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aResearch Laboratory on Engineering & Management Intelligence, Hungarian Academy
of Sciences, Kende st. 13-17, Budapest, Hungary, 1111

Abstract

Cloud computing is revolutionizing IT environments in most fields of econ-
omy. Its service-based approach enables collaboration and data exchange
on higher level, with better efficiency and parallel decreasing costs. Also
manufacturing environments can benefit from cloud technology and better
fulfill fast changes in market demands, by applying diverse cloud deployment
models and by virtualizing manufacturing processes and assets into services.
As cloud becomes the basis of most innovative manufacturing IT systems, its
future role in Cyber-physical Production Systems has to be properly inves-
tigated, as their interoperability will play a role of vital importance. In this
paper, after a brief introduction to cloud criticality and cloud-based manu-
facturing, the mutual conceptual similarities in modelling distributed indus-
trial services of two of the major standardization frameworks for industrial
Internet architectures are presented: the Industrial Internet Reference Ar-
chitecture (IIRA) and the Reference Architectural Model Industrie (RAMI
4.0). It is also introduced how their integration feasibility finds a strong
affinity in specifications of the Open Connectivity Unified Architecture, a
service-oriented architecture candidate to the standardization of Industrial
Internet of Things based manufacturing platforms. Finally, the preliminary
architecture of a prototype Smart Factory is presented as a case study.
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1. Introduction

Based on the evolution of the information and communications technolo-
gies, a new ”digital” economy has reached a point where it can be called the
forth revolution, and where Cyber Physical Systems (CPSs) are interlinked
through real and virtual objects and processes. This phase is featured as a
deep interdisciplinary integration of technologies in digital, physical and bio-
logical world (Schwab, 2015). Manufacturing industry also belongs to those
sectors which are basically changing in all of their component systems as new
paradigms are consolidating (e.g. additive manufacturing, nanotechnology,
cloud based manufacturing) and the integration of subsystems is becoming
crucial for interoperability. The European Commission has launched an ini-
tiative named ”Digitising European Industry” which focuses on speeding up
the standardization on five priority areas: 5G, cloud computing, internet of
things - IoT, data technologies and cyber-security (EC, 2017). In USA the
National Science Foundation released a call on ”Cyber physical Systems” in
December 2016 that covers, among others, the research areas of IoT, CPS
Security and Privacy, Real-time Control and Adaptation and Manufacturing
(NSF, 2016). The high-tech ICT-based strategic program of the German
government, called ”Industrie 4.0”, primarily focuses on manufacturing and
describes the up-to-date automation and data exchange in manufacturing
technologies, including Cyber-Physical Systems (CPS), Internet of Things
(IoT) and Cloud Computing (CC). According to a statistics from Weins
(2017), the 95% of US firms use CC technology, while the applications of
Cloud-based Manufacturing (CM) are trying to make use of CC technology
by mirroring its service orientation and deployment approach. The Indus-
trial Internet Reference Architecture (IIRA) and the Reference Architectural
Model Industrie (RAMI 4.0) are two of the major standardization frame-
works for industrial Internet architectures, which aim at extending industry
interoperability through a high level of abstraction and common use case
characteristics (in the case of RAMI 4.0 also by providing features and pat-
terns derived from the manufacturing domain). The aim of this paper is to
show how both technologies share conceptual similarities in modelling dis-
tributed industrial services, and also how their integration feasibility finds
relevant affinity in the specification of OPC Unified Architecture (OPC UA),
as one of the possible candidate architectures for IIoT-based service stan-
dardization (Hein, 2017). The paper finally presents a case study containing
the preliminary architectural of a prototype smart factory.
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2. Motivations and related work

Based on opinions of industrial experts in cloud environments, the great-
est challenge facing longer-term adoption of CC might not be security, but
rather interoperability and data portability (Weissberger, 2011), due to the
exponential growth of Internet-connected devices involved in new business
models (Fabode, 2016). Industrial Internet Consortium and ”Plattform In-
dustrie 4.0” in March 2016 announced common efforts to align RAMI 4.0
and IIRA but they did not agree on an ultimate solution. Today CM inter-
operability is in the focus of current research topics and this paper aims at
showing that Industry 4.0 (I4.0) service standardization is not a mere problem
of communication and protocols but taking into consideration interoperabil-
ity already starts at design level: this permits to realize a significantly higher
flexibility and adaptability of production systems. I4.0 is all about informa-
tion and data exchange: between people, machines, materials and systems.
But while standardization is indispensable in communication, machines and
systems should be helped in interpreting the meaning of the communication
and that is where interoperability comes in: interoperability is about the
meaning of the contents of exchanged data.

