes that Wilborn and Foster (2004)
proposed: the unusual attitude, the dynamic pitch control,210

and the dynamic roll control envelopes. In particular, the
fault must be detected before the aircraft state exits any
one of the three envelopes. In general, this depends on the
magnitude of the stuck fault. From nonlinear simulations,
t̄det is obtained as 9 s for faults that are within ±1◦ of215

the nominal trim elevon position. The reader is referred
to Venkataraman (2018) for additional details.

3. Methods

This section presents three methods for designing the
FDI algorithm. All the methods use some subset of the220

controller reference commands, the sensor measurements,
and the actuator commands. The first two methods (A &
B) generate a residual e∗ and detect its threshold crossings.
In particular, a fault is declared if |e∗| ≥ T∗. Although the
thresholds may be state-dependent or time-varying, this225

paper uses the constant thresholds T∗. The thresholds are
important parameters that control the trade-off between
the rates of false alarms and missed detections. They are
selected to ensure that the FDI algorithms do not declare
false alarms when applied to unfaulted flight data.230
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3.1. Method A: Baseline

Method A is pictured in Figure 3. The FA block com-
prises the LTI model Glat at an airspeed of 15.4 m s−1 and
the actuator model Ga. It uses the measured roll rate p
and the aileron command δac to generate a roll rate resid-235

ual ēp = p̂ − p, where p̂ is the model-predicted roll rate.
The roll rate is used since it is the most sensitive to elevon
deflections (see the state-space matrices in the Appendix.)
The actuator model Ga incorporates not only the second-
order transfer function, but also the servo position limits240

of [−30,+20]◦, the rate limits of ±338◦ s−1, and the time
delay of 0.05 s. Thus the output δ̄a of Ga is a prediction
of the virtual aileron position, based purely on the aileron
command. The RA block filters ēp to produce the final
residual ep. RA is selected as a fifth-order, low-pass Bessel245

filter with a bandwidth of 2 rad s−1 and the thresholds are
selected as ±12.5◦ s−1.

Glat GaRA δacep
δ̄ap̂

p

ēp
−

FA

Figure 3: The architecture of Method A of the FDI algorithm.

3.2. Method B: Robust LPV

Method B is observer-based and generates two sets of
estimates of the left and right elevon positions (δl, δr). In250

the absence of a fault, these two sets of estimates are nearly
equal and differ only at high frequencies, i.e. due to noise.
In the presence of a fault, one set continues to be a reliable
estimate of the actual elevon positions, while the other
set exhibits a low frequency divergence. The difference255

between the two sets of estimates serves as the residual.
Method B is pictured in Figure 4. The FB block com-

prises the observer F and the elevon actuator model Ga.
The inputs to diag (Ga, Ga) are the left and right elevon
deflection commands (δlc, δrc) generated by the nominal260

controller. The outputs
(
δ̄l, δ̄r

)
of diag (Ga, Ga) are the

first set of estimates of the left and right elevon positions.
Since they account only for the actuator model, they are
reliable only in the absence of faults.

F

GaI2

RBI2

φcmd

φ

p

q

[
δlc
δrc

]

[
el
er

] −

[
δ̄l
δ̄r

]

[
δ̂l
δ̂r

][
ēl
ēr

]

FB

Figure 4: The architecture of Method B of the FDI algorithm.

The observer F uses the commanded roll attitude φcmd,265

the estimated roll attitude φ, and the angular rates p and
q to generate the second set of estimates of the left and

right elevon positions
(
δ̂l, δ̂r

)
. Since the observer accounts

for the closed-loop aircraft dynamics (explained shortly),

δ̂l and δ̂r are reliable even in the presence of a stuck elevon270

fault. The output (ēl, ēr) of FB is the difference between
the two sets of estimates. The diag (RB , RB) block filters
(ēl, ēr) to produce the final residual (el, er). RB is selected
as a fifth-order, low-pass Bessel filter with a bandwidth of
10 rad s−1 and the thresholds are selected as ±5◦.275

The observer F comprises two other filters (Figure 5).

Flat uses [φcmd, φ, p]
T

to estimate the position of the vir-

tual aileron δ̂a. It is designed using the lateral-directional
model Glat. Flong uses q to estimate the position of the vir-

tual elevator δ̂e. It is designed using the short period model280

Glon. The transformation block Tlr←ea =
[

1 −1
1 1

]
con-

verts δ̂a and δ̂e into the elevon position estimates
(
δ̂l, δ̂r

)
.

The exclusion of the phugoid modal dynamics in designing
Flong slightly impacts the accuracy of the elevon position

estimates
(
δ̂l, δ̂r

)
. As such, this is a shortcoming of the285

current design that is managed within the leeway afforded
by the thresholds. It may be remedied by modeling the
phugoid modal dynamics to a higher degree of accuracy.

Flat

Flong
Tlr←ea

φcmd

φ

p

q
δ̂l

δ̂r

δ̂a

δ̂e

F

Figure 5: The observer F comprises two other observers.

