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Abstract: Almost half of the greenhouse gas emission from the energy sector in the world is 

related to heat demand. The development of nuclear cogeneration offers a convenient option 

for emission reduction; however, the examination of economic constrains is essential. This 

study focuses on the heat demand of households in the vicinity of Paks NPP and compares 

the economic and environmental aspects of several domestic heating alternatives. In the first 

part of our work, we analyze the competitiveness of nuclear cogeneration in the district 

heating sector. While in the second part we consider, the optimal heaters for different 

building typological groups by taking into account some economic and environmental 

aspects, the distance from Paks NPP and the heat demand density. We have found that the 

development of nuclear cogeneration is economically viable for the existing district heating 

network,above a carbon price of 5 Euro/ton of CO2. In a region of high heat demand density, 

the nuclear cogeneration-based district heating can be competitive with stand-alone heaters, 

in particular when the environmental external costs are considered, as well. 

Keywords: heat sector; district heating; cost-benefit analysis; optimization 

1 Introduction 

The present paper evaluates the potential reduction of greenhouse gas (GHG) 

emission from the domestic heat sector by harnessing nuclear cogeneration. The EU 

has adopted challenging carbon emission reduction targets that will require a 

substantive change in the energy sector. A district heating alternative, where the 

heat is produced by nuclear energy and transported by hot water pipe systems to the 

buildings, has a high potential to contribute to the achievement of these targets. 

International reports demonstrate numerous excellent examples for nuclear 

cogeneration; and based on world energy statistics, the direct heat consumption ratio 
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is around 1% globally [20]. In Hungary, nuclear energy-based district heating is an 

old-established method for low carbon residential heating. However, national 

statistics show that the heat consumption ratio at Paks NPP is far below the 

international level (Table 1). Paks NPP has four pressurized water reactors with 

freshwater cooling (VVER-440 Model V213) which supplyheat for 2600 

households located at a distance of 4.5 km on average. 

Table 1 
Heat consumption ratio at Paks NPP [18] 

Waste heat Electricity Heat consumption 

65.7% 34% 0.3% 

Although nuclear cogeneration has a negligible share in the Hungarian district 

heating sector nevertheless it is very cost effective as the heat price is extremely low 

in Paks (Table 2). 

Table 2 

District heating costs (for a 50 m2 flat) in Hungary [8]. In Paks, the annual cost is far below the 

Hungarian average cost, however, the size of demand side is limited 

Paks Szarvas Average 

Nuclear Geothermal Natural gas 

150.80 €/a 288.38 €/a 596.55 €/a 

The first subject of this study was to identify the conditions where a nuclear energy-

based district heating system (with transmission pipelines) could substitute a natural 

gas-based district heating system on a pure economic basis. In this part of the 

calculations, main input variables included fuel, nuclear heat and capital costs. The 

impact of different carbon prices was examined in a sensitivity analysis. The second 

part of this study was aimed at a cost comparison of nuclear-energy based district 

heating and conventional heating systems. This comparison was carried out using a 

standardized heat demand profile. The final results of the analysis enabled the 

assessment of the optimal heat supply portfolios in the subsequent part of this study 

where a general approach is presented for the selection of optimal residential heat 

supply portfolios, based on economic and environmental aspects. The resulting 

complex heat supply portfolios should be suitable to cover the seasonal heat demand 

profiles of different building typological groups. The guiding principle for the heat 

supply portfolio optimization was a distinction between the alternatives based on 

their fixed and variable costs. Fixed costs do not change with the energy production 

while variable costsare highly correlated to it. The alternatives that have moderate 

variable costs should cover the base load, while heaters having lower fixed costs 

should supply the peak demand. Although the main focus of this paper is the 

reduction of GHG emission, fixed and variable costs played a central role in the 

comparison of the heating alternatives. 



