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Abstract—LIDAR sensors are part of the sensor system of
several intelligent vehicles and transportation systems providing
both object and free-space detection capabilities. In this paper
a recognition method is proposed for LIDARs with only a
few detection planes. Our method is especially useful in the
case when angular resolution of the scan is sufficient, but in
the vertical direction the planes are far from each other. The
proposed method uses new features including Fourier based
descriptor, deep learning classification and exploits additional
3D information if it is available. We tested the method on ten
thousands of samples from a large public database. This paper
gives an effective solution for a hard problem of LIDAR based
recognition problems, namely the far-object detection in case of
mobile LIDARs of limited or poor vertical resolution.

Index Terms—LIDAR, Intelligent vehicles, recognition

I. INTRODUCTION

Autonomous driving requires different sensor modalities to
work together in order to ensure safe transportation. There are
ways of task allocation between sensors which are proved to be
efficient, like using depth sensors as LIDARs for free-space
or object candidate detection, vision for object recognition.
However, relying only on one sensor in case of any task
(for example cameras for classification) is just not enough
to minimize probability of accidents in any circumstances
because of the limited capabilities of the sensors. That is why
we have to maximize the efficiency of each sensor modality
for each task. We aim to improve the overall classification
performance with LIDAR sensors in this paper.

Vehicles are frequently equipped with LIDARs with only
a few detection planes (e.g. SICK LD-MRS1 or Velodyne
VLP-162) or even with only one (e.g., SICK LMS5xx series3).
Dealing with LIDARs with many planes (e.g. Velodyne HDL-
644), we will experience that far objects will be represented
in only a few planes and they cannot be treated as point
clouds (Figure 1). In [1], the authors proposed a solution
for the relatively slow Automated Guided Vehicles, where a

1https://www.sick.com/us/en/detection-and-ranging-solutions/3d-lidar-
sensors/ld-mrs/c/g91913

2http://velodynelidar.com/vlp-16.html
3https://www.sick.com/us/en/detection-and-ranging-solutions/2d-lidar-

sensors/lms5xx/c/g179651
4http://velodynelidar.com/hdl-64e.html

3D reconstruction was made by fusing the separated planes.
However, in case of autonomous vehicles, their fast movement
requires even faster decision. In this paper we propose a
solution to this problem by handling all the object candidates
as set of plane curves. We will show that these plane curves are
suitable for object recognition and increasing number of scan
planes increases the recognition probability as well. Instead of
point clouds of very poor vertical resolution at far-distances,
we use the advantage of good in-plane resolution of few-layer
LIDARS, considering the under-sample situation at the vertical
direction.

Recent works (e.g. [2], [3]) show good detection perfor-
mance for a few categories (about 95 % recall for four
categories) in case of 2D LIDARs. We aim to enhance these
methods and apply to the present problem.

Fig. 1. Velodyne VLP16 sequence. Car represented only with 3 detection
plane (and so cannot be treated as point cloud) is marked with red points.
The car’s distance to the sensor is about 13 m.

Addressing the above problems usual in recognition tasks
from LIDAR point cloud we contribute a new methodology
listed now:

• New approach for description of plane curves.
• Object representation as set of plane curves with altitude.
• Convolutional Neural Network (CNN) with classification

at the output.
• Extension is possible for tracking and/or multiple planar

curves.
• Propose voting scheme in order to increase recognition

probability.
• Offer solution to recognition cases of limited number of

LIDAR planes scanning an object, including far objects
cut by only a few scan plane.
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II. RELATED WORKS

The related literature mainly corresponds to recognition of
objects realized with LIDAR sensors having one or only a few
planes. Methods working on 3D LIDARs have the potential
for the classification of several object classes, because these
methods have more information than in the case of dealing
with separated 2D LIDAR segments. Works like [4] and [5]
use 2D or 3D Convolutional networks for classification, but
they require point clouds as input. Compared to this, in work of
[1] a solution was proposed for the problem, where 2.5D point
clouds are not available, only partial (but connected) object
data. However, objects in the far plane cannot be handled
even with this type of methods, because they are scanned by
only a few unconnected 2D planar curves, so here a combined
approach is proposed.

