
Enabling Scientific Workflow and Gateways using
the standards-based XSEDE Architecture

Shahbaz Memon and Morris Riedel
Jülich Supercomputing Centre

Forschungszentrum Jülich GmbH
Jülich, Germany

School of Engineering and Natural Sciences
University of Iceland

Reykjavik, Iceland

Andrew Grimshaw and Daniel Dougherty
Department of Computer Science

University of Virginia
Charlottesville, USA

Helmut Neukirchen and Matthias Book
School of Engineering and Natural Sciences

University of Iceland
Reykjavik, Iceland

Peter Kascuk, Márton István and Ákos Hajnal
Laboratory of Parallel and Distributed Systems

Hungarian Academy of Sciences, Budapest, Hungary

Abstract—The XSEDE project seeks to provide “a single
virtual system that scientists can use to interactively share com-
puting resources, data and experience.” The potential compute
resources in XSEDE are diverse in many dimensions, node
architectures, interconnects, memory, local queue management
systems, and authentication policies to name a few. The diversity
is particularly rich when one considers the NSF funded service
providers and the many campuses that wish to participate via
campus bridging activities. Resource diversity presents challenges
to both application developers and application platform develop-
ers (e.g., developers of gateways, portals, and workflow engines).

The XSEDE Execution Management Services (EMS) archi-
tecture is an instance of the Open Grid Services Architecture
EMS and is used by higher level services such as gateways and
workflow engines to provide end users with execution services
that meet their needs. The contribution of this paper is to provide
a concise explanation and concrete examples of how the EMS
works, how it can be used to support scientific gateways and
workflow engines, and how the XSEDE EMS and other OGSA
EMS architectures can be used by applications developers to
securely access heterogeneous distributed computing and data
resources.

Index Terms—Scientific computing, workflow, distributed com-
puting, XSEDE, gateways, architecture.

I. INTRODUCTION

The Extreme Science and Engineering Discovery Environ-
ment (XSEDE) project seeks to provide ”a single virtual
system that scientists can use to interactively share computing
resources, data and experience.”1 The XSEDE system software

This document was developed with support from National Science Foun-
dation (NSF) grant OCI-1053575 and partly supported by NordForsk as part
of the Nordic Center of Excellence (NCoE) eSTICC (eScience Tools for
Investigating Climate Change at High Northern Latitudes). Any opinions,
findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the NSF and
NordForsk.

1www.xsede.org, accessed 31 July 2017

architecture is use case driven. Each use case describes both
the core functional requirements of the use case as well as
the required quality attributes, e.g., that a particular service
must respond to queries within one second. There are a set of
use cases that appear again and again as components of more
complex use cases, e.g. authenticate, run a remote job, transfer
data. We call these use cases the canonical use cases. We
believe these use cases are not unique to XSEDE, rather they
are common across any wide area execution environment. The
canonical use cases are designated as UCAN X, where UCAN
stands for canonical use case, and X is the number. Currently,
there are 12 canonical use cases. Unsurprisingly, many of the
use cases involve computation in one form or another. The
first ”canonical” use case, UCAN 1 is ”Run a Remote Job”
[1]. Campus Bridging [2] has three computational use cases:
CBUC 5 ”Support for distributed workflows spanning XSEDE
and campus-based data, computational, and/or visualization
resources”, CBUC 6 ”Shared use of computational facilities
mediated or facilitated by XSEDE”, and CBUC 7 ”Access
to private cyberinfrastructure resources on a service-for-funds
basis.” Others include the High Throughput Computing use
cases, the High Performance Computing use cases, and the
Federation and Interoperation use cases. (These later three
have not yet been formally published.) In order to under-
stand how XSEDE implements the use cases one can take
one of two approaches using documentation targeted at two
different audiences. The first approach is to look at the use
cases from an end-user perspective. The second approach
is to look at the XSEDE architecture documents and what
are known as the XSEDE architectural response documents.
The XSEDE Architecture Level 3 Decomposition document
[3] is the master architecture document. It describes all of
the software protocols, interfaces, and interaction paradigms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTAKI Publication Repository

https://core.ac.uk/display/185625422?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

of the core architectural components. This document, often
referred to as the L3D, is regularly updated and has been
thoroughly reviewed by XSEDE stakeholders including, but
not limited to, operations, security, and Software Development
and Integration (SD&I).

The L3D document contains a description of the core
XSEDE Execution Management Services (EMS) architecture.
It also includes an abstract description of how third party
gateways and workflow engines can utilize the XSEDE EMS
infrastructure. The contribution of this paper is to provide a
concise explanation and concrete examples of how the EMS
works, how it can be used to support scientific gateways and
workflow engines, and how the XSEDE EMS and other OGSA
EMS architectures can be used by applications developers to
securely access heterogeneous distributed computing and data
resources.

The remainder of the paper is organized as follows. In
Section II we present the XSEDE architecture web services
and authentication/delegation mechanisms that underlie the
Execution Management Services architecture. We then proceed
to give concrete examples of how the architecture is used to
support a simple grid queue (Section III), a DAGMAN-like
workflow engine (Section IV), the WS-PGRADE/gUSE portal
and workflow engine [4] (Section V), and Apache Airavata [5]
Section VI which is used in scientific gateways. In Section
VII we discuss related work and conclude with a discussion
of deployment status.

II. XSEDE ARCHITECTURE BACKGROUND

A. Three-Layered Architecture

The XSEDE EMS has a three-layer architecture with an
access layer, a service layer, and a physical layer [6]. While the
service layer is defined in terms of standard web service port-
types (interfaces), the access layer, that part of the architecture
that defines how clients interact with the system, is not.

