View metadata, citation and similar papers at core.ac.uk

-
brought to you by .{ CORE

provided by SZTAKI Publication Repository

Efficient K-NN for Playlist Continuation®

Domokos M. Kelen
MTA SZTAKI'
kdomokos@sztaki.hu

Ferenc Béres
MTA SZTAKI"
beres@sztaki.hu

ABSTRACT

We present our solution for the RecSys Challenge 2018, which
reached 9th place on the main track leaderboard of the competi-
tion. We developed a light-weight playlist-based nearest neighbor
method to complete music playlists by using the playlist-track ma-
trix along with track and playlist metadata. Our solution uses a
number of domain specific heuristics for improving recommen-
dation quality. One major advantage of our approach is its low
computational resource use: our final solution can be computed on
a traditional desktop computer within an hour.

KEYWORDS

Music Recommendation, Playlist Continuation

ACM Reference Format:

Domokos M. Kelen, Daniel Berecz, Ferenc Béres, and Andras A. Benczur.
2018. Efficient K-NN for Playlist Continuation. In Proceedings of the ACM
Recommender Systems Challenge 2018 (RecSys Challenge ’18), October 2,
2018, Vancouver, BC, Canada. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3267471.3267477

1 INTRODUCTION

In this paper, we present the solution of the team Definitive Turtles
for ACM RecSys Challenge 2018 [4]. The task of the challenge was
automatic playlist continuation. Given a user playlist containing
some seed tracks, a list of tracks should be recommended for contin-
uing the playlist. The challenge task is based on the Million Playlist
Dataset [7] released by Spotify.

The core of our approach is a playlist-based nearest neighbor
method, which recommends items from similar playlists. Our solu-
tion uses a modified cosine similarity metric that takes into account
the popularity of the tracks. Similarity calculation is improved by
accounting for the position of tracks on the playlist. We further im-
prove the score of the algorithm by applying transforming functions
such as amplification [3] over the similarity scores.

We computed separate models for each subtask, applying differ-
ent techniques and hyperparameter values. Despite its simplicity,
*Support from H2020 project Streamline No 688191 and 2018-1.2.1-NKP-00008: Ex-
ploring the Mathematical Foundations of Artificial Intelligence of the Hungarian

Government.
¥ Institute for Computer Science and Control, Hungarian Academy of Sciences

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
RecSys Challenge °18, October 2, 2018, Vancouver, BC, Canada

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6586-4/18/10.

https://doi.org/10.1145/3267471.3267477

Déniel Berecz
MTA SZTAKI*
berecz.daniel@sztaki.hu

Andras A. Benczur
MTA SZTAKI'
benczur@sztaki.hu

our solution reached 9th place overall on the main track of the
competition. Out of the three different evaluation metrics for the
challenge, we optimized our solution for NDCG. Consequently, we
reached best result for NDCG: our submission ranks 13 for RPREC,
7 for NDCG and 11 for Clicks.

Compared to better performing solutions of the challenge, our
approach is relatively light-weight and simple: it requires no access
to supercomputing or GPUs, and can be implemented in a few
hundred lines of Python code. Our final solution can be computed
within an hour on a standard desktop processor and 16 GB memory.

We describe the Main Track of the competition along with its
subtasks. We present the variants and parameters of our proposed
nearest neighbor method, and the results of our experiments.

2 CHALLENGE TASK

The task of the main track of the 2018 ACM RecSys Challenge
was playlist continuation. Challenge participants had to provide a
recommendation toplist of length 500 for each of 10,000 incomplete
playlists, given some combination of (i) the first n tracks (ii) random
n tracks (iii) the name of the playlist. In contrast to the Creative
Track of the challenge, it was forbidden to use external datasets
or pre-trained models, thus the only information available to the
challenge participants was information available in the Million
Playlist Dataset, which was provided by Spotify.

