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megjelöltem.

Budapest, 2018. április 4.
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Abstract

The increasing diversity of product portfolios and difficult predictability of customer order

streams introduce new, complex challenges in production management, as companies often need

to apply special, advanced capacity and production planning methods to achieve and keep the

desired level of internal efficiency. In case a company offers a diverse —regarding both volume

and mix— product portfolio, the commonly applied production system structures are often

inflexible to provide cost-efficient operation in the different stages of products’ lifecycles.

The thesis introduces new models and methods to solve production and capacity planning

problems, focusing on assembly systems, and utilizing the advantages of different system struc-

tures and resource types (dedicated, flexible, reconfigurable). The primary aim of the presented

research is to define and elaborate new planning methods that support matching production

capacities with the order stream on each level (strategic, tactical, operational) of the planning

hierarchy, even in case a diverse product portfolio is to be managed. The methods are capable

of considering the external, and also the internal, technology-related factors and constraints to

achieve cost-efficient production.

Chapter 1 defines the topic of the thesis, and the motivation of the research. In Chapter 2, a

literature review is provided with an introduction of relevant, state-of-the-art methods. Chapter 3

introduces a new, hierarchical capacity management framework, focusing on modular assembly

systems, and providing cost-efficient production plans on each level of the planning hierarchy.

The models of the framework are primarily defined so as to meet the requirements of manual

assembly systems, and utilize their scalability achieved via changing the amount of allocated

human labor, or the number of applied modules. Chapter 4 discusses the capacity management of

reconfigurable, robotic assembly cells, and introduces a new method that is aimed at supporting

the design and management of cells by combining the application of mathematical and simulation

models. Chapter 5 focuses on robust production and capacity planning, related to manually

operated flexible assembly lines. A new, simulation-based optimization method is presented,

which utilizes quasi-real-time data to represent the actual status of the production system,

and to project its future expected behavior, based on realistic production scenarios. In this

way, information about the actual capacity requirements is obtained, and used in mathematical

models to calculate robust plans in a proactive way. Chapter 6 summarizes the results presented

in the dissertation, and introduces the methods’ application in practice.
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Kivonat

A vevői megrendelések napjainkban tapasztalható, a korábbiaknál is nehezebb előrejelezhe-

tősége, illetve az összetett termékportfóliók kezelése komoly kih́ıvásokat jelentenek a termelő

vállalatok számára, a termékek költséghatékony gyártása ugyanis új, speciális kapacitás- és ter-

meléstervezési módszereket igényel. Amennyiben egy cég változatos termékválasztékkal rendel-

kezik, az ipari gyakorlatban általánosan elterjedt gyártórendszer struktúrák nem minden esetben

kellően rugalmasak ahhoz, hogy biztośıtsák a gazdaságos termelést a termékek életciklusának

különböző fázisaiban.

Az értekezés olyan új módszereket mutat be, amelyek szerelőrendszerekkel kapcsolatos ter-

melés- és kapacitástervezési problémákra nyújtanak költséghatékony megoldást, kihasználva a

különböző struktúrájú erőforrások (dedikált, rugalmas, újrakonfigurálható) nyújtotta előnyöket.

A kutatómunka során az elsődleges célom olyan kapacitástervezési módszerek kidolgozása volt,

melyek a tervezési hierarchia minden szintjén, vagyis hosszú- (stratégiai), közép- (taktikai) és

rövidtávon (operat́ıv szint) is hatékonyan képesek összehangolni a termelési folyamatokat a

változó vevői igényekkel széles termékválaszték esetén is, ennek megfelelően olyan modelleket

vizsgáltam, amelyek képesek biztośıtani a költséghatékony termelést a belső (technológiai) és

külső (vevői) korlátozások figyelembevétele mellett.

Az értekezés első fejezete (Chapter 1) ismerteti a kutatási témát, valamint a kutatás mo-

tivációját. A második fejezet (Chapter 2) célja a kapcsolódó szakirodalom bemutatása, vala-

mint a releváns state-of-the-art megoldások ismertetése. A harmadik fejezet (Chapter 3) egy új,

többszintű tervezési keretrendszert mutat be, amely a tervezési hierarchia mindhárom szintjén

költséghatékony terveket szolgáltat moduláris feléṕıtésű szerelőrendszerek számára. A model-

lek elsősorban kézi szerelőrendszerek termeléstervezését szolgálják, kihasználva azt az előnyös

tulajdonságot, miszerint az ilyen rendszerekben a kézi és gépi kapacitások egyaránt viszonylag

rugalmasan változtathatók. A negyedik fejezet (Chapter 4) az újrakonfigurálható, robotizált

szerelőrendszerek kapacitásmenedzsmentjét tárgyalja, ismertetve egy olyan új módszert, amely

a rendszerek költséghatékony tervezését és üzemeltetését biztośıtja, különböző új matemati-

kai és szimulációs modellek alkalmazása révén. Az ötödik fejezet (Chapter 5) manuális, kézi

szerelősorok robusztus termelés- és kapacitástervezésével foglalkozik. Egy olyan új, szimulációs

optimalizáláson alapuló módszert dolgoztam ki, ahol a rendszer aktuális állapotát tükröző közel-

valósidejű adatok szolgáltatják a szimulációs modell paramétereit, a szimulációs vizsgálatok

pedig különböző virtuális, de realisztikus termelési szcenáriók alapján vet́ıtik előre a rendszer

jövőben várható viselkedését. A szimulációs vizsgálat eredményeként egy olyan adathalmazhoz

jutunk, amely tartalmazza a különböző gyártási sorozatokhoz tartozó kapacitásigényeket a szto-

chasztikus paraméterek figyelembevétele mellett, ezáltal proakt́ıv módon támogatja robusztus

tervek számı́tását. A hatodik fejezet (Chapter 6) összefoglalja a dolgozatban bemutatott új

tudományos eredményeket, módszereket, valamint azok gyakorlati alkalmazását.
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Váncza for starting my career at MTA SZTAKI, always encouraging me in the past years, and

guiding me with a plenty of helpful ideas and advices. I’ve got most direct help from my colleagues

and friends Dr. Botond Kádár and Dr. András Pfeiffer, who not only coordinated my research,

but motivated and supported me day-by-day to advance with my work and improve the results.
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Chapter 1

Introduction

1.1 Paradigm shifts and evolution of manufacturing systems

Manufacturing systems have continuously evolved over time together with changes of market

trends and technological advances: one can observe that paradigm shifts in production were

always triggered by great innovations, referred to as industrial revolutions, and had great im-

pacts on both society and economy. The first industrial revolution started by the mechanization,

and the invention of water steam power, and manifested in the craft production with general

purpose machine tools during the 19th century. At that times, markets were characterized by

tailored products with high variety and low volume, and production was pulled by the individ-

uals’ needs. The golden era of inventions led to the second revolution with the first conveyor

belt and assembly line. They made the mass production possible, best exemplified by Ford’s

dedicated manufacturing line, capable of producing a single car model (Womack et al., 1990).

In parallel, the business model was also changed drastically, with the objective of satisfying

the mass’ needs with low variety of products hailed to the market following push strategy. The

needs for higher level of automation, slightly greater product variety, increased efficiency and the

advance of information technology led together to the third industrial revolution with the first

programmable logic controller, and the corresponding flexible manufacturing lines developed

first in the middle of the 20th century. The flexible production paradigm still offers one of the

most efficient solutions for producing variety of products in a cost-efficient, automated way, ap-

plying advanced production management tools and techniques. Right production management

decisions and the corresponding support tools are mostly requested by the transformation of

market needs, demanding to turn the push strategy into pull again when customers can select

the product from various types to be delivered by a certain due date. As a result, the recent

trend in production management is that companies are put under pressure by competitive mar-

kets and by facing several challenges arising from the management of a great variety of products

with shortening lifecycles and customer-expected lead times. As a possible response from the

production side, smart tools and techniques are integrated in the products and production sys-

tems via information-communication solutions, resulting in cyber-physical production systems

(CPPS) as the flagships of recent technological changes, often referred to as the fourth industrial

revolution or Industry 4.0 (Monostori et al., 2016). Although reconfigurable and modular system

paradigms were present before this era (Koren et al., 1999), they became fundamental means of

CPPSs, as they are capable of producing a great variety of products by the changeable structure,

functionality and scalable capacity (ElMaraghy, 2005). Moreover, the structural advantages of

1



1.1 Paradigm shifts and evolution of manufacturing systems 2

Figure 1.1. Paradigm shifts and the evolution of manufacturing systems according to Koren (2010).

these systems can be exploited more efficiently, if smart characteristics of products, processes

and system elements are combined with the reconfigurable and modular capabilities (ElMaraghy

and ElMaraghy, 2016). The above described paradigm shifts, business model changes and system

evolution are represented by Figure 1.1.

Focusing on the recent situations in production, the ever-changing market requirements

—regarding volume, mix and time dimensions— have significant impacts on the applied pro-

duction system and strategy: the production systems have to follow the trends of products’

lifecycle in order to maintain the economies of scale, meaning the balance between the expected

throughput and the corresponding production costs. Besides, reaching the economies of scope

is also desired to keep the costs on the lowest possible level, even though a great variety of

products need to be produced. Therefore, the coordinated evolution (co-evolution) of products,

processes, and production systems is required to continuously revise and maintain the system

configuration, in order to withstand the disadvantageous effects of the external drivers (Tolio

et al., 2010). These requirements are valid for both production and assembly systems. As for

the major difference between them, it can be generally said that manufacturing systems convert

raw materials into components, while assembly systems convert raw materials and components

into functional products (Owen, 2013). Assembly often constitutes the last stage of a discrete

manufacturing process and the accumulated processing value of the product is high, compared

to other manufacturing processes at previous stages (as cited by Bi et al. (2007)).

Focusing on the management of assembly systems, the aforementioned important business

goals can be achieved by utilizing the modularity of products as well as the flexibility of the ap-

plied assembly systems (Bryan et al., 2007). This can be done by reducing the variant-dependent

components in the systems, and applying systems that are built up of universal modules (Lot-

ter and Wiendahl, 2009). Flexible and reconfigurable assembly systems can support the firms to

fulfill the customer needs while keeping the costs on the lowest possible level, even in a turbulent

market (Westkämper, 2003). These system types and the aforementioned enablers are essential
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Figure 1.2. Map of concepts for capacity management of assembly systems: matching internal resources

with market needs, considering the heterogeneity of systems based on the enablers of changeability.

elements of changeable manufacturing that is defined as the characteristic to accomplish early

and foresighted adjustments of the factory’s structures and processes on all levels, due to change

impulses, economically (ElMaraghy and Wiendahl, 2009). On Figure 1.2, the role of capacity

management of assembly systems is highlighted, in case different system types are considered

that utilize different enablers of changeability as defined by Wiendahl et al. (2007). Accordingly,

the advantages of these systems can be exploited only if the right balance among the different

capacities is found. Considering the design of assembly systems, an important task is to find the

most appropriate system configuration that provides the desired production rate on the lowest

possible cost (Hu et al., 2011). Special, yet well-known problems in assembly technology are

sequence planning and line balancing, both supporting the detailed configuration of assembly

lines and systems. Assembly sequence planning determines the sequences of tasks and sub assem-

blies according to the product design description (Rashid et al., 2012), whereas line balancing

matches tasks and physical workstations considering a given line shape (e.g. U-shape or paral-

lel line) (Becker and Scholl, 2006). These methods provide the basis for the periodic capacity

management and production planning in relation with assembly systems. From this perspective,

there is an obvious need for efficient production planning and control methods that support the

application of flexible and reconfigurable systems (ElMaraghy et al., 2012a). Important factor in

the capacity management of assembly systems is the role of human labor, as processes are often

completely or partly manual. The output rate of these systems can be adjusted through the

allocated manpower, therefore, manual labor capacity needs to be always in balance with the

applied production plan and system configuration. Essential characteristics of the human labor

is the flexibility, regarding the skills of operators that can be widened by training programs.

Combining this enabler of the ”Operator 4.0” concept (Romero et al., 2016) with the modular

architecture and smart IT technologies of cyber-physical assembly systems, great opportunities

can be identified to support efficient product variety management.

1.2 Motivation

Concerning the above thoughts, the motivation of research is derived from the fact that capacity

management methods focusing on modular assembly systems got little scientific attention so

far, as discussed in detail in Chapter 2. However, assembly is an essential part of the total
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manufacturing, as the costs related to assembly are typically 25% to 50% of the total cost of

manufacturing, moreover, the percentage of workers involved in assembly operations ranges from

20% to 60%. Within the research, assembly systems will be analyzed, in which operations involve

alignment, orientation of components as well as their physical attachment by joining processes.

The objective is to define capacity management methods that match the system structure and

operations with the order stream, considering the volatile nature of the latter. The portfolio

of the assembled products is diverse regarding the assembly process steps as well as the order

volumes of products. The methods aimed at supporting the capacity management related tasks

on each level of the classical planning hierarchy, thus short, medium and long term decisions

are all considered. When planning the capacities and production, the actual configuration of the

assembly system —including the modules from various types— always needs to be taken into

consideration. As discussed later in Chapter 2, assembly systems with heterogeneous resources

are mainly considered, where dedicated, flexible and reconfigurable resources constitute the

overall configuration. These resource types entail different investment and operation costs that

are of crucial importance when deciding about the applied configuration on the long term, and

assigning the products to resources. On the medium and short terms, the emphasis is put on the

dynamic operation of the reconfigurable and flexible systems, ask for special capacity planning

methods that handles the changeable system structure and variability of time and quality related

parameters, resulted by the human factor.

All in all, cooperative decision support methods and models are to be developed, with the

objective of minimizing the overall costs, related to the application of assembly systems in a

changeable environment, where customer order stream changes over time, as well as the product

variety is great. The methods need to be applicable in real industrial environment characterized

with the above factors, therefore, their practical usability is desired.

1.3 Outline of the dissertation

The results presented in the dissertation are concentrated around two main topics, briefly char-

acterized in the previous sections. First part of the work introduces novel results achieved in the

capacity management of modular assembly systems, providing new models and methods in each

levels of the planning hierarchy (detailed in Section 2.1). In the second part, the emphasis is put

on the robust production planning methods for flexible assembly lines, where the variability of

actual workload is significant, increasing the complexity of daily production planning activities.

All of the presented methods are demonstrated through real use cases from the industry. The

dissertation is outlined in the following paragraphs, and an overview about the structure and re-

sults is provided in Figure 1.3, depicting the different methods with the corresponding planning

level(s) and system types. Besides referring to the chapter that presents a given method, the

related thesis statements that summarize the new scientific results are also referred (the thesis

statements are summarized in Chapter 6.1).

First, a literature review is provided in Chapter 2, presenting the state-of-the-art techniques

in product variety management, modular assembly systems, and robust production planning.

The reader can identify that the increased variety of products entails complex tasks in the

operations management, therefore, innovative solutions are needed to efficiently cope with the

changes in the volume and mix of the products. Modularization of assembly systems including

flexible and reconfigurable ones offers a reasonable solution to produce products in a great
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Figure 1.3. Overview of the topics and results presented in the dissertation, in relation with the

planning levels and focused system types.

variety, however, there is a lack of suitable capacity management methods applicable for these

special system structures.

In Chapter 3, a novel method is presented for the management of product variety in as-

sembly systems, by applying a new framework developed to enable the periodic revision of the

capacity allocation and the system configuration. The substantial contribution and novelty of

the method is realized in the approximation of the costs —including cost factors affected by

the dynamic reconfiguration processes— by prediction models that are applied in optimization

models supporting higher level configuration decisions. Moreover, nonlinear interactions among

the assembly processes of different products are also tackled by introducing dummy decision

variables (product subsets are determined with statistical models), supporting to keep the lin-

earity of the models while capturing the underlying interactions among the processes. In order

to evaluate the reliability of this approximation scheme in portfolio-based decisions, a simplified,

product-based version of the system configuration problem, called line assignment is solved first

as a proof-of-the-concept. Thereafter, the framework is presented providing capacity manage-

ment related solutions for each level of the classical planning hierarchy, which is introduced in

Section 2.1. On the higher level, a system configuration problem is solved to assign the product

families to dedicated, flexible or reconfigurable resources, considering dynamic factors like uncer-

tain order volumes. At the lower level of the hierarchy, it ensures the cost efficient production of

the system by optimizing the lot sizes as well as the required number of modules corresponding

to the calculated plan.

In Chapter 4, the scope of the analysis is shifted from manual assembly systems to modular,

robotized assembly cells. A new design and management framework is defined for the cost-

efficient management of these cells throughout their life, integrating multiple interlinked tools.

The framework is developed within a collaborative research: in the dissertation, the own part

of this work is highlighted as a new scientific result, namely the so-called Production Planning

and Simulation Tool . In the method, the planning and simulation models are responsible for

calculating the future expected operation costs, considering the tactical level factors already in

the early design stage of the cells. Besides, the predicted production lot sizes are also estimated,

supporting the dynamic performance evaluation of various cell configurations.
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In Chapter 5, a novel planning method is introduced with the essence of combining shop-

floor data from the manufacturing execution system (MES), and higher level data from the

enterprise resource planning (ERP) systems, facilitating the calculation of robust production

plans. The method combines data analytics techniques and discrete-event simulation in the

mathematical model of production planning and scheduling. It can be achieved by utilizing

sensor-level data in production planning in a proactive way, with the objective of decreasing

the overall production costs while being robust against the disturbances that might worsen the

performance of the plan. Thanks to the latest process monitoring techniques and technology

applied in CPPSs, diverse, and more detailed data can be gathered from the shop-floor than

ever before, supporting to capture the effects of human factor on the quality and time related

parameters, applying statistical models. In this way, the negative effects can be eliminated by

calculating robust plans: in contrast to most, iterative simulation-based optimization techniques,

the presented method relies on linear regression models, thus requires less computation efforts.

Compared to the existing robust optimization and iterative simulation-based techniques, the

method proposed in the dissertation results in less lateness on lower costs (cost of robustness),

while keeping the simplicity and thus short running time of the planning algorithms, enabling

to apply it in real industrial environment, as presented by a case study from the automotive

sector.



Chapter 2

Literature review

The recent challenges in operation management were presented in the previous chapter, high-

lighting that today’s production is mainly characterized with ever increasing complexity in the

customer needs, manifested mainly in the turbulence of markets, uncertainty and variety of the

prices and order volumes (ElMaraghy et al., 2012b). Although companies are under pressure

of the market needs and influenced by the market trends, some state-of-the-art approaches,

including production system paradigms, as well as the complementary management methods

offer reasonable solutions to tackle these requirements. In the followings, concepts and tools of

product variety management are introduced, emphasizing the solutions that are appropriate for

assembly systems. The literature review highlights the research fields related to the sub-topics

of the thesis, including the management of modular and changeable assembly systems, and the

production planning approaches that aim to provide robust solutions for assembly lines. Ad-

ditionally, state-of-the-art modeling techniques for operations management are introduced in

Section 2.6.2, describing the tools and approaches that are used for optimization, data analytics

and simulation throughout the thesis.

2.1 The role of planning in production

In production management, planning involves activities, processes, methods and techniques

needed to take, make and account for customer orders, matching the internal processes with

external market requirements (Schönsleben, 2016). According to Pinedo (2005), planning and

scheduling functions in a company require mathematical techniques and heuristic methods,

applied on a daily basis to achieve corporate business objectives. More specifically, planning de-

termines the production activities to be performed in the upcoming periods, and the key tasks

are the planning of production program, production requirements, the external procurements

and the outbound deliveries (Lödding, 2012). Based on the previous thought, one can infer that

production planning is a set of different activities, supporting decision in different phases, and

on different stages of the production. Accordingly, Fleischmann et al. (2005) defined a supply

chain planning matrix, categorizing the planning activities based on their resolution and time

horizon (vertical axis) and the focused logistics area in the process chain (horizontal axis). In

the planning matrix illustrated by Figure 2.1, the vertical axis depicts the three main stages of

the planning hierarchy: the long-term strategic, the medium-term tactical, and the short-term

operational planning. These categories are based on two, strongly correlated factors that are

in inverse relation: the resolution (level of aggregation) and the time horizon of the planning

7
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Figure 2.1. (Supply chain) planning matrix with tasks, according to Schönsleben (2016), modified

from Fleischmann et al. (2005).

model. The reason for this is the uncertain and/or aggregate nature of the information, avail-

able about the future production scenarios on the long term, whereas on the operational level,

typically a huge amount of information needs to be considered that increases the complexity of

planning, therefore, it can be calculated only for the short upcoming term. One cannot draw

clear boundaries between the different stages of the hierarchy, however, in practice, the term

planning refers to tactical and strategic level activities, whereas scheduling corresponds to the

operational level (Fleischmann et al., 2005). Although different tasks are solved in each stage of

the hierarchy, they need to be consistent in a way that a higher level plan provides input to the

lower level planning task, thus it needs to be feasible even if more details are considered when

solving the lower level planning problems.

In general, production planning is responsible for matching the supply with demand, by bal-

ancing the internal capacities with the order stream, and transforming the customer needs into

production orders, considering mainly the financial objectives (Pochet, 2001). The fundamental

questions addressed in planning are: What, when, how much and where to produce? Besides, as

planning is mostly performed on tactical and strategic levels, its time horizon is bucketed (con-

sist of – usually equal length – time periods), and the operation sequences within the same time

buckets are not preserved (big-bucket models). The time horizon and the corresponding resolu-

tion (period length) of planning mostly change in between a working shift and a year, depending

on the corporate practice. As illustrated by Figure 2.1, production and capacity planning are

hand-in-hand, due to the strong interdependencies among the constraints. As production plan-

ning always needs to consider the amount of available resources (material or labor), capacity

and production are planned in an iterative or integrated way (Pochet and Wolsey, 2006). In the

latter case, decision makers have the option of adjusting the amount of applied resources even on

medium- or short-terms (e.g. overtime, or extra machine hours), in case the production requests

for that (Kumar and Suresh, 2006; Russell and Taylor, 2011). Considering the strategic level

decisions when a long time horizon is applied, plans often involve investment decisions about

capacity expansions, or major changes in the applied resource set (Dal-Mas et al., 2011; Liu and

Papageorgiou, 2013; Rastogi et al., 2011).
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In contrast to planning, scheduling methods usually deal with a fine-granularity, bucketless

time horizon, more specifically, tasks can be scheduled in practice even with a resolution of a

minute. In scheduling, the most fundamental question to be answered is: How to best to produce

(sg.)? This usually means the assignment of jobs to resources over time, and defining a sequence

of jobs to be released, which task is influenced by priorities and constraints to be considered.

In scheduling, the set of jobs to be sequenced, and the set of resources are usually given by the

assembly process plans, and the emphasis is put on their proper assignment along time (Framinan

et al., 2014). Operational level scheduling is in a close relationship with the execution and control

of operations, therefore, continuous feedback is needed from the shop-floor to revise, and change

the schedule (rescheduling) if needed, adjusting to the status of processes (Pfeiffer et al., 2007;

Vieira et al., 2003).

2.2 Product variety management

Proper management of product variety is a recent challenge in operations management, involv-

ing several aspects from the design of the products to the coordination of the supply networks

(ElMaraghy et al., 2013). In general, increased variety of today’s product portfolios is originated

from multiple root causes, among which the changes of production technology, applied materials

and processes are of crucial importance. However, the main reason why firms are offering mul-

tiple variants for the customers relies on the competitiveness, more specifically that customers

tend to buy products that either match their personal preferences, or the ones that can be

customized easily. Even though the obvious advantage of mass customization is that products

match better the requirements, variety is not necessarily good, both regarding the customers, as

well as the companies’ sides. On the one hand, customers are often confused about the differenti-

ation of products variants (Huffman and Kahn, 1998), while on the other hand, companies need

to manage the extra inventory, production and service costs entailed by the complex product

portfolio. Focusing on the management issues of the product variety, the key of effectiveness

relies on the application of flexible approaches regarding both the physical production system,

as well as the corresponding planning and control layers.

Considering the challenges related to the system structure, the increasing number of vari-

ants and shortened product lifecycle1 force companies to reduce the variant-dependent system

components, as those cannot be cost-efficiently adapted to the changes (ElMaraghy and El-

Maraghy, 2016; Lanza et al., 2010; Lotter and Wiendahl, 2009). As a reasonable solution, the

application of flexible and reconfigurable assembly systems should be considered in order to reach

the economies of scope (Fernandes et al., 2012). According to Wiendahl et al. (2007), flexibility

and reconfigurability are specific to certain factory levels, therefore, the term changeability is

introduced as an umbrella concept encompassing many aspects of change within an enterprise.

State-of-the-art changeable systems are introduced in Section 2.3, emphasizing the concept of

modularity applied in assembly systems. As for the planning and control layers of production,

different approaches exist supporting the management of product variety by satisfying the cus-

tomer needs as well as maintaining the internal efficiency. Regarding the changeability concept,

the proper utilization of modularity in production and capacity planning is of crucial impor-

1Lifecycle of a product refers to the stages a product progresses through after its appearance in the market:

introduction, growth, maturity and decline (Day, 1981). These stages reflect the sales volumes and thus production

volumes, and typically represented as a function of time (lifeycle curve).
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tance, as there are strong interdependencies among the costs that incur on the different layers of

the planing matrix (Meyr et al., 2015). As highlighted by Colledani et al. (2016) and by Gyulai

and Monostori (2017), if cost-efficient system configuration is desired, strategic decisions need

to consider the costs that are mostly influenced by the strategic and operational level decisions.

In this perspective, the related state-of-the-art techniques in system configuration and capacity

management are presented in Section 2.4.

2.3 Modularity and changeability of assembly systems

Nowadays, changeability and flexibility are fundamental characteristics that can be utilized to

meet challenges of the global market from the manufacturing systems’ side. Tolio and Valente

(2006) define flexibility as a characteristic of a system to change its behavior without changing

its configuration, in contrast, changeability makes possible functional changes of a system via

structural and configurational changes. In the management of assembly systems, (i) changeabil-

ity and (ii) automatibility are fundamental enablers, and form the basis of different classification

schemes. According to Wiendahl et al. (2007) (i) changeability makes possible the physical and

logical objects of a factory to change their capability towards a predefined objective in a prede-

fined time. In case of assembly systems, the enablers of changeability are modularity, scalability,

convertibility, mobility and automatibility. Koren (2006) and ElMaraghy and Wiendahl (2009)

define these elements as they follow. Modularity makes use of standardized resources as building

blocks of the system, ensuring a high interchangeability with little cost or effort. Convertibil-

ity of changeable assembly systems is important to switch between product types rapidly, e.g.

by utilizing adjustable fixtures and other resources. Scalability provides for spatial degrees of

freedom, regarding expansion, growth and shrinkage of the factory layout. Mobility —as high-

lighted later— is important to reconfigure single stations or modules of an assembly system. As

for the last enabler, the (ii) automatibility of assembly systems, three main levels of automation

are distinguished: manual systems with human assemblers aided by simple tools, hybrid system

where human workforce is supported by automated machines, and fully automated assembly

systems. Conclusively, changeable assembly systems can have different levels of automation,

however, the assembly costs depend both on the applied resources, and also on the desired level

of reconfigurability (Wiendahl et al., 2007).

In changeable production technology three main paradigms are distinguished (Section 1.1),

based on the structure, management, and focus of the applied resources: dedicated (DMS),

flexible (FMS), and reconfigurable manufacturing systems (RMS) (ElMaraghy, 2005). Although

these paradigms directly related to manufacturing systems, the same concepts exist in assembly

technology, therefore, dedicated, flexible and reconfigurable assembly systems are also distin-

guished (Bi et al., 2007; Lotter and Wiendahl, 2009). Dedicated assembly systems are designed

to produce a single product type in a high volume, with a fix line architecture. Flexible as-

sembly systems also have fix structure in most cases, however, they are suitable for assembling

a part family applying equipment with adjustable features including both software and hard-

ware (Owen, 2013). Reconfigurable assembly systems have rapidly changeable capacity, as well

as functionality applying convertible design to change the configuration when switching from

one product type to another (Koren and Shpitalni, 2010).

From production management viewpoint, cost and time factors related to changeability are

of crucial importance when configuring the systems, or deciding about the production plans.
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Although there are neither definite boundaries nor specifications as a basis of categorization,

dedicated systems are usually characterized by lower investment and higher production costs,

whereas flexible systems have the opposite characteristics (Bruccoleri and Perrone, 2006). Recon-

figurable systems are in between them by offering a reasonable solution with short changeover

and reconfigurable times besides relatively low investment and operation costs. For the sake

of comparability regarding the cost factors, the concept of modularity has been introduced as

an umbrella, encompassing the building block resources of assembly systems that are of dif-

ferent classes in terms of changeability. Therefore, the modular assembly systems analyzed in

the thesis can be either dedicated, flexible or reconfigurable ones, however, the modules have

different capabilities, as well as their operation and investment entail in different costs. The

analyzed systems consist of modular assembly lines that are designed to perform sequential as-

sembly operations, and the structure of lines relies on the process-based alignment of assembly

modules (Hu et al., 2011). These modules are the machine (non-human) resources of assembly

systems that are considered to have finite capacities in the planning models introduced in the

thesis. Besides their capacity, important characteristic of the modules is their capability, in this

regard, one can distinguish among dedicated, flexible and reconfigurable assembly lines. Such

mixed resource sets result in so-called heterogeneous systems include assembly lines that can be

either dedicated, flexible or reconfigurable, according to the module types they are composed

of. Although different lines constitute these heterogeneous systems, the module of a given line

are from the same type. In order to characterize the different types of modules, some important

concepts are clarified first, concerning the structure and operation of the system:

� Modules are the building blocks of modular assembly systems, capable of performing spe-

cific assembly tasks (e.g. screwing module, pressing module etc.). From structural view-

point, one can distinguish among dedicated, flexible and reconfigurable modules. Modular

design is a commonly applied technique for assembly systems, since it enables to build

different system configurations from blocks with standardized features, often referred to

as ”plug and produce” modules (Onori et al., 2012; Wiendahl et al., 2007).

� System configuration (noun) refers to the architecture and selection of the modules from

different types. Given a certain product, several configurations exist that are capable of re-

alizing the product, however, in the high level-system configuration, exact alignment of the

modules on the shop-floor is not considered, but only the main cost and performance indi-

cators (investment cost, throughput, scalability and conversion time) when given module

sets as configurations are evaluated. System configuration (verb) also refers to the activity

when the system structure is defined, according to the above description.

� Reconfiguration refers to the procedure when the physical configuration of the assembly

system is modified, e.g. the modules are realigned in order to build a new assembly line

and produce different product.

Dedicated, flexible and reconfigurable paradigms have advantages and disadvantages, therefore,

proper selection of modules and configuration of the system are of crucial importance towards

the cost-efficient operation. Several papers compare the three paradigms of production systems,

however, the rest of them concentrate mostly on manufacturing processes (Koren and Shpitalni,

2010; Lotter and Wiendahl, 2009; Zhang et al., 2006). The general characteristics summarized



2.4 Capacity management of assembly systems 12

in the papers are valid for assembly systems as well, however, resources applied in assembly

technology have some specific features as discussed below.

Dedicated assembly lines are designed for assembling a certain product in high volume that

is relatively stable. Due to the inflexible design of the dedicated modules, they can be operated

economically only if the production volumes remain high and relatively constant, as the redesign

and ramp-up of a modified or new dedicated module often entail high costs. Dedicated lines are

usually automated, and equipped with a conveying system, therefore, the required human labor

content is relatively low.

Flexible assembly lines are capable of assembling different, but relatively similar products

by the adjustment of fixtures and tools (e.g. changing the bit and adjusting the torque on

a screwdriver). They consist of flexible modules that are designed for performing a specific

assembly task (e.g. screwing) of more product types, that are assembled in a medium/higher

volume that can slightly fluctuate over time. As flexible modules are fixed on the shop-floor,

they do not enable physical reconfiguration, and the scalability of the system is very low. Some

flexible lines are based on a hybrid assembly approach, where automated devices are combined

with human labor, and the modules can be exchanged in a short time. Such modular systems are

the combinations of flexible and reconfigurable ones, and suitable for quickly varying products

and quantities, as the investment costs are lower than that of a highly automated system. Due

to the higher level of flexibility, the risk of a bad investment is quite low (Wiendahl et al., 2007).

Reconfigurable assembly lines are capable of producing more product families, applying

changeable fixtures and adjustable equipment. The modular structure enables to change the

configuration of the system with relatively low efforts, and to scale up or down the capacity

according to the order stream. When applying mobile, dockable workstations, the reconfiguration

procedure can be shortened significantly, however, it is still longer than a simple setup on a

flexible line. In contrast to the flexible systems that are suitable for assembling different parts

in relatively constant volumes, reconfigurable lines offer adjustable flexibility and scalability

(ElMaraghy and Manns, 2007; Meng, 2010). Utilizing these features, reconfigurable lines are

usually applied for assembling products in the launch and end phases of their lifecycles (Koren,

2006).