The access layer mechanisms to interact with the XSEDE
EMS and authentication services include, but are not limited
to, graphical user interfaces (GUIs), command line interfaces
(CLIs), application programming interfaces, and file systems
interfaces. For most of our discussion here we will use the
CLI to illustrate interactions because they are easier to read
and come with less syntactic baggage. We refer to the XSEDE
L3D architecture [3] and the Omnibus Manual [7] for more
information about more technical APIs as well as direct
interaction capabilities via a virtualized file system.

B. Web Service Basics

The XSEDE EMS is based on service oriented architecture
using a set of standard XML-rendered data structures and
interfaces. Access to the XSEDE EMS services is via web
services using the OGSA WSRF Basic Profile 1.0 [8]. The
OGSA-BP in turn uses the Web Services Interoperability
profiles, including the WSI Basic Security Profile [9]. What
this means is that interaction with XSEDE EMS services
is done using an interaction pattern realized using SOAP

over HTTPS that essentially represent XML-based Remote
Procedure Calls (RPCs).

Embedded in the SOAP header is a credential wallet, i.e.
a set of identity tokens. The identity tokens represent both
individual user identities as well as group membership and role
assertions. Several identity token types are currently supported:
username/password and signed Security Assertion Markup
Language (SAML) [10] assertion chain being the two most
frequently used today. In the near future OAUTH2 tokens [11]
will also be supported.

While web services are used for client-service and service-
service interactions, it is important to note that end users and
application developers are unlikely to ever see a web services
interface, because this involves dealing with complex XML
structure, or understand the intricacies of properly inserting
identity tokens into SOAP headers. This is critical as XML/-
SOAP is not for human consumption.

C. Authentication, Authorizaton and Delegation

As described above the XSEDE’s main data and compute
services such as the Global Federated File System (GFFS)
and EMS use security tokens embedded in the SOAP headers
for authentication purposes. These tokens are typically signed
SAML assertion chains. Credential wallet items can be used by
the service to make authorization decisions. For example, the
service might look them up in an authorized user file (e.g.,
a gridmap file), or use an access control list to determine
authorization.

Providing secure authentication alone is not sufficient for
many use cases. Suppose for example that the client requests
that a broker perform some action, say scheduling a job on an
execution service, on its behalf. Simply passing authentication
tokens is insufficient unless they are bearer credentials. Simi-
larly, if the execution service in turn wants to stage data in or
out on behalf of the client that represents a key challenge.

To address these use cases, the EMS and GFFS security
model support the notion of identity delegation. A user U1
may delegate to service S1 the right to perform actions on
U1’s behalf. Similarly, S1 might further delegate to S2 (as in
our above example where the broker may further delegate to
an execution service so that it can stage files.)

We accomplish this using a pre-delegation protocol in
which clients pre-delegate to services the credentials in their
credential wallet that they want the service to be able to use
on their behalf.

From a programmer’s perspective simply authenticate once
to the XSEDE identity resource via the CLI or API and this
will set the credential wallet. Figure 1 depicts an example of
the CLI usage.

In the example, user Andrew Grimshaw has authenticated
and received a MyProxy end-entity certificate to be used as
a session certificate. The grimshaw identity as well as two
group identities have been delegated to the session certificate.
Additional credentials, e.g., group credentials, can be acquired
at any time, and individual items of the credential wallet can
be deleted.

grimshaw@cicero:~$ grid xsedeLogin --username=grimshaw --

password=**************

Replacing client tool identity with MyProxy credentials for "CN=Andrew

Grimshaw, O=National Center for Supercomputing Applications, C=US".

grimshaw@cicero:~$ grid whoami

Client Tool Identity:

(CONNECTION) "Andrew Grimshaw"

Additional Credentials:

(USER) "grimshaw" -> (CONNECTION) "Andrew Grimshaw"

(GROUP) "gffs-tutorial-group" -> (CONNECTION) "Andrew Grimshaw"

(GROUP) "gffs-users" -> (CONNECTION) "Andrew Grimshaw

Fig. 1. Demonstration of the CLI showing a user authenticating to the XSEDE
identity resource.

The credential wallet (security context) is persisted to disk
in the directory $GENII USER DIR. Thus, a program such
as a gateway can keep multiple separate identities in different
directories and simply change GENII USER DIR before each
CLI call to select the appropriate security context. Similar
tools are available in-memory in the API.XSEDE Execution
Management Services (EMS).

<<Client>>

<<Access layer>>

Tools and APIs

<<Site 4>>

Job

Manager

<<Site 1>>

BES

<< Site 2>>

BES

Job Manager/BES via Web Services and JSDL

JSDL

Client/Job Manager interaction. Protocol not specified

<< Site 3>>

BES

Data

Service

Data

Service

BES/Data Service interactions to stage data in/out.

Protocols include GFFS, GridFTP, HTTPS, scp, etc.

Fig. 2. Clients interact with the job manager via some un-specified protocol.
JMs interact with BES using standard protocols. BESes stage data in/out using
a variety of protocols.

To provide a layer of virtual homogeneity for execution
management at the access layer, XSEDE uses Open Grid
Forum (OGF) job management specifications and profiles. The
OGSA 1.5 Architecture Description [12], [13] and OGSA ISV
Primer [14] provide good descriptions of Execution Manage-
ment Services (EMS). Parts of the EMS architecture section
come directly from the OGSA 1.5 Architecture Description
and the XSEDE Architecture Level 3 description.

The EMS architecture is illustrated in Figure II. The user
interacts with an access layer (Client) to run jobs, plan and
execute workflows, or specify the computation they need. The
client in turn interacts with a job manager (JM). The JM in
turn interacts with information services (optional, not shown)
and standard OGSA Basic Execution Services (BES) [15]. JMs
specify the activities (single jobs or parameter sweep jobs)
they want the BESes to execute using standard Job Submission
Description Language documents (JSDL) [16]. JMs interact
with the BESes via standard interfaces using web services.