3.2.1. Synthesis Framework

Flat and Flong are designed using the generic block di-290

agram shown in Figure 6, which corresponds to the robust
output estimation problem discussed in Venkataraman and
Seiler (2018). The specific block diagrams for the synthesis
of Flat and Flong are obtained by replacing ? in Figure 6
with the appropriate subscript, as explained shortly. H? is295

a nominal LPV plant that includes either Glat or Glon, the
actuator model, the nominal controller, and any synthesis
weighting functions. These weighting functions are used to
trade-off competing performance objectives. ∆ is a block-
structured perturbation that includes any uncertainties in300

Glat or Glon. Its input-output behavior is described us-
ing integral quadratic constraints (IQC) (Megretski and
Rantzer, 1997). Further, d denotes the generalized dis-
turbances, y denotes the measurements sent to the filter
(not to be confused with the plant output), δ? denotes305

the actual aileron or elevator position, and δ̂? denotes the
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estimated aileron or elevator position. W? filters the esti-
mation error e? = δ̂? − δ? over a desired frequency range.

H?F?

∆

W?

Ψ

v w

yδ̂?

δ?−
ē?

e?

d

z

Figure 6: The block diagram for synthesizing Flat and Flong .

The synthesis objective is to find the filter F? that310

yields the smallest possible upper bound on the worst-
case gain from d to ē?. Four design models are consid-
ered for Fu (H?,∆) by placing restrictions on the model
uncertainty and/or the airspeed domain (see Table 1).
The nominal filters (∆ = 0) are designed using H∞ and315

LPV syntheses, respectively. The robust filters (∆ 6= 0)
are designed using Theorem 2 of Venkataraman and Seiler
(2018). Sections 3.2.4 demonstrates that, by virtue of
making the fewest assumptions, the robust-LPV filter out-
performs the other filters. The particular choices of H?320

and ∆ for the uncertain, LPV design model (fourth row in
Table 1) are explained next.

Table 1: The four design models for synthesizing Flat and Flong .

Aircraft model Uncertainty Filter
LTI at 15.4 m s−1 ∆ = 0 Nominal-LTI
LTI at 15.4 m s−1 ∆ 6= 0 Robust-LTI

LPV: [12, 20] m s−1 ∆ = 0 Nominal-LPV
LPV: [12, 20] m s−1 ∆ 6= 0 Robust-LPV

3.2.2. Lateral-Directional Filter Flat
To synthesize the Flat, Figure 6 is used with the sys-

tems Hlat, Flat, and Wlat, and the signals δa, δ̂a, ea, and325

ēa. The measurement signal is y = [φcmd, φ, p]
T

. Figure 7
shows the generalized plant Fu (Hlat,∆), which includes
the nominal LPV lateral-directional aircraft model Glat,
the actuator model GLa , and the roll attitude controller KA

taken as
(
−0.34− 0.086

s

)
(φcmd − φ) + 0.06p. The nominal330

plant Glat is affected by the norm-bounded, LTI, multi-
plicative uncertainty ‖∆‖∞ ≤ 1 at its input. The uncer-
tain plant is thus given by Glat (1 + ∆W∆). The input
δa to the uncertain plant is the quantity to be estimated.
The feedback loop involving GLa , Glat, and KA represents335

the closed-loop lateral-directional aircraft dynamics. This
feedback loop is affected by: the disturbance d̃u at the in-
put of GLa , the disturbance d̃y at the output of Glat, and

the reference command φcmd. The performance weights
Wu, Wy, and Wr relate the disturbances d̃u, d̃y, and φcmd340

to their respective normalized counterparts du, dy, and dr.

Glat

∆ W∆

KA

WyWr

GL
a

Wu du

dydr

y

δa

φcmd

d̃y

d̃u

δa

[
φ
p

]

[
φn
pn

]

δac

Fu (Hlat,∆)

Figure 7: The generalized plant that is used for synthesizing Flat.

The weighted, uncertain closed-loop shown in Figure 6
has the input d = (du, dy, dr) and the output ēa. The syn-
thesis is an iterative process that involves weight selection345

and tuning. Table 2 lists the final values of all the weights,
along with their interpretations. For instance, the weights
Wu, Wy, and Wr are selected as the typical disturbances

expected in the signals d̃u, d̃y, and φcmd, respectively.

Table 2: The final weights selected for synthesizing Flat.

Weight Final value Weight interpretation:

Wu 3 (π/180) Typical aileron disturbance.

Wy [ 6 0
0 6 ] (π/180)

Typical disturbances in the
roll angle and the roll rate.

Wr 30 (π/180) Typical roll command.

W∆
s+3.924
s+392.4

Shapes the uncertainty in
Glat across frequency.

Wlat
s+4

1.122s+0.07113

Inverse of the desired
sensitivity −δa → ea.

The weight W∆ shapes the uncertainty in Glat across350

frequency. In general, the model uncertainty is low at low
frequencies and high at high frequencies. For this prob-
lem, it is assumed that the uncertainty in Glat is 1% at
frequencies below the dutch roll mode

(
4.1 rad s−1

)
and

increases to 100% at high frequencies. Thus W∆ is se-355

lected as shown in Figure 8, where the numbers within
the parentheses specify the particular levels of uncertainty
at the natural frequencies of the dutch roll mode, the roll
subsidence mode, and the actuator.