The first applications related to object detection [6] and
tracking [7] with laser range finders have been already in-
troduced in the early 2000s. The primary goal of these early
approaches were to find and track people; more than one object
class was not considered. Today, it is still an actual topic in
robotics and autonomous driving. Now, the development of
sensors and computer vision algorithms offer the possibility
to consider more than one class to recognize even in this
planar contour data. [2] used the width of an obstacle and
the measured intensity. The authors were capable of differen-
tiating four categories with good accuracy based on euclidean
distance. Later, adding one more feature to the descriptor
(range variance) they were able to increase their classification
accuracy [8]. Another approach was presented in [9] where the
detected blobs were converted to a 5x5 binary image and SVM
was used to classify the objects as vehicles or pedestrians.
[10] propose a distant-invariant feature for segmentation and
detection of people without walking aids, people with walkers,
people in wheelchairs and people with crutches.

There are further works, gathering information from multi-
ple planes, either by using more than one planar LIDARs or
utilizing multi-planar ones. The authors of [11] detect different
body parts at different heights by using more than 10 features
acquired from the scans and AdaBoost algorithm to train a
strong classifier and based on that and their model they predict
people’s shape. A similar approach is presented in [12] but
they use multiple laser range-finder instead of a multi-layered
one and in [13] as well. [14] applied motion characteristics to
identify humans with baby cart, shopping cart or wheel chairs.

Summarizing, classification methods dealing with on one or
a few planar scans, most of the cases use tens of geometrical
features and Adaboost or neural network methods to build a
strong classifier ( [3], [15]). They do not use the information
provided via multiple planes (only for searching specific body
parts). A few classes are considered for detection. Most of
the time these methods are applied for the classification of
objects of industrial halls scanned with indoor sensors with
limited range (they also mostly depend on range and angular
resolution of the sensor). These tests have been executed on
a few thousands of samples [3]. Compared to these, we list

(a) Original frame

(b) Frame without ground and detected objects

Fig. 2. Example of preprocessing steps on KITTI tracking database

here the main advantages of our method:
• We propose a method for classification of data acquired

by LIDARs with a few layers and far field data of 3D
LIDARs with utilizing the multi-plane information.

• Our method is designed for outdoor object classification,
and it is suitable for several classes.

• We validated our method on ten thousands of samples.

III. OUR PROPOSED METHOD

In the following we will explain our method in details. First,
preprocessing steps will be described then the classification
procedure which is the contribution of the paper. We will
assume a few-layer LIDAR in the following.

A. Preprocessing

The input of the pipeline is a full scan of a LIDAR sensor,
which we call frame in the following. By segmenting the
ground we can detect objects clusters. Here, we are listing
known methods that we used in our experiments:

• Ground detection: M-estimator SAmple Consensus
(MSAC) Plane fitting [16]. MSAC uses the loss function:

Loss(e) =

{
e2 |e| < T

T 2 otherwise
(1)

where e is the error and T is the threshold for inliers.
• Object detection: Euclidean cluster extraction [17] with

distance varying neighborhood radius.
Illustration of these processing steps can be seen on Fig. 2.
After we found object clusters, if an object is represented on
more than one ring, we segment it to plane curves in order to
separately evaluate it.



Fig. 3. Example of description of a car from 5 segments (Purple: Curve 1,
Green: Curve 2, Blue: Curve 3, Red: Curve 4, Black: Curve 5)

B. Descriptor and classification
Here, we assume that objects are represented by plane

curves. In our experiments we used a fx(n + 6) matrix as
a descriptor of LIDAR segments. Here f is the number of
curves representing an object and n is the number of Fourier
descriptor components we use (n is also the minimum number
of points which can construct a segment). In the following it
will be explained how it is composed.

1) Fourier descriptor: Instead of extracting geometric fea-
tures from curves, we found that utilizing a descriptor which
can be used to reconstruct the curve exactly [18] gives better
classification results. Fourier descriptor is applicable on closed
contours, we construct a closed contour from the segment by
adding to the original 2D cloud its points in reverse order
[19]. By subtracting the mean from the 2D point cloud and
by using the absolute value of the Fourier transformed contour
we get a translation and rotation invariant representation of the
plane curve. This representation also shows robustness against
varying point density.

2) Statistical measures: Other than shape properties of
the plane curve are stored in a simple form. The mean and
standard deviation values of altitude, distance to the sensor
and intensity values are also part of our descriptor.

3) Multiple plane: We use the f geometrically nearest
curve of the same object, these will form the rows of our de-
scriptor matrix. In our experiments we used f = 5 and n = 5,
if the object has f < 5 curves, we used the original curve
more than once in order to always get 5x(5 + 6) descriptor
dimension. As tested, this simple but useful replication solved
the lack of enough samples at the input. The descriptor matrix
is illustrated on Fig. 3 and Table I.