D. Execution Management Services (EMS) Components

Execution Management Services are concerned with the
problems of instantiating, and managing to completion, units

of work, so called jobs to be executed on a cluster, that may
consist of single activities, sets of independent activities, or
workflows. More formally, EMS addresses problems with exe-
cuting units of work including their placement, “provisioning,”
and lifetime management. These problems include, but are not
limited to, the following:

1) Finding execution candidate locations. The service needs
to determine the locations at which a unit of work
can execute given resource restrictions such as memory,
CPU, available libraries, and available licenses.

2) Selecting execution location. Once it is known where a
unit of work can execute, the service must determine
where it should execute to optimize some objective
function.

3) Preparing for execution. Preparation could include de-
ployment and configuration of binaries and libraries,
staging data, or other operations to prepare the local
execution environment.

4) Initiating the execution. Once everything is ready, the
execution must be started.

5) Managing the execution. Once the execution is started,
it must be managed and monitored to completion to
deal with potential job failures or failure to meet its
agreements.

The solution to these five problems consists of a standard
job description mechanism and the use of set of services
that decompose the EMS problem into multiple, replaceable
components that all enable specific architecture functions. Job
Submission Description Language [19] documents describe
jobs, OGSA Basic Execution Services (BES) [18] to discover
resource properties and execute jobs, GFFS directory paths
[5] and resource registries (L3D section 5.2.3) to discover
resources, and job managers to implement application-specific
functionality. Below we briefly expand on each.

JSDL [16], [17]: JSDL is a standard XML-based language
used to describe jobs. A JSDL 1.0 document has three main
components: a resource requirements section, an application
information section, and a data staging section.

The JSDL resources section contains information on appli-
cation requirements such as operating system version, mini-
mum amount of memory, number of processors and nodes,
wall clock time, file systems to mount, and so on. It consists
both of a standardized set of descriptions, as well as an open-
ended set of matching requirements that are arbitrary strings.

The JSDL application information section includes items
such as the command line to execute, the parameters, the job
name, account to use, and so on.

The JSDL staging section consists of a set of items to
stage-in before the job is scheduled in the local environment,
and a list of items to stage-out post-execution. Each staging
defines the protocol to use, the local file(s) to use as the source
or target, and URIs for the corresponding source or target.
Supported protocols include http(s), ftp, scp, sftp, GridFTP,
mailto, and the XSEDE GFFS.

A new version of JSDL is under development in the Open
Grid Forum to address issues uncovered over the last several

years. These include the ability to specify client-directed
staging (as opposed to only server-based staging in 1.0), pre-
and-post processing tasks to be executed in addition to the
specified application, and additional resource descriptions to
capture modern architectural features such as co-processors,
e.g. GPGPUs, and detailed interconnection network require-
ments for large scale parallel jobs (e.g. use of torus topologies).

A non-standards track extension, JSDL++ has also been de-
veloped to address the short-coming that each JSDL document
describes exactly one set of possible resource matches with
exactly one corresponding application execution description.
For example, “the job requires 8 nodes, each with 8 cores,
64 GB memory, and MPICH 1.4: in that environment stage-in
executable Y and execute ’Y 1024 -opt1’ ”. But what if an
equally suitable option is “ the job requires 1 nodes, each with
64 cores, 256 GB memory, and pthreads: in that environment
stage-in executable Z and execute ’Z -opt2’ ”? JSDL++ allows
the specification of an arbitrary list of options and the JSDL
processing agent is free to use any one of the options for which
it can find the resources.

OGSA Basic Execution Services (BESs) [15]: OGSA
BES service endpoints represent the ability to execute jobs,
specifically, to execute JSDL documents. The BES interfaces
combined with JSDL create a virtual execution environment
(EE) for XSEDE in which all execution resources, desktops,
department servers, campus clusters, clouds, and supercom-
puters provide the same standard interface. It enables core
functions of the XSEDE architecture.

The BES port types define both Factory Attribute and Activ-
ity Management interfaces. The Factory Attributes interface,
getFactoryAttributes(), is used to discover the properties of the
resource that the BES provides access to such as operating
system, number of nodes, memory per node, and so on.

The Activity Management interfaces include createActivity,
getActivityStatus, and terminateActivity porttypes.

CreateActivity takes as a parameter a JSDL document and
returns (on success) a Web Services Addressing EndPoint
Reference (EPR) [18]. The EPR is used as a handle to interact
with the job. The BES is responsible for staging in data
specified in the JSDL, starting and monitoring the job, keeping
track of the exit code, and staging data out post execution.

getActivityStatus takes as a parameter the EPR of an activity
created on the BES and returns the activity state (Pend-
ing, Running, Running:Stage-In, Running:Stage-Out, Run-
ning:Queued, Running:Executing, Canceled, Failed, and Fin-
ished).

terminateActivity takes as a parameter the EPR of an activity
created on the BES and moves the activity to the Canceled
state and cleans up any temporary files that may have been
created.

Each of the above can operate on a single item, i.e., a
JSDL document or an EPR, or on a vector of items. Thus,
the execution environment consists of a set of BESs EE =
{BES0, BES1, BES2, ... BESN-1}, each of which virtualizes a
resource and implements the BES interface. Note that not all
jobs can execute on all BESs, nor may all jobs have permission

or allocation to execute on all BESs. Any given job being
executed by a user may be executed on a subset of EE.

Access to the BESs is via the appropriate Web Services
calls with authentication tokens carried in the SOAP header
as described earlier, via the API, the GUI, the file system, or
via the CLI.

1 grid run -jsdl=/path/to/jsdl/ls.jsdl /path-to-BES/besName

The first parameter is the path to the input JSDL file, either
in the GFFS or in the local file system. The second parameter
is the GFFS path to the BES on which to execute the job. The
command is synchronous and will block till completion.

The asynchronous variant allows job status notifications
to be stored on the GFFS space. The user can check on
the status of the job by examining the status file. For the
asynchronous execution user has to specify the -async-name
attribute (-async-name=/path/to/jobName), an additional entity
to the grid run statement mentioned above.