In order to select Wlat (the filter on ea in Figure 6),360

let Sa and S̄a denote the sensitivity function −δa → ea
and its upper bound, respectively. It is more important
to minimize ea at low frequencies as compared to high
frequencies. Thus S̄a is specified as a first-order transfer
function with a DC gain of −35 dB, a high-frequency gain365
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Figure 8: The Bode diagram of the weight W∆.

of 1 dB, and a bandwidth of 4 rad s−1. The bandwidth
here refers to the −3 dB point with respect to the high
frequency gain and corresponds to the natural frequency
of the dutch roll mode. Wlat is then selected as S̄−1

a .
Since ∆ is a norm-bounded LTI uncertainty, it satis-370

fies all IQCs defined by multipliers of the form: Π (jω) =[
x(jω) 0

0 −x(jω)

]
, where x (jω) ≥ 0 is a bounded measurable

function (Megretski and Rantzer, 1997). To obtain time-
domain IQCs, x (jω) is factorized as ψx (jω)

∼
Mxψx (jω),

where ψx (jω) is taken as
[
1, 1

jω+0.031

]T
and Mx is a sym-375

metric matrix that is determined during the optimization.
The pole in ψx (jω) is selected through trial and error.

Flat is a quadratically stable LPV system that is sched-
uled by the airspeed V and its derivative V̇ . To assess its
performance, the nominal, unweighted closed-loop is con-380

structed by setting all the weights to unity and ∆ to zero in
Figures 6 and 7. Figure 9 shows the Bode diagrams of the
sensitivity functions Sa from −δa to ea at each grid point
in the airspeed domain along with the sensitivity bound
S̄a. The plot indicates that Flat satisfies the desired sen-385

sitivity response at each point in the domain.
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Figure 9: The Bode diagrams of the Sa and S̄a.

3.2.3. Longitudinal Filter Flong
To synthesize Flong, Figure 6 is used with the systems

Hlong, Flong, and Wlong, and the signals δe, δ̂e, ee, and
ēe. The measurement signal is y = q. Figure 10 shows the390

generalized plant Fu (Hlong,∆), which includes the nomi-
nal LPV short period model Glon, the actuator model GLa ,
and the nominal pitch damper KPD = −0.05q. Glon is
affected by the norm-bounded, LTI, multiplicative uncer-
tainty ‖∆‖∞ ≤ 1 at its input. The uncertain plant is thus395

given by Glon (1 + ∆W∆). The input δe to the uncertain

plant is the quantity to be estimated. The feedback loop
involving GLa , Glon, and KPD represents the closed-loop
short period modal dynamics. This feedback loop is af-
fected by: the disturbance d̃u at the input of GLa and the400

disturbance d̃y at the output of Glon. The performance

weights Wu and Wy relate the disturbances d̃u and d̃y to
their respective normalized counterparts du and dy. The

Glon

∆ W∆

KPD

Wy

GL
a

Wu du

dy

y

δe

d̃y

d̃u

δeq

qn

δe2

−

Fu (Hlong,∆)

Figure 10: The generalized plant that is used for synthesizing Flong .

weighted, uncertain closed-loop shown in Figure 6 has the
input d = (du, dy) and the output ēe. Table 3 lists the final405

value of all the weights, along with their interpretations.

Table 3: The final weights selected for synthesizing Flong .

Weight Final value Weight interpretation:

Wu 4 (π/180)
Typical elevator

disturbance.

Wy 10 (π/180)
Typical pitch rate

disturbance.

W∆
s2+53.43s+213.5
s2+436s+427

Shapes the uncertainty in
Glon across frequency.

Wlong
s+14.5

1.122s+9.149

Inverse of the desired
sensitivity −δe → ee.

The weight W∆ shapes the uncertainty in Glon across
frequency. In general, the model uncertainty is low at low
frequencies and high at high frequencies. However, since
the phugoid mode is not accurately characterized, it is410

assumed that the uncertainty in Glon is 50% at frequen-
cies below the phugoid mode

(
0.87 rad s−1

)
, decreases to

around 12% near the short period mode
(
14.5 rad s−1

)
,

and increases to 100% at high frequencies. Thus W∆ is
selected as shown in Figure 11, where the numbers within415

the parentheses specify the particular levels of uncertainty
at the natural frequencies of the phugoid mode, the short
period mode, and the actuator.

In order to select Wlong (the filter on ee in Figure 6), let
Se and S̄e denote the sensitivity function −δe → ee and its420

upper bound, respectively. Overall, it is more important
to minimize ee at low frequencies as compared to high
frequencies. Thus S̄e is specified as a first-order transfer
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Figure 11: The Bode diagram of the weight W∆.

function with a DC gain of −4 dB, a high-frequency gain
of 1 dB, and a bandwidth of 14.5 rad s−1. The bandwidth425

here refers to the −3 dB point with respect to the high
frequency gain and corresponds to the natural frequency
of the short period mode. Wlong is then selected as S̄−1

e .
Flong is a quadratically stable LPV system that is sched-

uled by V and V̇ . The nominal, unweighted closed-loop430

is constructed by setting all the weights to unity and ∆
to zero in Figures 6 and 10. Figure 12 shows the Bode
diagrams of the sensitivity functions Se from −δe to ee at
each grid point in the airspeed domain along with the sen-
sitivity bound S̄e. The plot indicates that Flong satisfies435

the desired sensitivity response throughout the domain.

100 101 102
−9

−6

−3

0

Frequency
(
rad s−1

)

M
a
g
.
(d

B
)

Actual sensitivities Se

Sensitivity bound S̄e

Figure 12: The Bode diagrams of Se and S̄e.