Acta Polytechnica Hungarica Vol. 15, No. 6, 2018 

 

– 65 – 

2 Methodology 

In the economic assessment of nuclear cogeneration, the fuel costs and the operation 

and maintenance (O&M) costs of existing natural gas-based district heating systems 

were considered as “base case”; they were compared to the costs of the nuclear heat 

supply, including the investment costs of a transmission pipe system and its 

corresponding O&M costs [1]. In a simple cost-benefit analysis, we focused on the 

payback time of the investment costs considering the decrease in heat production 

costs. The technical lifetime of the existing heaters was extended to the end of the 

examined time interval; therefore, the costs of a retrofit were beyond the scope of 

this study. It should, however, be noted that the technical lifetime of heat 

transmission pipelines is extremely long (50-60 years) compared to natural gas 

boilers (25-35 years) or to the remaining lifetime of Paks NPP (20-25 years). The 

time horizon for this study was defined around 20-40 years to reduce the uncertainty 

in the calculations; at the same time, an uninterrupted availability was assumed for 

the nuclear energy generation (future Paks II NPP). In the net present value (NPV) 

calculation, the investment costs are realized in the starting year (Cn, n=0) and were 

“discounted” to the present value of costs. As an extension of the district heating 

system, a pair of insulated pipelines of near-surface installation in rural land, several 

pump stations and a heat exchanger unit at the power plant were considered when 

calculating the net present value of costs [5]. Sizing has a strong influence on costs. 

In general, the transmission pipeline should have a capacity that is equivalent to 

50% of the thermal peak demand and can cover 85% of the thermal energy 

consumption. The annual difference between the fuel and O&M costs of the natural 

gas-based heat supply and the nuclear energy-based heat supply (Bn; n=1,...,40) was 

discounted and summed up to the present value of benefits. The discount rate and 

the examined time horizon were chosen as r=4% and 40 years, respectively (1)-(3). 

The specific cost of the nuclear heat was estimated from the base load electricity 

prices, the efficiency of the nuclear power plant and the O&M costs of the 

transmission pipeline. In case of the existing natural gas-based district heating, the 

fuel and O&M costs of a thermal power plant were considered. 

The present values of the stream of benefits and costs are as follows: 

, (1) 

. (2) 

The assessment of the overall economic impact over the whole lifetime of the 

project was done by calculating the net present value: 

. (3) 

Unfortunately, the long time horizon along with the assumption of constant fuel 

prices and O&M costs involves a degree of uncertainty in the calculations. Since 
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the forecasted costs (fuel and carbon price, neglected retrofit of gas boilers…) raise 

the revenues of the investment significantly, our calculations can be considered like 

a “worst-case study”. A further question was whether the enlargement of the 

existing district heating network that is presently coupled with large-scale multi-flat 

buildings is appropriate. For a comparison, three building typological groups were 

defined: large-scale multi-flat buildings, medium-scale multi-flat buildings and 

single family houses with state-of-the-art heating alternatives [4]. In these three 

groups, the heat demand densities are different; and their influence on the capital 

costs of the extension of the district heating network is significant [14]. The 

comparison is based on a uniform assumption on the heat demand of households (a 

thermal peak load of 10.6 kW), disregarding the fact that the average area and the 

energy needs are different for the three building typological groups. The annual 

costs of residential heating for this standardized heat demand were compared to 

each other, respecting the technical lifetime of the alternatives (at a discount rate of 

4%). Of course, we assumed ideal operating conditions when applying this 

approach; we took into account the maximum possible full load hours for the 

comparison of the alternatives, by calculating specific heat prices [3]. In addition to 

the techno-economic evaluation, also the impacts of the carbon emission prices and 

the external costs of the environmental impacts were taken into account as two 

separate assessments. The environmental impact assessment was based on the 

forecasted external costs of state-of-the-art technology options for year 2020 [15]. 

Subsequently, the optimal portfolios of heating alternatives for local communities 

were evaluated in the scope of this study: starting from a pure economic analysis 

(i.e. variable and fixed costs while neglecting carbon prices), involving the carbon 

costs additionally, and finally, the environmental impacts of the 25 technologies. 

The methodology of the transportation problem [6] was chosen to determine the 

optimal portfolio where the 25 alternatives (a1,…a25) represent the supply points 

with set , and the three building typological groups are the demand 

points. The seasonality of the heat demand requires a detailed monthly data set for 

each building typological group (w1...w12,w13 …w24,w25…w36) where . 

The alternatives represented by the supply points were assigned to the installed 

capacities (p1,…p25). The monthly maximum (j) of heat generation eijcan be 

calculated by using the installed capacity pi. The value of eij is equal to the product 

of the installed capacity and the empirical utilization time [10], [11]. 