Based on the above literature review of paradigms and system characteristics, a radar chart

is sketched to visualize the main features of the different resource types, assigning higher scores

to more advantageous characteristics (Figure 2.2). As introduced in the following sections, a

system configuration is aimed to be determined, which combines the advantages of three separate

system types, therefore, it has a heterogeneous structure. Concerning Figure 2.2, this would mean

that the desired heterogeneous system configuration needs to cover the maximal possible area

presented in the chart, by utilizing most of the benefits offered by the structure of the system.

2.4 Capacity management of assembly systems

In operations management, the general objective is to match supply with demand while min-

imizing the total incurring production costs that are inversely proportional with the internal

efficiency, wish to be maximized. When considering several products and a dynamic market

environment, this can be achieved by utilizing the flexibility and reconfigurability of the applied

production resources, on each level of the planning hierarchy. Supplier companies, especially in

the automotive industry, often face the challenge to introduce new products in their portfolio,
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because their customers also release new final products or modify the existing ones, requiring the

modification of components. As markets are typically very competitive, quick responses to such

challenges are required in order to keep customers and increase profit. Therefore, production

managers and system designers have to find the right balance between throughput and produc-

tion costs, utilizing the advantages of a proper system configuration with the complementary

logical planning processes (ElMaraghy et al., 2012a). In this way, the changeability of systems

can be increased, thus they can also accommodate to the changing product portfolio while the

overall costs can be kept on a reasonable level (ElMaraghy and Wiendahl, 2009).

In case of modular assembly systems, capacity management means the long term invest-

ment strategy and product-resource assignment, and the goal is to minimize the costs that incur

on the long run, while keeping the desired service level (Renzi et al., 2014). In the terminology,

this field of corporate decisions is also referred to as resource investment strategy (Kuzgunkaya

and ElMaraghy, 2007). For heterogeneous manufacturing systems composed of flexible, reconfig-

urable and dedicated machines, an optimization model was introduced by Bruccoleri and Perrone

(2006), minimizing the production costs by optimal investments in the different machine types.

More approaches exist that apply search metaheuristics to identify the proper configuration of

manufacturing systems with heterogeneous resources (Deif and ElMaraghy, 2007; Renna, 2016;

Youssef and ElMaraghy, 2007), while Renna (2010) proposed an agent-based solution to manage

capacity exchange among production lines combining different resource types. When discussing

the production planning and control levels of changeable systems, five important enablers have

to be considered: modularity, scalability, neutrality, adjustability and compatibility. In-line with

the physical changeability enablers of assembly systems as described in Section 2.3, through-

out the thesis, the first two features are emphasized, as the analyzed systems are composed

of modules providing the scalability of the system as a whole (Wiendahl et al., 2007). When

discussing reconfigurable assembly systems, the modularity and scalability are hand-in-hand, as

the entire system can be scaled up or down by increasing or decreasing the number of modules

(Putnik et al., 2013). To identify the best capacity scaling policies of reconfigurable systems, sys-
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tem dynamics (Deif and ElMaraghy, 2006; Elmasry et al., 2014), dynamic optimization (Lanza

and Peters, 2012), and also genetic algorithm based methods have been proposed (Abbasi and

Houshmand, 2011; Wang and Koren, 2012).

Although various methods exist to manage production systems composed of different re-

source types, rule-based approaches frequently used in practice, without considering the con-

tinuous adjustment of capacities when deciding about the system configurations, and assigning

products to the different resource types (Ceryan and Koren, 2009). The reason for this relies in

the specialty of production environment operating with rapid reconfigurations, while the above

introduced methods regard mostly long term reconfigurations of manufacturing systems. The

rule-based approaches applied in industrial practice rely on corporate knowledge in production

costs and possible future scenarios, and split up the product portfolio to low and high runner

product groups, assigning them to reconfigurable/flexible and dedicated resources respectively

(to be discussed in detail in Section 3.5).

A more important lack of state-of-the-art system configuration methods relies in the approx-

imation of future expected costs, regarding especially the cost factors related to the operation

of certain configurations with reconfigurable resources. Within strategic system configuration,

firms need to make decisions about investments in different resources, considering long term

market forecasts, as well as the actual system configuration. While these planning decisions

mostly affect the physical architecture of the system, medium term planning is responsible for

adjusting the production to the already existing capacities. Although some solutions exist that

consider tactical planning aspects in the early design and configuration phase of the systems

(Hu et al., 2011; Koren and Shpitalni, 2010), these methods got little scientific and research

attention so far. The throughput and major performance indicators of systems in the design

phase are mostly estimated base on the bottleneck operations (Li et al., 2014), without respect-

ing the expected production sequences and the resulting setups and changeovers that can highly

affect the system’s performance (Battini et al., 2011; Boysen et al., 2007; Nazarian et al., 2010).

More specifically, the production planning and the related operational costs are not considered

by practical and theoretical production management approaches, often resulting in wrong in-

vestment decisions (Gyulai et al., 2014a). These facts are valid especially for assembly systems

with dynamically changing structures, resulted by the reconfigurations. These systems require

special production planning models that are capable of managing the short-term reconfigura-

tions, usually applying a common pool of modules shared by the assembly lines. Concluding

the above thoughts, an important objective of the presented research is bridging gap between

strategic and tactical level decisions by providing system configuration methods that are capable

of considering the future expected operation costs based on the tactical level production plans.

2.5 Robust production planning and scheduling

Besides the system configuration problem of modular assembly systems solved in the coming

sections of the thesis, the second main contribution relies in a novel, robust production planning

method that aims at tackling the uncertainties resulted by the human factor as a side-effect of

the allocated flexible manpower in manually operated assembly systems.
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2.5.1 Robustness in production

Regarding special planning requirements needed by the modular structure of the analyzed sys-

tems, from capacity management perspective, an important characteristic of manual and hybrid

assembly systems is their scalable capacity through the assigned human resources. It means

that a given assembly system can be operated by different headcount of human operators, re-

sulting in the adjustability of the system’s output rate. Therefore, human capacity requirements

always need to be in balance with the system configuration and the applied production plan

in order to reach the expected production rate. The production planning layer of the supply

chain planning matrix is responsible for transforming customer orders into production orders by

solving lot-sizing problems that match the order stream with available capacities, resulting in

a production plan (Meyr et al., 2015). Production plans that rely on deterministic parameters

often fail to cope with the dynamic effects of the execution environment and the considerable

uncertainty of the underlying planning information, and their outcomes typically strongly rely

on a single input data scenario (Kouvelis and Yu, 2013). In order to prevent the losses caused

by the optimistic planning with idealistic parameters, robust techniques are mostly desired. Ro-

bustness in production planning involves refined approaches that aim at handling predictable or

unpredictable changes and disturbances. They respond to the occurrence of random events with

reactive approaches (Monostori et al., 2007; Pfeiffer et al., 2007), or protect the performance

of plans by anticipating to a certain degree the occurrence of uncertain events with proactive

approaches (Herroelen and Leus, 2004; Tolio et al., 2011).

Both fields of robust optimization and robust production are emerging, thus different defi-

nitions of robustness exist in theory and applied in practice (Kouvelis and Yu, 2013). However,

according to Stricker and Lanza (2014), there is a common idea of robustness, which builds the

basis for most of the existing definitions: robustness describes the stability against different vary-

ing conditions. Focusing on production, the robustness shall stabilize the systems’ performance

in case of varying conditions, and in case an unexpected event occurs, robustness has a positive

effect on the system’s performance. Seeking for a more specific definition of robustness, one

can distinguish four main categories in the literature. In the first, strictest case —adopted from

sensitivity analysis in operations research—, (i) a solution (e.g. the optimal solution) is called

robust if it remains unchanged, even despite the change of considered influencing factors (Koltai

and Tatay, 2011). In the second case (ii), a solution is called robust if it remains close to optima

besides any variation of the regarded influencing factors. In the third case (iii), the solution is

considered to be robust in case it is feasible under the considered variation of influencing factors,

and its deviation from a target is small enough (Dellino et al., 2012). In the fourth case (iv), the

solution is robust if it is feasible, and its selected measures stay within the predefined thresholds

(Beyer and Sendhoff, 2007). Throughout the thesis, the third (iii) definition of robustness is

considered, and a solution is called more robust than another one in case the deviation of its

key measure is smaller than that of the other solution.

2.5.2 Calculation and evaluation of robust production plans

Efficient ways of taking uncertainties into account, and to achieve more robust solutions are

either applying stochastic models (Naeem et al., 2013; Sahinidis, 2004) (e.g., by estimating

the underlying stochastic processes), or using adaptive and cooperative approaches, which allow

prompt responses to changes and disturbances (Monostori et al., 2010). A promising approach
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in reactive scheduling is the application of multi-agent systems that provide robust, error-prone

plans by implementing the collaboration among local-acting agents to achieve a global target

(Zhang, 2017). Further approaches for managing uncertainties in planning rely on minimax

optimization models that first appeared in game theory, and aim at minimizing a worst case

scenario’s maximal possible loss, e.g. the extra costs (Liu and Papageorgiou, 2013) or excess

inventories (Boukas et al., 1995; Dong et al., 2011).

As deterministic models usually fail to provide executable plans due to the existence of un-

certain and stochastic parameters (e.g. reject/scrap rates or manual processing times), simulation-

based optimization (also referred to as simulation optimization) methods are often applied to

calculate robust plans (Kouvelis et al., 2000). In general, they consist of a mathematical opti-

mization model, in which the objective function or constraint(s) are represented by functions

that are approximated by utilizing the results of simulation runs (Azadivar, 1999). The reason

for applying simulation in these cases are the computational complexity or the lack of analytical

form of the objective function and/or constraints. In production planning, simulation-based op-

timization is mostly applied by iteratively adjusting parameter values according to the results of

simulation experiments, until the target values of the performance indicators are reached (Byrne

and Hossain, 2005; Gansterer et al., 2014; Irdem et al., 2010; Laroque et al., 2012; Melouk et al.,

2013).

Another promising approach towards the robust production planning is the robust opti-

mization, which is a relatively novel field of operations research. While stochastic optimization

techniques dating back at least to the ’50s, the first interior-point algorithms for solving robust

optimization problems were published in the late ’90s by Ben-Tal and Nemirovski (1998). Ro-

bust optimization as a modeling technique is currently applied in various fields where robust

solutions for a problem with uncertain parameters is requested (Bertsimas et al., 2011; Gabrel

et al., 2014). According to Ben-Tal et al. (2009), the strength of robust optimization relies in

its simplicity: if one assumes that the basic deterministic model of a problem already formu-

lated, its robust counterpart can be defined easily by representing the selected parameters with

uncertainty sets. In contrast to stochastic optimization methods, in robust optimization, we do

not solve the problem utilizing the distribution functions and probabilities, but a solution is to

be obtained that is feasible in any of the possible scenarios, even in the worst case (Gorissen

et al., 2015). As a result, the calculated robust solution satisfies all the constraints that might

be uncertain, and stays feasible in any of the situations represented by the optimization models.

A robust solution is always more ”costly” than its deterministic counterpart, and the differ-

ence between the objective function values is called the cost of robustness that can be measured

by different indicators, depending on the problem instance. In practice, various key performance

indicators (KPI) can be applied to characterize the robustness of a production plan (Aytug et al.,

2005; Naeem et al., 2013), however, total backlog (or the related service level) and lateness are

used in most of the cases (Stevenson et al., 2005). Lödding (2012) defines backlog as the differ-

ence of the planned and actual outputs of the production, whereas lateness is a time-dimension

metric measuring the difference between the actual and planned completion of production or-

ders. Lateness is an execution related KPI, which is basically caused by the disturbances if the

plan is not robust enough, accordingly, it characterizes robustness more efficiently as it strongly

relies on the execution of the plan (while backlog is usually a variable of the planning model).

The robustness of a plan often works against other efficiency criteria, hence, it means a trade-off

is required if the objective is to increase robustness. The cost of robustness can have different
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forms, a simple example might be the cost of additional capacities that need to be allocated

for the same amount of work (Kazemi Zanjani et al., 2010). In the relevant part of the thesis

(Chapter 5), cost of robustness is measured with the difference of the total production costs that

incur when executing a robust and non-robust plan.

2.5.3 Production planning in multi-stage systems

In the previous sections, the emphasis was put on the vertical integration of the planning ap-

proaches, more specifically on the link between the strategic level system configuration, and

the lower level production and capacity planning methods. As assembly systems are mostly re-

sponsible for completing the final products, they are typically the last stage of the production

process chains. Therefore, horizontal integration of the planning methods and the resulted plans

are also important to harmonize the production of various production stages. Accordingly,multi-

stage planning (often referred to as multi-level) approaches are needed to balance the production

among the assembly lines and the preceding steps of the process chain. Considering determin-

istic, multi-level production planning models, several efficient approaches exist to solve even

complex problem instances. The applied models are typically formulated as multi-level capaci-

tated lot-sizing problems (MLCLSP), aimed at minimizing the overall production costs involving

setup and inventory costs. In most of the cases, so-called echelon-stocks are introduced in the

model, representing the stock of components that are produced in different stages of the process

chain (Pochet and Wolsey, 2006). In general, MLCLSP is formulated as a single optimization

problem that determines the optimal amount of components to be produced in different time

periods. Due to the highly complex nature of the problem, existing approaches are either seeking

to implement efficient heuristics, or to decompose the problem and solve the resultant single level

sub-problems sequentially.

As for the heuristics-based approaches, Sahling et al. (2009) proposed a new algorithm to

solve the MLCLSP as a big bucket problem, allowing to produce any number of products within

a period, however, partial sequencing of the orders is solved by determining the release of the

first and last orders in each period. Helber and Sahling (2010) apply the same fix-and-optimize

heuristics as it provides a flexible and most efficient known solution for the MLCLSP that can

manage general product structures and consider the lead-times of products, nonetheless devia-

tions and uncertainties of the parameters cannot be treated. Similarly, the aggregate production

planning problem of a two-stage system is solved by Ramezanian et al. (2012), applying a genetic

algorithm and tabu search. In contrast to heuristics-based approaches, decomposition-based so-

lutions apply echelon-stock variables, simplifying the original multi-level problem to a series

of single-item lot-sizing subproblems (Pochet and Wolsey, 2006). They require to run multi-

ple planning models to solve the multi-level problem, however, these single stage models take

significantly less computational efforts to be solved.

2.5.4 Towards robust, multi-level planning in practice

Although both multi-stage and robust planning have extensive literature, only a few solutions

exist to solve the combined problem of them. Aghezzaf et al. (2011) propose an inventory-

decomposition-based approach to solve the robust, multi level planning problem. Alem and

Morabito (2012) apply robust optimization to solve a multi-stage planning problem from a

furniture industry, whereas Schemeleva et al. (2012) propose a memetic algorithm to solve a
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similar problem. Koz lowski et al. (2014) introduce a predictive approach for multi-stage systems

with stochastic parameters, however, this solution is more suitable for long-term planning with

large order quantities. Kazemi Zanjani et al. (2010) apply an inventory-based decomposition for

production planning in a manufacturing environment with random yield. The approach results

in robust solutions, yet it considers aggregate and constant capacities, which is not suitable in

case of assembly processes with stochastic processing times and flexible capacities.

The efficiency of the above approaches are proven, however, from practical point of view,

most lot-sizing approaches are not suitable for everyday use due to the ‘hard-wired’ procedural

heuristics that follow highly specific problem logics (Helber and Sahling, 2010). Production

planning of multi-stage systems is a major step of material requirement planning (MRP) systems,

most of which ignore capacity constraints and disregard setup, production, and inventory costs

when deciding about lot sizes (Berretta et al., 2005). Without applying special MRP techniques

to cope with finite resource capacities —e.g. the approach proposed by Na et al. (2008)—, the

calculations can lead to capacity infeasible plans in industrial practice. Albeit enterprise resource

planning (ERP) systems are significantly improved in the integration of material and capacity

planning (Hvolby and Steger-Jensen, 2010), they are still often unable to perform satisfactory

in a dynamic, uncertain environment (Tenhiälä and Helkiö, 2015). To tackle these challenges

more efficiently, advanced planning and scheduling systems (APS) combine production planning

and scheduling, and utilize ERP data to adjust the plans to the actual status of the production

system (Fleischmann et al., 2005). Most APS software apply what-if analysis to determine the

quality of the plan before releasing it to the shop-floor, and this analysis is often performed by

simulation considering the latest shop-floor data (Ko et al., 2013; Krenczyk and Jagodzinski,

2015). These approaches enable to evaluate the production schedules in a proactive way, and

to adjust them to the actual status of the physical system. Even though these methods offer

efficient solutions to calculate feasible production plans, they do not consider the dynamics of

the systems, nor the variability and uncertainty of the parameters that might have impact on

the entire system’s performance, but only use higher level planning data such as cycle times

or expected lead times. Besides, APS systems are mostly applied for disturbance handling in a

reactive way, as they support quick re-scheduling with rule-based scheduling algorithms (Barnett

et al., 2004; Pinedo, 2012).

2.6 Modeling techniques in operations management

In operations management, various tools, techniques and technologies are applied to support

decisions. In real practice, these decisions mainly correspond to the field of industrial engineer-

ing, which is an interdisciplinary branch of engineering science, conclusively, the most com-

mon applied tools also cover multiple fields, and encompass engineering, computer science and

mathematics knowledge. The following sections introduce the basics of different models and

computational tools that are mostly applied throughout the thesis.

2.6.1 Discrete-event simulation

One of the most widespread digital enterprise tools is discrete-event simulation (DES), which

is a computational instrument to analyze dynamic processes, even if stochastic parameters and

uncertain events are to be considered. Similarly to the other tools discussed in Sections 2.6.2 and
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2.6.3, simulation modeling is aimed at supporting decisions qualitatively or quantitatively by

building a model of a real system, and making experiments with this model (Bangsow, 2010; Law

and Kelton, 2000). Compared to the optimization models discussed in Section 2.6.2, the greatest

benefit of using DES models is their advanced capability of representing even the underlying

processes, without loosing the accuracy of results, or increasing significantly the computational

time. Another main distinctness of simulation models are their nature of supporting decisions:

whereas in optimization one expects to obtain the ”best-among-all” solution for a certain prob-

lem (satisfying the constraints), simulation cannot provide such a result, but it is rather capable

of predicting the outcome of various scenarios, meaning that the ”best” solution can be selected

only from the analyzed scenarios, and not from all possible/feasible ones.

In accordance with its name, DES works with a discretized time horizon composed of

unequal time periods (Fishman, 2013). Those time periods are derived from the occurrence time

of the events arise in the process under study. In a generic simulation modeling project, one

implements the model by using predefined building blocks of the system, and then describes

the logic of material and information flow among the elements of the system. When running an

experiment with the model, a clock is started in the background, simulating the execution of

events stored in self-organizing list by changing the state of the system affected by the event,

adding the new events to the list and advancing in time with the clock (Page and Kreutzer,

2005). This modeling procedure enables to use relatively low computational efforts even in case

of analyzing complex processes, and makes it possible to select the level of detail of interest by

building either detailed or draft models.

Simulation models are built to support various decisions, accordingly, different kinds of

experiments are defined to answer certain questions. Most often, simulation models are built in

order to analyze existing systems’ behavior under different production scenarios, to predict the

performance change when an existing system is changed (physically or logically), or to estimate

the performance of a planned system that not yet exists. Thanks to the advanced statistics

engine of DES tools, detailed results can be obtained about the simulation experiments. In

general, industrial engineers expect from simulation modeling to support the increase of systems’

performance (e.g. utilization or output), decrease the losses (e.g. inventories) or to give them

insight to the details of complex processes, understanding better their behavior. In practice,

optimization is often combined with simulation to evaluate solutions under different scenarios,

or even to support finding the optimal solution, achieved with simulation-based optimization

methods (Law and McComas, 2000). Throughout the thesis, DES is mostly used to predict the

outcomes of various production scenarios, which typically means the execution of different plans

(pre-calculated e.g. with an optimization model) in a given production environment.

2.6.2 Mathematical modeling and optimization

Descriptive and optimization models are often created to describe the behavior of real pro-

duction systems by using the language and concepts of mathematics (Will M. Bertrand and

Fransoo, 2002). While descriptive models are mostly applied to analyze the systems behavior

and performance applying the techniques and tools of queuing theory (Adan and Resing, 2002;

Buzacott and Shanthikumar, 1993), optimization models are typically created in order to obtain

the possible best solution for a certain problem; e.g. to calculate a production plan that satisfies

the pre-defined constraints, while its execution results in the minimal costs (Lang, 2010). Such
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optimization models might have various forms and solution techniques, depending on the nature

of relations that are applied to define the problem. In most cases, one is aimed at representing

the problem with constraints and objectives that are linear functions of the variables. In several

cases, this can be achieved only by simplifying some elements of the model, decomposing the

problem, or linearizing the relations applying piecewise functions. However, these transforma-

tions often worth the efforts, as linear optimization problems can be solved efficiently considering

the running time of the algorithms and complexity of the problem. Linear optimization problems

– often referred to as programming models – have the following canonical form defined by (2.1).

maximize cᵀx

subject to Ax ≤ b

x ≥ 0

(2.1)

The first term of the model is called the objective function that one wish to minimize or maxi-

mize. The objective function is the linear function of the decision variables denoted by vector x,

similarly to the constraints that are represented by the second term of the model. The problem

is solved by calculating the values of the decision variables, while respecting the constraints that

bound the possible values of x.

From modeling perspective, important bound on decision variables is their integrity, ex-

pressing their possible set of values. Such constraints mostly express that decision variables are

binary x ∈ {0, 1}, or integer x ∈ Z that often characteristic to production planning models, if

assignment decisions are made (e.g. producing a product in a certain period or not), or capaci-

ties are among the decision variable (e.g. number of machines is integer). Optimization models

with integer and real decision variables are called mixed-integer programming (MIP) models.

From computational viewpoint, such integrity restrictions significantly increase the problems’

complexity, as they cannot be solved by the polynomial time simplex algorithm, but search al-

gorithms – e.g. the branch and bound — need to be applied (Winston and Goldberg, 2004). In

the following parts of the thesis, production planning problems are mostly formulated as MIP

models in a declarative way, applying mathematical modeling software tools, which provides

both the environment, as well as the set of solver algorithms (Heipcke, 1999).

From managerial perspective —as mentioned earlier in Section 2.5.1— solving an optimiza-

tion problem does not necessarily mean that the obtained solution is the one that should be

strictly followed or directly applied, but it is recommended to perform a sensitivity analysis

beforehand. By doing so, one can get answers for questions about the robustness of a solution,

the influence of constraints on the structure of the solution and also on the value of the objective

function (Jansen et al., 1997). Koltai and Terlaky (2000) present the three main types of sensi-

tivity considered by the decision makers when changing either the coefficients of the objective

function, or the elements of vector b on the right hand side in (2.1). The latter implements

the calculation of shadow prices that provide information about the change of the objective

function value, realized when performing a unit change in the right hand side elements (Bertsi-

mas and Tsitsiklis, 1997). In production management, typical example is the analysis of profit

growth/costs savings when increasing the available capacities by a single item.

2.6.3 Statistical learning

In the era of cyber-physical system, a vast and ever increasing amount of data is available

about the production processes. This data is applied directly in many different ways to support
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decisions, however, there are lot more opportunities for further application if data is used in

an indirect way by identifying its usability to obtain underlying information with the use of

various analytical tools. Statistical learning in general means ”learning from data”: if historical

or quasi-real time measurements and data samples are available, one often wish to use learning

methods to build models upon the available set of data, and use these models to predict the

outcomes of different future scenarios (Friedman et al., 2001).

Based on the nature of available data samples, supervised and unsupervised learning are

distinguished; if both a set of input variables and outputs (affected by the input variables)

are available among the samples, we use supervised learning tools to identify the correlation

among the variables. Accordingly, supervised learning is used to build models that are capable

of predicting the values of new output variables, based on the corresponding input variables. In

case of categorical output values, the task is called classification, whereas in case of numerical

output, it is called regression. Based on the applied algorithm and learning technique, various

types of regression models exist, of which the most common ones are linear models, tree-based

models and support-vector regression. As for the linear regression, the goal is to fit a model on

the data to predict the numerical output value Y , by knowing input variables x1 . . . xn. Multiple

(more than one input variable) linear models take the following form (James et al., 2013):

Y = β0 + β1X1 + β2X2 + · · ·+ βnXn + ε. (2.2)

When fitting a model, the values of parameters β0 . . . βn are calculated, which are called regres-

sion coefficients, among those β0 is the intercept term. By nature, the model fitting procedure

always incurs some error, denoted by ε that needs to be minimized. Important to highlight that

although linear models might seem to be overly simple, they often outperform more sophisti-

cated methods (Friedman et al., 2001; Marden, 2013). This can be achieved by careful selection

of input variables (often referred to as features), or – similarly to the optimization modeling –

linearizing the non-linear correlation, e.g. with piecewise linear functions. Important to highlight

that efficient solution for statistical learning tasks always require domain specific knowledge, in

order to ask the right questions, collect the appropriate data and select/define the best features

in the best model elements applying feature engineering techniques. In further parts of the thesis,

regression models are fitted in order to combine them with linear programming models. There-

fore, linear models are primarily analyzed: in case of nonlinear correlations are to be tackled,

new features are introduced, or linearization is applied. In this way, – as detailed in the following

chapters – event the complex correlations from the analyzed ones can be captured accurately

by applying linear functions.



Chapter 3

Capacity management of modular

assembly systems

In Chapter 3, a novel, hierarchical framework for modular assembly systems is presented that

is capable of providing capacity management solutions on each level of the classical planning

hierarchy. On the highest level, system configuration and product-assembly system assignment

decisions are taken on a longer horizon, supported by the predicted results of tactical level

decisions. On the latter level, the integrated capacity and production planning is performed

to minimize the costs on a medium term, putting special emphasis on modular reconfigurable

systems built up of lightweight resources. Then, the short-term task scheduling problem of these

systems is solved to minimize the overall human efforts on the operational level (Figure 3.1).

The chapter is structured as it follows. First, the description of the production environment

is provided in Section 3.1, highlighting the operation related costs of the considered modular

system. Next, the capacity management problem is specified, focusing on each level considered in

the hierarchy. In Section 3.3, a simplified version of the complete capacity management problem

—called line assignment— is described and solved on a product basis. The solution of this

problem is applied as a proof-of-the-concept to extend the approach for solving the more complex

system configuration problem on a product portfolio basis with the hierarchical framework as

detailed in Section 3.4. The applicability of the proposed framework is justified by the results

of a real industrial case study from the automotive sector.

3.1 Description of the production environment

In order to specify the capacity management problem in question, the main structural and

operational characteristics of the considered modular assembly system are discussed first. For

the visualization of the system’s general characteristics, charts (Figure 3.2-3.4) of numerical

analysis are provided that related to a case study introduced in Section 3.5.

3.1.1 Structure and operation of modular assembly systems

In the capacity management of modular assembly systems, the production environment consists

of a heterogeneous resource set, including assembly modules that are either dedicated, flexible or

reconfigurable ones. The modules are only capable to be used for assembly purposes, therefore,

machining and other technologies/resources are not part of the system under study. Modularity

22
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Figure 3.1. Illustration of the planning problems on different levels of the hierarchy, addressed by the

proposed capacity management framework.

of the system (ElMaraghy and Wiendahl, 2009; Wiendahl et al., 2007), as a whole, manifests

in the modularity of lines that constitute the system; as the lines are built up of modules from

the same (dedicated, flexible or reconfigurable) type, as discussed in Section 2.3. The dedicated

and flexible modules are commonly used in industrial practice, however, reconfigurable ones are

cutting-edge of assembly technology, thus they got special emphasis in the following capacity

management methods. In order to provide a comprehensive method, the different resource types

and assembly lines are put under the concept of modular systems, providing an ”umbrella”,

under which different resource types are managed within a common framework.

Important characteristic of the considered problem is the modularization of assembly pro-

cesses, more specifically that operations are assigned to standardized modules enabling to as-

semble a product either in a dedicated, reconfigurable or in a flexible assembly system. Besides

the assignment, product families are formulated to determine the set of products that can be

assembled together on flexible resources. In practice, modularization step is done manually, as

it requires complex engineering knowledge about product and processes. First step of the pro-

cedure is the overview of existing resources, as well as the analysis of products and processes. In

the worst case, products and the corresponding assembly resources are overly diverse, thus in-

vestment in modularization will not return. Otherwise, patterns in the processes and similarities

among the applied resources can be identified, allowing to define the set of required modules.

In the analyzed case, system configuration regards only the set of assembly resources, and

relies on the modularization of the assembly system. Most assembly operations are done manually

by operators, however, some of the modules can be automated for extra costs. The modules

are configured sequentially according to the successive assembly operations required by the

assembled product. The required number of modules and also the corresponding processing

times are known, however, the number of operators can be changed periodically, and the length

of a period is typically a working shift. The structure and operation of the dedicated and flexible

lines are rather simple: the modules are installed on the shop-floor, and capable of producing

a certain product (dedicated line) or a family of products (flexible line). These modules can

be equipped with automated devices, decreasing the operator requirements, and/or increasing

the production rate. The dedicated lines do not require changeovers, while the flexible modules
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have definite, sequence independent setup times to switch from one product variant to another

(Gyulai et al., 2014a).

Reconfigurable lines are composed of modules that are standard, mobile workstations, ap-

plied to perform a single assembly operation type (e.g. screwing or pressing). Each module

is equipped with adjustable resources, and standardized interfaces for the fixtures as well as

for the pneumatic, voltage, and data connectors. The operation (reconfiguration cycle) of the

reconfigurable system is the following:

� Configuration: First, the assembly line is built-up by means of the standard modules (which

are required by the actual product), by moving them next to each other according to the

assembly process steps.

� Setup: The operators perform the necessary setup tasks, e.g., plug in the pneumatic con-

nectors, and place the required fixtures on the modules. Then, operators prepare the parts

that need to be assembled.

� Assembly: The operators assemble the products according to the predefined batch size.

� Deconfiguration: After a batch is completed, the operators dismantle the lines, and move

back the excess modules (which are not required by the following product type), to the

resource pool.

Applying the above procedure, different assembly lines can be built on the shop floor from a

common resource pool.

3.1.2 Costs of production with different resource types

The following section introduces the main factors, influencing the investment and operation

costs of different system and resource types. In order to compare the system types and illustrate

their characteristics that important from capacity management perspective, Figures 3.2-3.4 are

provided, based on the numerical results of a case study detailed in Section 3.5. Each point of

these scatterplots corresponds to the evaluation of a given production scenario, representing a

system configuration and an applied production plan.

Costs of system configuration applying heterogeneous resource pool

The general driver of capacity management is the need for staying competitive in a dynamic

environment by keeping the production costs at the lowest possible level, while providing the

desired production rate. In the analyzed problem, the objective is to minimize the total produc-

tion costs, characterizing the operation of the assembly system during a certain period. When

discussing system configuration and product-assembly system assignment, usually longer peri-

ods are considered as these decisions raise operation-, as well as investment-related questions.

Therefore, the objective function of the system configuration model is the sum of various cost

factors that are rather diverse when applying different resource types to perform the same tasks.

Figure 3.2 depicts the total costs realized in relation to three different system types, within a

numerical study and each point of the chart corresponds to a given configuration. Although

the correlations between total costs and capacity requirements show somewhat linear trends,

very high deviations can be observed in case of the different configurations, mostly resulted by
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the dynamic behavior of the system structures, especially those of the reconfigurable and flex-

ible systems’. This phenomena is further investigated and detailed by the following analysis of

investment and volume costs.
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Investment costs mostly depend on the number of products exist in the portfolio, accord-

ingly, if a new product is added to the portfolio, the necessary resources may need to be pur-

chased. Analyzing the number of products and the related investment costs, it is seems that

costs correspond to dedicated resources are higher than those of the other two, in case a certain

number of assigned products is exceeded. It is resulted by the product-specific resources that

should be purchased for each product, moreover, dedicated systems often have a higher degree of

automation that also increases the purchase cost of the resources. On the contrary, flexible and

reconfigurable resources can be shared among more different products, which means that the

investment costs are in a nonlinear correlation with the number of the assigned product types.
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Figure 3.3. Comparison of investment costs in the three system types.

This assumption is justified by the results of a numerical study in Figure 3.3, illustrating

that linear correlation between the number of assigned products and the investment costs is valid

only for the dedicated systems with static structure. In contrast, when applying reconfigurable
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and flexible system configurations (points of the chart) with dynamic structures, the amount of

necessary resources, and therefore, the investments costs are in nonlinear correlation with the

number of products.

Besides the investments, operation of production systems also entails significant costs. These

operation costs mostly depend on the volume of the products that are assembled in a certain

period. In the analyzed case, operation costs are composed of the followings: cost of setups,

assembly operators (salaries) and latenesses. As products have different processing times, not

the assembled volumes but rather the net, total capacity requirements should be analyzed when

discussing the production rate related, changing volume costs. This total capacity requirement

is the sum of manual operation times multiplied by the volume of products to be assembled.

Comparing the three system types, one can identify that assembling products in high volumes

with dedicated resources is cheaper than with reconfigurable or flexible ones (Figure 3.4). The

reason for this relies in the higher throughput of the lines, resulting in shorter makespan than

e.g. producing the same volumes in a reconfigurable system. In addition, dedicated systems with

automated resources require less human workforce than flexible and reconfigurable ones.
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Figure 3.4. Comparison of the volume-dependent costs in the three system types.