3.2.4. Worst-Case Analysis

A worst-case analysis is conducted for the closed-loop
formed using Flat. Four filters are synthesized using the
design models listed in Table 1. Each filter is then in-440

terconnected with the uncertain, LPV design model, such
that the final system consists of Glat (1 + ∆W∆), KA, GLa ,
and Flat. The worst-case performance of each filter is an-
alyzed by computing bounds on the worst-case gain from
−δa to ea. Recall that the channel −δa → ea quantifies445

the sensitivity of the estimation error to the true aileron
position and is only one of the channels considered during
the synthesis. Upper bounds, which account for all allow-
able airspeed trajectories, are computed by conducting a
LPV worst-case gain analysis using Theorem 2 of Pfifer450

and Seiler (2016). Lower bounds, which account for con-
stant airspeed trajectories, are computed by conducting a
LTI worst-case gain analysis at each fixed airspeed in the
domain and then choosing the largest such gain.

Figure 13 (left) shows the upper bound on the worst-455

case gain as a function of the upper bound on ‖∆‖∞. As
expected, larger uncertainty norm bounds result in larger
worst-case gains across all four filter types. However, the
increase in the worst-case gain is markedly less pronounced
for the robust-LPV filter because its design model accounts460

for the airspeed variations and the model uncertainty. In
particular, the upper bound on the worst-case gain for
‖∆‖∞ ≤ 1 is around 2.1 for the nominal-LTI and the
robust-LTI filters, around 1.6 for the nominal-LPV filter,
and around 1.2 for the robust-LPV filter. The rapid per-465

formance degradations seen in the nominal-LTI and the
robust-LTI filters are due to the fact that their respective
design models are LTI, whereas this analysis considers all
allowable airspeed trajectories.

Figure 13 (right) shows the lower bound on the worst-470

case gain as a function of airspeed for ‖∆‖∞ ≤ 1. Each
point on this plot represents a lower bound on the worst-
case gain of the uncertain, LTI system at the correspond-
ing fixed airspeed. These bounds are computed using the
command wcgain of Matlab’s Robust Control Toolbox475

(Balas et al., 2015a), which not only returns the lower-
bound on the worst-case gain, but also the worst-case un-
certainty that achieves this gain. Thus the lower bounds
shown in Figure 13 are true lower bounds at the corre-
sponding fixed airspeed. The largest such value across all480

constant airspeeds is thus a lower bound on the worst-case
gain of the uncertain, LPV system. The dashed rectangles
indicate the largest lower bounds and the corresponding
worst-case airspeeds. The robust-LPV filter has the small-
est (and least variant) lower bound across all airspeeds.485

Further, the worst-case uncertainty satisfying ‖∆‖∞ ≤
1 is computed at 15.78 m s−1 for the robust-LPV case
and at 20 m s−1 for the other three cases. The perfor-
mances of the four filters, with ∆ substituted by their re-
spective worst-case uncertainties, are evaluated using step490

responses as shown in Figure 14. The responses of the
nominal-LTI, the robust-LTI, and the nominal-LPV fil-
ters clearly degrade, with overshoot and/or transients, at
their worst-case airspeed of 20 m s−1. In contrast, the re-
sponse of the robust-LPV filter at its worst-case airspeed495

of 15.8 m s−1 is largely similar to its response at 20 m s−1,
indicating that the robust-LPV filter has more consistent
worst-case performance.

3.3. Method C: Multiple-Model Adaptive Estimation

The so-called Multiple Model Adaptive Estimation500

(MMAE) framework can also be used to detect and isolate
the stuck fault of each of the elevons. MMAE is introduced
in detail for example in Hassani et al. (2009a) and Hassani
et al. (2009b) here only the basic concept is summarized.
Consider an LTI plant (G) with multiple (N) different sys-505

tem models characterized by an i parameter (2). The dif-
ferent models can represent different trim points or fault
states of the system. By designing LTI state observers
for these models it is possible to estimate the states of
the plant and the actual i parameter and so trim point or510
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fault state. Figure 15 shows the structure of the MMAE
architecture.

Plant G(t)
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Figure 15: The MMAE architecture

The fixed parameter Multiple-Input-Multiple-Output
LTI system models can be characterized by the following
discrete time (DT) equations:

xi(t + 1) = Aixi(t) + Biu(t) + Wiw(t)

yi(t) = Cixi(t) + Diu(t) + Viv(t)
(2)

where xi(t) ∈ Rn denotes the state of the system, u(t) ∈
Rm its control input, yi(t) ∈ Rp its measured noisy out-
put, w(t) ∈ Rr is the state noise, and v(t) ∈ Rq is the515

measurement noise. Vectors w(t) and v(t) are assumed
to be zero-mean white Gaussian sequences, mutually un-

correlated with covariances E
[
w(τ)w(τ)

T
]

= Qτ and

E
[
v(τ)v(τ)

T
]

= Rtτ . The initial condition x(0) of (2) is

a Gaussian random vector with mean and covariance given520

by E {xi(0)} = xi0 and E
{
xi(0)xT

i (0)
}

= Pi(0). Matri-
ces Ai, Bi, Wi, Ci, Di, and Vi depend on the parameter
i (i = 1 . . . N). Wi = I and Vi = I is assumed in this
case. t and t+ 1 denote consecutive discrete time steps.