The incomplete 10,000 playlists were published in the Challenge
set of the competition. For each playlist, some holdout tracks were
hidden from the participants for the purpose of evaluating sub-
missions. Note that the number of holdout tracks were given for
each playlist. The challenge task was divided into 10 subtasks, with
different information available on playlists in each category,

(1) the name of the playlist,

(2) the name and the first track,

(3) the name and the first 5 tracks,

(4) the first 5 tracks,

(5) the name and the first 10 tracks,

(6) the first 10 tracks,

(7) the name and the first 25 tracks,

(8) the name and 25 random tracks,

(9) the name and the first 100 tracks,

(10) the name and 100 random tracks.

Each subtask contained 1,000 playlists. Note that for subtasks 1 and
2 the track information is missing, or just limitedly available. Hence
these are significantly different from the others, and resulted in
less reliable recommendations. In contrast, subtasks yielding the
highest performance scores were the ones where tracks at random
positions were provided, i.e. subtasks 8 and 10.

https://core.ac.uk/display/185625393?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3267471.3267477
https://doi.org/10.1145/3267471.3267477
https://doi.org/10.1145/3267471.3267477

RecSys Challenge *18, October 2, 2018, Vancouver, BC, Canada

2.1 Data

The training data for the challenge was provided by Spotify in the
form of 1 million playlists. For each playlist, both the tracks and
the name of the playlist were given. Additionally, for each song, the
name of the artist and the album were also available in the dataset.
The lengths of playlists in the dataset ranged from 5 to 250 and
contained 2,262,292 tracks from 571,628 albums of 287,740 artist
overall.

To preprocess the names of playlists, we used a name normaliza-
tion function, which worked by converting all characters to lower
case, and stripping out special characters. A few playlist names
consist of only emojis: in these cases, we normalized the name
by stripping out duplicate characters and sorting the remaining
ones. With these normalization steps, the original number of 92,941
playlist names was reduced to 16,752, leaving six unmatched names
in the challenge set, only one of which was from subtask 1.

2.2 Evaluation

The following three evaluation metrics were used in the Challenge,
which we briefly describe next:

RPREC: R-precision is the number of retrieved relevant tracks (re-
gardless of order) divided by the number of known relevant
tracks, averaged across all playlists in the challenge set. The
version used in the challenge only considered the first n rec-
ommended tracks from the toplist, where n is the length of
the ground-truth playlist.

NDCG: Discounted cumulative gain (DCG) measures the ranking
quality of the recommended tracks, increasing when relevant
tracks are placed higher in the list. Normalized DCG (NDCG)
is determined by calculating the DCG and dividing it by the
ideal DCG in which the recommended tracks are the actual
ground-truth tracks, perfectly ranked [1].

Clicks: Recommended Songs Clicks is a metric based on a Spotify
feature that, given a set of tracks in a playlist, recommends
10 tracks to add to the playlist. The list can be refreshed to
produce 10 more tracks. Clicks is the number of refreshes
needed before a relevant track is encountered. If no relevant
track exists in the recommendation, the value 51 is picked.

The competition additionally included artist scoring, which awards
partial scores when a recommended track is not relevant, but its
artist has tracks that appear in the ground-truth set. This scoring
was applied only in case of the R-precision metric, the following
way: a partial hit is represented by adding 0.25 instead of 1 to the
nominator of the formula (i.e. the number of retrieved relevant
tracks), with the restriction that an artist can only count as a partial
hit once per playlist.

3 PREDICTION METHODS

Several nearest-neighbor based approaches for playlist recommen-
dation are described in the literature [2]. Our main solution is collab-
orative filtering based. We use the user k-nearest-neighbor (kNN)
method for computing the similarity of playlists and to recommend
tracks from similar ones. For similarity computation, generally we
used the playlist-track co-occurrence matrix. Furthermore, we also

D. Kelen et al.

defined similarity scores based on the track, artist and album meta-
data, and the name of the playlists. We performed training and
parameter optimization for each subtask separately.