In the above, the command returns immediately after sub-
mission. The job’s status is stored in the file specified by the
grid path /path/to/jobName. Eventually this file should list the
job as FINISHED, FAILED or CANCELLED.

Performance: In a local environment the time for a client to
call grid run is approximately 70mS, in the wide area between
100-800mS. The vast majority of the time for local calls is
in serializing/deserializing and validating the security context.
Both BES implementations used in XSEDE can handle many
concurrent calls. On an single core machine the Genesis II
implementation can handle two or three concurrent callers
without a performance degradation. On an eight core machine
with sufficient memory (more than 4GB), the Genesis II
implementation can handle approximately 20 concurrent calls.

Job Manager
The Job Manager (JM) sits directly above the BESs and

information services and often sits between and mediate in-
teractions between clients (end users or end user applications)
and EMS services as shown in Figure II.

The JM is a higher-level service that encapsulates all aspects
of executing a job or a set of jobs from start to finish. A set of
jobs may be structured (e.g., a workflow or dependence graph)
or unstructured (e.g., an array of non-interacting jobs). The JM
may be a portal that interacts with users and manages jobs on
their behalf such as a science gateway or portal. The JM is
the only intentionally unspecified, non-standard component of
EMS, a condition that encourages the development of different
styles and capabilities.

The JM is responsible for orchestrating the services used
to start a job or set of jobs, by negotiating agreements,
interacting with containers, and configuring monitoring and
logging services. It may also aggregate job resource properties
from the set of jobs it manages.

In XSEDE, two Job Managers are deployed: the grid client
GUI Create Job tool and the grid queue service. There are
also other JMs that are not following the XSEDE architecture,
but still deployed in the XSEDE infrastructure, and are in use
by different communities. They all follow the same pattern
which we stated, but the details vary. It is our belief that

many communities or tool developers may want to develop
their own job management tools that are very customized to
their environment and application requirements, but they can
interact with the XSEDE EMS or XSEDE EMS compliant
systems through standards-based interfaces.

To facilitate understanding in the sections below we briefly
describe how Job Managers interact with BESes to perform
their function: the Genesis II grid queue, the Genesis II
DAGMAN workflow engine, the SCIBUS G-USE gateway and
workflow engine, and the Airavata Gateway.

III. SIMPLE GRID QUEUE

The grid queue interface is part of the GenesisII middleware,
L3D §5.2.1.3 gives more comprehensive of view of its inter-
faces and capabilities. Each grid queue is configured to use a
set of resources. Users submit jobs to the queue. The queue
matches job resource requirements with BES factory attributes.
Because sometimes jobs fail for no fault of their own, they are
retried several times in order to provide an improved quality
of service for users.

Fig. 3. The GenesisII’s Simple Grid Queue interface provides job-queue-like
interfaces familiar to users of queuing systems, e.g., submit, kill, etc.

The queue is configured to use a subset of deployed BES
resources using either the qconfigure command or the GFFS
directory ln command. For each BES resource associated
with a grid queue a maximum number of jobs that may be
concurrently scheduled on the resource is set. This is called
the number of slots for the BES. The grid queue keeps a list
of available BESs and their associated FactoryAttributes and
is used to match jobs to BESs.

Users submit jobs to the grid queue using either the BES
createActivity interface, the queue submitJobs interface, or by
copying a JSDL file into the submission-point pseudo-file.
Whichever mechanism is used for submission, the result is
the same. The job is added to the priority-ordered job queue.
The job queue exists both on disk in a transactional relational
database (for availability, reliability, etc.) and in an in-memory
representation for performance.

When the JSDL specifies a parameter sweep job [19], e.g.
used in bioinformatics [28], wherein a single JSDL file can
generate tens to thousands of individual activities, the grid
queue asynchronously expands the single JSDL into individual
activities and places them in the RDBMS.

The information maintained in the database for each job
includes the JSDL document, the serialized security context
(i.e. the signed, delegated SAML chains), whether the job has
been scheduled on a BES, the BES EPR and the activity EPR,
and the number of times the job has been restarted.

The in-memory representation is much smaller. It includes
the job name, the job owner certificates, the state, the name
on the BES to which it is scheduled (if any), and the number
of times it has been executed.

The grid queue scheduler is event-driven. There are three
types of events: a job-arrival event, a BES status-change event,
and a job-status change event.

A job-arrival event first stores the job in the database and
then expands the job if it is a parameter sweep. Once safely
stored, the grid queue scans the list of available BESs looking
for matches between the jobs resource requirements and the
BES factory attributes. “Available” here means that the queue
has not submitted more than “slots” jobs to the BES.

A BES-status-change event occurs when either the number
of slots for a BES is changed or periodic polling indicates that
the BES is no longer accepting jobs. If the slots for a BES
is increased the list of queued jobs is searched in order for a
job that matches the BESs factory attributes. When a match is
found the job is asynchronously started on the BES, and the
scan continues until either all of the new slots are consumed
or there are no more jobs to examine in the queue.

A job-status change event causes an update in the job status
in the in-memory and on disk status. If the job has completed
the in-use slot count for the BES is decremented, and if the
in-use slot count is less than the slot count, a BES scheduling
activity is started as described above. If the job has failed, the
jobs’ retries field is incremented. If it has reached a threshold
it is marked as failed, otherwise it will be retried later. We
also increment a failed job counter (that is aged) for the BES,
and if it crosses the threshold we stop submitting jobs until it
is back under threshold.

Note that job-status change events can happen one of two
ways– either via periodic polling of job status using the BES’s
getActivityStatus method, or by asynchronous WS-Notification
events sent by BESes that support notification subscriptions.