One possible solution of the observer design is to ob-
tain steady state Kalman Filters (KFs) which give state
estimates x̂i(t) where i = 1 . . . N . As Figure 15 shows the
final state estimate (x̂(t)) is given by (3), as the weighted
sum of the x̂i(t) estimates provided by the observers.

x̂(t) =

N∑

i=1

pi(t)x̂i(t) (3)

The pi(t) i = 1 . . . N weights are calculated inside the
Posterior Probability Evaluator (PPE) block. As Figure
15 shows this block receives the output residuals ri(t) i =
1 . . . N

ri(t) = y(t + 1)− ȳi(t + 1|t)

where525

ȳi(t + 1|t) = Cix̄i(t + 1) + Diu(t + 1)

and the estimation error covariances Pi from every filter.
Here x̄i(t + 1) is the predicted state of the ith KF given

x̄i(t + 1) = Aix̂i(t) + Biu(t)

In Hassani et al. (2009a) the dynamic weights are cal-
culated by the recursive formula:

pi(t+ 1) =
βie
−Ei(t+1)

N∑
j=1

pj(t)βje−Ej(t+1)

pi(t)
(4)
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where pi(t) are the a-priori model probabilities (initialized
usually as pi(0) = 1/N) and Ei(t) and βi are defined as

Ei(t+ 1) = ri(t + 1)TP̂−1i ri(t + 1) (5)

βi =
1

(2π)
p
2

√∣∣∣P̂i

∣∣∣
(6)

where p is the dimension of y(t) and P̂i is the steady state
covariance matrix of residuals in ith KF given by

P̂i = CiPiC
T
i + Ri (7)

here Pi is the steady state estimation error covariance ma-
trix of the ith KF obtained from the related Riccati equa-
tion. βie

−Ei(t+1) gives a multivariable Gaussian proba-
bility density function. In Hassani et al. (2009a) the au-
thors prove that the conditional probability of the observer530

which is closest to the actual working mode of the plant
will converge to one while all the other probabilities will
converge to zero.

3.3.1. MMAE design models for the Vireo aircraft

In this work the set of possible elevon faults is restricted
to stuck fault of one elevon keeping in mind that different
fault scenarios would possibly need different fault detec-
tion strategies. The basic idea of stuck fault detection de-
sign is that the aircraft lateral dynamics should be more
sensitive to elevon stuck fault than the longitudinal (note
that the highest gain in the B matrix in (15) and (16) is
in Blat from aileron δa to roll rate p). Considering the
linearized lateral dynamical model Glat from (16) of the
aircraft it includes the following states:

x =
[
v p r φ

]T

Though (16) includes the aileron effect as a single in-
put, for fault detection of the left and right elevons the
associated inputs should be included considering the trans-

formation δa =
[
−1/2 1/2

] [δl
δr

]
. This way the input of

the considered model will be ulat2 =
[
δl δr

]T
. The pos-

sible measurable outputs of the lateral dynamics can be
the roll rate p, the yaw rate r, the roll angle φ and the
side acceleration ay. In MMAE the KF residuals are used
to drive the PPE system. Simulation experiments show
that residuals of states included in the KF measurement
update as measured outputs are usually small after the
convergence of the filter. That’s why it is advantageous
not to include the p roll rate into the measured outputs
but calculate and consider its residual in the selection of
the best filter. Finally, the selected output vector consists
of the yaw rate and the roll angle (note that the roll angle
is estimated on-board, but from a fault detection point of
view it can be considered as known and measurable):

ylat2 =
[
r φ

]T
(8)

The model (presented in the Appendix in (17)) with535

the given state and output vectors is observable. Further
issues to be handled are the system time delay and actu-
ator dynamics.

Handling of system time delay. The overall time delay in
the closed loop controlled Vireo system is about 0.05s (see540

Subsection 2.1). To design MMAE this delay is assumed
to be present at the system output as a pure measurement
delay. As the implementation of the estimators is in DT
(in contrast to the continuous time models presented in
the Appendix there are two possibilities to model the time545

delay. The first is to make a Pade approximation and dis-
cretize that transfer function, the second is to add a chain
of delay states to the DT model. The sampling frequency
is about 92 Hz in the system, which means about 0.0109s
sampling time. With this sampling time at least four de-550

lay state per variable should be added to approximate the
measurement delay. On the contrary, a fourth or fifth de-
gree Pade approximation is advisable to be applied. This
requires four or five additional states per variable but gives
only an approximation of the delay.555

Finally, the chain of delay states was applied to the r
yaw rate and φ roll angle outputs. The original and aug-
mented state space equations of the discrete time system
model are shown below:

xk+1 = Axk + Buk

yk+1 = Cxk+1

(9)


xk+1

x1
k+1

x2
k+1

x3
k+1

x4
k+1

 =


A 0 0 0 0[

0 I2
]

0 0 0 0
0 I2 0 0 0
0 0 I2 0 0
0 0 0 I2 0


︸ ︷︷ ︸

Aa


xk

x1
k

x2
k

x3
k

x4
k

+


B
0
0
0
0


︸ ︷︷ ︸
Ba

uk

yk+1 =
[
0 0 0 0 I2

]︸ ︷︷ ︸
Ca


xk+1

x1
k+1

x2
k+1

x3
k+1

x4
k+1



(10)

Here, dim(x1
k) = dim(x2

k) = dim(x3
k) = dim(x4

k) = 2 are
the delay states for r and φ and I2 is a two dimensional
unit matrix. The augmented system (Aa,Ba,Ca) is also
observable.