Generally, the maximal value of empirical utilization time, which is approximately 

equivalent to a capacity factor of 50%, can be used constantly all over the year. 

However, in the cases of the air source heat pumps and the solar thermal alternatives 

[17], also a seasonal effect appears in the coefficienthij. The variable xij represents 

the actual amount of heat produced at supply point i in month j. For each unit of 

heat produced at the supply point i and shipped to the demand point j incurs a 

constant per unit variable cost (cij); nevertheless, instead of the general case,a more 

realistic constant per unit variable cost was used in the present paper. 

 25,...,1I

 36,...,1J

iijij phe 

iji cc 
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Although the described problem is essentially similar to the transportation problem 

[4], nevertheless, the facts that the pi’s are variables and they appear in the objective 

function with constant fixed cost coefficients (di), indicate that a slightly modified 

method is needed (Table 3). 

Table 3 

Variables of the transportation problem 

heating 

alternatives 

single family 

houses 

medium-scale 

multi flat 

buildings 

large-scale multi 

flat buildings 
 

Natural gas 

stand-alone 

heater 

x1,1 … x1,12 x1,13 … x1,24 x1,25 … x1,36 p1 

: 

: 

: 

: 
 

: 

: 

: 

: 
 

: 

: 

: 

: 
 

: 

: 

: 

: 

Solar thermal 

district 

heating 

x25,1  x25,12 x25,13  x25,24 x25,25  x25,36 p25 

 w1 … w12 w13 … w24 w25 … w36  

The demand constraints of the problem could be interpreted as 

        (4) 

and the supply constraints in the form of . Based on the installed 

capacities , as variables, the supply constraints can be converted into the form: 

 (5) 

for each month and building typological group j. The variable xij could be 

interpreted as the “partialuse” of capacity  in month j, with the formula: 

, where  for each alternative i and month j. Also, the constrains 

and sign restrictions  need to be transformed: 

, (6) 

and after completing by the objective function 

 (7) 

the mathematical optimization results in a linear programming (LP) problem. The 

problem defined by (4)-(7) could be summarized in a standard form: 
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 (8) 

 (9) 

 for all  and  (10) 

 and  for all  and  (11) 

where the formulas (8) and (10) can be replaced by: 

 ;    (12) 

The optimal solution of this linear programming problem provides the preferential 

portfolio of the heating alternatives. 

However, an alternative interpretation of the problem described above could be a 

continuous relaxation of the simple facility location problem [7]. The basic idea of 

this alternative interpretation is the new expression of z objective function with 

discrete  values, where . The solution of the simple facility 

location problem can be realized by a dynamic algorithm based on the knapsack 

problem. This approach, with a simple algorithm, is commonly used in the different 

fields of energy [9], [16]; however, this interpretation emphasizes the special 

characteristics of the results. The very first step of the algorithm is the definition of 

the knapsacks by increasing series of the constants of the demand constraints 

 for all building typological groups j=g(s), s=1,...,12. The knapsacks are 

defined by 12 demand increments , . Each knapsack 

s is represented by the increasing installed capacity of i alternatives 

 to supply the  demand increments. Likewise, any s 

knapsacks and each alternative i are interlinked with  costs. 

The most favourable  alternative supplies the  demand increments of the 

knapsacks s. At the same time, the dynamic algorithm of the knapsack problem 

generates the special structure of the monthly heat supply and the installed capacity 

in the most beneficial way, 

 (13) 

that can be considered as an optimal solution to the simple facility location problem. 
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Proposition 1. The substitution of the monthly heat supply from a 

given alternative i of installed capacity in a mixed heat supply of

by newly installed capacities of ,  is disadvantageous in the 

optimization process, if  satisfies the following inequalities: 

  for each .  (14) 

Proof.Let Q be a selection of heating alternatives in an optimal solution. Then 

 for all  where . Consequently, the monthly 

heat supply  for the whole year can be guaranteed by installed capacity . If 

we transform the arrangement of the monthly heat supply 

where  , 

furthermore, for all there exists a  where 

, then along with the constrains (14) 

and , these together result in

       ■ 

 

Figure 1 

Knapsack replenishment with newly installed capacities 
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Based on these results, we conclude that a homogeneous supply of the monthly heat 

demand increments is more advantageous than the intermittent heat supply from 

newly installed capacity (Fig. 1). 

