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Abstract: A Linear Parameter-Varying (LPV), discrete-time black box model of an electric
power assisted steering system of a passenger car is identified from open-loop step response
measurement data. The goal is to provide a nominal model for control design and analysis that
is able to describe the principal characteristics of the system in the whole region of steering angle
and speed range of 3 to 30 km/h. Examining a set of experimental data by using classical linear
time-invariant black box modeling and validation techniques, the structure of the LPV model is
determined. The parameters of the model are identified based on minimizing a quadratic error
criterion by nonlinear optimization algorithms.
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1. INTRODUCTION

The ultimate goal of modeling presented in this paper is
to support the model based control design for the steering
system of an electric passenger car. The vehicle is adapted
to support research activities in the field of autonomous ve-
hicle control. In the current stage of the project low speed
navigation tasks can be performed. Steering maneuvers are
carried out by directly controlling the electric power assist
unit – a permanent magnet synchronous (PMS) motor –
by a real-time board computer. In normal operation mode
the electric power steering (EPS) unit receives its input
from a torque sensor mounted in the steering column to
measure the driver’s torque. In the autonomous control
mode, this torque sensor signal is replaced by the control
signal of the navigation controllers, and the hand-wheel is
released by the pilot.

The low speed navigation control algorithms have a hierar-
chical structure of two levels. Based on a kinematic vehicle
model, the upper level controller computes a steering angle
that must be realized to follow a specified trajectory. The
lower level controller receives this steering angle command
and manipulates the EPS unit to realize the required
steering angle as accurate as possible.

The goal of modeling in this paper is to describe the
dynamic system including the EPS unit and the lateral
dynamics of the vehicle. Available measurements are the
vehicle speed as scheduling variable of the dynamics and
the steering angle (a constant multiple of the measured
hand-wheel angle). The manipulated control signal which
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is supplied to the power assist unit is also available and
noise free.

It can be observed from the experiments taken in the
autonomous control mode that the EPS unit introduces a
dead-zone, i.e., no torque is applied when the control input
is smaller than a certain threshold. In general, EPS control
units have also a speed dependent characteristics, and may
also depend on other inertial variables of the vehicle. The
lateral vehicle dynamics is known to heavily depend on
the vehicle speed. In this identification problem, the EPS
and the steering dynamics are modeled jointly as a single
dynamical system.

In the literature, the steering dynamics is often linearized
for control purposes where the starting point of the design
is an LPV vehicle model, Poussot-Vassal et al. (2011);
Németh and Gáspár (2012). The steering dynamics is usu-
ally scheduled by the vehicle speed. A physically param-
eterized continuous-time velocity-scheduled LPV state-
space model of a heavy-truck is identified in the paper
by Rödönyi and Bokor (2005).

Proca and Keyhani (1998) identified the unknown subset
of parameters of a continuous-time first principle state-
space model of a power steering system. A detailed non-
linear model is also presented by Żardecki (2011).

In contrast to the above works, a control oriented low order
model is derived in this paper merely from experimental
data.

The contribution of the paper is the following. Structure
and parameters of a black box steering model are identified
from data. The model is valid over the whole region of
operation (speed from 3 to 30km/h and steering angle
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Fig. 1. Electronic Power System architecture

in [±30◦]). The quality of the resulted LPV model is
evaluated by comparing it with a set of local output-error
models, which are identified at a single point of the region
of operation.

2. MODELING APPROACH AND
CHARACTERIZATION OF EXPERIMENTS

A general configuration of a steering system is illustrated
in Fig. 1. The power assist unit is mounted on either
the steering column, or the rack or the pinion. Based on
first principle physical models of the steering system (see,
e.g., Acarman et al. (2002)) and the assumed nonlinear
characteristics of the power assist unit, it is expected that
the system can be described as a series interconnection of
a, possibly static, nonlinear system (the assist unit) and a
speed scheduled LPV system.

Output error-models identified from experiments taken at
constant speed may capture the dominant modes of the
dynamics, even in the present of nonessential nonlineari-
ties, Ljung (1999). Step response measurements provide
a first idea about the static gain characteristics of the
system. It is supposed that a set of local linear OE mod-
els provide hints for the choice of an appropriate model
structure. Each local OE model is identified from a single
step response experiment, and all experiments are taken
over the whole region of operation, i.e., over a set of
fixed different speed and a set of different constant control
inputs. In this way every experiment is associated with a
pair of parameters, (vmean,i, ui): the average speed during
the experiment and the constant control value of the step
input. The distribution of available experiments on this
(vmean, u) coordinate system can be seen in Fig. 2.

Some representative experiments are shown in Figs. 3 and
4. Experiments are numbered from 1 to 127. The sampling
time for the measurements is 20ms.

Measured steering angle and speed in Experiments 77 and
95 are plotted in Fig. 3. Experiment 77 shows a stair-
like behavior, an example for the experiments indicated by
purple squares in Fig. 2. There are multiple constant and
rising segments in the steering angle in these experiments.