4) Classification: For the classification of the objects we
use a Convolutional Neural Network [20]. The network archi-
tecture we used can be seen in Fig. 4. We use this classifier
and this structure because we found it to be superior to other
classifiers we tried in case of our descriptor (e.g. multilayer
fully-connected network, Nearest Neighbor Classification or
Support Vector Machine [21]) and it also has the advantage
of grouped curve classification. This model is prepared for
using 5 segments from an object as input.

5) Voting: We applied voting scheme in cases when an
object was built up from more than 5 planar curves. Each
of the segments is evaluated separately, but the final decision
is made at the object level.

C = argmaxiNi (2)

TABLE I
THE (TRANSPOSE MATRIX OF THE) DESCRIPTOR OF THE 2D POINT CLOUD

SET ABOVE (FDX INDICATES THE XTH FOURIER COMPONENT, Z IS THE
ALTITUDE, R IS THE DISTANCE TO THE ORIGIN AND I MEANS INTENSITY)

Curve 1 Curve 2 Curve 3 Curve 4 Curve 5

FD1 0.2477 0.2774 0.3139 0.2839 0.3363

FD2 0.0774 0.0642 0.0418 0.0555 0.0504

FD3 0.0312 0.0649 0.0268 0.0253 0.0394

FD4 0.0203 0.0380 0.0128 0.0081 0.0390

FD5 0.0120 0.0361 0.0171 0.0299 0.0178

mean(z) -0.1315 -0.6662 -0.8657 -1.1011 -1.3704

std(z) 0.0021 0.0023 0.0023 0.0037 0.0041

mean(r) 42.8106 41.5523 41.0485 40.7877 40.8404

std(r) 0.2516 0.1127 0.0857 0.1172 0.1063

mean(I) 0.0 0.0 0.0 0.1808 0.0793

std(I) 0.0 0.0 0.0 0.2080 0.1044

Fig. 4. Network architecture: all convolutional layers are followed by ReLUs
and the fully-connected layer is followed by a softmaxlayer not illustrated in
the scheme.

where C is the final decision about the object class, i is the
class number and Ni is the number of vote for the ith class,
which we get by counting the all the segments classified as
member of the ith class from all the n segments of the object.

Ni =

n∑
j=1

[Sj = i] (3)

IV. TEST RESULTS

For the comparable test purposes we used the well-known
KITTI database including Velodyne 64 data, for which we
randomly selected out the vertically far under-sampled planes,
which results infrequent random few-plane sampling. We have
also tested other devices, like Velodyne VLP-16 and Qunaergy
M8 5 in real-word conditions with similar results, however
there were not enough annotated data to show relevant com-
parison here. So, we conducted our quantitative, proof of
concept tests in the training set of the KITTI tracking database
[22]. In this set labeled objects are annotated through different
number of frames in 21 sequences. It allows us to investigate
our classification algorithm independently from the quality
of the preprocessing. In these tests we gathered all the not
occluded and not truncated objects from 8 categories (car, van,

5https://quanergy.com/m8/



truck, pedestrian, person sitting, cyclist, tram, misc) having at
least 1 segment with minimum 5 points. These objects were
cut out based on their annotated 3D bounding box and then
we divided them into segments by the scanner planes. This
resulted us 197,256 samples, which we divided into training
(70 %), validation (15 %) and test (15 %) sets randomly,
however there were completely new sequences in the tests as
well. From the original KITTI categories of car and van and
also pedestrian and person sitting are combined, because they
are ’neighboring’ categories. The categories are the following:
1: Car and Van, 2: Truck, 3: Pedestrian and Person Sitting, 4:
Cyclists, 5: Tram, 6: Misc.

First, we tested our method on single planar segments
without using information from the neighboring curves with
one (n + 6) data vector at the input. The result is visible
in Table III. We implemented this in order to be able to
compare our method to the state of the art one applied on
2D LIDAR databases. The method proposed in [2] and [8]
was tested in our database (Table II). In the test of Table II a
nearest neighbor classification was made based on Euclidean
distance to the train database built from width, range variance
and intensity data as the authors of [8] proposed. Comparing
results of Tables II and III it can be seen that our method
is superior in almost every aspect. However, our method has
been developed for multiple curves, so if we use information
of them and voting scheme we get significant improvements.
Confusion matrices for these cases are shown in Tables IV
and VI. Table IV uses 5 planar segments of an object as CNN
input, Table VI uses only 1 planar segment as CNN input,
but voting is applied on object level on the output. In the
second way all the segments of an object can be considered for
the decision. Average F-measure is indicated as F , F-measure
weighted by sample number of each category denoted by Fw:

Fw =
∑

Fi ·
ni

N
(4)

Where Fi is the F-measure and ni is the number of samples
of ith category, and N is the cardinality of all the samples.