As a conclusion of the cost analysis, there is no rule of thumb to assign a singular product

to one of the three resource types, but the correlations among a set of products’ assembly

processes and resource usage need to be addressed to find the right balance among the amount

of dedicated, flexible and reconfigurable resources. This can be achieved by formulating the

system configuration problem in a multi-period optimization model, allowing for the time-to-

time reassignment of the product to different resource types.

This periodic product-assembly system assignment and the related system configuration

decisions entail that the resource pool is continuously adapted to the system architecture. There-

fore, not only investment costs need to be considered, but there is often an opportunity for selling

the unnecessary resources, e.g. when a product is switched from a dedicated to a reconfigurable

system. In these cases, the book value of assets can be calculated by decreasing its previous

period value with the depreciation rate over the useful lifetime of the asset (the residual value

of asset is also considered in the end of its lifecycle), and it can be interpreted as a price, for

which a resource can be sold (if this option exists) at a certain point of time.
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Costs of line assignment with outsourcing option

Besides the internal costs realized when operating modular assembly systems with heteroge-

neous resources, some firms have the option of outsourcing production to external suppliers.

Outsourcing is financially advantageous in two main cases: either if there is not enough inter-

nal capacity to serve the demands in peak periods, or in the second case, when production of

the end-of-lifecycle products would decrease the internal efficiency under a critical level (e.g.

low utilization and high space requirements). In these cases, the product specification and the

corresponding technological description —and also the equipment in some of the cases— are

provided to the suppliers, in order to produce the requested parts and products in the contrac-

tual volume defined by the OEM. As the outsourcing option does not raise system configuration

decisions, a problem with a simplified cost model can be specified, which is similar to the one

in the system configuration, however, it should be capable of handling the external capacities

(outsourcing) applying a simplified model for the internal capacity management. This problem

is called line assignment, and it is aimed at defining the cost-optimal product-assembly system

assignment, considering that dedicated and reconfigurable assembly resources are available as

internal capacities, moreover, the company an option of outsourcing the production to external

suppliers. In contrast to the comprehensive system configuration problem and the related cost

model defined in Section 3.1.2, the line assignment problem is not aimed at precisely defining

the set of resources necessary for production, nor it is capable of capturing the costs resulted

by the underlying correlation factors when different products are assigned to the same resource

types. The line assignment problem is aimed at subdividing the set of products into subsets

assembled on the dedicated and reconfigurable lines, and also products to be outsourced. In

case of dedicated resources and outsourcing, the production costs can be assigned directly to

individual products. As introduced earlier, the use of product-specific dedicated lines is char-

acterized with relatively high fix costs, and low volume costs (Figure 3.2). Analogously, for an

outsourced product, the total product-dependent cost is composed of a small fix cost and a

relatively high volume cost. In contrast, the costs related to the reconfigurable lines depend on

the actual product mix and the production plan adopted, and cannot be directly divided among

individual products. Therefore, the overall production cost incurred in the reconfigurable system

is aimed at capturing by a function incorporating the investment costs and the volume costs. A

key challenge in the line assignment problem is computing, as well as predicting this cost for an

arbitrarily selected subset of products assigned to the reconfigurable system.

3.2 Description of capacity management related problems

Having the boundaries of the analyzed modular system defined, the formal definitions of the

capacity management problem and the related sub-problems in question are provided in Sec-

tion 3.2.

3.2.1 Specification of the system configuration problem

Objective and decisions related to system configuration

The objective of capacity management is to match the capacity of the modular assembly system

with the needs related to the continuously changing product portfolio. Besides, time-varying
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order stream also needs to be respected when deciding about the applied resources. These aspects

lead to a complex system configuration problem, namely to determine the set of applied assembly

resources, and assign the products to these resource sets (Figure 3.5). In the configuration

problem, three different system types s ∈ S are considered: reconfigurable (s = r), flexible

(s = f) and dedicated (s = d) systems. The main objective is to minimize the total cost incurs

on a certain time horizon U . This cost is the sum of investments in different production resources

Λs
u, as well as the production rate related expenses Γs, characterizing the operation of system

s. Additional costs χ of assigning the products to a new system type, and depreciation of the

resources Ψ are also considered.

These costs can be minimized by making right decisions in each time period u ∈ U , assigning

the products to one of the three system types. These actions are naturally accompanied by system

configuration decisions, adjusting the production capacities to the customer order stream. In

each planning period u ∈ U , all products p ∈ P need to be assigned to one system type s ∈ S.

Besides, the investment costs with the amount of additional modules nj from each type j ∈ J
also need to be determined (Figure 3.5). These investment and system configuration decisions

are taken on a strategic level, considering volume forecasts fpu and a relatively long time horizon

(typically some years). Additional complexity in the problem is introduced by the order volumes

that change over time, and related forecasts are uncertain.
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Figure 3.5. Illustration of the analyzed product-assembly system assignment and system configuration

problem, highlighting the special tasks and challenges.

Constraints

Although it would be simple to assign each product to dedicated resources that will certainly

provide the target production rate, this strategy would lead to excess costs due to the facts

summarized in Section 3.1.2. When configuring the system, various constraints need to be con-

sidered, e.g. the available shop-floor space mmax and the available human workforce hmax as

technological constraints. Besides, different cost factors are considered: the purchase cost of the

modules mprice
s , the cost of setups cset and reconfigurations crec, the salaries of the operators copr

and the operation costs copn of the modules. In the considered problem, modules of different

system types s can have different level of automation maut
s , influencing the total time required to

assemble a certain product in a selected system type. The space requirement mspace
s , and also the

purchase cost mprice
s of modules depend on the system type. Concluding the above thoughts, the

system configuration problem is solved by utilizing the advantages offered by the combination



29 3.2 Description of capacity management related problems

of the different resource types, and assigning the products to proper resources according to mul-

tiple criteria. Applying an optimization model, the cost-optimal system configuration —capable

of providing the desired production rate— is to be obtained in each decision period.

3.2.2 Production planning problem in modular assembly systems

In case of the dedicated resources, calculation of the investment costs is quite straightforward,

as the amount of modules to be purchased is given for each product. As highlighted earlier,

flexible and reconfigurable systems are characterized with dynamic operation, which means that

resources are shared among different products, therefore, the required number of modules is not

only product-, but also operation-dependent. Conclusively, the performance of modular reconfig-

urable assembly systems and incurring costs are strongly influenced by the system configuration,

and also by the applied planning and scheduling policy (Gyulai et al., 2014b, 2012). As intro-

duced in Section 3.1.2, volume-related operational costs in these dynamic systems are also rather

complex to estimate, as they can be operated economically if several product types (family) are

assigned.

It is also essential that strategic decisions influence the execution of tactical-level produc-

tion plans, hence the link between these levels is of crucial importance. The assembly system

configuration together with the product-assembly system assignments and the available capac-

ities constrain decisions when planning the production, therefore, planning aspects need to be

considered when configuring system. Production planning decisions in the analyzed capacity

management problem are responsible for calculating the production lot sizes, with the objective

of minimizing the total production costs on a medium-term, discrete time horizon. In the con-

sidered production planning problem, the objective is to determine the lot sizes xnt by matching

the available internal capacities (human and machine) with the customer demands. The plan-

ning horizon T is divided into time buckets t ∈ T with equal length tw, and a given set of

orders n ∈ N corresponding to products p ∈ P need to be completed. To perform the assembly

operations, j ∈ J different module types are available, and each type is dedicated to a single

operation type. The amount of modules from each type j is limited by the resource pool ravail
j .

Based on the above assumptions, the production planning problem is specified as it follows.

The production lot executions are to be determined with the binary decision variables xnt,

specifying if order n is executed in period t. Each order n is associated with a product type p

specified by pn, the order volume qn and a due date tdn. The parameters ch
n and cl

n respectively

express that both early and late execution of the orders are penalized with extra costs, according

to the following formula:

cnt =

ch
nqn(tdn − t) if t < tdn,

cl
nqn(t− tdn) otherwise.

(3.1)

The products are characterized with their total manual processing time tproc
p , setup time tset

p

and the number of modules rjp required by type j. The objective of planning is to minimize

the overall costs realized over the horizon, including the following factors: operator copr, setup

cset, deviation cnt and operation copn costs. The essence of assembly technology is that human

resources can be flexibly adjusted to change the throughput of the lines. Therefore, production

planning is performed together with capacity planning by calculating the allocated headcount

of operators in each period.



3.3 Product-based line assignment 30

3.2.3 Task scheduling problem in modular assembly systems

On the lowest, operational level of the production planning hierarchy, the task scheduling prob-

lem related to modular assembly systems is introduced as it follows. By definition, scheduling

corresponds to the execution of individual production orders, therefore, its time horizon is shorter

than that of the production planning. The scheduling horizon is a single planning time bucket

t ∈ T with the length of tw, thus an individual scheduling problem instance can be defined for

each time period of production planning. The main input parameters of scheduling are the lot

sizes production orders and the corresponding operator headcounts (both are decision variables

of the planning model), specifying the assembly tasks and the assigned human capacities. The

objective of production scheduling is to minimize the total headcount of operators htotal working

in period t, by calculating the execution start tstart
n (and end tend

n ) times corresponding to a task

n assembled in t. A proper schedule means that the task execution times are distributed over

the period enabling operators to switch between the lines they are working at, when an executed

task is finished. The applied resolution of the scheduling horizon is much higher (e.g. minutes)

than that of the planning, as the horizon length and problem size allow it. One can distinguish

human and machine resources in the scheduling problem, constraining the solution in a different

way. As for the machines, a modular line and the assigned assembly modules —determined by

the planning model— are capable of processing a single task n at any point of time (disjunc-

tive resource constraint). Besides, as many operators need to be assigned to each task that is

specified by the solution of production planning model.

3.3 Product-based line assignment

As a simplified version of the problem specified in Section 3.2, the line assignment problem (Sec-

tion 3.3.1) is solved first on product basis, in order to analyze the efficiency of the approximation

models that predict the costs characterizing the operation of modular reconfigurable assembly

systems. In this case, a typical problem related to the management of end-of-lifecycle products

is analyzed: whether it is economically worth to assemble a product in a reconfigurable system,

in a dedicated system or outsource it to a supplier. As stated earlier, the main challenge in

this case is the correct approximation of costs relating to the reconfigurable lines, in order to

obtain the optimal product-assembly system assignment. The method is aimed at tackling this

challenge by applying regression and decision models defined on a single product basis, taking a

step towards the solution of general capacity management problem, where more detailed system

configuration and flexible resources are also considered, and correlations among the products’

processes are captured.

3.3.1 Specification of the product-based line assignment problem

In an assembly system that consists of dedicated and reconfigurable resources, the key decision

within capacity management is allocating each product to a dedicated or a reconfigurable line

or, alternatively, outsourcing it to a supplier, while minimizing the total production cost. Since

in the reconfigurable system the production costs depend on the product mix in question and

the production plan adopted, line assignment and production planning of the reconfigurable

system are strongly related (Gyulai et al., 2012). Therefore, the product-based method focuses

on solving the line assignment and capacity planning problems (Figure 3.6).
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When searching for the optimal allocation, current customer orders and also forecast vol-

umes are considered on a predefined time horizon U . The total production cost ϕs
u with a resource

type s ∈ S in a period u ∈ U is composed of the investment Λs
u and volume costs γs

u. The total

cost characterizing the operation of dedicated and reconfigurable lines over the planning horizon

U in the line assignment problem is calculated with (3.2).

Φs =
∑
u∈U

ϕs
u =

∑
u∈U

(γs
u + Λs

u) ∀ s ∈ {r, d} . (3.2)

In the line assignment problem, the following assumptions are made. The reconfiguration cost

crec are an order of magnitude smaller than the above cost components, and order volumes

are assumed to be available on the planning horizon, based on the forecast volumes fpu. All

products can be assembled either with a reconfigurable or with a dedicated line. It is assumed

that the capacity of a single line is sufficient to assemble the product in the desired volume,

and therefore, the option of dividing the order volume between different production modes can

be ignored. Moreover, machine prices mprice
s and the costs of human operators copr are constant

over time. The length of planning time horizon U is a few months, with re-planning periods

u ∈ U on a rolling horizon basis. While line assignment is a continuous-time decision that can

be revised only during periodic re-planning, production planning is performed on a discrete time

scale with time units t ∈ T corresponding to one period.

3.3.2 The proposed decision workflow

As highlighted earlier, the key of solving the line assignment problem relies in the proper ap-

proximation of the overall costs Φr characterizing the reconfigurable resources s = r. Therefore,

a hierarchical workflow is proposed for solving the integrated line assignment and production

planning of the reconfigurable system (Figure 3.6). Integration is established via feedback from

production planning to line assignment, in the form of multivariate linear regression for esti-

mating the cost function Φr. Both line assignment and production planning are iterated over

time in a rolling horizon framework, which results in a potential time-to-time relocation of the

products among lines as order and forecast volumes vary. In each step of periodic re-planning,

investment costs are calculated to reflect the necessary changes in the resource pool with respect

to the current capacities.

The objective of line assignment is to decide whether a certain product p ∈ P should

be assembled with a dedicated (s = d) or with a reconfigurable line (s = r), or it should

be outsourced (s = o) (Figure 3.6). While the production costs Φs in the dedicated system

and by outsourcing can be computed as a closed form of the input parameters, the costs of

reconfigurable system Φr depend on the actual product mix. Therefore, this cost is predicted

by using multivariate linear regression model (see Section 2.6.3), fitted on the production costs

resulted by randomly generated scenarios. For the regression, the following calculation model is

applied:

ϕru = β0 + β1

∑
p∈P

zrpu + β2

∑
p∈P

fput
proc
p zrpu +

∑
j∈J

βj∑
p∈P

rjpz
r
pu

+ ε, (3.3)

where the βs are unknown parameters that are estimated, β0 is the intercept and ε is the error
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term. By neglecting ε, the formula above can be rearranged as follows:

ϕru ≈ β0 +
∑
p∈P

β1z
r
pu + β2z

r
pufput

proc
p +

∑
j∈J

βjz
r
purjp


= β0 +

∑
p∈P

zrpu

β1 + β2fput
proc
p +

∑
j∈J

βjrjp


︸ ︷︷ ︸

αpu

= β0 +
∑
p∈P

zrpuαpu.
(3.4)

Conclusively, it is enough to estimate only the product-dependent αp values subsequently. The

regression was computed on randomly generated production scenarios in the reconfigurable as-

sembly system, solved by the production planning model presented in Section 3.2. The scenarios

were randomly split into independent training and test sets. As regression assigns a separate

production cost αp to each product p, line assignment can be performed for individual prod-

ucts, by comparing the production costs associated to the three candidate production modes.

Products p where αp is the lowest among the costs will be produced on reconfigurable lines, and

hence, constitute the subset of products assigned to reconfigurable resources in u. Therefore,

the solution of product-based line assignment problem can be obtained by calculating the pro-

duction costs for each resource type and in each period u ∈ U . The production planning model

solved in period u ∈ U —as formulated below— calculates the plan applying this given product

subset (for which zrpu = 1) as determined by solving the line assignment problem. Besides the

products assigned to the reconfigurable system, the forecast volumes fpu are also correspond to

a planning period u ∈ U .
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Figure 3.6. Workflow of the product-based capacity management of modular assembly systems: the

line assignment problem is solved by applying regression models on virtual scenarios, to predict the

product-dependent αp values (Equation 3.4).

In the proposed workflow— illustrated by Figure 3.6—, the lower level is responsible for

solving a production planning problem, related to the reconfigurable system, and addresses the

integrated configuration optimization and resource assignment of the system. Planning is solved
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on a discrete time horizon T with time units t ∈ T corresponding to individual periods. The

planning problem is formulated as a mixed integer linear program as follows:

minimize∑
j=J

mprice
r cm

j nj + copr
∑
t∈T

∑
p∈P

ypt +
∑
t∈T

∑
p∈P

∑
j∈J

copnrjpypt (3.5)

subject to

nj + ravail
j ≥

∑
p∈P

rjpypt ∀ j ∈ J, t ∈ T (3.6)

⌈
fput

proc
p

tw

⌉
=
∑
t∈T

ypt ∀ p ∈ P (3.7)

nj ≥ 0, ypt ∈ N0 ∀ j ∈ J, t ∈ T, p ∈ P. (3.8)

The objective (3.5) is to minimize a cost function, composed of the purchase price of the machines

that are not readily available in the current resource pool, the personnel costs, and the operation

costs. Constraint (3.6) specifies the required number of modules (nj + ravail
j ) from each type in

each period t, while equality (3.7) states production rate needs to achieve the target volume

(sum of order volumes). Constraints (3.8) define the variable domains. The resulting production

plan specifies the setups ypt that implicitly express the number of lines assembling product p

in period t, and the amount of modules nj to be purchased in each period. This version of the

model is applied for solving the production planning problem based on virtual scenarios. In this

case, the option of investing in new modules nj is possible, if the forecast volumes fpu for the

upcoming period u justify it. In case the production planning model is applied on real scenarios,

the set of available modules are applied as a constraint, without the option of investment. In

these cases, the planning model is applied with the modifications of replacing (3.5) with (3.9),

and changing constraint (3.6) to (3.10).

copr
∑
t∈T

∑
p∈P

ypt +
∑
t∈T

∑
p∈P

∑
j∈J

copnrjpypt (3.9)

ravail
j ≥

∑
p∈P

rjpypt ∀ j ∈ J, t ∈ T (3.10)

The above models ignore the cost and time of reconfiguration, and lead to a plan in which the

sequence of the periods can be changed arbitrarily. This is enabled by the quick reconfigurability

of the system that can be done within the period in which a certain product type is produced.

In the line assignment problem, typically, low-volume end-of-lifecyle and aftermarket products

are assigned to the reconfigurable system (and some of them are outsourced). Due to the low

volumes and larger due date time windows, the time requirement of the batches are rounded to

a planning period (3.7), enabling to perform the reconfigurations. These factors lead to a model

that matches the reconfigurable resources with the production, however, changeovers are not

optimized.

In order to minimize the number of reconfigurations, a sequencing problem is solved that re-

orders the periods, but leaves the system configuration unchanged within each period. This can

be represented as a Traveling Salesman Problem (TSP), in which vertices are the periods, while

the cost of an edge is the number modules to be changed between the consecutive configurations

(Hoffman et al., 2013). In each period, more reconfigurable lines are operated in parallel, however,
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Figure 3.7. Sequencing problem with |T | = 5 periods, formulated as a TSP: the representation of the

problem as a symmetric TSP with complete graph (left), the applied symmetric distance matrix

(middle) and the optimal production sequence (right), obtained by solving the TSP. The letters encode

different product types, of which five was assembled in each period (e.g. products e, c, k, j and f are

assembled in t1). The costs of the edges are the number of modules to be changed: e.g. the cost of edge

{t1, 13} is ct1,t3 = 2, as only one line is changed from producing j in t1 to a in t1, and the number of

modules to be changed according to the distance matrix is 2.

none of them are configured to assemble the same product type. In order to calculate the costs

of the edges, a string distance function was applied to calculate the number of different modules

between any pair of products. The products are encoded by strings, and the applied characters

identify the various module types requested by the product type. It is assumed that changeovers

are sequence independent that lead to a symmetric TSP instance, and the sequence of the periods

can be arbitrarily changed, thus the problem is represented by a complete graph (Figure 3.7).

Calculating a production plan and the corresponding distance matrix, the solution of the resulted

TSP leads to a new production plan that satisfies the original constraints (feasible), while it

minimizes the number of reconfigurations.

3.3.3 Experimental results

The proposed product-based capacity management method was tested on an industry-related

dataset, considering historical order and forecast volumes, and real assembly lines. The prod-

uct portfolio consists of |P | = 67 products with diverse volumes and assembly processes. The

training dataset for the regression contained 80 random-generated production planning problem

instances, with distinct order volumes, and the production planning problem was solved for each

of these instances, providing the production costs as a result.

The multivariate regression was computed using the R environment, applying its general

linear regression function, which took ca. 2 seconds (R Core Team, 2016). According to (3.4),

the input variables of the regression model were the total work contents, the number of products

assigned to the system, and the total number of required modules from each type, while the

output is the corresponding operational cost. This provided an appropriately precise prediction

of the production cost for the reconfigurable system, with a value of R2 = 0.987, as shown in

Figure 3.8 (a ”perfect” fit would be represented by the diagonal line connecting the equal values

of actual and predicted costs). The line assignment problem was solved iteratively using a rolling
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Figure 3.8. Comparison of the production costs predicted by multivariate linear regression and

calculated by production planning; each point of the scatterplot corresponds to a scenario (orders).

horizon scheme, with a fix horizon of three months in each iteration. In order to evaluate the

efficiency of the method, a reference solution was considered in which all products were assigned

to dedicated lines. The results show that applying reconfigurable lines, the proposed method

makes significant cost savings possible, even in case of fluctuating order streams. It is typical

that savings are higher (up to 30%) in periods with lower production volumes, whereas they are

lower (10-15%) around peak production volumes (Figure 3.9).
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Figure 3.9. Results of line assignment: cost savings and production volume over a four-years horizon.

Since most products in the industrial dataset were in the end stage of their lifecycle or

produced to aftermarket, their production volumes typically decreased over the considered four-

years horizon. Accordingly, the number of products assembled in the dedicated system slightly

decreased, whereas the number of products in the reconfigurable system and products outsourced

increased over time (Figure 3.10). The production planning model was run on the set of products

assigned to the reconfigurable system, the proposed MIP model was solved using FICO® Xpress

and its default branch and bound method (FICO, 2017). In the test problem instance, a three-
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Figure 3.10. Results of line assignment: number of products assembled using the three production

modes over a four-years horizon.

months horizon was considered, composed a number of |T | = 270 working shifts. The search was

run until an optimality gap of at most 4% was achieved, which required 116 seconds on average.

The subsequent sequencing problem was solved using the open-source solver LKH (Helsgaun,

2000), which implements the heuristic of Lin and Kernighan (1973). Solving the problem using

the default randomized restart strategy with 10 runs required 59 seconds altogether (TSP with

n = 270 cities). The sequencing reduced the number of reconfigurations by 51%, resulting in a

significantly smoother production plan, as depicted by Figure 3.11.
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Figure 3.11. A sample production plan before (above) and after (below) performing the sequencing:

each product is identified by a unique color, and white color represents empty configuration.

3.3.4 Approximation of costs with nonlinear models

In the presented case study, linear regression model for the approximation of costs (related to the

reconfigurable system) provided satisfactory results, as the correlation among the selected vari-

ables was strong enough, although the system structure was dynamically changing. The greatest

benefit of applying such a linear model is the option of integrating it in a linear optimization

model, as it can be considered as a constraint when solving the line assignment problem. It was

assumed in the problem specification (Section 3.3.1) that costs of reconfigurations crec are an

order of magnitude smaller than other cost parameters. This assumption is valid for modular as-
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sembly systems, in which the modules enable fast reconfigurations. In case the system structure

is dynamic, moreover, the reconfiguration costs are also high, linear regression models might

not provide accurate predictions of the future costs, e.g. in case of modular systems with heavy

technological modules in which slower reconfigurations require additional efforts (e.g. human

and/or machine requirements).

In order to solve the product-based line assignment problem in such cases, more sophisti-

cated regression models might be necessary. James et al. (2013) argue that tree-based statistical

learning models should be used in cases, when nonlinear and complex relationship among the

variables are observed. Therefore, tree-based regression (and classification) models, called ran-

dom forests were applied by Gyulai et al. (2014b) to predict the costs Φs. Random forests build

decision trees over bootstrapped samples of the training data, applying only a subset of predic-

tors in each step. These uncorrelated trees are then averaged by bootstrap aggregation, resulting

in reliable and less varying trees in the final model (Breiman, 2001). The most important draw-

back of this (and all tree-based models) method is that regression cannot be applied beyond the

ranges of the training dataset.

Random forests can be applied to predict the costs related to the reconfigurable system on

a product basis, however, representative training dataset needs to be created either by solving

the production planning model, or performing a comprehensive simulation analysis. In the latter

case, optimal production plan cannot be applied, however, several various plans can be analyzed

quickly to determine the resulting costs (Gyulai et al., 2014b). In this way, a candidate training

dataset can be generated, and random forests can be applied to predict the future costs. Similarly

to the method presented in Section 3.3.2, a product should be assigned to system s ∈ S of which

the predicted costs is the lowest. With this approach, more complex cost functions can be

approximated by capturing the possible nonlinear correlation among the several variables.

3.3.5 Discussion about the product-based decisions

In Section 3.3, the line assignment problem of modular reconfigurable assembly systems was

solved on a product basis. Within this problem, the task is to assign the product portfolio

to dedicated or reconfigurable resources, or to outsource production to a supplier in a way

that the overall costs are to be minimized. The main challenge is the approximation of the

costs characterizing the operation of the reconfigurable system, as they strongly depend on the

adopted product mix, as well as on the applied production planing policy. This challenge is

mainly introduced by the correlation among the assembly steps and the corresponding modules

—taken from a common resource pool— that characterize the assembly processes of products

assigned to the reconfigurable system.

In order to tackle these challenges and obtain a result that takes into consideration the

future production costs, a novel approach was presented facilitating the economical production of

a diverse, varying product portfolio consisting of high- and low- volume products. The approach

offers an integrated way for the assignment of products to dedicated or reconfigurable resources

and for the production planning of the reconfigurable ones. An essential element of the method

is the prediction of costs with multivariate linear regression, supporting the solution of line

assignment problem. The training dataset of regression was provided by solving the lower level

production planning problem on a set of virtual scenarios to represent the possible behavior

of the system and obtain the resulting costs. The line assignment problem could be solved
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by selecting the lowest among the product-dependent αp parameters, describing the cost of

producing product p in the reconfigurable system. This cost can be compared to the outsourcing

or dedicated production cost of product p, and the lowest among them is selected in each period

u ∈ U to assign product p to system s cost-optimally.

Although this product-based assignment works properly for cases, for which the assump-

tions of the problem are valid, there might be more complex problem instances asking for more

sophisticated models. Therefore, the product-based line assignment method is considered as a

proof-of-the-concept that production costs of dynamic system structures and operation modes

can be predicted efficiently with regression models built over virtual scenarios. The basis of this

concept is that a lower level production planning problem needs to be solved multiple times to

generate production scenario–cost data samples for a statistical model building. In case linear

models can be fitted on the data, the cost models can be applied directly in linear optimiza-

tion models as constraints or objectives (Gyulai, 2014a,b). This concept will be utilized in the

following sections introducing a hierarchical capacity management framework, enabling to solve

complex system configuration problem in a similar way, and capable of handling flexible assem-

bly resources, as well as nonlinear correlation among the products’ processes in optimization

models.

3.4 Hierarchical capacity management framework

Extending the capabilities of the workflow proposed to solve the line assignment problem, a

three-stage hierarchical capacity management framework is proposed. In contrast to line assign-

ment, a system configuration problem (Section 3.2.1) is solved on the highest, strategic level

incorporating the long-term managerial decisions related to the internal capacities. In the sys-

tem configuration problem, dedicated, flexible and reconfigurable systems are all considered by

planning their capacities and assigning the products to them, on a cost-basis. In order to solve

this strategic-level problem, the tactical level production planning (Section 3.2.2) aspects also

need to be respected to calculate the investment and operational costs that will certainly incur

in the future, based on the forecast volumes. Relying on the results achieved in the product-

based line assignment, the framework applies sophisticated models to deal with multiple decision

criteria, diverse cost functions and complex relations among the strategic and tactical decisions

(Section 3.2.1). The novelty of the framework stems from the strong link between the system

configuration and production planning levels, applying regression models to approximate the

investment and operation costs. The results are derived from the general concept applied in

Section 3.3.2, namely the prediction of costs applying function approximation models on virtual

scenarios. In contrast to the previous workflow, the proposed capacity management framework

consists of three hierarchical stages as represented by Figure 3.12: the system configuration,

production planning, and production scheduling levels. The latter is added to the framework

as a new element, extending the capacity management method to all levels of the classical pro-

duction planning hierarchy. On the lowest, operational level, the tactical level production plans

are applied as input data of the operational level scheduling. The proposed scheduling model

solves the problem defined in Section 3.2.3, calculating the sequences and execution times of

the production lots on the short term, as well as the corresponding operator-task assignments,

minimizing the total headcount of human operators within a given period.
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Figure 3.12. Capacity management framework for modular assembly systems.

3.4.1 Feedback link from tactical to strategic level

The strategic level of the framework aims at solving the system configuration problem and

assigning the products to different system types, according the objectives and constraints defined

in Section 3.2. As an applied system configuration with its available capacities represents strict

constraints when planning the production, these strategic decisions need to consider tactical level

aspects as well. Assigning a product to a system type implies that the assignment cannot be

changed until the next period, therefore, decision makers are allowed to adjust only the release

of orders when planning the production. As the operation of reconfigurable and flexible systems

shows dynamic characteristics, calculation of the costs is not straightforward. Consequently, the

idea behind the proposed capacity management framework is to implement the lower, tactical

level production planning models, and apply a function approximation feedback from tactical

to strategic level to predict the costs that are relevant on the latter.

Similarly to the product-based workflow, this can be achieved by solving the production

planning model on several virtual scenarios for each resource type, representing possible real

situations. In case the correlation among the input variables (order stream) and the related

costs is strong enough, regression functions can be applied to predict the results of various

scenarios without having detailed data about the order stream, typically available only on the

tactical level. As discussed in Section 3.3.5, great advantage of the regression models is their

integrability in optimization models: in case linear approximation functions can be defined to

predict the selected parameters, the approximation functions can be directly applied in linear

optimization models as objective functions or constraints.

Analyzing the system configuration problem, forecast volumes of each product are known

a-priori, however, the necessary investments cannot be calculated without information about the

costs that will characterize the system’s operation. Resource sharing in flexible and reconfigurable

assembly systems strongly influences the system’s performance and thus the operational costs
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(Section 3.1.2). Consequently, neglecting capacity constraints in the production planning model

of the virtual scenarios and introducing the capacities as decision variables result in near to

optimal, integrated capacity and production planning decision. In this way, the required operator

headcount, number of modules, setups and reconfigurations can be calculated, and regression

models can be defined upon them. These functions are then applied in the mathematical model

of system configuration as constraints: having linear approximation functions, linearity of the

existing optimization model can be kept.

3.4.2 Production planning of modular assembly systems

Regression models are defined over solutions of the production planning model, therefore, this

part of the capacity management framework is described first.

Constraints and decisions in production planning

As previously stated, production planning in this method is responsible for calculating the

production lot sizes applying a discrete time horizon T , with the resolution of a working period

t ∈ T . Orders n ∈ N are given for the planning horizon, and an order is characterized by its

completion due date tdn, inventory holding ch
n and lateness cl

n cost, and the volume of ordered

products qn. As there are individual due dates for each order, both early delivery and lateness are

penalized with a deviation cost cnt, expressed by (3.1). The objective function of the production

planning model minimizes the total costs that incur over the planning horizon and defined as the

sum of deviation, setup, reconfiguration, operator and machine operation costs (3.11). Decision

variables are the execution time (period) of the orders (xnt), specifying if order n is assembled

in period t or not. Calculation of the setups is possible by introducing the continuous indicator

variable ypt that gives if product p is assembled in period t. In this model, a virtual operator

pool is defined, therefore, the number of operators is a decision variable, defined as a real type

in order to boost the computation. Accordingly, production planning model of the characterized

modular assembly system is defined as it follows:

minimize∑
t∈T

coprht +
∑
p∈P

∑
t∈T

csetypt +
∑
t∈T

∑
n∈N

cntxnt +
∑
t∈T

∑
n∈N

∑
j∈J

copnrjpnxnt (3.11)

subject to∑
t∈T

xnt = 1 ∀ n ∈ N (3.12)

ht ≤
∑
j∈J

nj ∀ t ∈ T (3.13)

xnt ≤ ypt ∀ t ∈ T, n ∈ N, p = pn (3.14)∑
i∈N

xntqnt
proc
p maut

s + yptt
set
p ≤ httw ∀ t ∈ T, p = pn (3.15)

ht ∈ Z+, nj ∈ Z+, ypt ∈ {0, 1}, xnt ∈ {0, 1} ∀ j ∈ J, t ∈ T, n ∈ N, p = pn (3.16)

The first constraint states that each order should be assigned to exactly one time period t,

therefore, order splitting is not allowed (3.12). Each module is operated by a single operator, thus
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the headcount of operators in each period is limited by the total number of the simultaneously

applied modules (3.13). Constraints (3.14) and (3.15) define the number of setups in each period

and the requested headcount of operators, respectively. Both setup time, and also the automation

degree of different systems are considered. In case of the reconfigurable system, constraint (3.15)

is modified with the additional time of reconfigurations that is yptt
rec
p ∀ p ∈ P | p = pn.