Actuator dynamics. In the estimation, one can use only560

the commanded inputs δlc, δrc of the system because the
control surface deflections are not measured on the Vireo.
This means that actuator dynamics
Ga(s) = 3943.84

s2+48.356s+3943.84 will cause a model mismatch.
The transfer function model of the actuator dynamicsGa(s)565

can be transformed into discrete time and included in the
augmented system at the input or simply the commanded
input can be ’filtered through’ the DT actuator dynamics
transfer function. In the first case the augmented system
is not observable, so the second method is applied and so570

the filtered commanded inputs are the inputs of the esti-
mators.
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Models for stuck elevons. The nominal lateral model of
the system is the augmented one in (10) with two inputs
(δl left and δr right elevon deflections). In case of a stuck575

fault either the left or the right elevon goes into a fixed
position. This gives the idea to use two additional lat-
eral models with fixed left or right elevons to model the
possibly faulty system. From these three models the one
giving the lowest residuals shows the actual fault state of580

the aircraft (nominal, left elevon stuck, right elevon stuck).
The faulty system models can be formulated by con-

sidering the stuck surface as a constant state of the system
and reorganizing the model matrices accordingly:



xk+1

x1
k+1

x2
k+1

x3
k+1

x4
k+1

u(l)

 =


A 0 0 0 0 B(:, l)[

0 I2
]

0 0 0 0 0
0 I2 0 0 0 0
0 0 I2 0 0 0
0 0 0 I2 0 0
0 0 0 0 0 1


︸ ︷︷ ︸

AaF


xk

x1
k

x2
k

x3
k

x4
k

u(l)

+

+


B(:, j)

0
0
0
0
0


︸ ︷︷ ︸

BaF

u(j)k

yk+1 =
[
0 0 0 0 I2 0

]︸ ︷︷ ︸
CaF



xk+1

x1
k+1

x2
k+1

x3
k+1

x4
k+1

u(l)



(11)

Here, B(:, l) is the lth column of the B matrix (l ∈ {1, 2}).585

j is the other column (j 6= l). u(l) is the fixed, unknown
input, while u(j)k is the time varying known one (that’s
why the constant u(l) does not have a time index). If the
estimators for the faulty models are accurate enough then
the state estimate will give us also the faulty stuck position590

of the actuator which can be used in the reconfiguration
of the system.

3.3.2. MMAE design and application
Denote by <> a diagonal matrix and by 0i×j an i ×

j matrix of zeros. KFs for the nominal and the faulty
(F ) models were designed by assuming reasonable system
and measurement noise and making discretization at 92Hz
which is the frequency of data logging. The nominal sys-
tem noise covariance matrix is selected as:

QN =< 0.72 (2π/180)2 (2π/180)2 (2π/180)2 01×8 >

for the faulty system models the additional stuck state
noise is 10−6 making it possible to have a slowly chang-
ing stuck position (note that the stuck state dynamics is
a Markov chain driven by random noise where small noise
intensity makes any change slow) in the filter and so con-
verge to the real stuck position. The covariance matrix
is:

QF =< 0.72 (2π/180)2 (2π/180)2 (2π/180)2 01×8 10−6 >

The matrices show that 0.7m/s standard deviation is con-
sidered for the lateral velocity and 2◦/s and 2◦ for the

angular rates and angles respectively. The measurement
noise covariance matrix is:

R =< (0.2π/180)2 (0.2π/180)2 >

which shows that the tuned (by trial and error) standard
deviations of the yaw rate and roll angle are 0.2◦/s and595

0.2◦ respectively. The considered noisy state equations in
the KF design were:

xk+1 = Aa(F)xk + Ba(F)uk + wk

yk+1 = Ca(F)xk+1 + vk+1

(12)

Here, Aa is the matrix of the nominal augmented sys-
tem, while Aa(F) = AaF is the matrix of the faulty aug-
mented system so the (F ) term is included only for the600

faulty system models. This is the same for the B and C
matrices. The designed KFs will give the predictions and
estimates of the augmented state vector. Note that the
actual predicted p̄k+1 roll rate is not delayed by the model
system that is why it should be compared to the real value605

in the next step (pk+1) so the estimate should be delayed
with one step. All residuals were filtered thorugh a fifth
order Bessel filter with 5rad/s bandwidth. Running the
MMAE on real flight data has shown that the yaw rate
(r) residuals are almost the same for the three filters even610

in case of a fault that’s why finally only the roll rate and
angle residuals are considered. However, the roll angle (φ)
residuals are usually much smaller than the roll rate (p)
ones. In the MMAE originally the residuals are scaled by
the inverse of their covariance matrix in a quadratic form.615

However, in the present concept there is no covariance for
the p part as it is not treated as a measured output. That’s
why simple diagonal scaling was applied for the residuals
of all filter which increases the magnitude of the roll angle
parts and removes the yaw rate component:620

RES =

[
pmeas − p̄, rmeas − r̄, φmeas − φ̄

]
W



pmeas − p̄
rmeas − r̄
φmeas − φ̄




W =




1 0 0
0 0 0
0 0 36




(13)