The key aspects of the grid queue example are the interac-
tion patterns with both the client and XSEDE services. The
client interacts with the grid queue using the Web Services
interfaces, the GFFS, or the CLI. The grid queue interacts
with XSEDE BESes via Web Services: BES factory attributes
for resource discovery, BES Activity Management interfaces to
start and manage jobs, and WS-Notification for asynchronous
job state change notification.

Performance: Grid queue performance is very similar to
BES performance, approximately 70ms per call in a local
environment. qstat operations can take significantly longer de-
pending on the number jobs in the queue. qsubmit commands
where activity is a JSDL parameter sweep also take about
70ms. However that only counts the time to submit the sweep.
Expanding the sweep progresses at a rate that varies from 10

jobs/second on slow machines with very slow disks, to 50 jobs
a second with fast machines and SSDs.

IV. DAGMAN-LIKE WORKFLOW ENGINE

Condor’s DAGMan [20] uses a simple textual syntax to
define workflows as Directed Acyclic Graphs (DAGs), where
each node in the DAG represents a data transfer or compu-
tational task, or references another DAG to embed within
the parent. DAGMAN is a well-known workflow graph
representation mechanism and is used by scientists either
directly or via other tools such as Pegasus [21] that are layered
on top of it.

In DAGMan, jobs are defined using the Condor job descrip-
tion format [22]. XSEDE, on the other hand, uses the JSDL
standard job description format, and uses the BES interface
for job management on computing elements.

Our goal in the DAGMAN emulator for XSEDE was to
execute DAGMAN-style workflows in XSEDE where job
descriptions are in JSDL.

We defined a workflow non-standard execution engine inter-
face known as a WorkFlowPortType which manages workflows
defined using the same syntax as DAGMan. However, rather
than using Condor job files as the vertices, WorkFLowPort-
Type expects JSDL files2. Hereafter we will call instances of
WorkFlowPortType work flow managers (WFMs).

+submitWorkflow(dagDefinition : WorkflowDAGType) : str ing

+ listWorkflowDags(mineOnly : boolean) : ReducedWorkflowDAGType []

+getWorkflowStatus(workflowTicket : str ing) : dagEnum

+killWorkflow(workflowTicket : string) : dagEnum

+removeWorkflow(workflowTicket : str ing) : boolean

+getWorkflowJobs(workflowTicket : str ing) : ReducedJobType []

+getWorkflowDag(workflowTicket : string) : WorkflowDAGType

+holdWorkflow(workflowTicket : str ing) : dagEnum

+resumeWorkflow(workflowTicket : str ing) : dagEnum

+cleanupWorkflow(workflowTicket : str ing) : boolean

<<Interface>>

WorkflowPortType

Fig. 4. WorkFlowPortType interface. WorkFlowPortType instances are bound
to a grid queue when they are created. In other words, they will submit all of
their jobs to an associated grid queue which will do the actual job placement.

WFMs accept and execute workflow DAGs from the client
via submitWorkflow(WorkflowDAGType) and return a ticket
string (essentially a short GUID) that can be used to refer to
the workflow. Workflows can be paused, removed, persisted,
and resumed (see Figure 4 above).

WFMs can be instantiated on any Genesis II container
(server), including containers on the clients machines in their
lab, department, or university.

WFMs offer typical functions of workflow managers, they
keep track of which jobs are running, which are ready to run,
which have finished, and further basic functions.

Each WFM is associated when initialized with a grid
queue using the pathname of the grid queue, e.g., /re-
sources/xsede.org/queues/mainQ. When a job becomes ready
to run, the WFM submits the job to its associated grid queue
and subscribes to job status notifications. To guard against

2There is also a Condor-to-JSDL translator.

notification failure the WFM periodically polls the grid queue
for status. The WFM essentially delegates all aspects of
job management to the grid queue, awaits notifications, and
focuses on the work-flow-specific aspects of the problem.

V. GATEWAY/WORKFLOW–
SCIBUS/WS-PGRADE/GUSE

WS-PGRADE/gUSE is a science gateway framework that
can be easily adapted by scientific user communities in order
to create their own domain-specific gateway for XSEDE
and other DCIs including major Grid types (Globus [23],
UNICORE [24], gLite, ARC, BOINC), major cloud types
(Amazon, OpenStack, OpenNebula) and major cluster types
(Torque, SLURM, MOAB). In a similar way data access is
extended to interact with major storage interfaces (HTTP,
HTTPS, SFTP, GSIFTP, SRM, iRODS and S3) where large
scientific data can be stored and processed by WS-PGRADE
workflows. In WS-PGRADE workflows, nodes can be exe-
cuted in any type of DCIs mentioned above and the workflow
nodes at run time can access any types of storages mentioned
above no matter of which type of DCI the workflow node is
allocated and executed.

WS-PGRADE/gUSE [4] combines gateway and workflow
technologies in a flexible way. WS-PGRADE presents a graph-
ical user interface layer that supports the graphical creation of
DAG-like workflows and provides visualization for workflow
and job execution monitoring. gUSE is a high-level middle-
ware layer that hides the low-level details of the underlying
Distributed Computing Infrastructures (DCIs) and storage by
using two major services: DCI Bridge for job submission [25]
and Data Avenue for file transfers [26].

In terms of the EMS model of Figure 2 WS-PGRADE is
acting as an access layer client tool and gUSE is playing the
role of a job manager. WS-PGRADE and gUSE communicate
via a proprietary non standard mechanism.

WS-PGRADE/gUSE was developed a European research
project. More than 30 application-specific science gateways
have been developed using SCI-BUS. The five layers of the
SCI-BUS architecture are shown in Figure 5.

HTC

Infrastructures

Large variety of

data storages

HPC

Infrastructures

DCI Bridge Data Avenue

Workflow

Management
Internal Storages

Workflow

Repository

Production

e-infrastructures

High-level

e-infrastructure

middleware (gUSE)

Workflow and internal

storage

services (gUSE)

Workflow Editor Data Avenue UI

Workflow

execution

Monitor

Web user interface

(WS-PGRADE)

VizIVO gateway
MoSGrid

Gateway

Proteomics

Gateway

Application specific

gateways (more than 30)

Fig. 5. The SCI-BUS Architecture: Application specific gateways, WS-
PGRADE UI, two gUSE layers and production e-infrastructures.