Planning model of virtual and real scenarios

Additional system-specific constraints mostly specify the number of required modules, as re-

source sharing and operation mode depend on system type. The functionality of the production

planning model is twofold: it can be either used to calculate real plans for definite order sets,

or applying virtual scenarios, the regression models can be defined upon the results. These two

operation modes are distinguished when specifying the following, system dependent constraints:

in real planning situations the number of available resources is given, in contrast, the purpose

of regression models is to estimate this value. Therefore, the number of modules nj from each

type j ∈ J is applied as a constraint in the real planning case, whereas in the virtual case, it is

part of the objective function.

Reconfigurable:∑
p∈P

rjpypt ≤ nj ∀ j ∈ J, t ∈ T (3.17)

Dedicated:∑
p∈P

rjp = nj ∀ j ∈ J (3.18)

Flexible:

rf
jk = max

p∈P
{rjp|kp = k} ∀ j ∈ J, k ∈ K (3.19)∑

k∈K

∑
p∈P

rf
jkypt ≤ nj ∀ j ∈ J, t ∈ T (3.20)

In case of the dedicated system, the calculation of necessary modules is straightforward:

it equals to the total number of modules from each type required by the products assigned to

dedicated resources (3.18). Dynamics of the reconfigurable system is different, only the assembly

processes constrain the necessary number of modules (3.17). Operation of the flexible system

is slightly similar to the reconfigurable case, however, assembly resources are shared among a

limited set of products (clusters, K) only. Equation (3.19) specifies the number of modules for

each cluster, in this model, it equals to the maximal number of modules for each type considering

all products in the cluster. This representation guarantees that all products are assembled with

the least possible modules, and the number of applied modules is greater than this value (3.20).

Having the values nj defined for each system type, the production planning models can be

separated for real and virtual scenarios. In real planning cases with definite number of resources

(resource pool), constraints (3.17)-(3.20) are applied together with inequality nj ≤ ravail
j ∀ j ∈

J , expressing that the number of applied modules for assembly must be less or equal to the

number of available modules. In contrast, constraints (3.17)-(3.20) are also applied in the virtual

scenarios, without limiting the number of resources (ravail
j is neglected), however, the objective
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function in this case is added a new element to minimize the number of applied resources. The

objective function, replacing (3.11) in the virtual scenarios is the following:

minimize
∑
t∈T

coprht +
∑
p∈P

∑
t∈T

csetypt +
∑
t∈T

∑
n∈N

cntxnt +
∑
t∈T

∑
n∈N

∑
j∈J

copnrjpnxnt +
∑
j∈J

cm
j m

price
s nj

(3.21)

The last element of the function defines the purchase cost of resources that wish to be minimized,

consequently, capacities and production are planned together in the virtual cases.

3.4.3 Strategic system configuration

Decision variables and constraints of the system configuration model

Decision variables zspu specify the system s ∈ S, to which products p ∈ P are assigned over

time u ∈ U . Important to identify that the length, and thus the notation of time periods differ

from the ones applied in the production planning model, as strategic decisions in the system

configuration model consider longer periods u ∈ U . The formulated system configuration model

—solving the problem stated in Section 3.2— is the following:

minimize∑
s∈S

Γs +
∑
s∈S

∑
u∈U

Λs
u + cdep

∑
s∈S

∑
u∈U

∑
p∈P

∑
j∈J

zspurjpm
price
s cm

j︸ ︷︷ ︸
Ψ

+ cchg
∑
s∈S

∑
u∈U

∑
p∈P

∑
j∈J

wspunj︸ ︷︷ ︸
Θ

(3.22)

subject to∑
s∈S

zspu = 1 ∀ p ∈ P, u ∈ U (3.23)∑
j∈J

∑
p∈P

∑
s∈S

zspurjpm
space
s ≤ mmax ∀ u ∈ U (3.24)

∑
s∈S

βop
s0 + βop

s1

∑
p∈P

zspufput
proc
p

 ≤ hmax ∀ u ∈ U (3.25)

wspu ≥ zspu − zsp,u−1 ∀ p ∈ P (3.26)

Λd
u ≥

∑
j∈J

∑
p∈P

wd
punjc

m
j m

price
d ∀ u ∈ U (3.27)

Λs
u ≥ λsu − λsu−1 ∀ u ∈ U, s ∈ {r, f} (3.28)

gsbu ≥ zspu ∀ s ∈ S, u ∈ U, b ∈ B = {1 . . . pb} (3.29)

zspu, w
s
pu, g

s
bu ∈ {0, 1}, Λs

u ≥ 0 ∀ p ∈ P, s ∈ S, u ∈ U, b ∈ B = {1 . . . pb} (3.30)

The objective function (3.22) is the total cost resulted by the assignment of products to

different resource types. The function has four main elements, namely the cost Ψ of using

resources (analogous to the depreciation of the resources, if linear formula is applied), the cost

Θ of change (when switching the assignment of a product from a resource type to another), the

cost Λs
u of investments and the volume costs Γs. Equation (3.23) states that a product must be

assigned to one of the three system types in any period u ∈ U . The next inequalities represent

the limited shop-floor space (3.24) and the maximal number of operators per period (3.25). In

case of human operators, the required workforce in a certain period is approximated by a linear

regression model, applying the total work contents of product types as input variables.
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Elements of the objective function

Having the operation characterized by the previous constraints, further parts of the model

specify the objective function elements. Some costs are approximated, thus —in order to keep

the linearity of the optimization model—, multinomial linear regression models are applied.

As the volume costs Γs cannot be expressed explicitly, they are approximated by regression

models in a form of Γs
(
zspu, g

s
bu

)
as detailed in (3.44). As introduced earlier, the calculation of

investment costs in the dedicated system
(
Λd
)

is straightforward if the set of assigned products

is given: the number of modules required by each product are summed and multiplied with

the purchase cost of the modules (3.27). In the case of reconfigurable and flexible resources,

investment costs are calculated in two steps: first, the value λsu of assets realized at a certain

period u is approximated with regression models in a form of λs
u(zspu) for resource types s ∈ {r, f}

as detailed in (3.45). Having these values approximated, the second step is the calculation of

investments realized when taking a decision in the beginning of period u. As the values of shared

resources in the flexible and reconfigurable systems are additive by nature, the investment costs

Λsu that are realized as a result of a decision taken in u equals to the difference
(
λs
u − λs

u−1

)
in

the values of assets (3.28) in two consecutive periods. The cost of change Θ incurs when the

assignment of a product is switched as a result of a strategic decision, and additional efforts

in design and installation are required. Besides the investments, costs of change in the model

prevent the time-to-time reassignments of products from one system type to another. As stated

earlier, excess modules can be sold, however, their value Ψ is decreased by the depreciation

that is calculated according to the common linear formula. By using different resource types

for the production over the horizon, this depreciation is minimized by the objective function

(Ψ), depending only on the assignments zspu. Decision variables gsbu express the option to assign

selected subsets B ⊂ P, b ∈ B of products to the same system type, in order to utilize the

advantages of applying a common resource pool (3.29). This option is valid for reconfigurable

and flexible systems, designed to produce several product types economically. In order to avoid

nonlinear terms in the constraints (e.g. by introducing nonlinear predictors in the regression

functions), these additional variables are introduced, and the subsets are selected when defining

the regression models. In this way, complex correlations among the processes of products assigned

to the same system can be captured, while keeping the linearity and thus simplicity of the

optimization model.

3.4.4 Short-term task scheduling in modular assembly systems

The lowest, operational stage of the proposed capacity management framework is responsible

for the short term, fine scheduling and sequencing of tasks in modular systems (Figure 3.12).

As highlighted earlier, modular reconfigurable systems are cutting edge in assembly technology,

whereas dedicated and flexible systems are commonly applied in industrial practice. Therefore,

the formulated task sequencing problem and the proposed solution reflect the main aspects

of scheduling with modular reconfigurable resources. According to the problem specification

provided in Section 3.2.3, the objective is minimize the total headcount of operators htotal

required to perform the schedule, by calculating the task execution start tstart
n times within

the time period t. The main input of the scheduling problem is provided by the higher level

production plan, specifying the production lots n ∈ N to be assembled in t. In order to solve the

task scheduling problem, the production planning model introduced in Section 3.4.2, needs to
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be slightly modified. In case only the strategic and tactical levels of the framework are used for

capacity management, the models introduced in the previous sections can be used directly. In

case the task scheduling is part of the applied planning workflow, a modified production planning

model is applied as introduced below. The reason why two formulations of the planning model

exist relies on their different complexity. Whereas the basic model has two decision variables

xnt and ht, the modified version has only a single one xntlh, however, it is indexed by four

sets increasing the problem complexity, compared to the basic model. Results of the models are

generally the same as both specify the production lots, however, they differ in the calculation of

corresponding human capacities. In the basic model (Section 3.4.2), the headcount of operators

is minimized on a period-basis, therefore, it might result in some idle times during the period as

only the overall headcount is calculated without the allocation of operators to specific assembly

tasks. In contrast, a modified version of the model allows for task-based capacity planning,

resulting in a more detailed plan in which operators are assumed to be capable of changing their

positions within the planning period. The modified planning model is discussed as it follows in

Section 3.4.4.

Modified production planning model

As a first part of the reformulation, it is assumed, that the number of simultaneously operating

reconfigurable lines is limited along the horizon by introducing the set of lines L. These lines

are ”virtual”, as they have no static components, but only composed of reconfigurable modules,

however, it is assumed that they are placed on a finite set of segments on the shop floor, and each

line occupies a single segment. This assumption is required to manage the modular resources

in the production planning model, constraining the module-line assignment. Essential part of

this model is the novel representation of human capacities in the production planning model

by introducing a set of headcounts H, applied to assemble a given product type. The resulting

modified production planning problem is formalized as an integer programming model (3.31)-

(3.37).

minimize∑
l∈L

∑
t∈T

∑
h∈H

∑
n∈N

xntlh(coprh+ cnt) (3.31)

subject to

rltj ≥ rjpxntlh ∀ h ∈ H, j ∈ J, l ∈ L, n ∈ N, t ∈ T (3.32)∑
l∈L

rltj ≤ ravail
j ∀ l ∈ L, t ∈ T (3.33)∑

n∈N
pn=p

∑
h∈H

xntlh(trec
p + tset

p + tphqn) ≤ tw ∀ l ∈ L, t ∈ T (3.34)

∑
h∈H

xntlh ≤ 1 ∀ l ∈ L, n ∈ N, t ∈ T (3.35)∑
t∈T

∑
h∈H

∑
l∈L

xntlh ≥ 1 ∀ n ∈ N (3.36)

xntlh ∈ {0, 1} ∀ h ∈ H, l ∈ L, n ∈ N, t ∈ T (3.37)

The objective function (3.31) minimizes the overall costs of production. Constraint (3.32)

defines the minimal amount of assembly modules to be assigned to line l within a period t, while
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the total number of modules cannot be exceeded (3.33). Constraint (3.34) states that the total

amount of processing and setup times of tasks must be less than the length of a time period tw,

for each line l. The last constraints state that only a single operator headcount h can be applied

for the execution of each task (3.35), and each order needs to be fulfilled (3.36).

In the basic model, the headcount of operators was determined on the production planning

level, therefore, its solution cannot be applied as an input of the scheduling model to minimize

the total headcount by scheduling the tasks. Therefore, the decision variable of the planning

model was modified to determine the headcount on a task basis, instead of a period basis. This

modification requires some pre-calculations, to define the applicable headcount scenarios h ∈ H
for the different tasks, and related headcount-dependent processing times tph. The applicable

operator headcount of the products’ assembly processes is bounded by both the required number

of modules rjp and the processing times of different elementary assembly operations. The resul-

tant maximal operator headcount is the minimum of these two values (3.38). On the one hand,

the operator headcount cannot exceed the number of modules when assembling a product. On

the other hand, the operator headcount is also limited by the assembly operations’ processing

times: if more operators are assembling a given product type p, the resultant cycle time is the

linear function of the operator headcount. In the simplest case, one can expect half cycle time

for a product when it is assembled by two operators instead of one. This linear correlation is

valid until a certain operator headcount is reached, as the resultant cycle time cannot be higher

than the longest elementary operation time top
pa, where a is an assembly operation of product

p that has a ∈ A operations in total. The maximum operator headcount in this case is the

nearest lower integer of the fraction of total processing time tph and the longest operation time

maxa∈A t
op
pa.

hmax
p = min

p∈P

∑
j∈J

rjp;

⌊
tproc
p

maxa∈A t
op
pa

⌋ (3.38)

As stated above, assembly cycle times are inversely proportional with the operator headcount. If

one had to represent the human capacity constraints in a mathematical model, inequality (3.39)

should be applied. ∑
n∈N
pn=p

xntl

(
tproc
p qn
hn

)
≤ tw, (3.39)

where hn is a decision variable, expressing the headcount of operators completing the assembly

tasks of order n, and xntl binary variable determines if order n is processed on line l in period

t. As it is seen, the fraction term with the decision variable in the denominator would lead to

a non-linear model, which is avoidable. Therefore, in order to keep the linearity of the planning

model, a new decision variable xntlh with an additional dimension h is proposed in the planning

model instead of xntl. The above relations are valid only in case of approximated line balances,

when the structure of the line as well as the operator task assignments are unknown. Otherwise,

if line balances of different operators headcount scenarios are known a-priori, the headcount-

dependent processing times tph can be replaced with the values given by the different line

balances. Therefore, the above pre-calculations need to be performed for each product type

p ∈ P , and possible operator headcount h ∈ H to calculate the values of tph. Using the formula

(3.38), one can calculate the set of possible operator headcounts: H = {1, . . . , hmax}, where

hmax = maxp∈P h
max
p .
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Task scheduling model

Performing the above modifications on the model and calculating the operator-dependent task

times and possible headcounts, the formal model of the considered scheduling problem can be

defined as it follows:

minimize

htotal (3.40)

subject to

tstart
n , tend

n ∈
[
tset
pn , . . . , t

w
]

∀ n ∈ N (3.41)(
tend
m ≤ tstart

n

)
∨
(
tend
n ≤ tstart

m

)
∨ (Ln 6= Lm) ∀ n ∈ N,m ∈ N,n 6= m (3.42)∑

n:(tstartn ≤t)∧(tendn >t)

hn ≤ htotal (3.43)

The objective function (3.40) states that the total headcount of operators working in the period

is to be minimized. The first constraint (3.41) defines that the execution start tstart
n and end tend

n

times of task n (also considering the setup time of the assembled product) are bounded by the

duration of a period. The second constraint (3.42) states that only a single product type can

be assembled on any given virtual line l ∈ L at any point of time. The last constraint (3.43)

specifies that the total operator headcount must be greater or equal to the sum of operator

headcounts assigned to the executed tasks at any point of time. In (3.43), the headcount hn of

operators assigned to task n is defined as hn =
∑

h∈H
∑

l∈L xntlh, if t ∈ T is the time period of

the scheduling problem to be solved.

Task scheduling with constraint programming

Production scheduling problems —similar to the one presented in Section 3.4.4— are often solved

by constraint programming (CP) techniques, enabling to find feasible schedules in a reasonable

time. The strength of constraint programming relies in the high level, descriptive modeling

approach, and the efficient handling of various constraints even in large scale problem instances.

Constraint programming has two core elements: a set of predefined constraint types (constraint

store) and a built-around programming language to instantiate and combine the constraints

(Hentenryck, 1999). In practice, CP solvers combine constraint reasoning and non-deterministic

search approaches to find the solution for a specific problem (Hentenryck and Michel, 2009).

Constraint reasoning involves various filtering steps for domain reduction, in order to consider

and satisfy multiple constraints that share common variables, this procedure is called constraint

propagation (Bessiere, 2006). For scheduling problems, constraint programming solvers offer

various domain-specific filtering algorithms, called constraint propagators.

The scheduling problem —introduced in the previous section— can be solved by using the

cumulative and disjunctive resource propagators. Cumulative resources are represented by their

capacity, and the tasks need to be scheduled so as their total utilization of cumulative resources

cannot exceed resource capacity C at any point of time. Therefore, operators (3.43) in the

formulated CP model are represented as cumulative resources of a single type, and their capacity

is exactly the objective function htotal of the model. The second, called disjunctive resource

propagator is a special cumulative resource, whose capacity is C = 1. In the considered scheduling

problem this means that any two tasks assigned to the same line L cannot be scheduled so that
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their executions overlap in time (3.42), therefore, lines are represented as disjunctive resources.

Concluding the aboves, one can infer that formulation of the problem with CP techniques —

applying cumulative and disjunctive resource propagators— is straightforward, however, neither

the stochastic nature of manual processing times, nor the random events can be considered with

this modeling technique.

Task scheduling with genetic algorithm

For the above reasons, the problem is also solved by genetic algorithm (GA), which is one of the

most fundamental approaches to solve stochastic optimization problems. Genetic algorithms are

classified as search metaheuristics belonging to the class of evolutionary algorithms. Applying

bio-inspired genetic operators on a set (population) of candidate solutions (individuals), GAs

try to improve the solutions and move towards the global optima. Similarly to other global

optimization methods, hurt of the constraints in GAs is mostly penalized with extra costs in

the objective (fitness) function. Generally, genetic algorithms are capable of handling stochastic

parameters if one can evaluate a solution considering them. Consequently, they can be applied to

solve the considered scheduling problem where stochasticity characterize the parameters due to

the manual processing times with certain deviations, and other random events like scrap products

entailing rework. A simulation-based method is proposed to evaluate a solution: the fitness

function of a given schedule is determined by executing a discrete-event simulation analysis.

This approach allows for the detailed analysis of stochastic parameters that often characterize

manual assembly processes. In each iteration of the GA, simulation experiments are executed

to evaluate the individuals’ fitness, therefore, the time consumption of a single simulation run

is of crucial importance to keep the algorithm’s overall running time on a reasonable level. The

simulation applies an automated model building process, enabling the dynamic model creation

and realistic handling of resource constraints (Gyulai et al., 2012).

3.5 Hierarchical capacity management: experimental results

The proposed method is evaluated with the results of a real industrial case study from the auto-

motive sector. The company under study is a Tier-1 supplier, producing mechatronics compo-

nents to several OEMs. In its assembly segment, the company has to manage the production of

|P | = 67 main product types, characterized with very diverse yearly volumes and uncertainty in

the forecasts. Due to the high costs, limitations in shop-floor space and in skilled human work-

force, finding an optimal capacity management policy would result in significant benefits for the

company. In the analyzed case, modularization is based on a set of standard assembly processes

(e.g. manual screwing, pressing, greasing etc.), assigned to technological assembly modules j ∈ J .

In this way, it is assumed that each product can be assembled in a modular assembly system

with the desired quality, independently from the resource type. Although the product portfolio

is rather diverse, the whole set of assembly operations can be categorized in eight main types

(e.g. screwing, pressing, greasing etc.), therefore, the operations can be performed by a module

set of |J | = 8. As the assembly processes are simple and the products are relatively small-sized,

lightweight plug-and-produce modules can be applied in the assembly system.
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3.5.1 Approximation of the costs with regression models

In order to analyze the costs characterizing the operation of flexible and reconfigurable systems,

the tactical production planning model was solved first on a set of virtual scenarios. These

scenarios were generated and solved in FICO Xpress® optimization software, applying its built-

in mixed-integer programming solver engine1. In each virtual scenario, input data was generated

randomly by the following rules. The length of planning horizon was |T | = 40 production periods,

the number of orders were |N | = 1 . . . 350, and order volumes were qn = 1 . . . 800 per order. These

parameters provided a representative set of various virtual but realistic order stream scenarios,

including both easier and complex planning problem instances. The production planning problem

(Section 3.4.2) was solved 450 times for each resource type s ∈ S. Then, the resulted datasets

were split up into independent training and test sets, applying random sampling with 1:2 ratio.

Accordingly, the regression models were all defined over the training datasets including 150

observations, and evaluated with the test sets consisting of 300 observations. Based on the

proposed method, eight regression models were defined in total: two for the value of assets λs
u,

three for the volume costs Γs functions, and three models to predict the operator requirements

(3.25). In each model definition, forward stepwise method was performed in feature selection,

and nonnegative linear regression with the nnls package —implementing the Lawson-Hanson

algorithm— was applied in order to avoid unrealistic function approximation with possible

negative coefficients (Mullen and van Stokkum, 2012). The main fit properties of the regression

models are summarized in Table 3.1.

Table 3.1. Fit properties of the regression models defined for the dedicated, flexible and reconfigurable

system types S = {d, f, r}.

S Notation R2 F -stat. p values

Volume d Γd 0.91 2779 ∼ 0

Investment f λfu 0.71 182 ∼ 0

Volume f Γf 0.92 1329 ∼ 0

Investment r λru 0.77 250 ∼ 0

Volume r Γr 0.94 4963 ∼ 0

Op. req. all ∼ 0.95 ∼ 0

As for the predictor variables, the total forecast volumes fpu were applied to determine

the volume costs. These models tackle the nonlinear interactions among products, applying the

product subset variables gsbu as stated in Section 3.4.3. In the presented case, nine subsets were

applied; and products were selected during the model fitting procedure:

Γs = βvol
s0 +

∑
u∈U

∑
p∈P

(
βvol
sp z

s
pufpu

)
+
∑
u∈U

∑
b∈B
b=p

(
βvol
sb g

s
bufpu

)
∀ s ∈ {r, f, d} (3.44)

In the case of flexible and reconfigurable resources, prediction of the value of assets λsu was done,

based on the number of assigned products and the total capacity requirements:

λsu = βfix
s0 +

∑
p∈P

(
βfix
s1 z

s
pu + βfix

sp z
s
pufput

proc
p

)
∀ s ∈ {r, f}, u ∈ U (3.45)

1All the computational experiments presented in the thesis were performed on a laptop with 8GB RAM, and

Intel® Core i5 CPU of 2.6 GHz, and under Windows 8.1 64 bit operating system.
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The headcount of operators in a given period u ∈ U was approximated by the sum of capacity

requirements in u and ∀s ∈ S as formulated in (3.25).

3.5.2 System configuration study

Introduction of the compared methods

In industrial practice, firms usually solve the configuration problem of heterogeneous systems

(supposing that different resource types are available, see Section 3.2) on a product basis, neglect-

ing the underlying correlations among the assignment of different products to the same resource

type. Reflecting to the line assignment problem presented in 3.3.2, decisions of the workflow

were also taken on a product basis, however, future expected production costs were predicted

by considering tactical level production planning aspects. In product-based approaches, system

designers seek the proper system configuration by combining the main advantages of different

resource types in a straightforward way, therefore, top-runner products with high yearly volumes

are mostly assigned to dedicated resources that are capable of providing the desired throughput

rate. Flexible resources are applied to produce medium-runner products with similar features

and volumes, meanwhile, low-runner products with low yearly volumes and high variety typi-

cally preferably assigned to modular, reconfigurable systems. The latter products are mostly the

prototypes, end-of-lifecycle products, or spare parts for aftermarket.
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Figure 3.13. Representation of the CR rule on the Pareto-chart of the products’ work contents.

As no specific optimization-based method is available to solve the analyzed problem (Sec-

tion 2.4), the proposed capacity management workflow was compared to the above described,

rule-based practical method within a comparative study. Four different methods were analyzed

by solving the system configuration problem over multiple periods. The product-based solutions

applied in industrial practice were represented by rule-based approaches that assign the prod-

ucts to different resource types based on the total work contents. In the study, two rule-based

methods were compared to the proposed method. According to the first rule called CR, the

product portfolio was split up with different ratios in three parts, based on the overall work

contents realized in each period. The products were then assigned to dedicated, flexible and

reconfigurable systems, respectively. Important feature of this rule that splitting was done based

on the cumulative work contents of the products, meaning that not individual capacity require-
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ments percentages were considered, but products were sorted in a descending order according to

their total capacity requirements, and cumulative percentages were applied to assign products to

different resource types. This method is depicted by an exemplar Pareto-chart of work contents

in Figure 3.13. In the second rule-based method called IR, individual percentage values of the

products’ work content were considered, when assigning them to different resource types. In

this case, two threshold values were defined: the products with lower, average, and high work

contents (defined by the threshold values) were assigned to reconfigurable, flexible and dedicated

resources, respectively.

The proposed, optimization-based system configuration method —that is part of the framework—

was also implemented in two different ways within the study: the first version —called LO—

considered a fix horizon, and determined the best system configuration strategy by looking

ahead in time over the entire horizon. The second version implemented a rolling horizon system

configuration strategy by periodically (in the test case, the re-planning period was 2u) updating

the actual configuration in the upcoming periods. The latter method —called RO— considered

shorter planning horizon than LO, however, the strategy was updated in shorter periods than

this horizon. As for the time horizons of the rule-based CR and IR methods, both based on

a rolling horizon approach similarly to the RO method. The difference between the planning

horizons and replanning periods of the lookahead and rolling horizon methods are illustrated by

Figure 3.14.

u0 u1 u2 u3 ... ... ... ... ... U

time

RO1 RO2 RO3 RO4

LO

Figure 3.14. Representation of the replanning periods (arrows), and time horizons of the rolling

horizon RO (green), and lookahead LO (blue) methods with the confidence regions of the volume

forecasts (triangles).

Scenarios of the study

The system configuration problem was solved on a planning horizon consisting of |U | = 10

periods, on which volume forecasts were available, however, they were uncertain as realized

order volumes in period u might differ by 10% from the volumes predicted in u− 1 (confidence

regions are represented in Figure 3.14). Therefore, weighted averages of the forecast volumes fpu

were applied in the system configuration problem, with five periods lookahead. In each period

u, decision variables zspu were determined based on the forecasts, and the necessary investments

were calculated. Then, the production planning model was run to predict the costs that will

incur in period u. In this case, the cumulated forecast volumes were split into customer orders,

simulating maximum 10% deviation (normal distribution) in the total volumes by generating

individual orders n ∈ N with random assigned (with a realistic, uniform distribution over the

horizon) due dates tdn and order volumes qn. In order to avoid infeasibility of planning, an

additional time period t ∈ T was added to the end of the horizon, with infinite length and
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high assignment cost to simulate the option of backlogging (this modification was applied when

solving the models on virtual scenarios in section 3.5.1).

Within the study, scenarios were characterized by two main factors: the nature of the

products’ lifecycle and the art of the product portfolio. As for the lifecycles, two cases were

analyzed. In the first case called normal (NORM), products’ lifecycle were similar to a general

product lifecycle curve with the introduction, growth, maturity and decline phases, and products

of the portfolio were in different stages of their lifecycle. This case is represented by products

with increasing, decreasing and relatively stable volume trends, applied for randomized order

and forecast generation. This scenario is valid for the majority of companies, however, there

exist companies who suffer from frequent changes in the customer orders, which means that the

volumes to be produced have no general trend. This is represented by the second case of the

product lifecycle called volatile (VOL), which analyzed order streams where significant volume

changes might occur between two consecutive periods.

The second major analyzed factor was the diversity of product portfolio that can be either

balanced or diverse. In case a portfolio is diverse diverse (DIV), significant differences can be

among the total capacity requirements of products in a given time period: there are products

ordered in very high volumes and/or having high total processing times, and also products with

very low work contents and/or volumes. In case of balanced (BAL) portfolio, the total work

contents of products are similar (the volumes of processing times can be diverse, but the overall

capacity requirement are in the same order of magnitude).

As several realistic production and market scenarios are analyzed, some random generated

input parameters are applied based on a general input data. The following main rules are valid for

different scenarios, and more detailed description of the scenarios’ input data, and the generation

of random parameters is provided by Gyulai (2018):

� Products’ lifecycle curve:

– Normal (NORM ): The products’ lifecycle follows a monotonic increasing or decreasing

trend with an average of 10-30% difference in total volumes between two consecutive

periods.

– Volatile (VOL): There is no trend in products’ lifecycle, and the average difference in

total volumes between two consecutive periods is 30-50%

� Diversity of the product portfolio:

– Diverse (DIV ): The products’ relative, total capacity requirements uniformly dis-

tribute between 1-100%.

– Balanced (BAL): The products’ relative, total capacity requirements uniformly dis-

tribute between 1-10%.

The above settings resulted in four main scenarios (the combinations of the above factors) that

were all analyzed within the study. In each scenario, 15 different test cases were generated with

similar main attributes, however, with different customer orders and product lifecycle character-

istics. As for the experiments, in case of CR and IR methods, six-six different assignment policies

were applied, which differed in the percentage threshold values. Therefore, the total number of

experiments in the study was 15 · (1 + 1 + 6 + 6) · 4 = 840 in case of the system configuration. As

|U | = 10, the production planning problem —to evaluate the costs in each periods— was solved

8400 times in total.
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Discussion of the results

The main numerical results2 of the study are summarized in two boxplot charts (Figure 3.15-

3.16). For the sake of comparability, both charts represent the results in percentage values. The

percentages are calculated by considering the results obtained by the four different methods

in a given test case, and 100% corresponds to the maximal value in each test case, thus in

general, lower values are the better. Columns of the boxplots visualize the average, maximum

and minimum values, as well as the percentiles of 15 test cases per scenarios and methods.
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Figure 3.15. Results of the case study: average values of the resulted costs, changes (3.22) and space

requirements (3.24).

The first boxplot (Figure 3.15) visualizes average results including costs, space requirements,

and changes realized over the planning horizon with a given method. In contrast to the proposed

solution, rule-based system configuration methods were unable to consider several constraints,

therefore, the space limit as well as other restrictions might hurt when applying such methods.

These factors are also summarized in the first comparison illustrating that LO and RO methods

outperform the rule base approaches in most of the cases. While in case of diverse portfolios

and normal lifecycles, IR method might perform satisfactory, the difference between the methods

increases if hectic lifecycles or balanced portfolios are analyzed. Although lookahead LO method

performed well in average, rolling horizon based RO showed much stable good performance

with low deviation in each cases. Summarizing this comparison, the performances of rule-based

solutions were similar to the proposed approaches only in case of normal product lifecycles and

diverse portfolios, however, they still resulted in higher costs in average, moreover, deviation of

the results was also rather high.

In contrast to the previous boxplot, Figure 3.16 summarizes only the overall costs obtained

by the different system configuration methods. The most obvious difference here is the high

deviation of the costs resulted by the LO method, caused by the fact that space limits and

number of changes are neglected here, therefore, the results of rule-based methods are comparable

to the optimization-based ones’. Although LO method resulted in high deviation in these cases,

2The complete, detailed set of numerical results, the implementation of the models and the input data for repro-

ducibility of the research are provided in a GitHub repository: https://github.com/dgyulai/ModularAssembly

https://github.com/dgyulai/ModularAssembly
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the average of solutions were still better than those obtained by rule-based solutions, while RO

approach with a rolling horizon assignment performed best in each scenario. It resulted in the

lowest average total configuration costs, moreover, it had the most stable performance with low

deviation in the solutions.
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Figure 3.16. Results of the case study: overall costs (3.22).

Summarizing the results of the case study, one can conclude that the performance of rule-

based approaches is inversely proportional with the uncertainty (hectic lifecycle), and their

results’ quality is decreasing if the portfolio is composed of products with similar total capacity

requirements. In those cases, general practical approaches become unstable, as the calculated

system configuration cannot cope with the uncertainty of forecasts, nor with the frequent re-

assignments of products to different system types. Besides, it is also unclear which rule needs

to be applied in a given case, as their performance is highly influenced by the parametrization

that cannot be done in advance. In contrast, the proposed, optimization-based solution out-

performs the currently applied product-based assignment and system configuration methods by

considering portfolio-wide correlations among the processes, and optimizing assignments along

the horizon accordingly. The best results, thus the lowest overall costs can be obtained if the

method is applied on a rolling horizon basis, revising and updating the applied configuration

periodically.

3.5.3 Numerical results of task scheduling

In the previous analysis, both system configuration and production planning models were solved

within a case study with the aim of configuring a modular assembly system on a longer horizon,

considering predicted costs based on multiple solutions of production planning problem. Next,

the operational level model of the hierarchical capacity management framework was demon-

strated, solving the short-term task scheduling problem. Within the analysis, production envi-

ronment remained the same, however, the modified production planning model was solved to

provide input for the subsequent task-scheduling. The latter was solved by both CP and GA,

and their results were compared according to robustness criteria.
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Parameters of the task sequencing problem

As discussed earlier, the modified production planning model is aimed at calculating the lot

sizes with the assigned line and operator headcount (xnlth) based on the customer order stream

and available capacities. The planning horizon is |T | = 10 periods, and the length of a period is

tw = 480 minutes. In the analyzed problem instances, the total number of orders to be scheduled

varies in a range |N | ∈ [120, 150] on the complete planning horizon T . The available shop-

floor space in the assembly segment enables to operate |L| = 8 modular lines simultaneously.

Calculating the headcount-dependent processing times for each product type p, the maximal

headcount of operators and thus the cardinality of their set is |H| = 10. As for the scheduling

problem, the task is to determine the task execution start tstart
n (and end tend

n ) times within the

periods, considering that the setup times of the products are tset
p ∈ [15, 30]. Resulting from the

production planning level, the average size of a scheduling problem instance is |N | ∈ [12, 15]

within a given time period t. In order to prove the validity of the proposed mathematical models

and compare the solutions provided by CP and GA, eight different test problem instances were

solved by both methods. First, the production planning problem was solved, afterwards eight

different production periods from the results were selected to solve the task sequencing problem.