TABLE II
CONFUSION MATRIX FOR SINGLE PLANAR CURVES BY METHOD

PROPOSED IN [2], [8]. (1: Car and Van, 2: Truck, 3: Pedestrian and Person
Sitting, 4: Cyclists, 5: Tram, 6: Misc)

1 2 3 4 5 6 Precision
(%)

1 10024 460 1136 289 16 267 82.2

2 466 464 281 31 12 43 35.7

3 1146 314 11170 924 2 112 81.7

4 325 32 919 541 0 40 29.1

5 18 12 2 0 15 1 31.3

6 255 46 103 40 1 81 15.4

Recall
(%) 81.9 34.9 82.1 29.6 32.6 14.9 F :0.4595

Fw:0.753

TABLE III
CONFUSION MATRIX FOR SINGLE PLANAR CURVES BY OUR PROPOSED

METHOD. (1: Car and Van, 2: Truck, 3: Pedestrian and Person Sitting, 4:
Cyclists, 5: Tram, 6: Misc)

1 2 3 4 5 6 Precision
(%)

1 11876 337 232 168 26 330 91.6

2 175 974 0 3 14 58 79.6

3 113 4 12395 776 0 74 92.8

4 47 10 970 874 0 48 44.8

5 0 0 0 0 6 0 100.0

6 23 3 14 4 0 34 43.6

Recall
(%) 97.1 73.3 91.2 47.9 13.0 6.3 F :0.572

Fw:0.878

TABLE IV
CONFUSION MATRIX FOR PLANAR CURVES BY OUR PROPOSED METHOD,

USING MAXIMUM 5 SEGMENTS OF AN OBJECT AS DESCRIPTOR (CNN
INPUT). (1: Car and Van, 2: Truck, 3: Pedestrian and Person Sitting, 4:

Cyclists, 5: Tram, 6: Misc)

1 2 3 4 5 6 Precision
(%)

1 11957 286 67 90 13 299 94.1

2 205 1031 0 0 20 93 76.4

3 24 1 13182 914 0 105 92.7

4 41 10 361 822 0 28 65.1

5 0 0 0 0 13 0 100.0

6 7 0 1 0 0 19 70.4

Recall
(%) 97.7 77.6 96.9 45.0 28.3 3.5 F :0.619

Fw:0.902

TABLE V
CONFUSION MATRIX FOR PLANAR CURVES (OF FAR OBJECTS) BY OUR
PROPOSED METHOD, USING MAXIMUM 5 SEGMENTS OF AN OBJECT AS

DESCRIPTOR (CNN INPUT). (1: Car and Van, 2: Truck, 3: Pedestrian and
Person Sitting, 4: Cyclists, 5: Tram, 6: Misc)

1 2 3 4 5 6 Precision
(%)

1 1119 1 0 7 5 12 97.8

2 31 2 0 0 2 0 5.7

3 3 0 310 23 0 1 92.0

4 0 0 4 10 0 2 62.5

5 0 0 0 0 0 0 0.0

6 3 0 0 0 0 6 66.7

Recall
(%) 96.8 66.7 98.7 25.0 0.0 28.6 F :0.465

Fw:0.939



TABLE VI
CONFUSION MATRIX FOR PLANAR CURVES BY OUR PROPOSED METHOD

AND VOTING USING ALL THE SEGMENTS OF AN OBJECT (AFTER CNN
OUTPUT). (1: Car and Van, 2: Truck, 3: Pedestrian and Person Sitting, 4:

Cyclists, 5: Tram, 6: Misc)

1 2 3 4 5 6 Precision
(%)

1 12170 62 8 61 15 373 96.0

2 62 1266 0 0 18 42 91.2

3 1 0 13444 755 0 79 94.2

4 0 0 157 1009 0 46 83.3

5 0 0 0 0 13 0 100

6 1 0 2 0 0 4 57.1

Recall
(%) 99.5 95.3 98.8 55.3 28.3 0.8 F :0.660

Fw:0.932

The confusion matrix in Table III shows that even one 2D
contour can produce good initial results with our method,
and both using multiple curve information Table IV and
simple voting scheme VI is effective to increase the accuracy
of the classification even more. Detailed results divided by
categories:

• The results of car and pedestrian categories are convinc-
ing both in terms of precision and recall.