Experiments 21 and 27 present a typical phenomena when
disturbances or variation of speed drive the steering angle
in a position where, due to the steering system’s geo-
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Fig. 2. Characterization of step response experiments
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Fig. 3. Some representative experiments

metrical characteristics, less torque is required to increase
the steering angle. Exp. 21 illustrates this situation: with
constant control input, which is bigger than that of Exp.
27 only by a small amount, the steering angle increases up
to the saturation position where the control input is set to
zero.

Dead-zone, asymmetry and nonlinearity in the steady
state gain can be observed from the step response exper-
iments. In order to quantify these first impressions, OE
models are fitted for each experiment, and their parame-
ters are analyzed.

3. LOCAL OUTPUT ERROR MODELS

In the following, yt, ut, vt and et denote respectively the
steering angle, control input, vehicle speed measured at
time t and measurement noise. In order to see the dom-
inant modes of the system at various operating points,
output error models

yt = a1yt−1 + a2yt−2 + . . .+ anyt−n

+b0ut−τ + b1ut−1−τ + . . .+ bnut−n−τ + et (1)
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Fig. 4. Motivation for nonlinear output feedback
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Fig. 5. Relation among parameters Bi of local OE(1)
models, average speed and control value

of order n ∈ {1, 2, 3, 4, 5} are identified for every experi-
ment. The input delay is denoted by τ . Based on inspecting
Akaike’s information criterion, confidence ellipsoids of the
identified poles, and variations of the poles for repeated
experiments (or experiments with similar conditions), see
Ljung (1999), it can be concluded that a first order model
is sufficient to describe well the data at every point of the
region of operation. The best choice for the input delay
is at least two, it may vary for every experiment. In the
following analysis the parameters of the first order OE
models with τ = 2 are examined in terms of the vehicle
speed and the applied control input,

yt = Ayt−1 +But−τ + et. (2)

That is, for each experiment an OE(1) model is fitted
that minimizes a quadratic prediction error criterion. With
every experiment indexed by i a corresponding parameter
pair (Ai, Bi) is associated.

Two parameters, Ai and Bi, of all identified OE(1) models
are plotted in Fig. 5 and 6 in terms of control and average
speed of the actual experiment.

Concerning the distribution of parameters Bi (Fig. 5),
a linear relation with both speed and control can be
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Fig. 6. Relation among parameters Ai of local OE(1)
models, average speed and control value

assumed. Every point in the figure corresponds to a point
in Fig. 2. Average speed is illustrated by colors and an
increasing marker size. An asymmetric dead-zone can be
observed which complies with our experiences.

Parameter Ai, the pole of linear OE(1) dynamics, shows a
falling characteristics with speed, but dependence on the
control value, which is closely related to the steady state
steering angle values, is rather uncertain, see Fig. 6. Local
OE(1) models are clearly fit to the effect of disturbances.
Unfortunately, we have only one experiment at a given
average speed and control value pair, thus no clear relation
between this pole and control signal/steering angle can
be concluded. Based on some experiments, however, such
as those presented in Fig. 4, it can be assumed that a
steering angle dependent pole shifting is present. This can
be represented in the model by adding a static nonlinear
output-feedback in the form

yt = a(vt−1)yt−1 + b(vt−1)gt−1 +B(ut−1, vt−1)ut−1−τ + et

gt = c(yt)yt (3)

where the new input gain b(vt) for the feedback effect
is a nonlinear function of speed, and c(yt) is a steering
angle dependent nonlinear feedback gain. The resulted
LPV model has the following form

yt+1 =A(vt, yt)yt +B(ut, vt)ut−τ , (4)

where A(vt, yt) = a(vt) + b(vt)c(yt).

4. IDENTIFICATION OF LPV MODELS

According to the asymmetry of the steering dynamics, two
LPV models are identified: one for the positive and one for
the negative steering angle values. The final model can be
considered as a hybrid LPV system. In the rest of the
paper only the positive side is presented.

The LPV model is parametrized as follows. Based on the
discussion on input gains Bi in the preceding section,
B(u, v) is assumed to be a piecewise linear function of its
arguments. Let u1 and u2 denote the largest control values
for which the ESP does not generate any torque, i.e., the
borders of the dead-zone, at the lowest speed, vmin and
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the highest speed vmax, respectively. Let B1 and B2 the
value of function B(u, v) at a maximal control value, umax,
at vmin and vmax, respectively. These four parameters
uniquely determine the piecewise linear function

B(u, v) = B3(v)
u− u3(v)

umax − u3(v)
(5)

where

B3(v) =
v

vmax
(B2 −B1) +B1 (6)

u3(v) =
v

vmax
(u2 − u1) + u1 (7)

This way the input gain B(u, v) is parameterized by

θB = [u1, u2, B1, B2]T .