Table 3.2. Comparison of scheduling results, provided by CP and GA methods. The first column (SC)

indicates the scenario number, |N | is the number of tasks (orders) to be scheduled in one selected time

period. The columns htotal give the resulted headcount and t is the running time in seconds. The last

columns tm are the makespan values (minutes) of the methods, and tm is the calculated whereas tsimm is

the simulated makespan (of the CP solution).

Constraint programming Genetic algorithm

SC # |N | htotal t[s] tm[min] tsimm [min] htotal t[s] tm[min]

1 15 11 3 471 488 12 172 427

2 14 8 2 469 502 8 567 433

3 11 7 601 476 476 7 328 448

4 16 7 5 475 477 7 175 471

5 15 7 4 480 470 7 558 469

6 14 8 3 477 506 8 158 508

7 11 6 2 470 466 6 247 433

8 11 7 603 457 493 7 457 497

Results with constraint programming

The CP model of the task scheduling problem —specified in Section 3.4.4— was implemented in

FICO® Xpress applying its Kalis constraint programming library with a scheduling toolbox. In

order to handle the resource constraints properly, the assembly lines l ∈ L were disjunctive, while

the operators were cumulative resources with the capacity of htotal. By default, the constraint

solver cannot be set to optimize the production schedule respecting the capacity of resources

as an objective function. Therefore, the optimization procedure was performed by an iterative

approach with interval halving, where the value of htotal was adjusted in each iterations. Starting

with and arbitrarily large value, the problem was solved in each iteration, and the value of htotal
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was decreased to its half if a solution was found. Otherwise, the headcount was set to the

median of current and previous values. In this way, the objective function value converged to

the solution, while feasible schedules could be obtained over the iterations. In order to boost

the computations, the CP solver run until a feasible schedule has been found. All problem

instances could be solved by CP, calculating the minimal required operator headcount and the

corresponding feasible schedule, however, all parameters of the model were deterministic as CP

solver could not tackle their possible variability.

Results with a genetic algorithm

For this reason, the scheduling problem was also solved by GA, as considering the possible

stochasticity of the parameters is important in case of manual assembly lines, where the human

factor introduces a certain deviation in the processing times. Therefore, the emphasis was put on

this effect by setting 10% deviation for the manual processing times with a normal distribution.

This could be done in the simulation model of the assembly system, which was also responsible

for the evaluation of a solution in each iteration of the GA. In order to get a more realistic

solution, each individual (schedule) in the population was evaluated by running the simulation

multiple times simulating different processing times generated with a normal distribution with

10% deviation by the simulation model. The schedules were created by the algorithm applying

genetic operators, in the GA, the main settings were the probabilities of crossover and inversion

steps’, set to 0.8 and 0.2, respectively. The number of iterations was set to 20, and the popula-

tion sizes were 15. The simulation model of the assembly system was implemented in Siemens

Tecnomatix® Plant Simulation, applying its GA library with the predefined chromosome en-

coding of the GASequence function (Siemens, 2016). The resources (both human and machine)

were represented by objects in the model, each having disjunctive feature enabling to tackle the

capacity constraints in the GA-solution.

Evaluation of the results

In order to evaluate the quality of solutions and the feasibility of schedules, the results provided

by both methods were executed with the simulation model of the system, representing the 10%

deviation of the processing times. In order to manage this stochasticity in the CP scheduling

model and to calculate feasible schedules with it, the processing times were increased by 10% in

the CP, while in GA, all the evaluations were performed by the simulation model applying the

same deviation. The results provided by both methods for all analyzed problem instances are

summarized in Table 3.2. As the results show, the running time of the GA is significantly higher

than that of the CP, however, it results in the same objective function values except in SC#1.

The GA-based solution provides schedules that are feasible in most of the cases, even in case of

stochastic processing times, whereas CP fails to provide executable schedules in more cases if

parameters are stochastic, although the schedules were calculated with extra capacities. In each

cases, the CP could provide a schedule that would be feasible with deterministic parameters,

however, lateness occur in the simulation, representing the realistic production environment

(Gyulai et al., 2017a).
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3.6 Summary of Chapter 3

The existence of heterogeneous assembly systems with reconfigurable, flexible and dedicated

resources is a relevant industrial topic, however, only a few approaches are available for com-

prehensive capacity management of these systems. In Chapter 3, a novel hierarchical method

was proposed for modular assembly systems, with the objective of minimizing the operating and

investment costs along the lifecycle of the products. The framework has three stages, providing

solution for the capacity planning problems on all levels of the classical planning hierarchy. The

essential novelty of the method is realized by the fact that operation and investment costs are

approximated with regression functions that are directly applied in the optimization model of

the system configuration problem. Moreover, system configurations are determined based on the

entire portfolio considering the correlations among processes. In addition to the strategic and

tactical levels of the capacity management, the task scheduling problem —related to modular

reconfigurable systems— is solved on the lowest stage of the framework. The proposed schedul-

ing model determines the operator-task assignments, as well as the execution start times of the

production lots. The input parameters of the scheduling are provided by the production plan-

ning model, and its objective is to minimize the overall operator headcount within a production

period.

The proposed method results in significant cost savings in the long run, compared to the

most commonly applied rule-based approaches. This is mainly resulted by the consideration of

future expected production costs already in the configuration (and periodic revision) stage of the

assembly system. The operational costs are determined with regression models, implementing a

function approximation based on tactical level production scenarios. The functions are applied

in the strategic level system configuration model as constraints and as elements of the objective

function, too. The applicability of such regression models in higher level decision models was

proven by a simplified version of the capacity management problem called line assignment.

In the line assignment model, products were assigned to dedicated, reconfigurable resources

or outsourced, and the decisions were taken on a product basis. In this proof-of-the-concept

decision method, the costs resulted by production plans of virtual scenarios and fed back in the

line assignment model with regression models. The results of product-based assignment indicated

that such regression-based feedbacks are capable to be used in more complex, portfolio-based

system configuration model.

In the three-level framework, the artificial set of random-generated virtual scenarios provide

representative data of costs that need be considered when deciding about system configuration,

and assigning the products to different resource types. The proposed framework puts special

emphasis on the capacity planning of modular, reconfigurable assembly systems with lightweight

plug-and-produce resources that are hardly considered in other capacity management methods

and models. The production planning model applies constraints on machine resources that are

specific to the system type, additionally, the human resources are also considered providing

flexibly-adjustable capacities for the system. Slightly modifying the basic production planning

model of the modular reconfigurable system, the human capacity requirements can be optimized

on a task basis by solving the task sequencing model.

Besides the above facts, great benefit of the method is its practical usage for real industrial

sized problem instances, characterized with a large product portfolio and frequent changes in it.

The results of the case study proved that capacity management problems —even with different
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resource types and several products— can be solved in a reasonable time. As for the integration of

the method in existing corporate decision processes, one can conclude that strategic level system

configuration decisions are effected independently from enterprise software tools, therefore, the

method can be applied directly for decision support even having a loose link with other tools.

Besides, generic mathematical models were proposed to solve the production planning and task

scheduling problems, therefore, they can be implemented in any solver, respecting the resource

constraints of the modular systems as described in the chapter.



Chapter 4

Capacity management of modular,

robotic assembly cells

In the previous chapter, a novel, comprehensive framework for the capacity management of

modular assembly systems was proposed. The framework was aimed at matching the capacities

of modular system with customer order stream on the strategic, tactical, and also on the op-

erational levels of the planning hierarchy. The production environment consisted of a modular

assembly system with heterogeneous resources, of which reconfigurable modules supported the

fast reconfiguration of the system, utilizing the lightweight, plug-and-produce workstation de-

sign. In case assembly modules are applied to carry out the processing of heavy workpieces, or

the assembly technology requires large-size equipment, lightweight assembly modules cannot be

used to configure the system. However, the state-of-the art in assembly technology has made

it possible to apply reconfigurable assembly cells in industrial practice (Manzini et al., 2004).

In general, cellular manufacturing is an important application of lean production and group

technology, in which part families are produced in manufacturing cells or a group of various ma-

chines, which are physically close together and can entirely process a family of parts (Mansouri

et al., 2000). In case of assembly application, reconfigurable cells can be built up of modules

that can perform automated joining processes like resistance spot welding, gluing or hemming.

This assembly cell design provides flexible solution to assemble products with larger dimensions

(e.g. car body parts), even if facing high variety in the product portfolio.

In Chapter 4, a new, integrated framework for the capacity management of modular re-

configurable assembly cells is introduced, aimed at offering a comprehensive solution to support

design and management related decisions. As the framework is the result of a collaborative work,

the special emphasis is put on the own work that is the production and capacity planning of

the cells, supporting the configuration stage of the workflow by predicting the future expected

operation costs and batch sizes. Next to the planning and simulation, the core architecture of

the software integration environment —called Simulation and Navigation Cockpit— is also pre-

sented. The cockpit provides a web-based software environment to link the individual tools with

each other, customize the parameters and display the experimental results.

For the sake of completeness and demonstration, all stages and tools of the workflow are

introduced, however, own results related to production planning and simulation are highlighted

and discussed in detail. Other works and models presented within the framework are results

of academic partners participated in the RobustPlaNet EU FP7 project. The overall concept,
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methodology and results were presented by the partners in collaborative papers (Colledani et al.,

2016; Manzini et al., 2017). The framework consists of four main tools with the corresponding

decisions and problem instances. The first tool, called Assembly System Configuration Tool is

developed by the University of Twente1. The second tool, called Assembly Cell Configuration

Tool , and the Reconfiguration Planning Tool —incorporating and utilizing the results of all

other tools— are developed by Politecnico di Milano2. The own results were achieved in the

definition and development of the Production Planning and Simulation Tool , presented in detail

in Sections 4.4.2-4.4.3.

4.1 Design and management of modular assembly cells

As discussed earlier, the capacity management of modular reconfigurable assembly systems is

an emerging research topic, as the application of technological modules as building blocks of

assembly systems is gaining more and more attention in today’s production. This is valid for

the lightweight assembly modules, and also for the large-size modular resources of automated

cells, capable of performing various joining processes. In contrast to the lightweight assembly

modules, high technological and quality requirements are more complicated to achieve with the

joining modules, as several various parameters affect the quality of final products. In addition

to, another challenge to be tackled by the system designers is the increasing variety and com-

plexity characterizing the joining technology. These challenges have increased side effects on

the supplier companies, as they have limited time to respond OEMs’ requirements, moreover,

they do not have the opportunity to apply changes and modifications on the products and tech-

nologies that would make it easier to introduce new products in the existing portfolio and the

corresponding assembly system. In the presented methodology, automotive supplier companies

are mainly considered, who are involved in the production of new parts in their ramp-up phase,

and also in complementing the OEMs’ production capacity for low volume car model niches or

to help managing demand peaks. In order to keep their internal efficiency, and meet the cus-

tomers’ requirements, supplier companies tend to increase the flexibility —regarding both mix

and volume— of applied production technology. As the product portfolio is continuously chang-

ing with the introduction and decline of products, the system structure also needs to co-evolve

with the products and processes to maintain the desired level of internal performance indicators.

Although various approaches exist for the design and planning of assembly systems, there

is no all-encompassing method that can cope with the above challenges in the design, configura-

tion and operation management tasks emerge in relation to the modular reconfigurable assembly

cells. Therefore, a new framework is proposed to support the above decisions, applying differ-

ent tools and models with their specific problems to be solved on a certain time horizon. As

mentioned earlier, the approach entails four tools supporting the following decisions: (i) defini-

tion of the system’s architecture and multi-cell configuration, (ii) selection of the cell’s detailed

layout configuration and assembly process operations, (iii) production planning and evaluation

of the cell’s operation and (iv) major reconfiguration steps that have to be taken between the

time periods. The tools can be used in a sequence, to design an assembly system and define the

1Corresponding researchers are Johannes Unglert and Juan Manuel Jauregui Becker from University of

Twente, Enschede, The Netherlands
2Corresponding researchers are Massimo Manzini, Marcello Urgo and Marcello Colledani from Politecnico di

Milano, Milan, Italy
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associated management policies. In this way, the workflow allows to incrementally increase the

level of details and gain additional knowledge about the system, moreover, feedback loops are

implemented between the tools, to improve the design or manage possible infeasibility. The inte-

gration of decision-support tools aims at providing a robust solution that able to cope with the

co-evolution of the system together with products and production technologies. In this fashion,

the configuration, layout and reconfiguration of the system consider long-term decisions, while

the planning of production and setups addresses the short-term horizon.

Based on the above main characteristics of the proposed workflow, one can distinguish

three related sub-problems addressed: system design, cell configuration and the corresponding

task sequencing and finally, the production planning and simulation. Although state-of-the-

art solutions exist for all these problems individually, none of the approaches integrates them,

therefore, they are not capable of providing solutions that provide cost efficient production over

the entire lifecycle of the system operated in a dynamic environment. Similarly to the assembly

system consisting of lightweight modules, precise estimations of the operation indicators such as

costs, setups and batch sizes are of crucial importance to provide a design that can be operated

efficiently even if medium or short term objectives and conditions are considered. This can be

achieved only with a foresight in design, namely to apply a methodology that performs the

medium-term rough production planning to predict the resulted costs. In the design phase of a

system, performance is often estimated by considering the bottlenecks operations, disregarding

other influencing factors, e.g. the expected production sequences and the resulting changeovers.

These factors might have significant impact on the performance indicators in assembly systems,

where long setup times occur due to the processes, or the applied equipment (e.g. assembly

modules with large sizes).

As a conclusion of the above thoughts, proper management and operation of reconfigurable

systems can be achieved only if multiple criteria are considered already in the early design stage

of the system. Naturally, this can be hardly implemented due to the uncertainties, and lack

of detailed information about the future changes in the order stream and processes. Therefore,

the coordinated evolution of system, products and processes is aimed to be supported, in order

to revise, and periodically adjust the system configuration respecting external factors. In this

way, the efficiency can be maintained while production also matches the customer expectations.

Towards the definition of the design and management framework proposed to implement this

co-evolution, the problem of reconfigurable assembly cell design is presented as it follows in

Section 4.2.

4.2 Reconfigurable assembly cell design problem

In general, the problem in question is similar to the system configuration and capacity man-

agement problem analyzed in Chapter 4, namely to define a (re-)configuration strategy for a

modular assembly system on a longer term, to meet the customer requirements while minimiz-

ing the overall related costs including investments as well as operation costs. However, the same

methodology cannot be applied here, due to the different system structure, and the fact that

only reconfigurable cells are considered (dedicated and flexible resources are not part of the prob-

lem). Moreover, the assembly technology and also the products justify that lightweight assembly

modules cannot be applied to configure the system, but the considered set of joining technologies

includes welding, gluing, hemming, clinching etc. operations performed by automated devices,
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and/or robots, requesting longer reconfiguration times than lightweight modules. Similarly to

the previous case, a group of technological equipment j ∈ J is selected to perform the processes.

Due to the technological complexity, a module is considered to include more pieces of equipment,

e.g. the tools, fixtures and control units to accomplish the assembly operations of a product. The

requirements of products p ∈ P from different modules is denoted by rjp, the purchasing costs

cm
j of the modules, and also the relevant technological parameters are known. A given assembly

operation can be executed in different ways applying a certain module, therefore, the set of

possible options an operation can be performed is provided by introducing the set of execution

modalities E, for which examples are presented later in this chapter.

Due to the cellular architecture, characteristics of the reconfigurable system differs from

the one analyzed in Chapter 3. The modular reconfigurable assembly cells consist of two parts:

the static skeleton of the system, and also the mobile, exchangeable technological modules. The

skeleton of the system includes safety equipment such as the fences, and also technological devices

like conveyor belts and buffers. Besides, essential central element of the cells is a 7-axis robot

installed on a track, enabling very flexible operations including part manipulation, technological

processing, as well as material handling. Besides, assembly modules can be attached to the

skeleton to perform the assembly operations. As the technological modules are rather heavy, they

are transported and placed by forklifts. Relying on this, a limited set of alternative layouts exist,

composed of the central rail with the 7-axis robot, and the modules placed around (including

the part I/O stations with the conveyor belts). A the general scheme of the considered modular,

reconfigurable assembly cell is illustrated by Figure 4.1.

7-axis robot

Module 1 Module 2

Module3

Track

Output

Input

 Cell elements?
 Cell layout?
 Production plan?
 Reconfiguration plan?

Figure 4.1. Schematic architecture of a modular, reconfigurable assembly cell with the elements of the

static skeleton (blue) and the exchangeable technological modules (yellow).

A configuration of a cell c ∈ C in a period u ∈ U is represented by a variable zcu, expressing

implicitly the applied set of modules and their positions in the layout, the applied tools and

selected execution modalities. The objective of the overall approach is to determine the optimal

configuration of cell c ∈ C over the time horizon U , by minimizing the cells’ lifecycle costs

composed of investment and operation costs factors. This can be achieved by a periodic revision

of the cell’s actual configuration, and its adjustment to the market demands via performing

reconfigurations. In this problem the terminology is slightly different from the one applied in

Chapter 3. In the short term, the available modules can be retooled to cope with the different
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parts to be assembled, which is referred to as a changeover. On a longer time horizon U , however,

there is an opportunity to modify the set of available ones, this procedure is called reconfiguration.

In a given cell, several products can be assembled. The cells are of multi-product type, which

means production is performed in batches, and setups take place when switching from one

product type to another. A setup involves the replacement of modules, and the adjustment of

the technological parameters.

As for the external factors, market conditions and order stream are represented with a

stochastic scenario tree, consisting of a set of nodes ω ∈ Ω over a set of time periods U . Each

node in the tree is associated with the forecast volume fpω, the average lot size lpω and the

assembly processes jpω of products p ∈ P . From production planning viewpoint, important

assumption that information is available regarding the contractual batch sizes of products to

be delivered periodically to customers. However, due to the uncertainties in the forecasts and

other market conditions (e.g. set of product to be produced), an occurrence probability π(ω) is

associated with each node. A path starting from the root node and ending in a leaf represents

an evolution scenario with its occurrence probability. The objective of the problem is defined as

it follows. Considering the overall time horizon U , a selection of a multi-cell system architecture

is to be performed identifying the specific cell configurations zcu that match the requirements

realized in node ω corresponding to period u ∈ U , while minimizing the overall lifecycle costs

over the horizon. This involves different questions (Figure 4.1), regarding e.g. the selected cell

elements, applied layout, production and reconfiguration plans. These questions are addressed

by the tools of the proposed assembly system design and management framework, as discussed

throughout the next sections.

4.3 Assembly system design and management framework

The above specified design and management problem with the related sub-problems can be

solved by applying the proposed framework, consisting of the four tools enlisted earlier. The

tools utilize a common data repository, and act in an interactive way. This means that besides

a general dataset is accessed by each of the tools, the results provided by the tools are utilized

by other ones to refine the design and configuration determined in a preceding step, as well as

the solutions are applied as feedbacks. The general data flow and architecture of the workflow

is illustrated by Figure 4.2. The first tool is the Assembly System Configuration Tool , which is

aimed at exploring the search space consisting of all possible system configurations, in which a

system configuration refers to the generic design of multiple modular assembly cells. As the tool

is capable of identifying all rough cell designs that match the global constraints, it enlists and

visualizes them offering an option for the system designer to select the most promising ones. At

this stage, the design is a draft configuration of a set of cells with the descriptions of cell building

blocks, however, without a detailed configuration and task sequence. The latter problems are

solved by the second tool called Assembly Cell Configuration Tool , applying a selected candidate

rough cell configuration provided by the previous tool. The scope of the analysis is narrowed, as

only a single cell is selected to refine its configuration, however, process level details are added at

this stage including the arrangement of equipment in the cell into a layout, as well as selecting the

proper task sequencing and evaluating the dynamic performances in an analytic way. This latter

is then further evaluated from management point of view applying the Production Planning

and Simulation Tool , taking into consideration the expected orders, inventory levels, production
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batch sizes and contractual delivery volumes. The performance indicators of the system under

various production scenarios are predicted applying a DES model, thus considering the system

with a greater detail. Finally, the Reconfiguration Planning Tool is applied to calculate the

optimal evolution path of a cell along the scenario tree. The aim of this tool is to provide a

robust design for the assembly cell, consisting of an initial configuration, and a sequence of

reconfiguration steps, matching the system with the uncertain market evolution.
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Figure 4.2. Design and management workflow for modular assembly cells.

4.4 Description of the applied tools

In this section the applied tools and models are presented, highlighting the Production Planning

and Simulation Tool with the own results achieved within the collaborative development of the

workflow. Before the detailed introduction of planning and simulation models, underlying models

and calculations of the preceding tools are briefly introduced for the sake of completeness.

4.4.1 Assembly system and cell configuration tools

Assembly system configuration

The strength of the Assembly System Configuration Tool relies in its capability of exploring

the whole solution space including all possible rough system configurations. It automatically

generates the solutions, and also calculates the relevant KPIs. Besides, all generated solutions

are displayed in various charts offering the system designers to select the proper configuration

(to step forward with) intuitively. As detailed by Unglert et al. (2016), the tool applies a design

synthesis methodology, to generate the possible cell configurations that match the constraints

related to the market conditions, technological requirements and internal factors (e.g. the avail-

able shop-floor space). A core part of the synthesis is a knowledge base, populated with all design

and system configuration related information and constraints. Based on the technical description

of the set of applicable equipment (including also the purchasing costs) and the market demand,

the minimum capacity requirement for each multi-cellular configuration is calculated. Then, ca-

pacity bounds are converted into bounds for the system design parameters, resulting in ranges

of values for the number of equipment, defining e.g. the amount of modules rjp to be applied.

Having these ranges determined, an algorithm instantiates the possible solutions, defining the

cells with corresponding technological equipment and assigned processes. The solutions can be
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displayed in various ways, providing the flexibility to compare alternative configurations, and

check detailed information of the solutions, e.g. the KPIs, or the pieces of equipment. Applying

this automated design synthesis, the time of creating the rough designs as well as comparing

various alternatives can be significantly reduced. As a result, the designer can select a candidate

(most promising) solution, to refine its configuration in a subsequent step.

Assembly cell configuration

The detailed cell configuration can be performed applying the Assembly Cell Configuration Tool ,

which is a composite tool consisting of multiple models that are directly linked with each other

as introduced by Angius et al. (2016). The tool is capable of (i) handling different execution

modalities, (ii) arranging the selected equipment on a layout and (iii) performing the dynamic

performance evaluation analytically. Execution modalities (i) are different ways of performing

a given assembly process, applying different pieces of equipment and/or modifying the task as-

signments. As a simple example for two different execution modalities, a spot welding process

can be performed either by moving a part with a robot and applying a welding gun with a

fix position, or, placing the part in a fixture and applying a welding gun installed on a robot.

Various different ways of execution modalities exist to perform a given process, however, they

require different equipment, and result in different performance and cost indicators. Therefore,

their proper selection is of crucial importance towards the overall, detailed configuration of

the assembly cell. The selection of candidate execution modalities results in the final set of

equipment needs to be applied to configure the cell. This is performed by the layout planner

algorithm (ii) that arranges the cell elements on the shop-floor, taking into account the gen-

eral cell architecture with the skeleton and the reconfigurable modules. It also considers that

technological modules can have auxiliary devices, or other tools to be placed. All in all, the

layout planner model results in the final, detailed cell configuration that is capable of producing

the predefined subset of products with a given task sequence and the corresponding processing

and cycle times. This detailed configuration is evaluated analytically (iii) to determine dynamic

performance indicators of the cell, supposing that estimated batch sizes lpω are available. The

system dynamics is represented by a state-transition based model, assuming that every change

of a state occurs according to Markovian distribution, and the underlying stochastic process is a

Continuous-time Markov chain. The output of the model provide information about the buffer

levels, utilizations and other cell parameters supposing dynamic changes. The most important

result is a confirmation whether the configured cell meets the expectations regarding the target

output rate.

Reconfiguration planning

As depicted by Figure 4.2, the final computation tool of the workflow is the Reconfiguration

Planning Tool responsible for optimizing the cell configurations over time, with the objective

of minimizing the overall lifecycle costs and considering various possible scenarios, as well as

the co-evolution of products, processes and the system itself. The tool focuses on the configu-

ration optimization of a single selected cell, adjusting its actual configuration in each period by

applying reconfigurations, to be in balance with the market requirements. The aim is achiev-

ing robustness over the whole scenario tree, e.g. acquiring resources and equipment in advance

(proactive approach), or waiting for the occurrence of a specific event to proceed with a proper
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reconfiguration (reactive approach). The reconfiguration planning, therefore, performs a stochas-

tic optimization, considering all possible evolutions of a given cell over the horizon, represented

by different paths along the scenarios tree from its root to a leaf. The reconfiguration strategy

aims at minimizing an objective function considering the expected values of the incurred cost

over all scenarios:

minimize

(
cinv(zc0) + copc(zc0) +

∑
ω∈Ω

π(ω)
cinv(zcω | zc0) + copc(zcω | zc0)

(1 + δ)uω

)
(4.1)

Accordingly, the objective is composed of the expected investment cinv and operation copc costs

characterizing various cell configurations. The configurations are represented by zcu ∈ Z, of

which zc0 is the initial configuration in u = 0. As the scenario tree describes a stochastic market

evolution, probabilities of scenarios occurrence π(ω) are considered, as well as a discount rate

δ is applied to scale expected costs over time. The reconfiguration planning model is discussed

in detail by Angius et al. (ibid.), highlighting that constraints include the calculation of costs,

while respecting the limited amount of time available for production, and also the performance

of the selected configuration with the applied execution modality.

As one can observe in (4.1), important element of the objective function, and the overall

reconfiguration strategy is the future expected operation cost copc that also reflects implicitly

the applied batch sizes of various products, and it is in the same order of magnitude with the

investment costs cinv in the long run. Assembly Cell Configuration Tool is capable of providing an

estimation on the cell performance that one can expect if average contractual batch sizes lpω are

considered, however, the applied production planning policy highly influence both values, thus

it also affects the solution of the reconfiguration planning. Therefore, the Production Planning

and Simulation Tool is applied before reconfiguration planning, in order to consider the most

possible accurate values of the batch sizes and operation costs, and derive the cell configurations

accordingly. The elements of the Production Planning and Simulation Tool , as well as the models

behind are described in the following sections.

4.4.2 Production planning and simulation tool

Having the other tools of the workflow described, the Production Planning and Simulation Tool

is responsible for calculating realistic production plans to predict the applied batch sizes con-

sidering production and logistics processes of multiple cells, utilizing a common resources pool.

Besides, the executes the calculated plans with a simulation model, to predict the future ex-

pected operation costs that will probably incur when executing the plan, as these costs need to be

respected when seeking for the cost-optimal reconfiguration strategy. The production planning

tool of the workflow is aimed at predicting these costs characterizing a given cell configuration,

based on the forecast order stream. The proposed method is able to handle the reconfigurable

cells by module-specific constraints that prevent to hurt capacity limitations, thus resulting in

feasible plans. Besides the planning, the second major part of the Production Planning and

Simulation Tool is a novel discrete-event simulation model, implemented to execute the calcu-

lated plans by adding realistic random events (e.g. machine breakdowns) and representing the

possible stochastic nature of production parameters. As the cells have fix components and also

some changeable modules, a novel simulation modeling technique was applied, reflecting the real

physical architecture and operation of cells with static model elements, and also with dynam-

ically, runtime-created blocks. The main novelty and contribution of the Production Planning
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and Simulation Tool is twofold. On the one hand, a new mathematical model is applied with

constraints that are able to handle the special characteristics of reconfigurable cells. On the other

hand, the model usage is not restricted to plan the production, but it is rather applied to provide

estimations on the future expected operation costs, refined also by the applied simulation model.

Production planning model for modular assembly cells

The planning tool calculates the production lot sizes, matching the contractual delivery volumes

with a given system configuration. According to the scheme of Pochet and Wolsey (2006), the

formulated model is classified as lot-sizing model with backlogging (LS-C-B/M1), including

additional system-specific constraints that are capable of representing the modular resources,

taken by the cell from a common pool. The model can be seen as an alternative version of

the production planning model for modular reconfigurable assembly systems (Section 3.4.2),

however, new constraints are added to properly manage the setups, as their time is significantly

longer than that of the lightweight modular systems. Due to the longer setups and significantly

higher efforts put in the modules’ replacement, a small bucket lot-sizing model was applied that

involves the sequencing of the tasks, as only a single product type is assumed to produced within

a planning time period.

The production environment is assumed to be completely known by taking into consid-

eration the set of modular cells C defined by the previous tools. These cells are available for

production, and capable of receiving a set of different modules J . The modules have a common

resource pool with a specified amount ravail
j of resources from each type. In the planning model,

a discrete time horizon T is considered, consisting of periods t ∈ T with equal length tw. In the

overall system with multiple cells, different products p ∈ P are produced, each having a specific

total machine cycle time tmach
p , and total manual cycle time tman

p , besides, product-independent

setup time tset
p is considered. The technological requirements of the assembly tasks of product

p are represented by the amount of modules from type j that needs to be installed at the cell

rjp, and the technological constraints are summarized in a compatibility matrix apc, composed

of elements that equals to 1 if product p can be assembled in cell c, and 0 otherwise. In the

specified planning model, contractual delivery volumes dpt are considered to plan the produc-

tion. Decision variables determine the production lots xptc, specifying the volume of product p

assembled in cell c in period t. Assembled products can be either delivered to the customer (spt)

or kept in the inventory (ipt), however, the latter is associated with certain costs. Besides the

assignment of production lots and machine capacities, an important decision is to determine the

headcount of operators hct working at cell c in period t.

The production planning problem is formulated as a mixed-integer linear programming

model by (4.2)-(4.15). The objective function of the production planning is the sum of backlog,

inventory holding and operator costs that should be minimized (4.2). The first constraint repre-

sents the module requirements of products, in order to avoid the insufficient amount of resources

as they are shared among the cells by the reconfigurations (4.3). Constraints (4.4) and (4.5) re-

spectively state that manual and machine capacities cannot be exceeded. In case tman
p > tmach

p

(e.g. if several parts need to be handled by the operators), the production takt of the cell is lim-

ited by the human capacities, therefore, it is important to allocate enough workforce to maintain

the smoothness of production. In case tman
p < tmach

p , the production takt of the cell equals to

the machine cycle time, hence, a single operator is enough to perform the manual processes.
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Inequality (4.6) states that customer requested volumes needs to be delivered. In case there are

not enough products in the inventory, backlogs will occur. Constraints (4.7)-(4.13) represent

the setup requirements when the production of a new batch is to be started in a given cell,

expressed by the binary indicator variable gptc. Additional indicator variable is yptc, expressing

if a given product p is assembled in cell c in period t. This variable is also used in (4.10) to

constrain the assignment of batches to cells. Important assumption is that a certain cell c can

have a setup to a single product p only in a period t. In (4.8), the coefficient Λ is required to

properly calculate the reconfigurations, its lower bound is Λ > tw/(maxp∈P t
mach
p ). The balance

equation (4.14) is responsible for linking the subsequent time periods with each other through

the delivery, inventory and production volumes.

minimize∑
p∈P

∑
t∈T

(
cblbpt + cstockipt

)
+
∑
c∈C

∑
t∈T

coprhct (4.2)

subject to∑
c∈C

∑
p∈T

rjpyptc ≤ ravail
j ∀ t ∈ T, j ∈ J (4.3)

∑
p∈P

(
tman
p xptc + tset

p gptc
)
≤ twhct ∀ c ∈ C, t ∈ T (4.4)

∑
p∈P

(
tmach
p xptc + tset

p gptc

)
≤ tw ∀ c ∈ C, t ∈ T (4.5)

spt ≥ dpt ∀ p ∈ P, t ∈ T (4.6)∑
p∈P

yptc ≤ 1 ∀ c ∈ C, t ∈ T (4.7)

xptc ≤ Λyptc ∀ c ∈ C, t ∈ T, p ∈ P (4.8)

xptc ≥ yptc ∀ c ∈ C, t ∈ T, p ∈ P (4.9)

yptc ≤ apc ∀ c ∈ C, t ∈ T, p ∈ P (4.10)

gptc ≤ yptc ∀ c ∈ C, t ∈ T, p ∈ P (4.11)

gptc ≥ yptc − yp,t−1,c ∀ c ∈ C, t ∈ T, p ∈ P (4.12)

gptc +
∑
q∈P
q 6=p

(yqtc − rqtc) ≤ 1− yp,t−1,c ∀ c ∈ C, t ∈ T, p ∈ P (4.13)

ipt − bpt = ip,t−1 − bp,t−1 − spt +
∑
c∈C

xptc ∀ p ∈ P, t ∈ T (4.14)

gptc, yptc ∈ {0, 1} xptc, spt, ipt, bpt ∈ Z+ ∀ c ∈ C, t ∈ T, p ∈ P (4.15)

The rationale of applying the above production planning model in the design method of

reconfigurable cells is twofold: on the one hand, it supports the designers to estimate the cell’s

future behavior, and on the other hand, it can be applied to proactively determine the future

expected batch sizes and operation costs that are both relevant in the proposed methodology.