DCI Bridge is a generic job submission service that im-
plements the OGF BES interface on top of various DCIs

(mentioned above). Therefore any workflow system or gateway
that uses the standard BES interface can submit jobs to all
these DCIs via the DCI Bridge. Since the XSEDE EMS also
uses the BES interface it was straightforward to integrate WS-
PGRADE/gUSE and XSEDE via the DCI Bridge service.

In order to support the integration with XSEDE architecture,
the DCI bridge’s XSEDE extension plugin has been devel-
oped to facilitate the job submission and status monitoring
scenarios. Below we describe more the integration approach
employed and the functions supporting XSEDE requirements.

Integration Approach: The integration of a new type of
DCI to WS-PGRADE/gUSE (such as one needed in XSEDE)
requires the creation of a new plugin for the new DCI [26].
Henceforth we will refer to the new plugin as XSEDE-plugin.
For XSEDE-plugin we extend the Middleware class via the
Plugin class and override the necessary (abstract) methods.
These methods are call-backs, called by the DCI Bridge on
Web service calls (job submit, abort job), or periodically
(query job status).

Job submission: Since the most typical job execution type
in a scientific workflow is a parameter sweep execution, where
the same job should be executed with many different inputs,
we apply an optimization for calling the “grid” command to
submit the jobs. This is particularly important since starting
the XSEDE client by invoking the “grid” command is slow3.
Therefore we execute the commands in “batch” mode. We
collect the submit commands of the same user in a command
file. Each user has a separate job submission file. Before
submitting the user’s job submission file through the “grid”
command, the DCI Bridge XSEDE-plugin checks if a new job
for the same user arrived at the DCI Bridge input queue. If it
is arrived, the new job is added to the user’s job submission
file. After a short waiting time (100 ms) this check is repeated.
If there are no more jobs of the same user in the DCI Bridge
input queue the user’s job submission file is submitted to
XSEDE through the “grid” command that will execute the
job submissions listed in the job submission file one after
the other. If the number of job submissions reached a certain
threshold (100 in the current implementation), the XSEDE-
plugin immediately submits the user’s job submission file to
XSEDE.

Status request: The XSEDE-plugin requests the user job’s
status with the command “./grid qstat queuename”. It returns
the status of every job of the user stored in the resource
queue so we do not need to request every job’s status with
separate command invocations. After this step, the XSEDE-
plugin selects those jobs that have status “Finished” and with
another single CLI call gets the results of these jobs.

Data staging: The data movement process is extremely easy
thanks to the XSEDE architecture. The JSDL generated by
gUSE contains the location of the input and output files needed

3When this work was done the “grid” command took 4-10 seconds on every
call, depending on platform. This was due to the load time of an extensive
Java library stack. A new implementation, fastgrid starts a persistent process
that takes 4-10 seconds only for the first time. Subsequent invocations take
˜70ms.

for the job execution. The DCI Bridge XSEDE-plugin passes
this information to standard-based middleware in XSEDE
which takes care of data staging based on this information.
This solution works only if the data storage has the protocol
that is known by the XSEDE server. If this is not the case,
the other service of gUSE called as Data Avenue can be used
to realize data staging.

One of the key features that Data Avenue provides is its
HTTP tunneling capability: For any remote file residing on a
storage resource that Data Avenue supports an HTTP URL can
be requested that can be read or written via simple HTTP GET
or PUT operations by the clients. The created HTTP URL,
called an HTTP alias points to the Data Avenue server, which
will actually connect to the related storage resource at the time
when the client initiates an HTTP GET/PUT operation. Bytes
sent over HTTP PUT to the Data Avenue server are forwarded
over the storage-related protocol by Data Avenue and written
into the remote file on the remote storage. Similarly, bytes
read from the remote file are forwarded as an HTTP stream
in response to the GET operation of the client.

If user would like to use XSEDE as computation infrastruc-
ture, but with a data storage not supported by XSEDE, she
should specify at workflow configuration time that a certain
input or output file should be handled by the Data Avenue
service, and also should provide the location of the file in the
remote storage. Based on this information, the DCI Bridge can
request an HTTP alias from the Data Avenue service for the
given file. The DCI Bridge replaces the file staging information
in the JSDL with the alias received from the Data Avenue
service. The XSEDE server now can and will use this alias to
access the file from the given remote storage using the HTTP
tunneling function of Data Avenue service.

Note that PUT and GET operations are actually executed by
the usual XSEDE data staging operations without modifying
the XSEDE server middleware code after such an HTTP alias
has been created. Notice that remote file contents can be
read or written without additional authentication except the
basic data exchange that is performed through a secure HTTP
(SSL/TLS) connection. This kind of mediation service how-
ever requires allowing Data Avenue to connect to the storage
resource on behalf of the user, thus the necessary credentials
must be delegated while creating aliases. Depending on the
authentication mechanisms, the credentials (such as passwords,
X.509 proxies, secret keys) required by the storage has to to
passed during the workflow submission stage. Thus, it is in
most cases required to configure them before the submission.
Furthermore, the Data Avenue deployments should strictly
ensure that the credentials are not exposed by HTTP aliases
in any way.

VI. APACHE AIRAVATA

Science gateways provide seamless and community driven
interfaces for their often non technically-savvy users. As
application-oriented interfaces provide domain specific inter-
faces with rich set of widgets and controls, science gateway
developers prefer to choose a generic gateway framework for

their users. Integration of these gateway frameworks use a
set of client APIs to access backend computing and data
services such as those provided in the above described XSEDE
architecture.