Our kNN based method first finds similar playlists to the one in
question, and then recommends tracks based on the ones in these
lists [5]. Given the pairwise similarities s, of all playlist pairs u
and v, we can define a score for track i belonging to playlist u by

X ZveNk(u) Suv * Tvi
Tui =

(1)
2veN, (u) Suv
where 7;; is the predicted relevance of track i for playlist u, ry; is
the known relevance of track i for playlist u, and N (u) is the set of
k playlists most similar to u. A toplist of length n is then computed
by taking the items with the n highest scores.
For similarity computation we used the cosine similarity measure

Tuilvi
0 = 24 Ry Il Roll @
where R, € RHI is the vector of relevance values ryi fori € I.
The relevance value is either 1 or 0 depending on whether the
track is present in the playlist. Some playlists contain certain tracks
multiple times; in these cases, it is possible to use some function of
the number of occurrences to define the relevance.

3.1 Amplification and normalization

We experimented with a modified version of Equation (1), proposed
in [3]: we define an exponent «, and use s, instead of s;,. This
method is called amplification, as values of @ > 1 have the effect of
amplifying the importance of more similar playlists relative to less
similar ones, this way improving recommendation accuracy.

Since the set of similarities S, = {syo | v € N (u)} may be of
different magnitude for different playlists u, we found that it is
useful to normalize the scores to the interval [0, 1] before applying
amplification. We define

Syp —minSy

©)

§uv = T e o
max S, — minS,’

and use the value §%, instead of s, in Equation (1).

3.2 Weighting by Inverse Item Frequency

The use of Inverse Document Frequency in information retrieval [6]
is justified by the fact that rare items define similarity better than
common items. We utilize this idea to define Inverse Item Frequency:
Two playlists are more likely similar if they include the same low
popularity tracks than if they share tracks that a very large number
of other lists also include.

We apply Inverse Item Frequency to modify the definition of sim-
ilarity between playlists, counting shared tracks between playlist
in inverse proportion to their frequency. By experimentation, we
found ((f; — 1)” + 1)~ to be a well-performing track weight coef-
ficient, where f; denotes the number of playlists containing track i.
Using this formula, we replace Equation (2) by

Truitoi
Suv = —1)P 4+ 1) 4
- g((ﬁ) I ReRIRo T @)

Efficient K-NN for Playlist Continuation

RecSys Challenge ’18, October 2, 2018, Vancouver, BC, Canada

Table 1: NDCG scores on different subtasks using different techniques. Score A is the base score of the user-kNN algorithm, score
B includes amplification and normalization, score C additionally includes inverse frequency scaling. Final score also includes
name information for subtask 2 and positional weighting for subtask 9.

subtask sample tracks score A score B score C final score
1 0 - - - 0.192
2 first 1 0.292 - - 0.296
3-4 first 5 0.321 0.326 0.334 0.334
5-6 first 10 0.342 0.348 0.358 0.358
7 first 25 0.336 0.342 0.352 0.352
8 random 25 0.435 0.447 0.482 0.482
9 first 100 0.278 0.293 0.293 0.302
10 random 100 0.445 0.451 0.474 0.474

Table 2: Optimal values for k and p for different subtasks.

Subtask sample tracks k P

2 first 1 1,500 -
3-4 first 5 8,000 0.35
5-6 first 10 12,000 0.38
7 first 25 40,000 0.43
8 random 25 9,000 0.4
9 first 100 40,000 0.44
10 random 100 4,000 0.39

with optimal values of p around 0.4. We also experimented with
linear and logarithmic scaling of the track frequency

(fi-DA+1)7! and (5)
(log, (fi) +a) . (6)

both of which produced comparable, but slightly worse results.

3.3 Weighting by position

When the first k tracks of a playlist are given in a query playlist
and the task is to predict the continuation, tracks with positions
above k may be more relevant for defining similarity than the first
few ones.