For the parametrization of A(v, y), piecewise linear func-
tions a(v), b(v) and c(y) are chosen. The vector of variable
parameters, θA, consists of the function values over a fixed
grid of arguments, i.e,

θA := [a1, . . . , anv
, b1, . . . , bnv

, c1, . . . , cny
]T ,

where a1 = a(v1), . . . , c1 = c(y1), . . . with v1, . . . , vnv
∈

[vmin, vmax] and y1, . . . , yny
∈ [0, ymax] are fixed grid

points in the admissible interval of speeds and steering
angles, respectively.

The set of fixed parameters consists of the grid points
corresponding to some selected speed and steering angle
values. The optimal choice of these points is determined
by the data: only those values are worth selecting where
enough data is concentrated.

The goal of identification is to minimize the normalized
quadratic error criterion

V (θ) =
1

Ne

Ne∑
i=1

∑Ni−1
t=0 (yt − yt(θ))2∑Ni

t=0 y
2
t

(8)

where Ne is the number of experiments used in the
identification, Ni is the length of experiment i, θ =
[θTB , θ

T
A]T is the vector of variable parameters of the LPV

model (4), and yt(θ) is the simulated response of the LPV
model at time t.

5. EVALUATION OF IDENTIFIED LPV MODELS

The results of identification are summarized in this section.
The piecewise linear functions a(v), b(v), c(y) and B(u, v)
minimizing (locally) criterion function V (θ) are presented
in Fig. 7. It can be seen from the functions a(v), b(v) and
c(y) that A(v, y) is very close to 1 at very low speed, and it
is also close to 1 at about 12-15 km/h. This is in accordance
with Fig. 2, where red stars represent experiments with
saturating steering angle.

Criterion function (8) can be computed for the OE(1)
models so that yt(θ) is replaced with the simulated re-
sponses of the OE models. When comparing the local OE
and the LPV models we have to keep in mind that both
models have advantages. OE models are able to fit the
effect of the actual disturbances in Experiment i, but LPV
models are able to exploit speed information to improve
the fit.

Figures 8-11 show the measured steering angle and the
simulated model outputs of both the local OE model and
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Fig. 7. Identified parameters of LPV steering model

the global LPV model for some selected experiments. It
can be seen that in a wide range of speed and steering
angle, the LPV model show better fit to the data than
the OE models due to the scheduling speed information.
The achieved criterion function values are V ({OE}Ne

i=1 =
0.00585) for the local OE models and V (θ) = 0.0189 for
the LPV model, more than three times larger than that of
the OE models.

The advantage of the nonlinear output feedback term
defined by (3) can be seen if the identification is repeated
without that term. In this case the achieved criterion was
1.74 times larger than that of the complete LPV model
with feedback.

As can be seen in Fig. 2 the experiments do not represent
the whole region of operation equally well. If we want to
improve the LPV model denser grids of speed and steering
angle should be chosen. According to the discussion in
the preceding section the model should be trained by a
sufficient amount of data at those grid points.

As a conclusion, it can be said that the presented approach
for choosing a low order LPV model of the steering
dynamics is promising, but to ensure that the model
is really acceptable over the whole region of operation,
specially where small disturbances may drive the system to
the saturation boundary, more experiments are required.

6. CONCLUSION

The goal of the modeling is to provide a autonomous
vehicle control oriented low order discrete-time model that
captures the fundamental characteristics of an electrical
power assisted steering system. The proposed approach
to find an appropriate model structure is to identify a
set of local linear models that cover the whole region
of operations in terms of vehicle speed and control ef-
fort/steering angle, and then to analyze the dependence
of the parameters on speed, control input and steering
angle. Fortunately, all local linear models a found to be
of first order on the whole region of operation. The anal-
ysis of the parameter dependencies and the experimental
data suggested 1.) a hybrid system (different dynamics
for the left and respectively the right directions); 2.) in
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Fig. 8. Fit of local OE(1) and LPV model for Experiment
77
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Fig. 9. Fit of local OE(1) and LPV model for Experiment
95

each direction, a first order LPV system where the state
transition parameter A is scheduled by the speed and the
steering angle, while the input gainB is scheduled by speed
and control input. Both A and B are defined as special
piecewise linear functions, whose parameters are optimized
according to a normalized quadratic error criterion.

It can be concluded that, although the obtained LPV
model outperformed the local linear models, validation of
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Fig. 10. Fit of local OE(1) and LPV model for Experiment
102

0 5 10 15

time [s]

-5

0

5

10

15

20

25

30

S
te

e
ri
n

g
 a

n
g

le
 [

d
e

g
]

OE(1) and LPV model fit for Exp. 127

measured

OE(1),  V
127

(OE
1
)=0.0052104

LPV,  V
127

(LPV)=0.0019516

0 5 10 15

time [s]

19

20

21

22

23

24

25

S
p

e
e

d
 [

k
m

/h
]

Fig. 11. Fit of local OE(1) and LPV model for Experiment
127

the model and further improvement require much more
experiments.

An important future work is closed-loop validation of the
model where the criterion of model assessment is related
to the control objective.
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