Apache Airavata framework [5] is such a kind of framework
that supports different scientific communities by providing
connectors to various resources through which they can access
data and run compute jobs. Since running a job is considered
to be a vital element of the XSEDE architecture’s L3D, we
developed a dedicated connector for Airavata that enables the
framework to access the resources with open standards which
are the building blocks of the XSEDE architecture. Figure 5
illustrates the integration architecture of our implementation.
The standards used are OGSA-BES and JSDL.

The specific point of our API integration is the Airavata
GFAC component, which lies at the Airavata server side.
GFAC is a meta-library that combines different kinds of com-
puting and data services clients, such as Hadoop and Amazon
S3 etc. The application runs are carried out as follows.

Initially, a user fetches her short lived X.509 credential from
XSEDE’s MyProxy service via her community user name and
password token. The gateway client then uploads any data to
a shared storage. In this case, the data transfer is achieved
through UNICORE’s storage management service, which is
proprietary, but is based on the ByteIO and HTTP(s) standard
data transfer protocols. Once the data is uploaded, a JSDL-
compliant job request is constructed. The request contains the
amount of resources required, application details, arguments,
environment variables, and data staging points from where
the data will be staged before and after execution. At this
stage a job request has been prepared and the input data
should be available at the execution site. The client then
invokes the operation that tells UNICORE’s standard OGSA-
BES-compliant execution management service endpoint to run
the job. The gateway client pulls the status until the job has
completed. It then retrieves the application-generated output
files and downloads them to the Airavata deployment. This
output is stored for a gateway portal so that the gateway users
can access it later.

Unlike the gUSE, which uses the Genesis II CLI to interact
with the backend XSEDE BES services, the Airavata integra-
tion was carried out using the UNICORE 7 Java libraries to
interact with the XSEDE backend BES implementation. The
benefits of the tighter integration are faster service invocation,
i.e., lower overhead. The disadvantage is the library requires
the API users to integrate using Java.

Our implementation is deployed and currently used in
production by the Ultrascan science gateway [27] community
that spans the US and Europe. As one of the compute sites is
the , it demonstrates the enormous capabilities of the XSEDE
architecture to enable interoperability. In [27] we described
more details on our implementation and demonstrated it using
a production JURECA cluster located at Juelich Supercom-
puting Centre with real usage numbers.

The integration with the Airavata API will not only help the
gateway instances of Ultrascan, but can serve a wide range of

Fig. 6. Integrated Architecture showing Scientific-area specific clients like the
Ultrascan scientific gateway, the Apache Airavata API, and standards based
middleware services being part of the XSEDE architecture.

scientific disciplines intending to access resources through a
uniform layer of abstractions. Hence, instead of using a CLI as
described above, the access to XSEDE resources is given by
an API that can be re-used in various other scientific gateways,
workflow engines, or domain-specific GUI clients.

VII. RELATED WORK

There is a rich literature in both computational grids and
workflows. Computational grid technology (formerly Meta-
systems [28], [29] flourished in the 1990’s and early 2000’s.
Systems such as Legion [30], Globus [23], UNICORE [24],
gLite [31], NetSolve [32], and many others were developed
to support remote execution across heterogeneous platforms
and administrative domains. The basic capabilities in all of
these systems were similar: execute some job with a particular
set of parameters, perhaps with pre-and-post staging, using a
particular set of credentials, on a remote host.

By the early 2000’s, the concepts were well understood
and standardization efforts for remote job execution began in
the Open Grid Forum (then the Global Grid Forum) Open
Grid Services Architecture (OGSA) working group and in the
Job Submission Description Language (JSDL) working group.
These and other working groups in the OGF brought together
stakeholders from industry, academia, and government in to
agree on the fundamental features of grids. The OGSA-
BES standards are themselves layered upon a whole set of
industry standards in Web Services, security, and metadata
management.

The XSEDE Execution Management Services architecture
described here is different from previous remote execution
systems insofar that it is built on the OGSA-BES, JSDL, and
other open standards as opposed to a proprietary architectures.
The advantages of a standards-based architecture are stability
in the interfaces and protocols (a benefit for developers),
avoidance of vendor lock-in (a benefit for organizations),
and ease of integration of standards-compliant components.
Ease-of-integration due to standards was particularly the case

when integrating gUSE with XSEDE. gUSE/DCI were using
JSDL/BES internally for their communication. Extending them
to integrate with XSEDE BES was trivial. With respect to
avoiding vendor lock-in, within XSEDE we regularly use two
different BES implementations within XSEDE.

Workflow tools have been around for decades. Simple tools
such as scripting languages, e.g., bash, and build tools, e.g.,
make, are still extensively used. More sophisticated tools such
as DAGMAN, Makeflow, Pegasus, Kepler, Taverna, Swift, and
BPL are in widespread use as well. Further, just about every
gateway or science package, e.g., Galaxy, has an embedded
workflow engine.

Despite these similarities, standardization in the scientific
computing community has been difficult. Several unsuccessful
attempts were made in the Open Grid Forum. All failed due
a lack of consensus on even how to scope the problem.

The XSEDE architecture explicitly avoids workflow stan-
dardization because there seemed to be no consensus. Instead,
the architecture is designed to support a variety of workflow
tools. One of the goals of this paper has been to test the
hypothesis that the XSEDE EMS can support many different
workflow tools. One of the lessons learned is that some
workflow tools prefer to manage their own file transfers.

VIII. CONCLUSION AND FUTURE WORK

The contribution of this paper is to provide a concise expla-
nation and concrete examples of how the job management and
submission in the form of XSEDE EMS works, how it can be
used to support scientific gateways and workflow engines, and
how the XSEDE EMS and other OGSA EMS architectures
can be used by applications developers to securely access
heterogeneous distributed computing and data resources. This
was done by first laying out the core components of the
XSEDE EMS architecture and then demonstrating how the
components are used by higher level gateways and workflows.