Several papers can be found in literature in this field but their argumen-
tations are not fully in scope with the ones presented in this paper. In Gøtze
(2016), for example, a major attention is given to RAMI 4.0, recalling that
possible generalization of reference architectures is not an I4.0 specific topic
as it has always seen important attempts in industry starting from the early
1990s. In Uslnder and Epple (2015) authors essentially focus on RAMI 4.0
and its nature of service oriented architecture (SOA). In Pai (2017) author
provides an interesting comparison of both architectures but this description
is customized to specific application of the industrial assets.

On the other hand, this paper’s specific contributions aim at:

• presenting general indications of functional mapping between IIRA and
RAMI 4.0;

• highlighting a modelling link for interoperability between the concepts
of digital twin in IIRA and the Administration Shell in RAMI 4.0
(RAMI 4.0 AS);

• providing evidence of the affinity between RAMI4.0 AS and OPC UA
(as a possible candidate to bridge I4.0 service infrastructure) in mod-
elling the underlying physical environment;
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• establishing a development pattern for interconnected physical compo-
nents and services in I4.0 manufacturing architectures.

3. Cloud, Cloud Manufacturing and Factories of the Future

The future of manufacturing will probably depend on the conceptualiza-
tion of new architectures, which cannot be handled in a traditional manner
as smart devices, or in general smart-X-objects (including humans), smart
connected assets intend to communicate directly with each other. The de-
velopment of new interaction models will be the crucial aspect of future
production strategies.

3.1. Cloud characteristics and deployment models

CC is in general an IT architectural model where computing services
(both hardware and software) are abstracted and delivered to customers over
the Internet, on-demand, in a self-service fashion, independent of device and
location (Marston et al., 2011). Cloud model embodies unique characteristics
and can have various service and deployment models: while service models
are typically an end-user’s perspective in CC industry, different delivery mod-
els refer to different layers of the CC architecture. The most common form
of CC is Software as a Service (SaaS), in which the application runs on the
vendors infrastructure and is recognized as a service. The consumer is un-
aware of the application providers infrastructure and complexity. A Platform
as a Service (PaaS) facilitates the development of applications without the
cost and complexity of buying and managing the underlying hardware and
software layers, like operating system, network, and servers, and develop-
ment tools. Infrastructure as a Service (IaaS) offers also storage, network
and computational capabilities as a service.

Container as a Service (CaaS) is a form of cloud-based virtualization in
which so-called container engines, orchestration and the underlying comput-
ing resources (application, operating system dependencies, libraries, and so
forth) are delivered to users as a service from a cloud provider. Serverless
computing (or Functio as a Service - FaaS) is the highest technology level to-
day, where the whole application, with all of its business logic, is implemented
as functions and events at cloud level. Manufacturing specific Hardware as a
Service (HaaS) is a technique for consistently describing and serving equip-
ment and its functionality, behaviour, structure, etc., and represents one of
the major challenges in service implementation description of core physical
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Figure 1: Cloud deployment models with property-specific service instantiation

equipment in the context of Manufacturing as a Service (MaaS). Cloud in
manufacturing is expected to provide a solid support for service-oriented en-
vironments, simulations and global services. For a comprehensive list of key
players in the CC industry can be found in Marston et al. (2011).

Essential properties of cloud-based systems can be classified according to
Xu (2012), Zissis and Lekkas (2012), and Wang and Xu (2013) into core,
business, enterprise and manufacturing clouds. Resource abstraction, self-
service-centricity, rapid elasticity, multi-tenacity, load-balancing and virtual-
ization are basic characteristics of CC. Business-relevant properties comprise
quality-of-service, service level agreement, user experience, fault-tolerance,
auditability and certifiability. At an enterprise level, interoperability, de-
ployment models, security and business process management increase the
complexity of CC requirements.