Important to highlight that the Assembly Cell Configuration Tool (the previous element of the

workflow) could calculate only with the idealistic, static batch sizes, and evaluated the systems

performance accordingly. The calculated realistic batch sizes derived from the customer order
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stream are fed back towards the Assembly Cell Configuration Tool to re-evaluate the system

performance, and validate the feasibility of a system configuration (Figure 4.2). Moreover, the

operation costs can be refined based on the production planning model’s solution. Precise infor-

mation about these costs is important input of the Reconfiguration Planning Tool , as discussed

later.

Generic simulation model for modular assembly cells

This refined information can be obtained by running the simulation model of the system, capable

of executing the previously calculated plan, while adding even more details compared by the

deterministic planning model. The simulation model represents the possible stochasticity of

parameters, and also the random events that might affect the system’s behavior. This leads to

another dynamic evaluation of the system, which differs from the previous one performed by the

Assembly Cell Configuration Tool applying analytical models. The simulation-based dynamic

performance evaluation is aimed at adding novel aspects to the analysis, considering not the

single cell only, but a system-wide evaluation of the production environment with the linked

processes of the value chain. Therefore, the evaluation is based on a simulation model including

multiple reconfigurable cells, and also the complementary processes. First main input of the

simulation is the description of assembly processes that specify the processing times, routings

in the cell as well as the manual processes. Other important input of the analysis is a given

production plan calculated in the preceding step. Having the plan specified in the analysis,

resource sharing and, therefore, the inter-cellular processes can be analyzed that was not possible

in the preceding steps of the workflow. The purpose of executing a dynamic analysis is to evaluate

the cell’s performance, whether it can provide the desired output rate or not, and besides, to

predict the operation costs that will probably incur when executing a production plan. In this

way, feedback information to both the preceding cell configuration steps and the production

planning is provided, regarding the quality of the calculated solutions.

Detailed cell models

Configuration controller

Cell 1 Cell n

Trigger assembly processes
Reconfigurations

Send status signals

Inventories Backlogs Production plan Shift calendar Resource pool

Cell 2

Figure 4.3. Scheme of the simulation model defined for modular reconfigurable assembly cells.

As stated, the evaluation needs to focus on multiple reconfigurable cells that share the

resources, instead of analyzing a single cell only. Besides the general dynamics of production

processes, material handling, assembly processes, in- and outbound logistics, reconfiguration of

the cells introduce new challenges in the analysis and especially in the modeling process. In

order to tackle them, a novel simulation model architecture is proposed, defined specifically for
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modular reconfigurable assembly cells. Representing the real, physical structure of cells composed

of a static skeleton and changeable modules, the simulation model has also two main elements:

a static configuration controller and continuously changing detailed cell models (Figure 4.3).

The core element of the model is a cell controller, responsible for representing all processes

and objects of the production system except the changeable modules. Static components of the

model are elements of the cell skeleton with the inbound logistics objects, buffers, transportation

system (if exist) and also the objects responsible for managing the shift calendar of the operators

and process the production plan that determine the size and release time of production lots.

Moreover, the configuration controller manages the inventories by controlling the deliveries and

calculating the backlogs.

Besides the static element of the model, dynamically changing detailed cell models are

performing in-depth simulation of assembly processes. These models are built-up automatically

when setups take place. Setup events are triggered by the configuration controller, when assembly

of a previous lot is finished and a new one is to be started. During a setup, the necessary modules

are installed on the cell by moving them to the proper position in the model and adjusting the

proper processing times. The prerequisite of a setup is that all necessary modules need to be

available (they can be used by other cells), otherwise the procedure is delayed until each module

becomes free. In the detailed cell models, the intra-cell material flow is represented in-detail

with the predefined processing steps (execution modalities, processing times etc.) and routing of

the parts. The connection among the configuration controller and the cell models is established

by event triggers in both directions: the parts are assembled according to the production plan

managed by the controller. If a new part is produced, a trigger event is sent to the detailed

cell model that executes a detailed simulation of assembly processes. After a part is completed,

a confirmation signal is sent back to the controller to convey the part in the warehouse or to

other processes. A more detailed description of the simulation model and its interfaces with the

Production Planning and Simulation Tool and the reconfigurable cell controller are provided by

Gyulai et al. (2016).

4.4.3 Implementation in the Simulation and Navigation Cockpit

The developed modules have been integrated into a common software platform called Simula-

tion and Navigation Cockpit3. In general, the cockpit can be characterized as a multi-purpose,

service-oriented software framework, offering users to define and run specific scenarios and ex-

periments to solve robust design, planning and control tasks. The core elements of the cockpit

are services that are connected with each other to set-up different workflows, and able to reach

a predefined set of data stored in the central database, moreover, they can access the predefined

set of calculation tools, e.g. discrete-event simulation, mathematical optimization of computa-

tion design synthesis. Each service and part of the cockpit can be controlled by the user via a

graphical, web-based interface supporting the management of different user roles as well. In this

way, workflows can be defined in a collaborative way, which means that the different objectives

of the users can be considered in a single workflow (Figure 4.4). To achieve tne integration of

individual modules, all of them operate on the same database, which makes possible to use the

modules sequentially or in an independent way. The central database ensures the interoperability

3Developed within the European Seventh Framework Programme project Shock-robust Design of Plants and

their Supply Chain Networks (RobustPlaNet), under grant agreement No. 609087
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of modules by means of the Core Manufacturing Simulation Data (CMSD) standard model (Lee

et al., 2011). Moreover, workflow-specific interfaces make possible the transfer of data between

the modules.

Central DB
Experiment 2
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Graphical User Interface

Service n Service 2 Service 1

E.g: system design

Workflow

Role management
Cockpit control

Data manipulation
Service control
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Figure 4.4. General architecture of the Simulation and Navigation Cockpit.

Typical use is the execution of tools sequentially, according the workflow in Figure 4.2.

However, information feedback between the tools can be also exploited. It might happen that a

solution turns out to be infeasible at a certain stage and the root solution needs to be refined by

the tool working upstream in the workflow. In the proposed methodology, three main feedback

loops are defined to exchange information among the modules. After identifying a favorable

multi-cell system configuration with the Assembly System Configuration Tool , an individual cell

is considered in detail using the Assembly Cell Configuration Tool . In this step, it is important to

evaluate whether the selected equipment can be arranged into a layout that is still compliant with

the assumptions used in the Assembly System Configuration Tool with regards to cycle times and

available capacity considering the associated performance evaluated. In case the production rate

does not reach the target value, the bottleneck operations and the corresponding modules are

identified. Based on this information, another solution from the Assembly System Configuration

Tool is used as input for the Assembly Cell Configuration Tool ; or input data for the Assembly

System Configuration Tool is redefined to synthesize and valuate new system configurations. The

second main feedback loop is implemented to backlink the results of the Production Planning and

Simulation Tool to the Assembly Cell Configuration Tool . In this case, the information added on

the lower level, mostly refers to batch sizes, coming from the production planning. The average

batch sizes can be different from what initially defined; while fixed batch sizes are assumed

when calculating the layout configuration and the corresponding process sequence, the planning

module can consider variable batch sizes in order to match the requirements of the customers.

In this case, the evaluation of the performance is operated again considering the new average

batch sizes. A third feedback refers to operation costs calculated by the Production Planning
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and Simulation Tool . Grounding on a simulation approach, operation costs can be calculated

precisely considering the detailed logistics constraints, providing feedbacks to the Reconfiguration

Planning Tool that might change the reconfiguration sequence along the horizon. Hence, the

optimal solution can change and a new optimal sequence of reconfigurations must be identified.

4.5 Industrial application case

The overall system design and management framework, as well as the individual tools were

applied to an automotive case. The results of the case study are detailed in the following sections,

highlighting the solutions provided by the Production Planning and Simulation Tool , and its

application as an integrated part of the workflow.

4.5.1 Description of the application case

In the application case, a Tier-1 automotive supplier is selected, producing car body parts

for OEMs. The external environment is characterized by fragmented orders, resulted by the

ever changing product portfolio, and also by frequent changes in joining technologies that the

company should follow according to the specifications created by the OEMs. Although total

yearly volumes are relatively constant over time, new products are continuously added to the

portfolio, therefore, the demands correspond to smaller batches. The company has limited shop-

floor space, thus this high-mix-low-volume production requires efficient variety management

strategy to keep the competitiveness and internal efficiency. Moreover, the market environment

is uncertain, increasing the problem complexity.

In the case study, four different products (P1−P4) are selected, for which a modular cell is

to be configured and managed over a time horizon of three periods (u ∈ U), with equal lengths

of three months (480 working hours). Each product has its own assembly specification with the

corresponding technologies that need to be applied. In the analysis, only joining technologies are

considered, of which products require nut pressing, resistance spot welding, adhesive joining and

riveting. These technologies are performed by the combination of fixed equipment (skeleton) and

a set of modular devices j ∈ J . The equipment dimensions are known (only 2D dimensions are

considered), as well as the investment costs of the devices, ranging between e10.000-e120.000.

The hourly labor costs are known (50e/h), and the total time consumption of performing major

changes in the cell configuration (reconfiguration) is two working weeks. The results of assembly

system configuration are presented as follows.

4.5.2 Assembly cell configuration results

First, multiple rough cell designs were created by the Assembly System Configuration Tool ,

relying on the available information about the expected market situations. By defining input

data about the products and corresponding processes, candidate cell configurations were created

that match the expected output rate. These configurations are built up of the equipment that

was stored in the repository. For the same scenario (product mix and order volumes), multiple

different cell alternatives were defined, of which designers can select the most promising one(s)

for further, more detailed analysis. The created solutions differed in the total occupied area, total

initial investment costs, and also in other predicted cost factors, e.g. the operation, logistics and

storage costs.
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The Assembly Cell Configuration Tool was then applied to generate a cell layout by ar-

ranging the set of equipment selected in the previous step. Besides, the set of possible execution

modalities was identified, defining task sequences and resource-task assignments. Two different

layouts were generated, of which the one with shorter total cycle time was selected to be the

applied. Based on the investment costs, the operational costs (calculated as discussed in the

following section) and the stochastic market environment represented by the scenario tree, the

reconfiguration strategy could be determined by the Reconfiguration Planning Tool . Along the

time horizon U , expected production volumes, as well as the set of products to be produced

in the cell were changing. Therefore, the cell reconfiguration strategy was defined by stochastic

optimization, identifying the pieces of equipment that need to be added (or removed) to the

cell configuration in a given period u, within a reconfiguration. As the Reconfiguration Planning

Tool planning tool strongly relies on the data about operation costs, prediction and refinement

—considering a system-wide production planning— of these parameters were performed with

the Production Planning and Simulation Tool .

4.5.3 Production planning and simulation results

Applying the Production Planning and Simulation Tool , one can analyze the future expected

operation costs and production batch sizes, based on the contractual delivery volumes known

already in the early design stage. Relying on the defined application case, inputs of the tool

are system configurations for the subsequent time periods, as well as delivery volumes agreed

with the customers. The main purpose of the planning is to refine estimation on the batch sizes:

whereas previous tools of the workflow considered average batch sizes, in this case, they are

calculated by matching order stream with a detailed system structure. Executing these plans in

the discrete-event simulation model of the system, realistic operation costs can be calculated that

consider additional information compared to the previous module, as inventory, personnel and

also backlog costs can be determined in this way. The refined operation costs are meaningful

feedback information that can be applied by the Reconfiguration Planning Tool to select the

cost-optimal reconfiguration strategy. Besides, batch sizes can be utilized by the Assembly Cell

Configuration Tool to evaluate and/or refine the cell configuration.

In the experiments, four different scenarios were analyzed with the planning and simula-

tion models. In the first scenario (contractual), the contractual delivery volumes and frequency

were applied (represented by variables dpt), evaluating the solutions calculated by the Assembly

Cell Configuration Tool considering ideal order stream. In the other three scenarios (Sc #1-3),

delivery frequencies were increased by splitting the total volumes in smaller parts. In these sce-

narios, the total volumes were the same, while delivery frequency was increased by 10−20−30%

subsequently. This resulted in smaller production batch sizes, more changeovers and thus higher

operation costs, which might occur in real life. All experimental results are reported in Table

4.1. The results show that even in the contractual case, operation costs are higher than those

considered by the previous modules. This refined information can be applied by the Reconfig-

uration Planning Tool , if one assumes that contractual volumes will not change in the future.

A more conservative solution is applying the operation costs resulted by (Sc #1-3) scenarios,

where smaller batch sizes and higher costs are resulted.

Based on the above results, a robust cell reconfiguration strategy could be identified that

minimizes the overall lifecycle costs of the cell, including investment, operation and reconfigura-
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Period KPI Ideal Contractual Sc #1 Sc #2 Sc #3

copc [e] 10 863 13 714 14 030 16 028 17 184

u0

Batch P1 40 124 42 42 33

Batch P2 0 0 0 0 0

Batch P3 30 50 40 30 30

Batch P4 0 0 0 0 0

copc [e] 11 478 15 456 16 627 18 663 20 677

u1

Batch P1 0 0 0 0 0

Batch P2 0 0 0 0 0

Batch P3 30 53 53 40 40

Batch P4 35 42 33 33 25

copc [e] 14 637 17 779 19 406 22 452 21 772

u2

Batch P1 35 127 124 124 124

Batch P2 40 47 40 33 27

Batch P3 35 50 50 33 33

Batch P4 35 42 33 33 33

Table 4.1. Feedback on the resulted operation costs and batch sizes provided by the Production

Planning and Simulation Tool . The Ideal includes the costs and batch sizes considered by the previous

tools, whereas Contractual refines these costs. Scenarios Sc #1-3 assume that contractual delivery

volume might change in the future resulting in more frequent deliveries.

tion costs. As discussed by Colledani et al. (2016), this robust reconfiguration strategy resulted in

better solution than the so-called single path optimum that takes into account a single scenario

of the tree, and looks for the best configuration in each time period. The robust solution, how-

ever, considers all possible scenarios with their probabilities, and determines the reconfiguration

strategy accordingly. The solution (cell configuration) selected for the case study is illustrated in

Figure 4.5. This cell configuration results in the lowest overall lifecycle costs along the horizon,

while meeting the requirements of all possible market scenarios without major changes in its

configuration (reconfiguration), but it is enough to exchange the assembly modules when a setup

takes place.

Important elements of the workflow are the feedback loops, implemented to refine a given

configuration if requested after an evaluation with a subsequent tool, applying more detailed

input data. Focusing on production planning, the results are applied to refine the system con-

figuration with the Assembly Cell Configuration Tool if batch sizes differ from the previously

considered ones. As reported in Table 4.1, the need to consider all details and constraints at the

planning level could entail different feasible lot sizes compared to those used in the Reconfigura-

tion Planning Tool . This could affect operation costs, moreover, might have impact also on the

cell’s performance, if the actual lot sizes are smaller. This information can be exploited in the

overall approach in two ways:

� using the new estimated operational costs to identify a possible new optimal solution

through the Reconfiguration Planning Tool ;

� using the new estimated batch sizes to search for alternative configurations using Recon-

figuration Planning Tool .
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Figure 4.5. Robust cellular layout of a modular reconfigurable assembly cell. This solution can face the

production requirements of all the scenarios ω ∈ Ω.

The first option can be implemented by simply substituting the new operational cost for each

period, obtaining a refined discounted total cost. If significant differences might be observed

among the batch sizes, it is suggested to recall the Assembly Cell Configuration Tool to seek for

alternative configurations to be applied in the reconfiguration planning as well.

The complexity of the problem and the corresponding calculation times are summarized

as they follow. The production planning and DES models were implemented in FICO® Xpress

and Siemens Tecnomatix® Plant Simulation, respectively (FICO, 2017; Siemens, 2016). The

planning model addresses the whole system, potentially including multiple cells (including the

one under evaluation) sharing a common pool of hardware modules. The complexity of the

analyzed problem is characterized by the average values of |P | = 20 products (including the

four selected products), |C| = 5, |J | = 7, and the contractual delivery frequency of products was

t = [4, 12] on a |T | = 60 length horizon, covering a single time bucket u ∈ U of the reconfiguration

planning model. This resulted in a running time of 44 seconds in average with Xpress’ default

MIP solver, until an optimality gap of at most 5% was achieved.

4.6 Summary of Chapter 4

In Chapter 4, a new design and management method and the corresponding framework were

introduced that are capable of providing robust designs for modular, reconfigurable assembly

cells. The method is represented as a workflow consisting of four different tools that were chained

together by utilizing each others’ results. The initial step is the generation of rough cell designs,

considering all possible alternative solutions of the search space that satisfy the market and

production constraints. Then, user-selected candidate solutions are refined by performing the

task sequencing, layout planning, and also an analytical performance analysis. As the cells are

configured so as to match the market changes, a reconfiguration planning module is applied to
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optimize the system configuration along the horizon, implementing the co-evolution of products,

processes and system structure.

In order to minimize the lifecycle costs of a cell, operation costs need to be strictly con-

sidered, as in the long run, they are in the same order of magnitude with the investment costs.

Therefore, a system-wide production planning is performed that balances the internal capacities

with the external orders, considering that cells apply dockable technological modules, taken from

a common resource pool. The production planning relies on contractual delivery volumes that

are known already in the design stage of the cells, and a plan provides information about the

future expected batch sizes, moreover, it is executed in simulation environment to predict the

operation costs. As they rely on more detailed information —compared to the ones considered

in the preceding calculations—, these results on the costs and batches are utilized in reconfig-

uration planning, as well as in the system configuration tools. The workflow was defined and

elaborated within a collaborative research together with academic partners, therefore, emphasis

in the section was put on the Production Planning and Simulation Tool , which is presented as

the own scientific result of the collaboration. Similarly to other tools of the workflow, the main

contribution of the Production Planning and Simulation Tool is its capability of coping with

the peculiar modular and reconfigurable cell architecture described in Section 4.2. The system-

specific constraints of the mathematical model control the resource consumption by combining

the use of fixed (C) and exchangeable (J) resources in the production plan. Moreover, the ap-

plied DES model also applies a novel model building procedure and simulation approach to

represent the system operation in a realistic way, with the static-built central model controller

and the dynamically created technological blocks.



Chapter 5

Robust production planning

Having solutions proposed for the capacity management of modular assembly systems, from this

section, the focus is shifted to the robustness of calculated production and capacity plans, in

order to cope with the variability of planning parameters. Whereas in the previous chapters the

emphasis was put on the capacity scalability by adding and removing modules to the assembly

system, in the following, the capacity of lines will be adjusted by the rate and allocation of human

workforce. A new, proactive method is proposed that utilizes the combination of corporate and

shop-floor data to calculate production plans that are robust against the variability of manual

processing times, and reject rates of products that lead to uncertain extra capacity requirements.

5.1 Robust planning for assembly systems

As introduced in Section 2.5, production planning of assembly systems is a challenging task,

as the often fluctuating order volumes require flexible solutions. Moreover, the calculated plans

need to be robust against the process-level disturbances and stochastic nature of some param-

eters like manual processing times or rework rates of products, both resulting in extra human

capacity requirements. The aforementioned effects are characteristics of manual assembly lines,

and neither conventional ERP, nor state-of-the-art APS systems are able to handle correctly

these factors, as their prediction is a complex and challenging task due to the influence of under-

lying production processes. In this chapter, a simulation-based optimization method is proposed

that utilizes lower level shop-floor data to calculate robust production plans for flexible, manual

final assembly lines of a multi-stage production system. In order to minimize the idle times when

executing the plans, the capacity control —specifying the proper operator-task assignments—

is also determined. The analyzed multi-stage system is operated with a pull strategy, which

means that the production at final assembly lines generates demands for the preceding stages

providing the assembled components. In order to guarantee the feasibility of plans calculated for

the final assembly lines, a decomposition approach is proposed to optimize the production plan

of preceding stages. In this way, robust production can be ensured resulting in reduced losses

and overall production costs, even though the system is exposed to changes and disturbances.

5.2 Problem statement

The analyzed production system is composed of multiple stages: the final products are assem-

bled on flexible, manual flow lines, designed for producing different product variants in batches,
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while the main components are machined in a preceding machinery segment. Multi-stage pro-

duction systems require special planning approaches to balance and coordinate production along

the entire process chain. In the analyzed case, precise planning is important to minimize the

changeovers required to setup the line from one product variant to another, besides, capacity

control is responsible for allocating the proper amount of human workforce to the processes,

to keep the customer due dates without lateness. The above characteristics result in a special

version of the MLCLSP, in which a complementary problem of the human capacity control also

needs to be solved, meanwhile, the solution of this subproblem is utilized when planning the

production.

The primary focus is on the production planning of assembly lines, seeking cost-optimal

plans that determine lot sizes, release dates and capacity requirements, too. In order to handle

the changes and disturbances in a robust way, the proposed planning method is combined with

a lower level capacity control, specifying the work hours and when and to which workstations

human resources are allocated (Rossi and Lödding, 2012). While the objective of planning is to

decrease costs by eliminating the unnecessary changeovers and reducing stock levels, capacity

control is responsible for balancing the workload of operators and eliminating idle times. The

overall objective is to calculate near-optimal, robust plans for the final assembly lines, pulling

the production of previous stages. As the customer service level of the company is mostly in-

fluenced by the completion of final-products, the resulted plans need to be robust against the

assembly-related changes and disturbances (e.g. machine breakdowns or process time deviations)

that have negative impact on the service level. In order to maintain this performance indicator

on a desired level, a decomposition approach is proposed, splitting the multi-stage production

planning problem in two subproblems: the combined production planning and capacity control

of the final assembly lines, and the production planning of the preceding stages. In order to

meet the quantity and due date requirements of customers, the problem of assembly lines is

solved first, as the pull strategy directly generates demands and thus constraints in the produc-

tion planning problem of preceding, so-called pre-inventory stages. In this way, the integrity of

production plans along the entire process chain can be guaranteed.

5.2.1 Characteristics of the considered production environment

In order to define the planning problem precisely, the main characteristics of the production

system are introduced first as they follow. The production environment under study is a generic

multi-stage system operated by pull production strategy, and consisting of automated as well as

manual process steps. The first stage is a machinery, producing the main components of products,

assembled later in the final assembly stage. Between the assembly lines and the machinery, an

in-process inventory is found, splitting the process chain into two main parts: the pre-inventory

processes and the final assembly (Figure 5.1).

Pre-inventory processes

In the machinery, components are manufactured on flexible resources, and a single machine is

enough to complete all machining processes of a given workpiece. Although machines are auto-

mated, material handling and setup processes require human labor, provided by assigning the

operators to machines with different control modes. These control modes determine the operator-

machine assignments, and they are adjusted according to production volumes. The machined
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Figure 5.1. Scheme of the analyzed process chain.

parts are transferred to shared resources, where processing times are workload independent but

product-specific, therefore, this stage is characterized with the lead time of a single product

from the machinery to the in-process inventory. Holding this inventory is necessary to balance

economic production lot sizes of the machinery and assembly segments, as in general, bigger lots

are preferred in the machinery due to the significantly longer setups than those of the assembly

lines.

Final assembly lines

The final assembly lines’ segment is the last stage of the process chain, where final products

are assembled from the previously machined main components, and additional parts provided

by external suppliers. The products are assembled on flexible flow lines that are capable of

producing a set of different product types in separate batches. Similarly to the machinery,

setups take place when changing from one product type to another, however, these setups are

significantly shorter than those of the machinery. The lines have a generic structure, consisting

of manually operated workstations, an automated test machine and a manual rework station.

Each product has to pass a functional test, and products failing the test are transferred to the

rework station for correction, after which they are retested. The ratio of total retested parts and

total assembled parts is expressed by the reject rate that is mainly product type dependent, and

means a challenging stochastic factor when balancing the workload and planning the production.

The lines’ output rate can be adjusted by the allocated human workforce, therefore, it is a crucial

point to find the right balance between human and machine capacities to assemble the target

volumes and keep the workload of operators on a desired level.

5.2.2 Specification of the combined planning and control problem

Component supply planning

The pre-inventory processes are considered as suppliers of the main components required by the

assembly stage to finalize the products. In the analyzed case, each product type requires one

main part produced in the pre-inventory stage, thus in the followings the term component (or

part) will refer to a single main part of a given product type. The whole system is operated
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with a pull strategy, thus customer orders for final products bound the production of preceding

stages. In the planning problem, a discrete time horizon is considered, consisting of a set of

micro time periods Π, each period π ∈ Π having the same length tπ. Compared to the planning

model of assembly lines, the resolution of pre-inventory planning model is higher, as tπ < tw.

This higher resolution tπ = tw

ρ enables to simplify the lead times tlm to be given in micro periods,

without significantly reducing the accuracy of the plans. Moreover, this formulation of lead times

in assembly production planning can preserve the option of decomposing the problem into a set

of single-item lot-sizing models (Pochet and Wolsey, 2006). The volume demands determined by

the final assembly is available on the whole planning horizon |Π|. The main questions are the

production lot sizes zmπj , specifying the volume of component m machined in time π on machine

j. Besides, the corresponding control modes rojπ has to be determined that give the assignment

of operator o and machine j in time π. The objective is to minimize the overall production costs,

consisting of operator and inventory costs. In the problem of component supply planning, not

only the machinery segment but also shared resources are considered.

Final assembly planning and control

As the final assembly lines have a common generic structure, the emerging production planning

and capacity control problem is similar to the one specified for the pre-inventory processes

(Section 5.2.2). In this case, customer orders directly influence the production plan, as they refer

to the end products. Therefore, the order volumes of different product variants are available on

a certain horizon, split up into a set of production periods T . In case of the final assembly lines,

the planner has to decide about the production lot sizes of different product variants xnt, and the

corresponding shift plan that specifies the headcount of operators ht in each shift t. Each order

n ∈ N is characterized by its volume qn and completion due date tdn. Make-to-stock option is

available in each shift, therefore, in case of capacity shortage, orders can be fulfilled from stocks,

however, holding inventory, as well as order completion after the due date (backlogging) are

penalized with extra deviation costs cnt expressed by (3.1). The planning objective is to provide

a near-to-optimal production plan that is robust against the stochastic capacity requirements,

results in minimal production costs and increased utilization of resources (machines and human

operators).

The capacity control of a final assembly line specifies the proper assignment of operators

to assembly tasks, in order to balance their workload and decrease the idle times caused by the

product-dependent bottleneck and reject rate. In this sub-problem, the objective is to determine

the assignment policies for each product type, and each possible operator headcounts (that can be

applied to assemble a given product type). It means that the number of operators can be changed

periodically to adjust the production rates. However, several production lots are released in one

shift requiring different operator-task assignments, while the headcount of operators cannot be

changed. In industrial practice, this problem is solved by defining standard work instructions

based on the norm times, however, this approach often tends to be inefficient as the norm times

are considered to be deterministic, whereas they have certain deviation in the real life.
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5.3 Production planning method with decomposition

In order to solve the complex multi-stage planning and control problem described above, a

decomposition approach is proposed. In this way, the complexity of the multi-stage lot-sizing

problem can be reduced to feasible single-stage subproblems, while the coherence of the final

solution is ensured by linking the models via interdependent constraints. As the customer orders

need to be managed in the production planning model of final assembly lines that pull the

production of preceding stages, the whole problem can be decomposed at the inventory, which

is responsible for balancing the material flow between assembly and machinery. Consequently,

the resulted subproblems can be described with two planning models: the production planning

(and capacity control) models of assembly lines, and pre-inventory system.

First, the planning problem of the assembly lines needs to be solved, since the resulted plan

generates demands for the preceding stages. In case the process chain is virtually cut at the

inventory, the schedule of assembly lines specifies the volume of main components, needs to be

available in the inventory to assemble the product in time. This inventory level can be applied

as a constraint in the production planning model of pre-inventory stages. Having the lot sizes

determined in the above described way, the corresponding human workforce requirements also

needs to be specified. In the machinery, it gives the operator-machine assignments, while in the

assembly segment, it means the in-process capacity control, more specifically the headcount of

operators and operator-task assignments. In the machinery, operators perform material handling

only, which means changing the products in fixtures. This can be done in parallel with machining

of other parts, therefore, a single operator is usually assigned to more machines at the same time.

In the assembly segment, operators perform the processes themselves, therefore, it is essential

to assign them a proper workload in order to avoid overload and thus late execution of the plan.

Moreover, underestimation of the workload results in idle times and extra costs, which is also

avoidable when calculating the capacity control. Therefore, in the machinery, shift planning and

lot-sizing are done together applying a single model, whereas in the assembly case, capacity

control is decoupled from the production planning model and only the necessary headcount is

calculated together with the production plan. The above defined planning workflow is depicted

by Figure 5.2.

Pre-inventory

Decomposition

Final assembly

Simulation of
future scenarios with 
up-to-date shop floor 

data 

Approximation of the actual 
capacity requirement 

function

Production planning
Lot-sizing and capacity planning

Inventory

Orders (ERP)

qpt

Q(qt)

Lot sizes and 
headcounts:

xnt , ht 

Control policies

MES log data

Lot sizes and operator-
machine assignments:

zmπj , rojπ 

Figure 5.2. Robust production planning and control workflow.
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5.4 Robust planning method for flexible final assembly lines

5.4.1 Description of the applied simulation models

The robust planning method of final assembly lines relies on simulation models, which are used

for multiple purposes: on the one hand, capacity control of the lines are derived from simulation

results, on the other hand, the models are capable of providing realistic data to build reliable

capacity prediction models upon. The simulation model of the lines are built by applying a

common data representation, utilizing the generic structure of the lines. Static elements in the

simulation model are only the objects representing the lines’ structure (workstations, layout),

and routings of products. The essence of the simulation model is a data interface, ensuring that

each relevant production parameter is updated before the experiments gather actual data from

the MES. In this way, processing and testing times, reject rates, and machine availability are

given as stochastic values by obtaining the parameters of distribution functions from the latest

MES log data (Pfeiffer et al., 2017). Accordingly, the tight link between the simulation model

and the physical system can be always maintained, resulting in reliable results without any

direct user interaction (Monostori et al., 2010).

5.4.2 Simulation-based capacity control of flexible assembly lines

First step of the proposed robust planning method is to determine the proper assignment of

operators to assembly tasks, in order to balance their workload and decrease the idle times

caused by the varying processing times, shifting bottleneck —based on the assembled product

variant— and reject rates, resulting in uncertain extra capacity requirements. This step assumes

that the lines are balanced, more specifically, assembly tasks are already assigned to workstations,

however, throughput of the lines can be adjusted by allocating different operator headcount based

on the workload determined by the order stream. The capacity control of the lines specifies the

assignment of operators to different tasks. In this case, the general scheme of assembly lines is

applied to determine the assignment of operators to assembly, rework and final assembly tasks.

The capacity control takes the operator headcount as an input, and specifies the operator-

task assignments, considering that several tasks can be assigned to a single operator. Moreover,

assignments are many-many type ones, meaning that an operator might perform more tasks, and

a given task can be assigned to more operators. In order to determine the proper capacity controls

for each product and possible headcount, discrete-event simulation models of the assembly lines

are applied. Even though state-of-the-art assembly systems are usually equipped with advanced

sensor network, the real workload of the operators is hard to be monitored. The DES models of

the lines can provide reliable results about the workloads, and several various control policies

can be evaluated. In industrial practice, standard work instructions and corporate policies define

how to operate the lines with a given operator headcount, however, these methods are all based

on norm times and idealistic data. In order to define efficient capacity control with reduced

losses, the underlying stochastic processes have to be considered.

The main advantage of using simulation in this case is the models’ capability of representing

the stochastic nature of manual processing times and reject rates, identified as the root-causes

of excess capacity requirements and unbalanced workloads. The objective is to determine the

best assignment policies for each product variant and each possible of operator headcounts. The

number of operators can be changed between the consecutive time periods according to the
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production rates, however, several production lots are released in one shift requiring different

operator-task assignments, while the number of operators cannot be changed. In order to se-

lect the proper capacity control, several random-generated, but possible control scenarios are

analyzed. The main output of the simulation analysis are the utilization of operators and the

output rates of the lines. The control policies are determined by simulating the production of a

single product type with different control modes, from which the best ones can be selected based

on the objective that is usually case-dependent. Based on the results of simulation experiments,

the proper controls can be selected for each product type and operator headcount.

5.4.3 Prediction of the capacity requirements with regression models

In flexible, manually operated assembly systems, the prediction of capacity requirements is

often complicated, due to the variety of product types and the deviation of processing times.

Though, either stochastic or robust optimization models can be applied to cope with non-

deterministic parameters (see Section 2.5.2), they require high computation efforts and special

solver algorithms that are usually unavailable for most companies. Additionally, diverse reject

rates of product variants and therefore varying rate of rework also increase the complexity of

planning problems.

In order to tackle these challenges, a production planning model is proposed calculating

simultaneously the near-optimal production plan and the corresponding capacity plan, defining

the headcount of human operators, while taking into account the aforementioned factors. The

essence of the method is the introduction of actual capacity requirements as general functions of

products assembled in the same period. These functions are approximated by regression methods,

and then integrated directly in a production planning model, facilitating in a robust, proactive

approach. In order to approximate the real capacity requirement Q (qt) of a given production

lot mix assigned to the same period, a multivariate linear regression model is proposed. The

efficiency of applying regression models for capacity planning in an uncertain environment was

shown by Gyulai and Monostori (2014), Gyulai et al. (2015) and Gyulai et al. (2017b). The

input variables of the regression are the volume qpt of product p to be assembled in period t, and

the output is the total manual time Q (qt), required to assemble products within the period. As

stated in section 5.4.1, the training dataset of regression models is provided by the simulation

model of assembly lines, applying MES log data to represent the actual values and distributions

of the production parameters. The simulation is executed to analyze various possible scenarios,

projecting the system’s expected future behavior from any certain point of time (query time of

the log). The applied regression function is defined by (5.1).