These RES values are tested for threshold violation
with a threshold of 0.08 to remove false alarms from noise
effects in the system. If the absolute RES values of at least
two filters are above the threshold then a modified PPE
updates the model probabilities in the following way:625

pi(t+ 1) =
e−0.04·RESi(t+1)

Σ3
j=1e

−0.04·RESj(t+1)pj(t)
pi(t) (14)
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The sum of these probabilities is guaranteed to be 1 and
the largest one should show the actual valid model. As-
suming that the system is fault free at initialization the ini-
tial probabilities are selected as pNo = 0.98, pl = pr = 0.01
in contrast to the default rule presented as pi = 1

N . Here,630

No is the probability of the nominal working mode, l and
r are the probabilities for the left and right stuck modes.
None of the initial values should be zero as in this case
they will remain zero all the time (see (14)) that’s why
the lower limits are set as 0.01.635

Finally, the model which probability is above 50% (0.5)
is selected as valid in every time step. The left and right
stuck filters are able to also approximately estimate the
stucked position of the surface as will be shown in the
next section.640

After introducing all three methods their comparison
through off-line application to real flight data is presented
as follows.

4. Comparison Using Flight Data

The three FDI methods presented in the previous sec-645

tion are validated and compared using prerecorded flight
data, i.e. in an offline setting. The FDI algorithms oper-
ate in open-loop until they detect a fault and reconfigure
the controller. Thus evaluating the FDI algorithms of-
fline is equivalent to evaluating them online. Two flights650

are conducted during which the UAS tracks a rectangular
flight path at constant altitude. Both flights consist of a
number of test points wherein stuck faults are injected in
the right elevon. To avoid overspeeding, only trailing edge
up (negative) stuck faults are injected. Table 4 lists the655

fault magnitude in each test point along with the detection
times obtained using the three methods.

Table 4: The faults injected in each test point of the two flights along
with the detection times obtained using the three methods.

Detection time (s)
Test
point

Fault A B C

FLT32
T1 −5◦ 8.51 6.93 12
T2 −5◦ 3.56 3.03 5
T3 −5◦ – – 7.8
T4 −5◦ 12.9 8.26 14.7
T5 −5◦ 2.54 1.89 4

FLT33
T1 −5◦ 8.78 8.23 13.5
T2 −5◦ 5.34 5.06 7.34
T3 −5◦ 5.22 4.5 7
T4 −6◦ 2.78 1.84 7.27
T5 −7◦ 2.48 1.57 3
T6 −7◦ 2.20 1.26 2.7

Figures 16 and 17 show the residuals generated in all
the test points, except FLT32-T3, using Methods A and

B, respectively. The timestamps of all the test points are660

shifted such that zero seconds corresponds to the fault
injection time (vertical line). The figures indicate that
the residuals are contained within the thresholds (dashed
lines) prior to the fault and cross the thresholds shortly
after the fault. There are no false alarms or missed detec-665

tions in any of the test points. Although the fault magni-
tudes are similar in all the test points (see Table 4), the
detection time varies depending on the maneuver being
performed immediately prior to the fault. In particular,
recall that the UAS tracks a rectangular flight path at con-670

stant altitude in both the flights. The aircraft flies straight
and level when tracking the four sides of this rectangle and
banks sharply when navigating the corners. It takes longer
to detect a fault that is injected during the straight and
level segments as compared to one that is injected during675

the banked turns.
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−20

−10
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20
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Roll rate residual
(◦ s−1

)

Figure 16: The residuals generated using Method A.

Furthermore, Method A only performs fault detection
since it generates only one residual. Method B, on the
other hand, generates two residuals and thus also isolates
the fault. Given that the fault is injected in the right680

elevon, Figure 17 indicates that the left elevon residual
does not cross the thresholds in all except two test points.
However, these two threshold crossings occur after the cor-
responding right elevon residual has already crossed the
threshold. Therefore, the fault is correctly isolated in all685

the test points.
Figures 18 to 21 show the model probabilities and se-

lected models before and after the fault occurence for flight
32 and 33 data in case of method C. The timestamps of
all the test points are again shifted such that zero seconds690

corresponds to the fault injection time (vertical line). The
right stuck fault was successfully detected by the MMAE
algorithm even in FLT32-T3 case. The decrease of nomi-
nal model probability under 50% and the increase of right
stuck probability above 50% can be well seen in Figures695

18 and 20 the crossing of probabilities also shows approx-
imately the times of fault detection where the selected
model number changes in Figures 19 and 21. There is no
false left stuck detection in any of the cases as the highest
left stuck probability is only 30% in Figure 20.700

Considering Table 4 method C is always slower in the
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Figure 17: The residuals generated using Method B.

detection of the fault. It is 0.5-4.7s slower than method A
and 1.4-6.4s slower than method B. This can be the price
of detecting every fault successfully as usually there is a
design trade-off between detection time and false alarms.705