Given a query playlist u and a neighboring playlist v, in the
original similarity formula of Equation (2), the nonzero elements
of the sum—the tracks shared between the playlists—are counted
with equal weight. We modify the relevance of item i of the query
playlist based on its position in the playlist. We define a weight
coefficient for position p, and modify the relevance r,; of item i on
playlist u as

max (I, py (i)
—a)
where py, (i) denotes the position of item i on u, and variables [
and d are treated as hyperparameters of the formula. The rationale
behind our formula is to assign higher weight to tracks closer to
the end of query playlist u and use the same value 1 + [/d for the
first [tracks. With this, Equation (2) becomes

™

Fui =ryi |14

Tuilvi
=y _Twilel ®)
Z4 IR, /IRy 2

Suv

Note that with this modification, the calculation of similarity be-
comes asymmetric: the position of items in the query playlist is
relevant, because the items can be either closer or farther away
from the end of the playlist, which is the place we are recommend-
ing items for. In contrast, the position of items in the neighboring
playlist is irrelevant in our definition.

We also experimented with weighting the r,; relevance of tracks
of the neighboring playlists in Equation (1) based on their prox-
imity to shared items. However this approach failed to improve
recommendation quality.

3.4 Metadata based similarity

Metadata about playlists or tracks can be utilized for calculating
similarities between playlists as well. Artists or albums can be used
instead of tracks for calculating playlist similarities. Furthermore,
two playlists may be similar if their name is the same after cer-
tain text normalization steps. Track, artist, album, or name based
similarities can be combined either by using the k most similar
playlists for each type separately, or by taking a weighted average
over the similarity values. Overall, our experience was that meta-
data based similarities were much less reliable than collaborative
filtering i.e. track based ones, and were only useful in cases where
track information was missing or very limited (subtasks 1 and 2).

4 RESULTS

For our experiments, we used random train-test splits of the Million
Playlist Dataset, with the testing sets only containing playlists
with length appropriate for the subtasks. Although the scores in
our internal measurements were lower than on the leaderboard,
their relative order was consistent with the leaderboard. When
comparing models or hyperparameters, we relied on comparing
NDCG score, as in our experience, it was the most indicative of
overall performance of the three scores combined.

We experimented with several variations and combinations of
the techniques described in Section 3, measuring for each sub-
task separately. The basic algorithm accounts for about 95% of the
final score of our method and the described techniques for the re-
maining 5%, when averaging over all subtasks. However, different
techniques improve the score on certain subtasks more: the largest
improvement over the score of the basic algorithm was over 10%.

RecSys Challenge *18, October 2, 2018, Vancouver, BC, Canada

0.38

—>— subtask 5-6
0.37 1 subtask 3-4

—8— subtask 7
0.36 4

NDCG
=)
&
&

0.34 4

0.33 4

Figure 1: Change in NDCG with different values of a.

4.1 Effect of similarity normalization

The techniques described in Sections 3.1- 3.3 were used to improve
recommendations in all subtasks except for 1 and 2, and contributed
most in improving the score of the base algorithm. Table 1 sum-
marizes our results in NDCG for the 10 different subtasks. We
highlight here the effect of our methods for improving the original
nearest neighbor model. Score A is the base score of the user-kNN
algorithm, score B includes amplification and normalization, score
C additionally includes inverse frequency scaling. Final score also
includes name information for subtask 2 and positional weighting
for subtask 9.

Amplification, normalization, and inverse item frequency meth-
ods (see Sections 3.1 and 3.2) worked best on subtasks 8 and 10,
where random tracks from the playlist were given. For amplifica-
tion rate, the value @ = 2 proved to be the best choice overall,
with optimal values at or near 2 for all subtasks (see examples on
Figure 1). Optimal values for k in Equation (1) and p in Equation (4)
were found using grid search, and are presented in Table 2.

Weighting by position, as described in Section 3.3, was the most
useful for improving the scores for subtask 9. Note that subtask
9 has the most provided sample tracks from the beginning of the
playlist. The hyperparameters [= 30 and d = 2 were used in our
final solution, making the last track of the query playlists more
than 3 times as important as the first track. We were also able to
slightly improve upon the score of the basic algorithm on subtask 7
using this method. However with other techniques applied as well,
this improvement became negligible. Furthermore, we found that
subtask 2 was the only one where using the number of occurrences
for item relevance instead of a constant 1 resulted in improvement.