Q (qt) = β0 + β1ht +
∑
p∈P

βpqpt (5.1)

Fitting the above linear function on a simulation-provided dataset, the actual capacity require-

ments (including rework rates, machine downtimes, operator movements and capacity control

related effects) of batches assembled in the same shift can be estimated. In order to obtain

enough representative observation for the regression, the simulation analysis is executed on a

virtual, big order set, including various lot sizes for all products. In this way, the future behavior

of the system under various condition can be projected from its actual status. In the experi-

ments, the simulation model already apply the capacity control setting and scenarios, defined

in the preceding step (Section 5.4.2). This enables to apply the best-practice control modes in
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higher level production planning decisions, to reduce the possible losses related to the execution

of plans. Performing the regression, the function approximating the actual capacity requirements

can be integrated in the production planning model, as described in the coming section.

5.4.4 Simulation-based robust production planning model

The robust production plan of assembly lines is calculated with an integer programming model

(5.2)-(5.8), applying the capacity requirement function Q (qt) as a constraint. The decision vari-

ables of the model specify the number of allocated operators ht for each period, the number of

setups ypt, the assembled volumes qpt, and the release of the orders xnt.

minimize∑
n∈N

∑
t∈T

cntxnt + cset
∑
p∈P

∑
t∈T

ypt + copr
∑
t∈T

ht (5.2)

subject to∑
t∈T

xnt = 1 ∀ n ∈ N (5.3)

xnt ≤ ypnt ∀ t ∈ T, n ∈ N (5.4)

qpt =
∑
n∈N
pn=p

xntqn ∀ t ∈ T, p ∈ P (5.5)

twht ≥ Q (qt) ∀ t ∈ T (5.6)

ht ≤ hmax ∀ t ∈ T (5.7)

xnt, ypt ∈ {0, 1}, ht ∈ Z+ ∀ t ∈ T, p ∈ P, n ∈ N (5.8)

The model minimizes an objective function that sums deviation (early delivery and holding),

setup and personnel costs (5.2). The constraints specify the fulfillment of each order (5.3), the

calculation of setups (5.4) and volumes (5.5), the capacity restrictions (5.6), (5.7) and also

the integrity conditions (5.8). The model results in a production plan that gives the required

headcount of operators over the horizon, and the assignment of customer orders to production

shifts. As stated in Section 5.2.2, setup times are significantly shorter than in the machinery,

and also sequencing within a time period is neglected, therefore, a big bucket lot-sizing model

is applied in this case.

5.5 Pre-inventory production planning

Due to the applied pull production strategy, the production plan of assembly lines —specifying

the lot sizes and release times— directly generates demands for components that need to be

available in the inventory to execute the plan by assembling the products. This volume demand

is set as a constraint in the planning model of the machinery, however, the objectives of this

lot-sizing model are slightly different than those of the assembly lines. Following the general

production management and lean principles, the lowest possible component inventory level is

desired, and the applied human workforce also have to be minimized. The production planning

of pre-inventory segments is formulated by an integer programming model (5.9)-(5.23).
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minimize

copr

k

∑
o∈O

∑
j∈J

∑
π∈Π

rojπ + ch
n

∑
m∈M

∑
π∈Π

hmπ (5.9)

subject to

hmπ ≥ qpt ∀ m ∈M,π ∈ Π, t ∈ T, p ∈ P, π = kt (5.10)

hmπ = hm,π−1 +
∑
j∈J

zm,π−dtlme,j − dmπ ∀ m ∈M,π ∈ Π, t ∈ T, π = kt (5.11)

γmπj ≤ zmπj ∀ m ∈M,π ∈ Π, j ∈ J (5.12)

zmπj ≤ Θγmπj ∀ m ∈M,π ∈ Π, j ∈ J (5.13)

ζmπj ≥ γmπj − γm,π−1,j ∀ m ∈M,π ∈ Π, j ∈ J (5.14)

ζmπj +
∑
µ∈M
µ6=m

(ζµπj − γµπj) ≤ 1− γµ,π−1,j ∀ m ∈M,π ∈ Π, j ∈ J (5.15)

ζmπj ≤ γmπj ∀ m ∈M,π ∈ Π, j ∈ J (5.16)∑
m∈M

(tcmzmπj + tsmζmπj) ≤ tπ ∀ j ∈ J, π ∈ Π (5.17)

zmπj =
∑
o∈O

ωmπjo ∀ j ∈ J, π ∈ Π,m ∈M (5.18)

rojπ ≤
∑
m∈M

ωmπjo ∀ j ∈ J, π ∈ Π, o ∈ O (5.19)∑
m∈M

ωmπjo ≤ Λrojπ ∀ j ∈ J, π ∈ Π, o ∈ O (5.20)∑
m∈M

∑
j∈J

tomωmπjo ≤ tπ ∀ π ∈ Π, o ∈ O (5.21)

∑
m∈M

γmπj ≤ 1 ∀ j ∈ J, π ∈ Π (5.22)

zmπj , hmπ, ωmπjo ∈ Z+, γmπj , rojπ ∈ {0, 1} ∀ m ∈M,π ∈ Π, p ∈ P, j ∈ J, o ∈ O (5.23)

The objective is to minimize the total inventory and human labor costs over the planning horizon

(5.9), while providing enough components for assembly processes (5.10). The balance equation

is responsible for linking the consecutive micro periods through the volume of components in

the inventory: the inventory level hmπ in period π equals to the sum of product volumes that

were available in the inventory in π − 1, the parts arriving in the inventory from the machinery

(through the shared resources), minus the parts used in the assembly segment (5.11). In the

machinery, component-dependent setup times are required to switch the machine from one type

to another. These setup times are significantly longer than those of the assembly lines, therefore,

setups need to be represented in the model by decreasing the available capacities. In order to

consider the setups, indicator variables ζmπj and γmπj are introduced in the model (5.12). In

constraint (5.12), Θ parameter links the integer (zmπj) and binary (ωmπjo) variables: it is an

arbitrarily chosen big number, and its lower bound is the maximum volume of products that

can be produced in period π on a single machine: Θ ≥ tπ/minm∈M t
c
m. The machines’ capacity

constraint specifies that the sum of machine processing times and setup times cannot exceed the

length of a micro period (5.17). The human workforce capacity limits the number of products
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that can be machined (5.18)-(5.21). In order to assign the operators to machines and machined

products, an additional indicator variable ωmπjo is introduced. Similarly to parameter Θ, Λ is

also an arbitrarily chosen big number linking the binary ωmπjo and integer rojπ variables, and

its lower bound is the maximum volume of products that can be produced in period π on a

single machine with a single assigned operator: Λ ≥ tπ/minm∈M t
o
m. Constraint (5.22) represents

the assumption that only a single part type can be produced on each machine within the same

period. Additionally, integrity conditions are specified for the necessary decision variables (5.23).

In contrast to the case of assembly lines, the production planning model of the pre-inventory

processes is a single stage, small bucket lot-sizing model specifying the sequence of production

lots and the corresponding operator control as well.

5.6 Numerical results of robust production planning

The viability of the proposed method and robustness of the calculated plans are demonstrated

through the results of a use-case from the automotive industry. In the target production system,

pre-inventory processes are responsible for producing the main components. First, the steel

casts are machined, then deburring and surface treatment processes take place in the shared

resources segment. In the machinery, flexible machines are equipped with fixtures that hold

several products from the same type, however, setups are required when changing from a certain

part type to another, and setup times are sequence-independent. After the machinery and surface

treatment, components can be either taken directly to the assembly lines, or kept in the inventory.

Regarding the assembly segment, several lines are available for assembling the final products,

however, these lines can be planned independently from each other as there are neither material

flow, nor shared resources among them. In the subsequent sections, the implementation of the

method, and numerical results of the planning workflow are introduced.

5.6.1 Production planning and capacity control of the final assembly lines

The company of the presented case study operates several flexible lines in its final assembly

segment. As described earlier, the lines’ structure follows a common process pattern, consisting

of assembly, testing, rework and final assembly processes with the corresponding workstations.

Within the case study, one assembly line was selected, which is a high-runner line with heavy

workload and several assigned product types. Important to note that the selected line is a repre-

sentative subject of the analysis, having all characteristics of the assembly lines (process scheme,

data collection) that are essential from production planning viewpoint. Moreover, production

plans corresponding to the selected line often tend to be infeasible in the current practice, due

to the high variability of capacity requirements, therefore, the development of a robust planning

method is of crucial importance to increase the level of effectiveness indicators.

Selection of the proper capacity control policies

According to the specified workflow, the first step towards robust production plans is the selection

of proper capacity control policies for the assembly line. As stated in Section 5.2.2, the capacity

control defines the assignment of operators to different tasks, based on the assembled product

type and allocated headcount. In order to solve this problem, the simulation model of the

selected line was applied (implemented in Siemens Tecnomatix Plant Simulation), analyzing
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Table 5.1. The analyzed control options that define the assignment of operators to assembly (A), final

assembly (F) and rework (R) task, including their combinations.

Control No. Headcount Operator #1 Operator #2 Operator #3 Operator #4 Operator #5

#1 2 A FR

#2 2 AR F

#3 3 A AR F

#4 3 A A FR

#5 4 A A F FR

#6 4 A A FR F

#7 5 A A AR F F

#8 5 A A A F FR

several possible control scenarios (Siemens, 2016). In simulation modeling, validation step of the

model building process is essential, in order to make valid conclusions about the performance

of the real system, derived from the results of the simulation runs. In the analyzed case, the

simulation model of the assembly line was validated by comparing the lot completion times and

makespan to real data. The results of an on-site time study and also off-line, historical production

logs were applied as basis of the validation, the time frame of the study was a complete week.

Evaluating simulation results and comparing them to real data, the model considered to be

valid, as the total difference between the real and simulated makespans was only 68 minutes (on

a one-week horizon). Relying on this valid simulation model, the best capacity control policies

could be determined, defining the operator-task assignment for each product type (assembled

on the line) and possible operator headcounts.

The measures applied in this task were the throughput of the line, and a control policy

is considered to be better than another if its resulted throughput is higher. Additionally, the

statistics (mean, deviation) of operators’ workload were also obtained from the experiments, and

in case control policies with similar throughput performance were found, the capacity control

resulting the highest, well-balanced workload was selected. In each simulation run, only a single

product type was analyzed by running the simulation with a fix time-frame. The results of the

analysis were summarized in a p×(hmax−hmin) matrix, containing the operator-task assignments

with the highest throughput and least idle times for each p and ht. In the test case, 20 days of

production was simulated for all product types, the line can be operated by 2-5 operators. In

total, 8 different possible control options were analyzed (Table 5.1), resulting in 72 simulation

experiments in total. The outcomes of the analysis were 36 capacity controls, resulting in 90.1%

workload per operator during the effective working time.

Prediction of the capacity requirements

The next step of the method is the simulation and regression-based prediction of actual capac-

ity requirements, as norm-time based calculations often fail to give reliable results, due to the

stochastic nature of some parameters (e.g. manual processing times), and random events like

machine breakdowns or products that fail the functional test. In order to tackle these challenges,

multivariate linear regression models were defined for each assembly line, to calculate the overall

human workforce, needs to be allocated to the lines to assemble the products in customer-

requested volumes. The regression models of each assembly line were defined according to (5.1),

the regression coefficients and model parameters were computed by using the R Studio environ-
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Figure 5.3. Results of the capacity prediction for a sample assembly line.

ment and the general linear regression function lm of R statistical computing language (R Core

Team, 2016), which took less than 1 second to fit the models.

The regression models are built over a dataset, provided by simulation runs as described

in Section 5.4.1. As the simulation model applies the latest MES data to obtain the process

parameters, it represents precisely the actual physical processes, and capable of providing an

arbitrarily large amount of data (in very short time) by simulating the system’s behavior in

various scenarios. As described earlier, the simulation model was fed with a big production order

set, including a large amount of random-generated lots. In order to obtain robust plans by the

subsequent calculations, order set needs to be representative enough to cover the whole spectrum

of all possible future cases, even the worst case scenarios. Therefore, order sets were randomly

generated, considering all products of the portfolio, and applying a uniform distribution on the

volumes per order in the range between one piece to the maximal amount of products that can

be assembled within one shift. Besides the varying lot sizes, the applied operator headcount was

also changed during the experiments, applying the capacity controls determined in the previous

step.

During the simulation run, lot completions in each period (production shift) were logged,

generating a dataset with the shifts as observations; the assembled volume of each product type,

and the corresponding headcount as features of the dataset. In the test case, the simulation

provided a production dataset with 4072 shifts that was split up into independent training

and sets in 1 : 2 ratio (1357 and 2794 samples), applying random sampling. In the regression

modeling (5.1), the input variables were the product types p ∈ P assembled on a given line,

and the allocated headcount of operators ht. According to the results, multivariate linear model

provides precise prediction for the real capacity requirements, as the coefficient of determination

R2 > 0.9 in each of the cases, and for all p values, p < 2 · 10−16 indicating that the selected

input variables are statistically significant.

On Figure 5.3, the prediction results are visualized by the scatterplots of predicted, and
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currently applied norm capacity requirements, applying the real capacity requirements as a

basis for a sample assembly line. One can infer that the increase of plans’ robustness cannot be

achieved simply by the adjustment of corporate norm times, as they have a normal distribution

error compared to the real capacity requirements, which refers to the fact that currently applied

norm times are unable to represent stochastic factors. As the actual capacity requirements exceed

the norm time based ones in some cases (norm capacity requirement values are on both sides of

the virtual diagonal, equal value line), production planners often apply safety factors in order to

keep the expected due dates. Although it might help to maintain the customer-desired service

level, it leads to excess capacities and idle times in reality. Moreover, corporate norm times

cannot be arbitrarily changed, as they influence several other processes, e.g. product pricing.

Synthetic and real test cases

As for the production planning, two main cases are analyzed in the study: the first set of tests is

defined with a proof-of-the-concept purpose, more specifically to highlight the main advantages

of the proposed method, compared to other conventional and robust planning methods. In this

case, only process related data were gathered from MES to describe the actual status of the line

under study, however, artificially generated production planning datasets were applied in order

to evaluate the plans under various conditions (e.g. heavy order load). Besides the numerical

evaluation of the method, this test case (called synthetic test) was responsible for the validation

of the models. In the second test case (called real test), real historical plans provided by a

company, and the calculated robust plans executed with simulation were compared. The reason

for evaluating the latter in simulation is justified by the fact that corporate planning policy

cannot be simply changed, as it involves other processes, critically affecting the logistics and

production performances. In the real test, the planning model introduced in Section 5.4.4 was

modified, so as to provide exactly the same output information that the corporate planner

software does. In this case, the input and output data of the applied planning model, and

therefore the constraints were slightly modified, however, the fundamentals of planning workflow

with simulations analysis and the applied capacity function remained the unchanged. In the real

test, the simulation-provided KPIs were compared to the historically realized ones as the basis

of evaluation.

Robust production planning: synthetic test case

Utilizing the linear function approximation, the above described regression model can be applied

directly in the production planning model, implemented and solved in FICO® Xpress (FICO,

2017). In the experiments, the optimization algorithms were run until an optimality gap of at

most 6% was achieved. In case of the assembly lines, robustness of the plan is highly requested,

thus the method was compared to other existing robust planning methods within a comparative

study. The basis of the benchmark was deterministic norm time based planning (NTP) applied

in most ERP and APS systems. The main difference between NTP and the proposed, simulation-

and regression-based robust planning method (RPN) is the calculation of capacity requirements:

while in the RPN, the regression model (5.1) is applied in constraint (5.6), the NTP applies norm

cycle times to calculate the required human workforce. In NTP, constraint (5.6) has the following

form:
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twht ≥
∑
p∈P

tproc
p qpt ∀t (5.24)

Besides the proposed RPN method, the commonly applied, iterative form of simulation-

based optimization (as introduced in Section 2.5) was also analyzed on the test case, refining

iteratively the capacity requirements after each simulation run. Furthermore, the planning task

was also formulated as an integer robust optimization (RO) problem with uncertainty sets (Sec-

tion 2.5). In the benchmark, a robust counterpart of NTP, called RCT is applied, where cycle

times are represented as uncertain parameters with lower and upper bounds. The last analyzed

method called RCO is also a robust optimization model, in which the proposed RPN method is

reformulated by adding some uncertainty to the regression coefficients, as model fitting always

have a certain error. Thus, this method (RCO) can be seen as an extended version of RPN.

In the test cases, a fix-horizon planning problem for a selected final assembly line was

investigated, and solved with all methods (NTP, RPN, ITR, RCO, RCT). The input parame-

ters of production planning in the benchmark were customer orders, concerning nine product

types assembled on the selected line. In order to provide a comprehensive study, the meth-

ods were analyzed applying several planning scenarios that included average, and also complex

problem instances. As for the length of the planning horizon, four different cases were tested:

|T | = {24, 30, 36, 42}. In each case, problem instances were generated with different amount

of orders: normal, high and extreme order scenarios were analyzed, in which order due dates

were uniformly distributed along the planning horizon. In each category of order scenarios, 10

different instances were generated, and solved with all planning methods. Thus, the benchmark

included 120 problem instances in total, resulting in 600 solutions given by the five different

methods.

Table 5.2. Benchmark of robust production planning methods.

Lateness [%] Objective [%] CPU Time [s]

|T | Orders NTP RPN RCT RCO ITR NTP RPN RCT RCO ITR NTP RPN RCT RCO ITR

24 Normal 98 73 79 82 83 95 97 100 98 95 8.8 8.8 14.0 14.1 209.2

24 High 100 87 79 83 95 91 94 100 95 91 9.3 10.9 81.5 18.4 90.0

24 Extreme 99 92 79(8) 87 97 29 33 100(8) 35 30 11.2 131.1 68.3(8) 368.3 52.0

30 Normal 100 78 70 73 85 93 96 100 97 93 10.2 11.7 40.4 21.5 141.0

30 High 98 93 81 88 98 84 89 100 91 84 10.9 15.5 370.3 81.0 25.0

30 Extreme 99 90 86(10) 85(2) 95 22 25 100(10) 29(2) 23 134.8 517.9 116.4(10) 764.7(2) 331.7

36 Normal 100 78 75 85 90 93 96 100 97 93 11.4 12.0 61.9 26.7 362.5

36 High 95 93 84(1) 87 95 22 26 100(1) 30 22 13.8 68.8 659.3 137.4(1) 76.1

36 Extreme 95 93 84(9) 87(4) 95 22 26 100(9) 30(4) 22 41.6 567.0 225.9(9) 708.1(4) 184.6

42 Normal 99 87 78 83 93 93 96 100 97 93 13.3 44.6 261.9 86.2 146.7

42 High 99 89 80(5) 87 95 49 51 100(5) 52 49 16.9 38.7 1097.2(5) 240.6 36.9

42 Extreme 97 91 85(9) 88(7) 98 26 31 100(9) 50(7) 26 112.2 797.4 227.6(9) 1090.8(7) 165.1

The benchmark results are summarized in Table 5.2, each row including the average results

of 10 problem instances in a given order scenario. The main results are the total lateness, and the

objective function value indicating the total costs of production. The values are given in average

percentage: when solving a problem instance with the five different methods, 100% corresponds

to the method with most lateness and highest cost (in case of both lateness and cost the lower

values are the better). Besides lateness and cost, the algorithm’s running time is also displayed

in seconds. The bracketed superscript values indicate the number of problem instances (out of
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10) that a given method could not solve within a time limit of 1800 seconds.

The results show that from robustness viewpoint, the proposed method (RPN) and its

robust counterpart (RCO) always outperform NTP method, and the iterative, simulation-based

planning. Only the RCT method could result in lower lateness levels, however, it could not solve

most of the instances with high or extreme number of orders. Moreover, the latter resulted in

very high objective function values (cost), in contrast to RPN that resulted in only slightly

higher costs than NTP, thus the cost of robustness in this case is much lower, while it could

solve all problem instances (Figure 5.4). As for the calculation times of the methods, robust

optimization based methods require high CPU times, while simulation based RPN and ITR

have comparable running times (the CPU time of RPN includes the CPU time of fitting the

regression model).
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Figure 5.4. Total lateness (left) and cost (right) results of the benchmark with the five different

planning methods.

Robust production planning: real test case

In the real test case, simulation and function approximation tools were applied in the same way

as in the synthetic test, providing the actual capacity requirements Q (qt) as the main output.

In order to obtain plans that are comparable with the corporate ones, the planning model was

adjusted in a way that inventory and backlog levels were continuously observed during the

planning, and orders were aggregated. The planning was performed on a rolling horizon basis

with a one-shift resolution (3 shifts per day). On the test case, five days’ plans were calculated

and executed in simulation, the planning horizon was 6 shifts long, and the replanning period

was set to 3 shifts (following the corporate practice). In order to adjust the plan to reality, initial

stock levels and backlogs were set in the beginning of the horizon.

The modified planning model applied in the real test case is formulated by (5.25)-(5.35).

The objective function (5.25) minimizes the overall costs of inventory (ipt), setups (ypt), backlogs

(bpt), the headcount of operators (ht) and the number of active shifts (at). The variable qpt

expresses the amount of product p assembled in period t. Constraint (5.26) transforms individual

orders into volume dpt of products to be delivered (aggregate volume, calculated from individual

orders) (5.26), and states that customer orders must be fulfilled by delivering the amount spt
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from product p in period t (5.27). The next inequalities constrain the human capacities applying

the approximated function Q (qt) of actual capacities (5.28), and controlling the minimal (5.29)

and maximal (5.30) headcounts of operators required by the processes (considering the capacity

controls defined in Section 5.4.2). Constraints (5.31) and (5.32) calculate the number of setups

ypt applying Ω as an arbitrarily chosen big number with the lower bound of the maximal amount

of product that can be assembled within one shift: Ω ≥ (twhmax) /maxp∈P t
proc
p . The number of

active shifts —in which at least one batch is assembled— can be calculated by (5.33). Subsequent

time periods are linked through the assembly, backlog and inventory volumes of product p in

time t and t− 1 by the balance equation (5.34). The integrity conditions are defined by (5.35).

minimize∑
t∈T

∑
p∈P

(
cstockipt + csetypt + cblbpt

)
+
∑
t∈T

(coprht + at) (5.25)

subject to

dpt =
∑
n∈N
p=pn
t=tdn

qn ∀ t ∈ T, p ∈ P (5.26)

spt ≥ dpt ∀ t ∈ T, p ∈ P (5.27)

twht ≥ Q (qt) ∀ t ∈ T (5.28)

hminypt ≤ ht ∀ t ∈ T, p ∈ P (5.29)

ht ≤ hmax ∀ t ∈ T (5.30)

qpt ≤ Ωypt ∀ t ∈ T, p ∈ P (5.31)

qpt ≥ ypt ∀ t ∈ T, p ∈ P (5.32)

|P |at ≥
∑
p∈P

ypt ∀ t ∈ T (5.33)

ipt − bpt = ip,t−1 − bp,t−1 − spt + qpt ∀ t ∈ T, p ∈ P (5.34)

qpt, bpt, spt, ipt, ht, at ∈ Z+, ypt ∈ {0, 1} ∀ t ∈ T, p ∈ P (5.35)

As for the input data of planning, five days’ production was planned on a rolling horizon,

considering orders on hand that were known already in the beginning of the horizon, and also

those that are placed by the customers during the five days. Similarly to the previous case,

nine product types were assembled, of which orders are placed for 36 variants, however, these

variants are not distinguished in the planning model due to the very minor differences in assembly

processes. In the model, order fulfillment from inventory, as well as backlogging were options

similarly to the synthetic test case, however, in this real planning case, different measures were

applied to compare the results. The KPIs were the main corporate efficiency measures: the total

output (Ototal) and the applied human workforce expressed in operator-minutes. The latter is

approximated with the function Q (qt), and denoted by Q in the results below. Besides, the

average output per operator and per shift Oop was also derived from the previous two values.

Due to the normal order load of the analyzed period, significant amount of backlogs were not

realized, and both plans had similar performance from this perspective. Results on the lateness

—applied as a KPI in the synthetic test— were not available in the real case, as related data were

not logged in the ERP system. The main results of the real test are summarized in Table 5.3.
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Table 5.3. Results of the real test case of robust production planning.

NTP (historical) RPN (simulation)

Ototal [pcs.] Q [min] Oop [pcs.] Ototal [pcs.] Q [min] Oop [pcs.]

Day1 385 4335 42.63 203 1570 62.06

Day2 553 3197 83.03 492 3533 66.84

Day3 605 5532 52.49 630 4421 68.40

Day4 655 5177 60.73 636 3833 79.65

Day5 635 5118 59.55 225 1658 65.14

As for the test results, one might remark that the difference of historical and robust plans’

total output (summed over the five days) is significant. This difference is resulted by the inventory

volumes, as in the reality, 641 pieces were planned to make to stock, in addition to the customer

orders. The total order volume for the five days was 2192, which is quite similar to the produced

volume of 2186 pieces, achieved by the proposed robust planning. In the current settings of the

planner model, inventory levels are minimized (safety stocks are allowed to be set), therefore,

products are only kept in the inventory if any order within the planning horizon is fulfilled from

stock. From this perspective, the RPN method resulted a plan that match the expectations. As

for the operators’ performance and workload, substantially better results were achieved by the

RPN method, as the average output per operator is 68.4 pieces, compared to the historical value

of 59.6 pieces. This increase in efficiency is resulted by the combination of the improved capacity

control, as well as its application in the planning model. In this case, production plan optimized

so as the mix of production lots assembled within the same shift is selected to be in balance

with the expected capacity requirements considering the possible negative effects of stochastic

parameters. Conclusively, applying the RPN method in scenarios with normal order load (in

the test case, the line was operated on 60% of its full capacity) results in increased output with

extra allocated human workforce, compared to the NTP method.

5.6.2 Production and capacity planning of the pre-inventory processes

The production planning model of pre-inventory processes (Section 5.5) is responsible for calcu-

lating the production lot sizes zmπj and the corresponding shift plans with the operator-machine

assignments ωmπjo, to ensure that the components required by the final assembly lines will be

available in the inventory on time. In order to analyze various resulted production plans in

detail, the DES model of the pre-inventory segment was applied, simulating the machining,

deburring and surface treatment processes. The characteristics of the test system are detailed

in the followings. In the machinery, |J | = 11 flexible machines are available, and |M | = 14

different main component types are produced. The resolution of the plans is 2 hours, therefore,

ρ = 4 and tπ = 120. The main parameters of the components are summarized in Table 5.4. In

addition to the demands generated by the assembly plan of the analyzed line, demands for the

other components were randomly generated by uniform distribution with the following bounds:

120 ≥ dmπ ≥ 200 ∀m ∈ M,π ∈ Π, t ∈ T, tπ = tw

ρ . The production planning model (introduced

in Section 5.5) was implemented in FICO®Xpress, and solved by its default branch and bound

solver, with the stopping criterion that the optimality gap should be at most 6%. The average

running time of the solver algorithm was 180 seconds (FICO, 2017).
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Table 5.4. Component parameters in the test case.

M tlm tcm tom hm0 tsm
Component1 1.22 0.76 0.6 127 32

Component2 0.59 1 0.75 131 30

Component3 2.14 0.81 0.53 101 32

Component4 1.28 0.76 0.8 140 50

Component5 0.16 0.86 0.56 123 30

Component6 2.57 0.83 0.56 115 25

Component7 1.65 0.7 0.56 121 29

Component8 1.82 0.66 0.78 113 57

Component9 2.67 0.9 0.78 108 20

Component10 1.56 1 0.81 104 41

Component11 1.78 0.95 0.78 106 22

Component12 2.34 0.68 0.56 111 52

Component13 0.31 0.86 0.8 144 53

Component14 2.77 1 0.8 119 52

In order to analyze the performance of the planning method if some of the parameters are

stochastic, a sample production plan was executed with simulation. In case the calculated plans

cannot be executed properly, final assembly of products will be delayed, resulting in late order

completion. In the analysis, different production scenarios were compared, in which lead times

tlm, manual processing times tom and machine availability A were modified to posses a certain

deviation instead of being deterministic. Machine availability is the percentage of time, during

which a machine can be used for production. The main measures were the total backlogs realized

at the inventory when demands of final assembly lines were not satisfied. In this case, the total

(Bt) and percentage (Bp) amount of backlogs were observed:

Bt =
∑
π∈Π

∑
m∈M

(
dmπ − zsim

mπ

)
(5.36)

Bp =
Bt∑

π∈Π

∑
m∈M dmπ

(5.37)

where zsim
mπ is the total volume produced of component m in period π resulted by the simulation

analysis. In the test scenarios, the effect of uncertain lead and manual operation times were

analyzed by representing them as stochastic variables with normal distributions, specified by

the mean (µ) and standard deviation parameters (σ). In each scenarios, the standard deviation

of time parameters were set to 10% of the mean value: σ = 0.1µ. The input parameters of the

test scenarios and the corresponding simulation results are summarized in Table 5.5.

According to the test results, the proposed planning method is able to produce the expected

outcome, more specifically to plan the production of the pre-inventory processes in a way to

provide enough components for the final assembly processes without backlogs. In this way, the

smoothness of production can be maintained, and the execution of production plans, calculated

for the final assembly lines, is independent of the pre-inventory processes in most of the test

scenarios. In some of the scenarios, backlogs occur during the execution, which means that

the final assembly of products cannot be started on the planned time. Although it would cause
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problems in a real production situation, backlogs only occur in scenarios with extreme parameters

(e.g. processing times increased by 60%), and the amount of realized backlogs in those cases are

also relatively low.

Table 5.5. Simulation analysis: execution of the production plans (pre-inventory processes).

Scenario µlead µop A[%] Bt[pcs.] Bp[%]

1 1 1 86 0 0.0%

2 1 1 93 0 0.0%

3 1 1 100 0 0.0%

4 1 1.30 86 0 0.0%

5 1 1.30 93 4 0.0%

6 1 1.30 100 0 0.0%

7 1 1.60 86 111 0.8%

8 1 1.60 93 255 1.9%

9 1 1.60 100 111 0.8%

10 1.30 1 86 5 0.0%

11 1.30 1 93 5 0.0%

12 1.30 1 100 5 0.0%

13 1.30 1.30 86 5 0.0%

14 1.30 1.30 93 42 0.3%

15 1.30 1.30 100 5 0.0%

16 1.30 1.60 86 196 1.5%

17 1.30 1.60 93 336 2.5%

18 1.30 1.60 100 196 1.5%

19 1.60 1 86 55 0.4%

20 1.60 1 93 74 0.6%

21 1.60 1 100 55 0.4%

22 1.60 1.30 86 110 0.8%

23 1.60 1.30 93 262 2.0%

24 1.60 1.30 100 110 0.8%

25 1.60 1.60 86 492 3.7%

26 1.60 1.60 93 599 4.5%

27 1.60 1.60 100 492 3.7%

5.6.3 Discussion of the results

When discussing the planning results, important to keep in mind that several existing definitions

of robustness is applied in practice, as discussed in Section 2.5. In this research, the solution is

considered to be robust in case it is feasible under the considered variation of influencing factors,

and its deviation from a target is small enough. As the training dataset of the regression model

contains extreme order scenarios, the above definition is in line with minimax approaches, seeking

solutions that minimize the maximal losses of worst case scenarios. The objective function of

the planning model is composed of inventory, setup and personnel costs, thus scenarios’ excess

costs are reflected by the cost of robustness, when different planning methods are compared.

In general industrial practice, it is a managerial decision whether it is worth for a company

paying extra amounts to increase the plans’ robustness, however, it is proven by the benchmark

results that the cost of robustness is not really significant if the RPN method is applied. More

specifically, the robustness of planning can be increased by 11% in average, for additional costs
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of 3%, which is a considerable advantage compared to other analyzed robust planning methods.

Besides, the CPU time of the solver (together with the data analysis) in normal and high order

numbers is only increased by 10 seconds in average, moreover, a robust plan can be obtained with

RPN within maximum 800 seconds even in the hardest problem instances with extreme orders.

It is also important that robustness cannot be simply increased by adjusting the norm cycle

times (Figure 5.3), but the target delivery performance can be provided by properly combining

production lots with the proposed, proactive robust planning method (5.4.4). While in RPN

planners do not have to take care about adjusting the simulation and planning parameters due

to the data import from MES, it is important to carefully preset the uncertainty sets in robust

optimization models, which is not possible in several cases. As for the main results, one can

conclude that robustness of the plans in the synthetic case could be increased significantly by

11% in average, without much extra efforts, which is a considerable advantage of the RPN

method, and the idle times in this case could be decreased by 14%. In the real test case, the

productivity could be increased by 14% in average, applying the proposed method in a planning

problem with normal order load conditions, which equals to the amount of idle times reduction

realized in the synthetic case. Conclusively the method is considered to meet the expectations,

even in real cases.