Figure 18: Fault probabilities for FLT 32 data with Method C

Figure 19: Selected model for FLT 32 data with Method C

Figure 20: Fault probabilities for FLT 33 data with Method C

Figure 21: Selected model for FLT 33 data with Method C

An advantage of method C can be the determination
of the approximate position of the stucked surface which
can be useful in the reconfiguration control as pointed out
in Bauer et al. (2018) and Venkataraman (2018). This
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is shown in Figures 22 and 23. For FLT 32 the real stuck710

positions are 5−5.2◦ while the estimated ones are 5.2−7.7◦

whhich means an estimation error of 0.2− 2.7◦. For FLT
33 T1-T4 the real stuck deflections are 5.2− 5.7◦ and the
estimation errors are 1 − 2.8◦. For cases T5-T6 the real
values are 6.8◦ and the estimates diverge with maximum715

3.2− 5.2◦ errors but it should be considered that the time
lengths of fault presence are very short in these cases. It
would require new flight tests to test if this is always the
case for larger stuck positions even with fault presence for
longer time.720

Figure 22: Real and estimated right stuck elevon position for FLT
32 data with Method C

Figure 23: Real and estimated right stuck elevon position for FLT
33 data with Method C

Another way to compare the different filters is to con-
sider their state dimension which also gives a hint for on-
board runtime. Model A has 6 states, model B has 32
states (15 states lateral, 13 states longitudinal, 2x2 states
actuator model) and model C has 43 states (13 states by725

filter (3x13=39) and 2x2 states actuator model). So model
A has the lowest state dimension and so it would have the
shortest runtime, the second is model B and then model
C. On the other hand model A is only able to show that
there is a fault, model B shows also in which elevon it730

is and model C also estimates the approximate stucked
position. Downsampling method C to 46Hz can result in
only 31 states as it decreases the required number of delay
states so this is a possibility to make it faster. Summariz-
ing, selection of the best filter depends on several aspects.735

5. Conclusions

This paper presented three candidate methods for the
diagnosis of stuck elevon faults on a small unmanned air-
craft. The first (method A) is a baseline method that esti-
mates the residual of the roll rate by using a transfer func-740

tion aircraft model and the commanded aileron deflection.
The second (method B) is a robust LPV method that es-
timates the left and right elevon deflections and compares
them to the commanded values. The third (method C) is a
Multiple Model Adaptive Estimator including a nominal,745

a left stuck and a right stuck system model and selecting
between them based-on the residuals of some measured
parameters.

The three methods were compared using flight data
recorded on the unmanned aircraft. Method A has the750

fewest states (6) and method C has the most states (43).
However, the order of method C can be decreased to 31
which is close to the 32 states of method B. With regard
to the fault detection time, method B is the fastest and
method C is the slowest. Further, method C has the ad-755

vantage of no missed detections whereas methods A and B
missed the fault in one of the test points. Finally, method
A can detect the presence of the fault, method B can iso-
late whether it is the left or the right elevon that is stuck,
and method C can also estimate the fault magnitude.760

The selection of a particular method should be based
on the application requirements, such as runtime, fault de-
tection time, isolation requirement, and the requirement to
know the fault magnitude. Method B should be used if it is
sufficient to detect and isolate the fault. Method C should765

be used if the reconfigured flight controller also requires
an estimate of the fault magnitude, and the performance
deterioration from the flight mission after the fault is slow.
Since method A only detects the fault, it may be used with
a simple aircraft recovery system like a safety parachute.770

Appendix

The matrices listed here consider all the signals in SI
units. The state-space matrices of Glon are (with state

xlon = [q, w]
T

, input ulon = δe, and output ylon = q):

Alon =
[−5.487 −12.86

13.85 −5.688

]
, Blon =

[−185.7
−24.52

]
,
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Clon = [ 1 0 ] , and Dlon = 0. (15)

The state-space matrices of Glat are (with state xlat =

[v, p, r, φ]
T

, input ulat = δa, and output ylat = [φ, p, r]
T

):

Alat =

[−0.574 1.12 −15.3 9.78
−3.99 −11.3 2.5 0
0.311 −1.49 −0.944 0

0 1 0.0683 0

]
, Blat =

[−0.49
−201
−9.61

0

]
,

Clat =
[

0 0 0 1
0 1 0 0
0 0 1 0

]
, Dlat =

[
0
0
0

]
. (16)

The reformulated Glat2 model for MMAE design with

state xlat = [v, p, r, φ]
T

, input ulat2 = [δl, δr]
T

, and output

ylat2 = [r, φ]
T

):

Alat2 =

[−0.574 1.12 −15.3 9.78
−3.99 −11.3 2.5 0
0.311 −1.49 −0.944 0

0 1 0.0683 0

]
, Blat2 =

[
0.245 −0.245
100.5 −100.5
4.805 −4.805

0 0

]
,

Clat2 = [ 0 0 1 0
0 0 0 1 ] , Dlat2 = [ 0 0

0 0 ] . (17)

The delay in Gae
−τfs is first replaced with a fifth-order

Padé approximation. A balanced residualization of two
states yields GLa with the state-space realization:

Aa =

[−2.409 26.09 7.284 −7.204 12.42
−26.09 −7.319 −49.17 8.948 −32.95
7.284 49.17 −26.57 60.33 −56.4
7.204 8.948 −60.33 −15.56 150.4
12.42 32.95 −56.4 −150.4 −184.1

]
, Ba =

[−2.097
−3.114
4.485
2.465
5.982

]
,

Ca = [−2.097 3.114 4.485 −2.465 5.982 ] , Da = −0.06135.
(18)

The reader is referred to Venkataraman (2018) for ad-
ditional details on the aircraft model.
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