The examples demonstrated the functionality via the use of
the command line interface for clarity. While the command
line interface is fully functional, using the CLI is not as fast
as using libraries. For high-volume production use, the API
available from UNICORE [24] is preferable.

The XSEDE EMS is based upon open standards devel-
oped and brought into production over the last ten years.
Unsurprisingly, along the way the implementers and users of
these standards have uncovered some minor gaps in the spec-
ifications. These additional JSDL/BES requirements include,
client-centric staging, i.e., staging under control of the client
rather than the BES support pre-and-post processing stages
and states. Further, a consistent mechanism to interact with
jobs/activities as first class endpoints and with the session
directory of a running job/activity. These lessons have been
taken back into the OGF standards process, where updated
versions of JSDL, BES and other specifications are in their
final stages of the process.

REFERENCES

[1] I. Foster and et al., “XSEDE Canonical Use Case 1: Run a Remote
Job,” 2013.

[2] C. A. Stewart and et al., “ XSEDE Campus Bridging Use Cases,” 2012.
[3] F. Bachmann and et al., “ XSEDE Architecture Level 3 Decomposition,”

2012.
[4] P. Kacsuk and et al., “Ws-pgrade/guse generic dci gateway framework

for a large variety of user communities,” Journal of Grid Computing,
vol. 10, no. 4, pp. 601–630, Dec 2012.

[5] S. Marru and et al., “Apache airavata: a framework for distributed
applications and computational workflows,” in Proceedings of the 2011
ACM workshop on Gateway computing environments, New York, NY,
USA, 2011, GCE ’11, pp. 21–28, ACM.

[6] F. Bachmann and et al., “ XSEDE Architecture: Level 1 and 2
Decomposition,” 2012.

[7] Chris Koeritz, “GenesisII Omnibus Reference Manual 10.9,” 2016.
[8] I. Foster and et al., “OGSA WSRF Basic Profile 1.0,” May 2006.
[9] K. Ballinger and et al., “WS-I, Basic Profile Version 1.0,” http://www.

ws-i.org/profiles/basicprofile-1.0-2004-04-16.html, [Online; accessed
31-July-2017].

[10] R. Monzillo and et al., “Web Services Security: SAML Token Profile
1.1,” Feb 2006.

[11] D. Hardt and et al., “The OAuth 2.0 Authorization Framework,” https:
//tools.ietf.org/html/rfc6749, [Online; accessed 31-July-2017].

[12] A. Savva and et al., “OGSATM EMS Architecture Scenarios, Version
1.0,” April 2007.

[13] C. Jordan and H. Kishimoto, “Defining the Grid: A Roadmap for
OGSATM Standards, Version 1.1,” Feb 2008.

[14] S. Newhouse and A. Grimshaw, “Independent Software Vendors (ISV)
Remote Computing Usage Primer,” Oct 2008.

[15] I.Foster and et al., “OGSA Basic Execution Service (BES), Version
1.0,” Nov 2008.

[16] A. Anjomshoaa and et al., “Job Submission Description Language
(JSDL), Version 1.0,” July 2008.

[17] A. Savva and et al., “JSDL SPMD Application Extension,” 2007.
[18] D. Box and et al., “Web Services Addressing (WS-Addressing),” http:

//www.w3.org/Submission/ws-addressing/, [Online; accessed 31-July-
2017].

[19] M. Drescher and et al., “JSDL Parameter Sweep Extension,” May 2009.
[20] P. Couvares and et al., Workflow Management in Condor, pp. 357–375,

Springer London, London, 2007.
[21] E. Deelman and et al., “Pegasus, a workflow management system for

science automation,” Future Generation Computer Systems, vol. 46, pp.
17 – 35, 2015.

[22] M. J. Litzkow, M. Livny, and M. W. Mutka, “Condor-a hunter of idle
workstations,” in [1988] Proceedings. The 8th International Conference
on Distributed, Jun 1988, pp. 104–111.

[23] I. Foster and C. Kesselman, “Globus: a metacomputing infrastructure
toolkit,” The International Journal of Supercomputer Applications and
High Performance Computing, vol. 11, no. 2, pp. 115–128, 1997.

[24] A. Streit and et al., “Unicore 6 - recent and future advancements,”
Annals of telecommunications, vol. 65, pp. 757 – 762, 2010.

[25] M. Kozlovszky and et al., DCI Bridge: Executing WS-PGRADE
Workflows in Distributed Computing Infrastructures, pp. 51–67, Springer
International Publishing, Cham, 2014.

[26] Á. Hajnal, Z. Farkas, P. Kacsuk, and T. Pintér, Remote Storage Resource
Management in WS-PGRADE/gUSE, pp. 69–81, Springer International
Publishing, Cham, 2014.

[27] S.Memon and et al., “Advancements of the ultrascan scientific gate-
way for open standards-based cyberinfrastructures,” Concurrency and
Computation: Practice and Experience, vol. 26, no. 13, pp. 2280–2291,
2014.

[28] A. Grimshaw, A. Ferrari, G. Lindahl, and K. Holcomb, “Metasystems,”
Commun. ACM, vol. 41, no. 11, pp. 46–55, Nov. 1998.

[29] L. Smarr and C.E. Catlett, “Metacomputing,” Commun. ACM, vol. 35,
no. 6, pp. 44–52, June 1992.

[30] A. S. Grimshaw and A. Natrajan, “Legion: Lessons learned building
a grid operating system,” Proceedings of the IEEE, vol. 93, no. 3, pp.
589–603, March 2005.

[31] M. Cecchi and et al., “The glite workload management system,” Journal
of Physics: Conference Series, vol. 219, no. 6, pp. 062039, 2010.

[32] H. Casanova and J. Dongarra, “Netsolve: A network-enabled server for
solving computational science problems,” The International Journal of
Supercomputer Applications and High Performance Computing, vol. 11,
no. 3, pp. 212–223, 1997.