The main benefit of the proposed workflow is its ease of integration in the existing planning

workflow without significant modifications in the models. For companies applying MES and ERP

or APS systems, accessing and loading the data in the analysis model by queries can be done

with minimal efforts, without any special requirements. The major prerequisite of applying the

proposed robust planning workflow is the simulation model of the assembly lines, which however

can be quickly built if a common process scheme and thus model structure can be identified. In

the planning model, modifications and additional tools are not necessary, as only the capacity

requirements need to be changed and other parts of the model remain unchanged, in contrast

to robust optimization tools that require special solver engines that are usually not available at

companies. From implementation point of view, the tool itself is flexible and does not require

hard-wired heuristics, besides, the simulation model itself can be also used for multiple purposes:

e.g. defining the capacity control modes or projecting the future behavior of the system in various

conditions. Thanks to the MES connection, the models always utilize up-to-date production data,

while able to consider the stochastic nature of processes and parameters, which is not possible

in the current norm time based planning.

5.6.4 Implementation of the method

As described in the previous sections, the elements of the robust production planning workflow

were implemented in different, special software tools (DES, statistics/learning and optimization),

and a desktop application was used as an environment that implement the data flow and link

among these tools. In parallel, the method was also integrated in the Simulation and Navigation

Cockpit, introduced already in Section 4.4.3. Within the integration, the implemented models

were used as calculation tools and various interfaces were applied (ODBC, file interface) to

implement links with the central database of the cockpit. The robust planning workflow is

implemented with three loops in the cockpit (Figure 5.5): a capacity control loop, an assembly

and a machinery planning loops. Once the ERP and MES data are loaded in the central database,

the capacity control loop is executed first, in oder to identify the capacity controls to be used,
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Figure 5.5. Robust planning method in the Simulation and Navigation Cockpit.

and also to generate data for the regression modeling. Within this step, only the simulation

model of the assembly line is applied. Once the capacity related data is available and stored in

the DB, the assembly planning loop can be executed. In this step, two models are linked applied:

the data analysis model implementing the function approximation, and the production planner

model to calculate robust plans. The regression models are built over the simulation results,

and they are integrated in the production planner module that implements the mathematical

model. The calculated plans and also the models are saved in the DB, for the sake of re-usability

in future experiments. Additionally, assembly plans are also used in the machinery planning,

in which the production plan of the machinery is optimized first then the result is evaluated

immediately by running a simulation experiment. Next to the control of the data flow, the central

DB is responsible for managing the experiments created when using the cockpit. An experiment

in the software is a single analysis with individual parameters and results, both saved in the DB.

Experiments with similar characteristics and objective are gathered in a scenario, which is the

fundamental object in the cockpit for storing and reloading analysis parameters and the results.

Thanks to the web-based architecture, all models run on the server side, and the whole planning

workflow can be controlled via the web-based graphical user interface of the framework.

5.7 Summary of Chapter 5

In Chapter 5, a new method was introduced to support the robust production planning of flexible

final assembly lines in a proactive way. As these lines are often the last stage of the production,

the proposed planning method was completed by the planning models of the preceding stages in

the process chain, assuming that pull strategy is applied. In order to harmonize the production of

different stages, the planning problem was decomposed at the in-process inventory, accordingly,

the method was split in two main phases: first, the production plans of the final assembly lines

were calculated, then the production planning of the pre-inventory processes was done, consid-

ering already the demands generated by the solution of the preceding step. In the phase of final
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assembly planning, a simulation-based optimization method was applied to manage stochastic

variables and random events in a mathematical model, without increasing its computation com-

plexity and running time. The rationale of the approach relies in the quasi-real-time data that

can be gathered from the MES system about the actual status of the system and processes. This

data is then used for projecting the actual status of the system to a large set of possible future

scenarios, to obtain information and predict parameters that are essential in robust production

planning. Therefore, regression models were applied to predict the actual capacity requirements

of different production scenarios, instead of calculating the plans according to idealistic, norm cy-

cle times. Besides the production planning, the simulation models of assembly lines were applied

to determine the proper control policies of the lines, resulting in reduced idle times and balanced

operator workloads. The performance of calculated plans was analyzed by executing them in a

simulation environment, representing the possible random events and stochastic parameters.

According to the test results, the proposed planning method provides robust production plans,

and performs well in a real production environment. Important part of the proposed method is

the material supply planning, following the pull production strategy. In the pre-inventory plan-

ning model, the objective was to minimize the components’ inventory cost, while providing the

parts that are required by the final assembly lines. The operator-machine assignment problem

was also solved to decrease the human capacity requirements of production. According to the

results, the proposed method is suitable for planning in a way that the continuousness of the

production along the whole process chain can be ensured, and customer expected service-level

can be maintained.

Regarding the definition and measure of robustness, and interpretation of the results, im-

portant to highlight that plans’ robustness in the proposed method is provided by the prediction

of system’s behavior in future cases, assuming that the system’s actual state in the near future

won’t change significantly. For the projection of the system’s state to this near future, up-to-date

MES data and a simulation model are applied, via the use of regression models. These models

are built upon a finite set of realistic orders that certainly provide a representative sample set of

possible future scenarios. The order sets are randomly generated, considering all products of the

portfolio, and applying a uniform distribution on the volumes in the range between one piece to

a possibly high amount of products per oder. Although this scenario generation will certainly

provide a representative training set, by nature, it might affects the training results, and there-

fore, the quality of plans. In this regard, important to highlight that robustness of plans is not

directly guaranteed by applying the method, but will certainly take effect if the training set is

generated carefully, by including a satisfactory high number of samples that represent and cover

the possible future order streams.

As for the future work related to the presented robust planning method, the following di-

rections are identified. First one is the analysis of different, commonly-applied manufacturing

systems like machine flow-shops, where lead time is one of the most important planning param-

eters. Pfeiffer et al. (2016) highlighted that data analytics tools can be applied on shop-floor

data to accurately predict the lead times and to calculate robust production plans upon. In

that case, additional prediction parameters need to be considered like work-in-progress or buffer

levels. Also important direction of future work is the broader analysis of robustness, as discussed

in Section 2.5.1. Interesting related task is the sensitivity analysis of various production param-

eters on the execution robustness of the plan, involving also objective function elements other

than costs, e.g. natural planning measures like work in progress or resource utilization. Besides,
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another promising direction towards robustness is the application of new function approxima-

tion techniques that can be combined with mathematical optimization tools. In case of complex

relations among the parameters, piecewise linear regression models might be suitable to predict

the target parameters while keeping the linearity of the optimization model.



Chapter 6

Conclusions and outlook

In Chapters 3-5, new scientific results were presented to solve capacity management and produc-

tion planning problems, often emerge in today’s practice when reconfigurable and flexible assem-

bly systems are applied. As discussed, these systems offer cost efficient solutions for managing

product variety, however, their advantages can be utilized only if system structure is continu-

ously matched with the order stream to sustain the internal efficiency and customer-expected

service level, applying proper production and capacity planning methods. In the thesis, the new

scientific results were derived to meet these requirements as summarized in Section 6.1.

6.1 New scientific results

The research presented in the thesis is summarized in four thesis statements (Thesis 1-4, pre-

sented in Sections 6.1.1-6.1.4). The first two statements related to the framework defined for

capacity management of modular assembly cells in Chapter 3. Thesis 3 presents the main results

achieved in relation with production and capacity planning of reconfigurable, robotic assembly

cells, while Thesis 4 highlights the main scientific contribution to robust production planning

and capacity control of flexible assembly systems.

6.1.1 Strategic level system configuration and product-resource assignment

in modular assembly systems

In Section 2.3, modularity was defined as an umbrella concept to manage dedicated, flexible and

reconfigurable manual assembly systems in a common methodology. Grounding on this, a com-

prehensive framework was presented in Section 3.4, offering solutions for capacity management of

modular systems on each level of the classical planning hierarchy. On the highest, strategic level,

the long-term system configuration problem was solved to determine the required investments,

and product-assembly system assignment based on the order stream forecasts and the actual sys-

tem configuration. The main driver of these decisions is the minimization of production-related

costs, taking into account different cost elements that are characteristic to dedicated, flexible

and reconfigurable resources. It was identified that there is no rule of thumb for assigning prod-

ucts to either of these system types, as the overall costs —incur on the long run— are affected

by multiple factors that are in strong correlation with the lower, tactical level decisions. This

is mainly resulted by the dynamic processes characterizing the operation of these systems, and

mainly valid for flexible and reconfigurable resources.

99
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Therefore, a simplified version of the system configuration problem —called line assignment—

was solved first, assigning products to dedicated or reconfigurable lines on a cost basis. A two-

level model was proposed and applied as a proof-of-the-concept that cost factors considered

on the strategic level can be predicted with function approximation model, defined over a set

of solutions of virtual, tactical level planning problems. Grounding on this, the comprehensive

system configuration method was defined for modular assembly systems, applying an optimiza-

tion model in which elements of the objective function and some of constraints are represented

by approximation functions. The training set of regression models were obtained by solving

the tactical level production planning problem on a representative set of virtual scenarios. The

new scientific results in relation to the system configuration of modular assembly systems were

summarized in the first thesis statement as it follows highlighted.

Thesis 1: In the capacity management framework of modular asssembly systems

with heterogeneous resources, the strategic level resource assignment and system

configuration problem can be solved with the following integer optimization model.

In the model, the prediction of operational costs is performed by regression, and the

training sets of regression models are provided by the solutions of the tactical level

planning model applied on virtual scenarios. The general scheme of the optimization

model is the following:

minimize

Ψ
(
zspu, w

s
pu

)
+ Θ

(
zspu, w

s
pu

)
+ Γ

(
zspu, w

s
pu

)
+ Λ

(
zspu, g

s
bu

)
(6.1)

subject to∑
s∈S

zspu = 1 ∀ p ∈ P, u ∈ U (6.2)

ws
pu ≥ z

s
pu − z

s
p,u−1 ∀ p ∈ P (6.3)

gsbu ≥ z
s
pu ∀ b ∈ B = {1 . . . pb} (6.4)

Φ
(
zspu

)
≤ hmax ∀ p ∈ P, u ∈ U, s ∈ S (6.5)

Υ
(
zspu

)
≤ mmax ∀ p ∈ P, u ∈ U, s ∈ S (6.6)

zspu ∈ {0, 1} ws
pu ∈ {0, 1} gsbu ∈ {0, 1} ∀ p ∈ P, u ∈ U, s ∈ S, b ∈ B (6.7)

In the objective function (6.1), Ψ, Θ, Λ and Γ express depreciation, change of assign-

ment, investment and operation costs, respectively. Constraints (6.2)-(6.4) guaran-

tee the feasibility of the solution, while (6.5) and (6.6) are technological constraints,

bounding the utilization of human (6.5) and machine (6.6) resources. The nonlinear

Ψ, Θ, Λ and Γ functions can be approximated by linear regression models, apply-

ing solutions of the tactical level planning model solved on a representative set of

virtual scenarios. In this way, the linearity of the overall optimization model can be

guaranteed. The input parameters of regression models are the capacity require-

ments of products (time), and the number of different product types assigned to

various system types. The decision variable zspu specifies if product p in period u

is assembled in system s, and gsbu expresses if all elements of an arbitrarily chosen

subset b of products are assembled in system s in period u.
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6.1.2 Tactical level production and capacity planning of modular assembly

systems

The main decisions in tactical level production planning of modular assembly systems concern

the calculation of production lot sizes to match internal capacities with customer orders. Re-

garding dedicated and flexible resources, some planning methods exist already to solve related

problems, however, there is no standard way of solving the combined production and capacity

planning problem of modular, manual assembly systems. In Section 3.4.2, a new, generic model

was defined to solve the above problem that can be also applied to provide a training set for

cost predictions in the strategic system configuration model. In such cases, capacity constraints

are applied so as to enable expansions if needed. The integer optimization model of tactical level

production and capacity planning problem is defined as it follows.

Thesis 2: The tactical level production and capacity planning problem of modu-

lar reconfigurable assembly systems is expressed by the following model, minimizing

the operation costs while considering both human and machine resources.

minimize∑
t∈T

coprht +
∑
p∈P

∑
t∈T

csetypt +
∑
t∈T

∑
n∈N

cntxnt +
∑
t∈T

∑
n∈N

∑
j∈J

copnxntrjpn (6.8)

subject to∑
t∈T

xnt = 1 ∀ n ∈ N (6.9)

nj ≤ ravail
j ∀ j ∈ J (6.10)∑

p∈P
rjpypt ≤ nj ∀ j ∈ J, t ∈ T (6.11)

xnt ≤ ypt ∀ t ∈ T, p = pn, n ∈ N (6.12)∑
n∈N

xntt
proc
p + ypt(t

rec
p + tset

p ) ≤ htt
w ∀ t ∈ T, p = pn (6.13)

ht ∈ Z+ nj ∈ Z+ ypt ∈ Z+ xnt ∈ {0, 1} ∀ j ∈ J, t ∈ T, n ∈ N, p = pn (6.14)

In the model, J , T , P , and N are the sets of resources, time periods, products

and orders, respectively. The cost parameters are denoted by c, tprocp is the total

capacity requirement of product p, while trecp and tsetp are the reconfiguration and

setup times of product p. The product of order n is denoted by pn, ravailj is the

amount of available of modules and rjp is the required amount of modules from

type j by product p. Decision variables xnt, ypt, ht and nj express the execution

of orders, necessary setups, operator headcount and the applied modules in plan-

ning period t ∈ T , respectively. In the objective function (6.8), copr, cset, cnt and

copn parameters express the costs of operators, setups, due date deviation and op-

eration, respectively. The constraints limit the execution of orders (6.9), module

consumption (6.10-6.11), setups (6.12) and operator headcount (6.13). Introducing

an additional element
∑

j∈J njc
m
j in the objective function enables to add new mod-

ules to the resource pool if requested, therefore, the model can be applied to solve

virtual production planning scenarios, supporting the solution of strategic level sys-

tem configuration. In such cases, cmj expresses the purchase cost of modules, and
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(6.11) needs to be disregarded.∑
t∈T

coprht+
∑
p∈P

∑
t∈T

csetypt+
∑
t∈T

∑
n∈N

cntxnt+
∑
t∈T

∑
n∈N

∑
j∈J

copnxntrjpn +
∑
j∈J

cm
j nj (6.15)

If the planning problem is formulated as a small-bucket model that does not allow for recon-

figuring the system within a given time period, the number of reconfigurations can be minimized

by solving a traveling salesman problem (TSP). The vertices of the weighted state-space graph

represent the time periods, and the weights of edges can be calculated applying a distance func-

tion on two products’ resource requirements, produced in consecutive time periods. The solution

of this model a time-indexed plan, specifying production lot sizes and the corresponding resource

usage. Slightly modifying the decision variables, a new model can be obtained that specifies the

production lot sizes, moreover, the headcount of operators allocated to assemble the orders.

Applying this reformulation, the operational level problem can be defined and solved with the

objective of minimizing the overall operator headcounts within each time period, considering

that operator skills are flexible, so as they are capable of switching between assembly tasks

within a given period.

6.1.3 Capacity management of modular, robotic assembly cells

As highlighted in Chapter 4, modular, automated assembly cells are also gaining practical rele-

vance in industrial applications, as they offer cost efficient solution to assemble products in high

variety. However, due to the different assembly processes that mostly include various joining

technologies (e.g. welding, clinching etc.), modular robotic assembly cells are mostly applied

instead of manual systems. A new production planning method was proposed in Section 4.4.2

that can be applied for the estimation of operational costs, already in the early design stage

of robotic assembly cells, composed of static, and also reconfigurable, modular elements. The

planning model is combined with a DES model in a tool called Production Planning and Sim-

ulation Tool , which is part of a workflow that supports design, management and operation of

reconfigurable assembly cells (Figure 4.2). The overall concept and methodology are results of a

collaborative work. The framework consists of four main tools with the corresponding decisions

and problem instances. The first tool, called Assembly System Configuration Tool is developed

by the University of Twente1. The second tool, called Assembly Cell Configuration Tool , and the

Reconfiguration Planning Tool incorporating and utilizing the results of all other tools are de-

veloped by Politecnico di Milano2. The own scientific results were achieved within the definition

and development of the Production Planning and Simulation Tool , summarized in Thesis 3.

Thesis 3: The operation costs of modular, robotic assembly cells can be pre-

dicted efficiently already in their early design stage, applying mathematical opti-

mization based production planning, and discrete-event simulation to execute the

calculated plans. The input parameters of planning are customer order forecasts

and technological data of the cell. Based on the forecasts, the expected production

1Corresponding researchers are Johannes Unglert and Juan Manuel Jauregui Becker from University of

Twente, Enschede, The Netherlands
2Corresponding researchers are Massimo Manzini, Marcello Urgo and Marcello Colledani from Politecnico di

Milano, Milan, Italy
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lot sizes can be calculated with the following model:

minimize∑
p∈P

∑
t∈T

(
cblbpt + cstockipt

)
(6.16)

subject to

spt ≥ dpt ∀ p ∈ P, t ∈ T (6.17)∑
c∈C

∑
p∈P

rjpyptc ≤ ravail
j ∀ t ∈ T, j ∈ J (6.18)

∑
p∈P

(
tcmxptc + tsmgptc

)
≤ tw ∀ c ∈ C, t ∈ T (6.19)

ipt − bpt = ip,t−1 − bp,t−1 − spt +
∑
c∈C

xptc ∀ p ∈ P, t ∈ T (6.20)

gptc, yptc ∈ {0, 1} xptc, spt, ipt, bpt ∈ Z+ ∀ c ∈ C, p ∈ P, t ∈ T (6.21)

Decision variables ipt, bpt, spt and zptc specify the inventory, backlog and delivery

volumes, and production lot sizes, respectively, concerning to product p, period t,

and cell c. The parameters express the length of periods (tw), customer needs (dpt),

setup (tsm) and processing times (tcm) of products, and resource requirements where

J denotes the set of resource types and ravailj is the resource pool. In the model,

gptc and yptc are indicator variables expressing setups and assembly of products

with a given resource, and they can be calculated applying a modified version of

the LS-C-B/M1 lot-sizing model by Pochet and Wolsey3. The objective function

(6.16) minimizes the total costs of backlogs and inventory, while constraints match

the production volumes (6.17) with the utilization of modular resources (6.18), with

processing times (6.19), and link the consecutive time periods (6.20). Executing the

resulting plan with the DES model of the system, the expected future operation

and logistics costs can be obtained.

6.1.4 Robust production planning and control method for flexible assembly

lines

In production planning concern to flexible, manual assembly lines, the human factor might influ-

ence critically the execution of plans. The manual processing times and reject rates of products

manifest in varying amount of extra human capacity requirements that can be hardly predicted.

These stochastic parameters cannot be handled efficiently even by the latest APS systems, there-

fore, the execution of calculated plans often leads to latenesses and/or disadvantageous utiliza-

tion of capacities. In Chapter 5, a new, simulation- and optimization-based robust production

planning method was presented that aims at utilizing quasi-real-time data gathered about the

system’s state to project its future expected behavior applying virtual production scenarios. This

projection is performed by the DES model of the system, generating a representative dataset

of different production scenarios’ capacity requirements —implicitly considering the stochastic-

ity of parameters— to build optimization models upon, and calculate robust production and

capacity plans.

3Y. Pochet and L. A. Wolsey (2006). Production planning by mixed integer programming. Springer.
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Thesis 4: The robustness of manually operated flexible assembly lines’ pro-

duction plan can be increased in a proactive way by applying simulation-based

optimization. Representing the planning problem with a mixed-integer linear op-

timization model, the actual human capacity requirements can be expressed with

the following function:

Q (qt) = β0 + β1ht +
∑
p∈P

βpqpt

The capacity function is obtained by linear regression, where the training dataset

for model fitting is provided by a simulation model that represents the quasi-actual

state of the assembly line, and executes simulation experiments based on a set of

virtual scenarios. In the function, parameters β are resulted by regression model

fitting, ht denotes the headcount of operators allocated to the line in period t,

and qpt defines the assembled volume of product p in period t. The application of

the function as a constraint in the production planning MIP model guarantees the

calculation of robust plans, defining production lot sizes and also corresponding

operator headcounts.

The essence of the method relies on a combination of MES and ERP data —that are typ-

ically stored and handled separately— and utilizes them in optimization, data analytics and

simulation models. In addition to providing input dataset for the regression model fitting, the

simulation model also supports the selection of proper capacity control methods, considering

various operator headcounts, and stochasticity of the aforementioned planning parameters. Ac-

cording to the experimental results, the model provides robust production plans with reduced

lateness, even besides the stochasticity of planning parameters.

6.2 Application of the results

The new methods and models summarized in the previous thesis statements were developed re-

specting real industrial needs to solve the related emerging practical problems. The validation,

testing and evaluation of solutions were primarily done within the RobustPlaNet: Shock-robust

Design of Plants and their Supply Chain Networks4 project, in collaboration with industrial

partners providing real problem instances, production environment and data (Becker et al.,

2016; Egri et al., 2016). The use-cases defined and elaborated within the RobustPlaNet and

other R&D projects related to the research presented in the thesis mostly concern problems

from the automotive industry, however, the methods can be applied in other sectors, as they

are not company- but system-specific. Therefore, they are applicable in cases where produc-

tion environment is composed of flexible and reconfigurable assembly systems that match the

specifications provided in the thesis.

The framework presented in Thesis 1-2, and the related models were defined on the basis

of more case studies from the automotive industry. The models are not yet applied in everyday

practice, however, the framework is applicable to solve real industrial problems, according to

the presented results of a comprehensive simulation analysis. They show that proper applica-

tion of the method results in cost (reconfiguration, operation and space) savings, compared to

other analyzed methods. The method presented in Thesis 3 for the lifecycle management of

4European Seventh Framework Programme, Grant No. 609087, http://www.robustplanet.eu

http://www.robustplanet.eu
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reconfigurable, robotic assembly cells was tested and validated with a case study provided by

Voestalpine Polynorm B.V., located in The Netherlands. According to the results, this method

is capable of supporting efficiently the design, management and operation of assembly cells

analyzed in the study. Applying the models within the presented workflow, the efforts put in

the design of new cells can be reduced significantly, compared to current practice. The robust

production planning method presented in Thesis 4 was validated and tested at the plant of

Knorr-Bremse Fékrendszerek Kft. in Kecskemét, where the models were used to plan the pro-

duction of a high-runner, flexible, manual assembly line. The obtained results were compared

to corporate, norm-time based historical data. Observing these results, one can conclude that

the new method provided robust production plans with decreased number of working shifts,

increased output volumes and planning flexibility. The list of main R&D projects related to the

research presented in the thesis is provided below:

� RobustPlaNet EU FP7 project (2013-2016)

� Knorr-Bremse Benchmark Factory project (2012-2013)

� E.ON network-service planning project (2012-2013)

� Knorr-Bremse SampleShop project (2010-2012)

6.3 Summary and outlook

6.3.1 Summary of the thesis

In the thesis, new production and capacity planning methods were presented, aimed at pro-

viding solutions focusing on flexible and reconfigurable systems in the assembly technology. As

identified within the literature review, management of product variety is an emergent issue in

today’s competitive manufacturing, in order to provide the customer-expected service level while

managing an increasing variety of products in a cost-efficient way. A key towards achieving this

goal is maintaining the internal efficiency by applying proper system structures, and the corre-

sponding planning and control methods to match the order stream with production capacities.

Flexible and reconfigurable paradigms exist already for years now, however, especially the latter

is gaining more and more attention by the industry recently, thanks to the technology providers

offering building blocks and complete modular systems. However, the efficient operation of these

systems relies in the application of planning methods that are capable of handling the dynamics

of system structure characterized by planning parameters influenced by multiple sources. It was

pointed out that costs related to heterogeneous modular assembly systems are also dependent

by more features, therefore, the management of these systems asks for novel approaches.

A new, hierarchical framework was proposed to bridge this gap by offering planning methods

for modular assembly systems on each level of the classical planning hierarchy. On the strategic

level, decisions are taken considering long-term forecasts, and the actual state of the system.

These decisions regard investments, and assignment of products to the proper system type on a

cost basis. Among those, operational and investment costs are both considered, as they are are

highly influenced by medium-term plans calculated on a lower, tactical level. Combining these

aspects, the key to solve the strategic level planning problem relies in the proper prediction of

operational and investment costs, which task was solved by regression model fitting, applying a

set of solutions of tactical level planning model on virtual production scenarios. On both levels

of the framework, new planning methods were proposed that are capable of handling the special
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features of flexible and reconfigurable systems, while providing solutions for real size practical

problems applying linear optimization models. Each model of the hierarchy was evaluated with

use-case problem instances from the industry, justifying their applicability in real situations.

The framework was defined to manage modular assembly systems that mainly apply man-

ual labor to assemble the products. However, there is also an increasing number of examples

from industry for robotic, automated assembly systems. Those systems apply machine resources,

mainly due to the joining technology applied to assemble the products. Similarly to the previous

case, matching the system’s configuration with ever changing product and technology portfolios

ask for novel methods to maintain the service level requested by the customers, while achiev-

ing cost-efficient operation. As a response to this challenge, a new method was proposed for

the design, management and operations of robotic, modular assembly cells, composed of static

elements and also modular devices. The method is built up of different tools, of which the Pro-

duction Planning and Simulation Tool is responsible for the dynamic evaluation of new cell

configurations, and for the prediction of future expected operational costs already in the early

design stage of the system. Integrating this tool in the proposed workflow, it is capable of es-

timating the production batch sizes by matching the system configuration designed with the

previous tools, as well as considering the contractual delivery volumes. In this way, the complete

workflow supports system designers and engineers to reduce the efforts put in the design, con-

figuration and reconfiguration of these cells, so as making the management of product variety

easier.

The last part of the thesis focused on increasing the robustness of production plans calcu-

lated for flexible manual assembly systems, where significant amount of human labor leads to

varying planning parameters, due to the human factor. The new proposed method relies on the

combination of ERP and MES data in production planning, applying simulation and regression

techniques to obtain useful information from lower, process level data, and utilize it in higher

level production and capacity planning. The simulation model is applied to analyze the system’s

behavior, by projecting its quasi-actual state to possible realistic future scenarios. In this way,

detailed data about expected capacity requirements can be collected, providing a training set

of regression models to build upon. These models are then integrated in production planning

models, aimed at defining production lot sizes by considering process-level capacity constraints,

and thus providing more robust plans than conventional, norm-time based ones.

6.3.2 Future work and outlook

As summarized in Section 6.3.1, the results presented in the thesis rely on the latest technological

advancements in production, considering either modular assembly system structures, as well as

complementary information and communication tools supporting the operation of those systems.

All the presented methods rely on information that can be obtained about these systems, either

considering long-term forecasts, or quasi-real time process level data. This way of utilizing data

in production planning methods presents an essential characteristics of I4.0 applications and

cyber-physical production systems. The main future direction of the research is also marked by

new ways of utilizing data in production planning and control methods. In this perspective, new

data analytics tools are in the scope that provide information about key planning and control

parameters in almost real-time, implementing a closed-loop of data flow among processes and

complementary logical elements. Such advanced applications might not rely on simple regres-
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sion techniques, but ask for advanced analytics models that enable incremental model training,

considering the latest planning data and also historical logs. As a representative example, pro-

duction in flow-shop systems could be controlled, so as the lead times of individual orders would

be predicted on a feature basis, matching with the actual state of the system with other jobs

in progress. This kind of advanced data analytics based lead-time prediction and production

control not yet exist in industrial practice, however, it has significant relevance as production

systems are getting more and more complex, while the amount and detail of available data is

ever increasing.

As for the robust production planning and control, the planned future work is twofold. On

the one hand (i) an extended analysis of robustness is to be performed, regarding the influence

of parameter settings on the planning results and also on the performance indicators when a

plan is executed. As discussed in Section 2.5.1, robustness in general have various definitions

and interpretations in production planning and control, due to the emerging nature of the field.

Therefore, next steps in this direction will involve a broader study of robustness, with an in-

depth sensitivity analysis, and a combination of the proposed proactive approach with reactive

solutions, to increase the efficiency of plans by recovery methods and performance stabilization

if certain conditions demands for that. On the other hand, (ii) the range of considered planning

parameters also planned to be broadened, emphasizing especially the natural planning measures

like work in progress, delivery performance and resource utilization. Currently, these parameters

are only implicitly reflected by the objective function, however, they are of significant importance

to measure the effectiveness of operations. Therefore, such parameters will be explicit elements

of the objective function, and due to the trade-off relation among them, it will be even more

important to perform the aforementioned sensitivity analysis precisely.
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(2010). “Towards adaptive and digital manufacturing”. In: Annual reviews in Control 34.1,

pp. 118–128.

Monostori, L., B. Kádár, T. Bauernhansl, S. Kondoh, S. Kumara, G. Reinhart, O. Sauer, G.

Schuh, W. Sihn, and K. Ueda (2016). “Cyber-physical systems in manufacturing”. In: CIRP

Annals-Manufacturing Technology 65.2, pp. 621–641.

Monostori, L., B. Kádár, A. Pfeiffer, and D. Karnok (2007). “Solution approaches to real-time

control of customized mass production”. In: CIRP Annals-Manufacturing Technology 56.1,

pp. 431–434.

Mullen, K. M. and I. H. M. van Stokkum (2012). nnls: The Lawson-Hanson algorithm for non-

negative least squares (NNLS). url: https://CRAN.R-project.org/package=nnls.

Na, H.-b., H.-G. Lee, and J. Park (2008). “A new approach for finite capacity planning in MRP

environment”. In: Lean Business Systems and Beyond, pp. 21–27.

Naeem, M. A., D. J. Dias, R. Tibrewal, P.-C. Chang, and M. K. Tiwari (2013). “Production

planning optimization for manufacturing and remanufacturing system in stochastic environ-

ment”. In: Journal of Intelligent Manufacturing 24.4, pp. 717–728.

Nazarian, E., J. Ko, and H. Wang (2010). “Design of multi-product manufacturing lines with

the consideration of product change dependent inter-task times, reduced changeover and

machine flexibility”. In: Journal of Manufacturing Systems 29.1, pp. 35–46.

Onori, M., N. Lohse, J. Barata, and C. Hanisch (2012). “The IDEAS project: plug & produce

at shop-floor level”. In: Assembly Automation 32.2, pp. 124–134.

Owen, A. (2013). Flexible assembly systems: assembly by robots and computerized integrated

systems. Springer Science & Business Media.

Page, B. and W. Kreutzer (2005). “The Java simulation handbook”. In: Shaker, Aachen.

https://doi.org/10.1016/j.omega.2017.08.008
https://CRAN.R-project.org/package=nnls


BIBLIOGRAPHY 116

Pfeiffer, A., D. Gyulai, B. Kádár, and L. Monostori (2016). “Manufacturing Lead Time Esti-

mation with the Combination of Simulation and Statistical Learning Methods”. In: Procedia

CIRP 41, pp. 75–80. doi: 10.1016/j.procir.2015.12.018.

Pfeiffer, A., D. Gyulai, and L. Monostori (2017). “Improving the Accuracy of Cycle Time Esti-

mation for Simulation in Volatile Manufacturing Execution Environments”. In: Proceedings

of ASIM Simulation in Production and Logistics 2017 conference. ASIM, pp. 177–186.

Pfeiffer, A., B. Kádár, and L. Monostori (2007). “Stability-oriented evaluation of rescheduling

strategies, by using simulation”. In: Computers in Industry 58.7, pp. 630–643.

Pinedo, M. (2005). Planning and scheduling in manufacturing and services. Springer.

Pinedo, M. (2012). Scheduling. Springer.

Pochet, Y. (2001). “Mathematical programming models and formulations for deterministic pro-

duction planning problems”. In: Computational combinatorial optimization, pp. 57–111.

Pochet, Y. and L. A. Wolsey (2006). Production planning by mixed integer programming. Springer.

Putnik, G., A. Sluga, H. A. ElMaraghy, R. Teti, Y. Koren, T. Tolio, and B. Hon (2013). “Scalabil-

ity in manufacturing systems design and operation: State-of-the-art and future developments

roadmap”. In: CIRP Annals-Manufacturing Technology 62.2, pp. 751–774.

R Core Team (2016). R: A Language and Environment for Statistical Computing. R Foundation

for Statistical Computing. Vienna, Austria. url: https://www.R-project.org/.

Ramezanian, R., D. Rahmani, and F. Barzinpour (2012). “An aggregate production planning

model for two phase production systems: Solving with genetic algorithm and tabu search”.

In: Expert Systems with Applications 39.1, pp. 1256–1263.

Rashid, M. F. F., W. Hutabarat, and A. Tiwari (2012). “A review on assembly sequence plan-

ning and assembly line balancing optimisation using soft computing approaches”. In: The

International Journal of Advanced Manufacturing Technology 59.1-4, pp. 335–349.

Rastogi, A. P., J. W. Fowler, W. M. Carlyle, O. M. Araz, A. Maltz, and B. Büke (2011). “Supply
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