Proposition 2. The substitution of the monthly heat supply from a given alternative 

i of an existing  installed capacity by the heat supply from an existing  

installed capacity is disadvantageous if 

 (15) 

for all installed capacities  where (Fig. 2). 

 

Figure 2 

Knapsack replenishment with existing capacities 

Proof. For each installed capacity there exists an annual amount of heat 

supply ,  such that 

 and   (16) 

By the reason of constrains (15)-(16), we can identify the inequality

 where the quotient  cannot be positive, therefore 

 . Accordingly, the substitution of the heat supply from a given alternative i 

of an existing  installed capacity by another, existing alternative of heat supply, 

results in a higher objective function value. ■ 

The conclusion of the two propositions is that the supply of heat demand increments 

 should be provided in a homogeneous way for an optimal solution. 

In the present study, the proposed problem was solved in the same way as a LP 

problem in GAMS environment [19], furthermore, by the dynamic algorithm of the 

knapsack problem. The negligible differences in the final results of the objective 

function values were related to round-off errors. 
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3 Results 

The detailed analysis suggests that the substitution of the natural gas-based district 

heating by nuclear cogeneration can be beneficial, considering the lower fuel costs, 

O&M costs and carbon costs. The effects of two variables (heat demand e and 

distance of transport t) are crucial to the cost-benefit analysis. Analogously, the 

NPV of the optional extension of the nuclear cogeneration depends on variablese 

and t, therefore a multivariable NPV(e,t) function can be defined. The NPV(e,t) 

decreases as a function of the distance and increases as a function of the heat 

demand volume, i.e.  and . The limitcurve defined 

by NPV(e,t)=0 determines the minimal heat demand values where the investment 

can be economically viable. Based on the analysis, it is worth to compare the annual 

heat demand of some existing district heating networks in the region of Paks with 

the position of the limit curve. 

 

 

Figure 3 

Towns in the region of Paks where the nuclear energy-based district heating can be competitive (40 

years long payback period; 4% discount rate; carbon price of 5 Euro/ton of CO2) 

As it can be seen (Fig. 3), there are two towns, Paks (having an existing system) and 

Szekszárd that have sufficient heat demand to be supplied by nuclear heat in an 

economically viable way; both of them are above the limit-curve. On the basis of a 

partial sensitivity analysis, a supply to Dunaújváros would require a carbon price of 

at least 25 Euro/ton of CO2,being considerably higher than the actual price (carbon 

emission price in 2015: 4.5-4.9 Euro/ton of CO2). At present conditions, a nuclear-

based heat supply is only feasible to Szekszárd where the payback period was 

evaluated at different carbon prices (Fig. 4). 
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Figure 4 

Time evolution of NPV for nuclear energy-based district heating at Szekszárd with different carbon 

prices 

An increase in the carbon prices impacts the basic level of revenue and shortens the 

payback period of the project. In case of Szekszárd, the NPV of the investment 

reaches zero in 38 years when considering the present carbon price. In order to 

shorten the payback period to 20 years, a carbon price of 41 Euro/ton of CO2 would 

be necessary; however, it should be noted that some low carbon scenarios predict 

even higher values than that in the energy sector. Shorter payback time seems to be 

not realistic as a payback time of 10 years would require a carbon price of 123 

Euro/ton of CO2. 

As mentioned above, it was an important additional point of our study if the 

extension of the district heating network could be an economically viable solution 

to cover the expected increase in the heat demand [13]. This question was addressed 

from the point of view of the residential sector. The comparison of the heating 

alternatives was done by using a standardized heat demand profile for the three 

building typological groups and, additionally, the carbon price (17 Euro/ton of CO2) 

and the external costs of environmental impacts were taken into account as two 

separate assessments. In comparison, the nuclear heat was the most favorable 

alternative for the large-scale multi flat buildings (LMB), by supposing a high 

penetration of the district heating network (Fig. 5). In case of the group consisting 

of medium-scale multi flat buildings (MMB), the nuclear district heating is 

competitive only when also the environmental external costs are considered in the 

assessment. Finally, the stand-alone heating could be the favorable option in cases 

of single family houses (SFH) as a result of the higher capital cost of the district 

heating installation. 
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Figure 5 