Cloud hosting deployment models are mainly distinguished by the propri-
etorship, size and access and are classified in public cloud (the cloud owner
provides Internet-based public services on predefined rules, policies, and a
pricing model); private cloud (benefits of a public cloud but decreased se-
curity concerns as used ”in-house” by the company); community cloud (or-
ganizations having similar requirements and concerns share the CC and a
third-party service provider is responsible for providing the required infras-
tructure of the CC); and hybrid cloud (a combination of two or more dif-
ferent public, private, or community clouds). In hybrid clouds business-
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and mission-critical services and sensitive data are kept unpublished, while
non-critical services are published for others to share and use. Illustration
on Figure 1 depicts common cloud deployment models with service-critical
instantiation orientations.

Besides obvious benefits of CC there are still significant barriers for its
adoption; e.g. according to Zissis and Lekkas (2012) and Lee (2008): mission-
critical services in enterprises need to be locally reinforced, in order to en-
sure continuity in the execution of business processes. Consulting compa-
nies reported how current cloud services may not be cost-effective for larger
enterprises which have achieved best efficiencies from their own computing
infrastructure (Bommadevara et al., 2016).

3.2. Cloud standardization

Cloud service providers usually have own approach on interactions and
cloud-APIs required to users but complex applications on the cloud require
adequate standards, in order for organizations to consolidate their IT systems
in the cloud and realize productivity increase. To-day more than 15 different
groups, committees and organizations have established a Wiki site for Cloud
Standards Coordination (Cloud-standards.org, 2018), whose goal is to docu-
ment activities from various Standards Development Organizations (SDOs)
and leading technology. In general, there are different major approaches
to solve interoperability challenges in networked enterprises: integrated - a
common format for all models; unified - common format at meta-level and
mapping between models; and federated. Our scope addresses the federated
one, in which no common format exists and partners have to share ontology
to map concepts at semantic level. The detailed description of the above
methods can be found e.g. in Chen et al. (2008). Trend and issues for enter-
prise integration and interoperability in manufacturing systems are presented
in detail in Panetto and Molina (2008).

3.3. Cloud Manufacturing

The idea of Cloud manufacturing has been developed upon the cloud com-
puting technology (Li et al., 2010): the basic idea is to apply cloud comput-
ing architecture, tasks and service structure to manufacturing systems. The
name of the paradigm varied from Manufacturing Cloud - MCloud (Zhang
et al., 2012) to Cloud Based Manufacturing - CBM (Wu et al., 2014) but the
content behind the words is the same. There are at least three areas where
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CC can be applied in manufacturing companies, in the form of SaaS/FaaS
solution:

- Data collection and analytics : primarily focused on equipment opera-
tions and management, Big Data in manufacturing strengthen the uti-
lization of a common data model to combine structured business data
(like inventory transactions and financial transactions) with structured
operational data (like alarms, process parameters, and quality events)
and unstructured internal and external data (like customer, supplier,
Web, and machine data) to discover new insights through advanced
analytical tools;

- Inter-factory collaboration with an extended scope: services like sup-
ply chain visibility, transportation management, supplier/contract ne-
gotiation. Partners can create cloud computing modules to address
other manufacturing issues, e.g. supply chain execution, and produc-
tion scheduling;

- High performance computing and simulation: using digital models to
(1) virtually test the products or manufacturing system, (2) understand
the business environment better through business intelligence and (3)
make decisions. The models are typically highly parallelizable and fit
well for a cloud environment.

By using the methods of CC it is possible to convert production oriented
manufacturing processes into service oriented networks by representing single
manufacturing assets as offered services . To access manufacturing resources
as cloud services, manufacturing platforms generally need to have a layered
structure with different levels and content, from manufacturing resources
up to enterprise collaboration level. Each of the products life cycle can be
represented in different service models (based on IaaS, PaaS, and SaaS).
Some examples: the design - in the form of design as a service (DaaS); the
manufacturing - manufacturing as a service (MaaS); and simulation - simu-
lation as a service (SIMaaS). Virtualization is the most important phase of
transforming a conventional manufacturing system to cloud manufacturing:
virtualization means to dynamically divide different resources into virtual
units and later combine them flexibly (with other resources) to a logic unit
to meet diversified demands as encapsulated services. Some major virtualiza-
tion approaches described in literature include Zhang et al. (2017) (a service
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encapsulation and virtualization access model) and Ning and Xiaoping (2012)
(a cloud manufacturing virtualization framework has been described, which
contains three layers: manufacturing resource, virtual description and service
encapsulation layer).