• The performance in case of truck category is acceptable,
the main source of confusion is that they are frequently
categorized as Car or Van, which can be reasonable.

• There is a similar situation in case of cyclists, which are
frequently categorized as Pedestrian or Person Sitting.
The performance measurements in case of this category
are not satisfying in case of 2D contours, but it has to
be noted there were much less samples in this case. If
we merge this category to the other human related one
(pedestrian and person sitting), we get cc. 99 % precision
and recall for this category and about 0.96 F-measure
weighted by sample numbers of each category.

• The results on tram class are hardly sufficient, the recall
of the category is increasing by using multiple curves of
the same object and voting. However, it is not represen-
tative because of the very small number of samples.

• Finally, in case of misc category our proposed method did
not performed well at all, because of the variety of the
objects hard to identify in 2D contours and distinguish
from vehicles (e.g. trailer, caravan).

In Table V a separate evaluation is presented for far objects.
Here an object is considered far if it builds up from maximum
five scan planes. In this case the average distance of center of
gravity from the sensor is about 38.5 m. The table shows that
the increasing distance does not influence the method. Note
that: some categories are not present in the far field in this
database or just with very few samples, results about these
cases are not representative.

(a) Car (b) Cyclist

Fig. 5. Far object examples of the KITTI database: the colors of the points
correspond to the output category of the algorithm (Red - Pedestrian, Purple
- Cyclist, Blue - Car, Green - Truck).

We present a comparison (Table VII) with state of the art 3D
recognition method as well. The test dataset is presented in [4],
it contains segmented objects. Intensity data is not provided,
so it was left out from our descriptor. There are four object
categories in this urban data, namely: vehicle, street furniture,
pedestrian and facade. Results show that our method perform
better in case of almost every measure. Vehicle category is
an exception, however, authors of [4] execute a contextual
refinement for this class.

TABLE VII
RESULTS OF BUDAPEST DATASET [4]

Categories Precision (%) Recall (%) F-rate
[4] proposed [4] proposed [4] proposed

Vehicle 98 96 99 94 0.99 0.95

Street
Furni-
ture

92 94 97 100 0.94 0.97

Pedestrian 78 97 78 100 0.78 0.98

Facade 93 90 77 97 0.84 0.94

Average 90 94 87 98 0.89 0.96

Fig. 5 shows examples of categorized plane curves. The
results are promising considering that pedestrian detection
robust against about 30 % occlusion [23] on 2D images, and
in a similar dataset [22] best detection results using both
vision and LIDAR data [24] is about 82 % for cars and
less for pedestrians and cyclists. In Fig. 6 an illustration
of the executed tests are visible, respectively from Tables
III, IV and VI. In Fig. 6(a) one can observe that, human
segments of cyclists objects are frequently categorized as
pedestrian (and also some cases car segments categorized
as truck). In Fig. 6(b) single mis-categorized curves are not
present; different decision clusters can be seen in one object
by evaluating 5 neighboring curve simultaneously. Finally,
in Fig. 6(c) decisions are made on object level by voting
of separately evaluated curves of an object; here most of
the cyclists are predicted correctly, however some of them
predicted as pedestrian.

V. CONCLUSIONS

In the paper we proposed a novel 2D recognition method
using additional 3D information if it is available. This method
is designed to solve the recognition problem of far objects



(a) Separately evaluated single planar curves in CNN

(b) Maximum 5 scans evaluated simultaneously in
CNN

(c) Object level voting on separately evaluated single
planar curves in CNN

Fig. 6. Examples on KITTI database (Colormap: Blue - Car and Van, Green
- Truck, Red - Pedestrian and Person sitting, Purple - Cyclist, Cyan - Tram,
Yellow - Misc).

from LIDAR clouds or the general recognition problem for
a few layer LIDARs. We demonstrated that our method is
capable of categorizing noisy 2D clouds on a large public
database. We proposed a method with the advantages of being
model-free and also designed for outdoor objects by being
invariant of the sensor we use. We compared it to a method
used for object detection in 2D LIDAR clouds, our method is
proved to be superior. In case of 5 categories 0.96 F-measure
is reachable. We compared our method to 3D recognition
methods as well. Our proposed method using CNN deep
learning makes possible the grouped valuation of multiple
planar curves (on the local or temporal - during tracking -
neighboring planes). We suggest to use it as extension to 3D
recognition methods on environment they cannot process. In
the future we would like to combine our method with tracking
to increase the recognition performance, evaluate the method
on different databases, implement more sophisticated decision
and execute remote scanning (far object) tests.
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