Annual cost of residential heating for a standardized case (140 m2 ; 10.6 kW). The fixed cost of the 

nuclear district heating includes the costs of a 30 km transit pipeline. SH: Stand-alone heater; DH: 

District heating 

The detailed comparison of the heating alternatives enables the selection of the 

optimal heat supply portfolios of the households, which are suitable to cover the 

seasonal heat demand profiles of the different building typological groups. Three 

portfolios were selected for each building typological group  (Figure 6 and 7). 
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Figure 6 

Optimal heat supply portfolios of single family houses for three cases: considering the fixed and 

variable costs only (top); including the carbon price additionally (middle) and finally, the external costs 

of environmental impacts (bottom) 
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Figure 7 

Optimal heat supply portfolios of medium-scale multi flat buildings for three cases: considering the 

fixed and variable costs only (top); includingthe carbon price additionally(middle) and finally, the 

external costs of environmental impacts (bottom) 

In the first case, fixed and variable costs were considered only (neglecting carbon 

prices). In the second case, carbon prices were added, as well, and in the third case, 

also the external costs of the environmental impacts were taken into account. In 

cases of single family houses, the portfolios consist of three stand-alone heating 

technologies (biomass, ground source and natural gas-based heating). The base heat 

demand is supplied by ground source heat pumps while the peak load is covered by 

the natural gas based-heating; their ratio is different in the three scenarios. When 
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considering a carbon price of 17 Euro/ton of CO2 in the assessment, the installed 

peak load capacity of 64 MW of natural gas-based heating decreases to a half of its 

initial value; at the same time, the installed capacity of ground source heat pumps 

is constantly 23 MW in both cases (i.e. carbon prices neglected vs. included). In the 

third case, where the external costs of environmental impacts were considered, as 

well, the biomass capacity that was significant in the first two cases (112 MW 

without carbon prices and 146 MW with carbon prices) is not part of the energy 

mix; the role of the biomass combustion was replaced by 145 MW installed capacity 

of ground source heat pumps. 

In case of the medium-scale multi flat buildings, the share of the stand-alone heater 

technologies is reduced because of the building structure; at the same time, the 

higher heat load density makes the district heating more attractive economically. 

The peak load is covered by natural gas-based heating of 17 MW installed capacity. 

Similarly to the single family houses, the installed capacity of natural gas based 

heating halves after considering the carbon price. Furthermore, 35 MW installed 

capacity of stand-alone biomass heating was replaced by the nuclear district heating 

after taking into account the external costs of environmental impacts in addition to 

the carbon price. 

In the building typological group of the large-scale multi flat buildings, the feasible, 

competitive heating technologies are, with no exception, the district heating-based 

alternatives. In the first assessment, the 29 MW of nuclear base demand capacity 

was complemented by 14 MW installed capacity of natural gas-based heat in peak 

load. The installed capacity of the nuclear-based district heating increases to 31 MW 

after considering the carbon price, and it reaches 36 MW after taking into account 

the external costs of the environmental impacts, as well. 

Conclusions 

The aim of this study was to identify the potential costs and benefits of the 

development of the nuclear energy-based district heating. The main benefit of 

moving towards the district heating is expected from the carbon emission savings it 

can provide. Since a conservative approach was applied in our calculations with no 

exception, results can be considered as “a worst-case study”. At present conditions, 

Szekszárd is the only potential new location for nuclear-based heat consumption; 

however, the long payback period resulting from high capital costs and low carbon 

prices increases the risk of investment. Overall, we conclude that a governmental 

guarantee (assurance of nuclear heat in the long term) and the enlargement of the 

group of customers (by medium-scale multi flat buildings) could promote the 

investment. For single family houses, the low heat demand density is an obstacle to 

the development of the district heating, but the installation of heat pumps could 

contribute to reaching the carbon emission reduction targets. In the optimal heat 

supply portfolio calculation for households, the variable costs increase significantly 

when considering the external costs. Therefore, the alternatives of higher fixed costs 

could be competitive in the energy mix of the heat sector. The method presented in 
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our study was finalized by conducting a partial sensitivity analysis to assess the 

influence of carbon prices. However, the sensitivity analysis could be extended to 

any other variable by a statistical approach [12] or by multiobjective optimization 

[2]. 
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