3.3.1. Cloud Manufacturing Interoperability

Interoperability is an essential requirement for both service providers and
enterprises. Interoperable services allow applications to be ported between
clouds, or to use multiple cloud infrastructures before business applications
are delivered from the cloud. Nevertheless, interoperable solutions make easy
migration and integration of applications and data between different cloud
service providers (Xu, 2012). Interoperability can be divided into two main
groups in cloud-based systems/applications: i) the interoperability of the
cloud systems itself (cloud layer) and ii) the interoperability of the appli-
cations (application layer, industry- and HW/SW specific). Yadgarova and
Taratukhin (2016) introduced an integrated framework for building cloud-
based manufacturing environment which allows developing production sys-
tems as adaptive distributed systems with virtual cloud, simulation and
equipment interaction dependency model. Mourad et al. (2016) identified
interoperability as ”a key enabler for cloud manufacturing”. They proposed
a framework called C-MARS for the realization of interoperability across
heterogeneous computer aided manufacturing systems (handling CAD and
NC files). Using this framework, manufacturing resources can be shared by
a large number of clients based on requirements and priorities. A service-
oriented, interoperable cloud manufacturing system (ICMS) is proposed in
Wang and Xu (2013), where service methodologies have been developed to
support customer and enterprise users, along with data models describing
cloud services and collaborative interactions.

4. Industry 4.0 Interoperability and Standardization

The exploitation of I4.0 paradigm requires the availability of adequate
information across all engineering and production value chains, which is the
result of aggregation and fusion of data from various heterogeneous sources,
often under real-time conditions. On the one hand, this comprises a chal-
lenge for the provision of an efficient, secure and dependable information
management infrastructure. On the other hand, system architects must find
solutions to assure interoperability on both syntactical and semantic level
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with reasonable engineering costs. Figure 2 summarizes those aspects which
play a key role in the different production systems and shows the extended
need for interoperability and security. According to Liu and Xu (2016), these
two factors play a fundamental role in I4.0, as the continuous interaction
among sensors, mobile devices and humans (through intelligent interfaces) is
extremely significant at all levels.
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Figure 2: Comparison of the different production and manufacturing systems

Global networking of production resources and processes, as well as the
use of globally interconnected applications crucially require the adoption of
unified standards. Two major proposals for this standardization are intro-
duced in the following, which are ”de-facto” considered as reference guidelines
in conceiving future business organizations: the Industrial Internet Reference
Architecture (IIRA) and the Reference Architecture Model for Industry 4.0
(RAMI 4.0).

4.1. IIRA
IIRA is a standard-oriented open architecture for Industrial Internet Sys-

tems (Industrial Internet Consortium, 2015) and aims at extending interop-
erability in industry and guiding the development of technology standards
development. The IIRA is a general purpose architecture with a high level
of abstraction to support broad industrial applicability based on use cases
defined by the Industrial Internet Consortium (IIC). The architecture frame-
work (IIAF) is based on ISO/IEC/IEEE 42010 (2011) standard specifica-
tion and codifies conventions and common practices which are at the core
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of IIRA’s Internet Information Service (IIS). These architectural concepts
comprise concerns (topics of interest in the system), stakeholders (entities
having an interest in the system) and viewpoints (conventions framing the
description and analysis of specific system concerns). Concerns of an IIS
are classified and grouped in four different viewpoints: business, usage, func-
tional and implementation. In this paper the focus is narrowed only on the
functional viewpoint because this is more relevant from the point of view
of a system interoperability, which is crucial in defining collaboration logics.
In functional viewpoint, IIS is decomposed into five sub-domains: control,
operations, information, application and business. These domains represent
the building blocks of an IIS and illustrate how data and control move across
them. The implementation viewpoint describes the general architecture, the
technological components of an IIS, and the interfaces, protocols and their
behaviours. Implementations are encapsulated under various architectural
patterns, all including the three-tier and gateway-mediated edge connectiv-
ity pattern (refer to Figure 3 for details).
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Figure 3: IIRA 3-tier architecture for IIC testbeds (T1,Tn) with functional domains from
IIRA and communication networks