4.2 Text and meta information

For subtask 1, we experimented with multiple approaches based
on matching normalized playlist names. This includes normalizing
track relevance for a playlist by either the length of the playlists
or ||Ryll2, and taking all track relevance values in playlists with
matching names into account. The approach described in Section 3
worked best: for each challenge playlist, we collected playlists with
the same normalized name from the training set, and ordered items
by the number of playlists with matching names they appeared on.

We were also able to utilize name-based similarity in subtask 2,
where only one track from the playlist was given. Even in this case,
track information was much more useful than name similarity: our
combined similarity measure used track information with weight

D. Kelen et al.

0.297

0.296

NDCG

0.295 4

0.294 -— T T T T T T
0.03 0.04 0.05 0.06 0.07 0.08 0.09

name similarity weight

Figure 2: Change in NDCG with different weights for name
similarity in subtask 2.

93%, and name similarity with weight only 7%, see Figure 2. In the
other subtasks, name similarity could not significantly improve
the recommendation quality. We also experimented with multiple
approaches for using artist and album information, but were unable
to improve the scores of our model.

4.3 Implementation and running time

Our models were implemented in Python 3.5, using only built-in
functions and the packages NumPy, SciPy and Pandas. The code
computes our final submission for the challenge in 58 minutes on
a desktop computer with a 7th gen Intel Core i5 processor and
16 GB of memory. This runtime could possibly be further improved
by utilizing nearest-neighbor search data structures: our current
solution uses the naive approach of computing the full matrix-
vector product of the sparse playlist-track matrix and the query
playlist vector to collect the most similar playlists.

5 CONCLUSIONS

We described the solution of team Definitive Turtles for the ACM
RecSys Challenge 2018, which reached 9th place on the main track
leaderboard of the competition. We optimized the standard near-
est neighbor method using a number of domain-specific heuris-
tics, which gave good accuracy with very low computational re-
quirements. The source code for producing our final submission
for the challenge is available online at https://github.com/proto-n/
recsys-challenge-2018.

REFERENCES

[1] Azzah Al-Maskari, Mark Sanderson, and Paul Clough. 2007. The relationship

between IR effectiveness measures and user satisfaction. In Proceedings of the

30th annual international ACM SIGIR conference on Research and development in

information retrieval. ACM, 773-774.

Geoffray Bonnin and Dietmar Jannach. 2014. Automated Generation of Music

Playlists: Survey and Experiments. ACM Comput. Surv. 47, 2, Article 26 (Nov. 2014),

35 pages. https://doi.org/10.1145/2652481

[3] John S Breese, David Heckerman, and Carl Kadie. 1998. Empirical analysis of
predictive algorithms for collaborative filtering. In Proceedings of the Fourteenth
conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers
Inc., 43-52.

[4] Ching-Wei Chen, Paul Lamere, Markus Schedl, and Hamed Zamani. 2018. RecSys
Challenge 2018: Automatic Music Playlist Continuation. In Proceedings of the 12th
ACM Conference on Recommender Systems (RecSys '18). ACM, New York, NY, USA.

[5] Paul Resnick and Hal R Varian. 1997. Recommender systems. Commun. ACM 40,
3(1997), 56-58.

[6] Stephen Robertson. 2004. Understanding inverse document frequency: on theoret-
ical arguments for IDF. Journal of documentation 60, 5 (2004), 503—-520.

[7] Spotify. 2018. Million Playlist Dataset. https://recsys-challenge.spotify.com/
dataset

[2

https://github.com/proto-n/recsys-challenge-2018
https://github.com/proto-n/recsys-challenge-2018
https://doi.org/10.1145/2652481
https://recsys-challenge.spotify.com/dataset
https://recsys-challenge.spotify.com/dataset

	Abstract
	1 Introduction
	2 Challenge Task
	2.1 Data
	2.2 Evaluation

	3 Prediction methods
	3.1 Amplification and normalization
	3.2 Weighting by Inverse Item Frequency
	3.3 Weighting by position
	3.4 Metadata based similarity

	4 Results
	4.1 Effect of similarity normalization
	4.2 Text and meta information
	4.3 Implementation and running time

	5 Conclusions
	References