IIRA is not a standard but provides guidelines on how a safe, secure and
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resilient IIS can help realize the vision of the IIC. IIRA three-tier architecture
can be introduced as follows:

• Edge tier : responsible for collecting data from edge nodes through
asset, sensors and gateways, using the proximity network (control do-
main);

• Platform tier : receives, processes and forwards control commands from
the enterprise tier to the edge tier (management functions, data query
and analytics for devices and assets);

• Enterprise tier : implements domain-specific applications, decision sup-
port systems and provides interfaces to end-users to implement domain
specific functionality such as Manufacturing Execution System, Supply
Chain Management and Enterprise Resource Planning.

IIRA functional domains can be grouped into:

• Proximity network : connects the sensors, actuators, devices, control
systems and assets to a gateway that bridges to other networks, and
enables data and control flow between the edge and platform tiers;

• Access network : enables connectivity for data and control flows be-
tween the edge and the platform tiers;

• Service network : enables connectivity (usually using Transport Layer
Security protocols) between services in the platform and enterprise
tiers.

4.2. RAMI 4.0

Central in RAMI 4.0 is the concept of CPS (analogous to the IIS in IIRA)
where autonomy is localized and component systems make decisions on their
own. The reference architecture model for RAMI 4.0 (VDI et al., 2015) is the
convergence of multiple stakeholder visions on how I4.0 might be realized,
based on existing communication standards and functional descriptions. The
six layers of the vertical axis of RAMI 4.0 define the nature of IT components
in I4.0 (Figure 4): business applications, functional aspects, information
handling, communication and integration capability, and ability of the assets
to implement I4.0 features. The life-cycle of products, machines, orders and
factories are captured along the life cycle and value stream axis (IEC 62890),
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whereas the hierarchy levels represent various functions of enterprise IT and
control systems (IEC 62264 and IEC 61512). An important feature of RAMI
4.0 is the identification of objects as instantiated types of a product, asset,
software, machine, or even a factory.

Product 

Field Device 

Control Device 

Station 

Work Units 

Enterprise 

Conn. World 

Control domain 

Information domain 

Operations  domain 

Business domain 

Applications  domain 

Network connectivity 

Physical system 

Functional viewpoint (IIRA) Value Stream 

Business 

Functional 

Information 

Communication 

Integration 

Asset 

Layers 

Tn

T1

Type 

• Development

• Maintenance
usage

Instance 

• Production

• Maintenance
usage

Figure 4: Mapping between IIRA functional viewpoints with IT layers from RAMI 4.0 for
testbeds (T1,Tn)

4.3. Industrial interoperability: IIRA versus RAMI 4.0

Interoperability can be defined as the ability of two or more systems to
mutually exchange and understand information. It is realized by the imple-
mentation of standards and can be ascertained at various levels in enterprises:
technical, syntactic, semantic, conceptual or functional and business. The
three-tier architectural pattern of IIRA shows distinctive features with RAMI
4.0 architecture when addressing interoperability at their functional level.
This indicates that applications might benefit from the cross-implementation
of both of these industrial Internet architectures, which provide a fully spec-
ified but implementation independent model. More details are presented in
the followings.

Fundamental to IIC is the concept of Digital Twin, the computerized (of-
ten cloud-based) counterpart of physical assets, which uses data from sensors,
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actuators, power supply and network interfaces installed on physical objects
to represent their near real-time status, working condition (properties and
states) or position (a typical example is the use of 3D modelling to create
a digital companion of the physical objects to be projected into the digital
world). Efficient schedule of operations and predictive maintenance of assets
are also possible using digital twins. An important aspect of the digital twin
is that it can be adapted for different environments to take advantage of data
generated by other virtual machines in the ecosystem, according to different
designs and requirements.

The central concept in RAMI 4.0, on the contrary, is built around the
I4.0 compliancy of components, such as product, asset, software, or machine
that be, referring to as objects that have the ability to communicate in-
dependently, by using I4.0 compliant communication (Figure 5). Non-I4.0
compliant components are made I4.0 compliant by deploying an Adminis-
tration Shell (AS), which essentially provides a virtual representation and a
description of the entire life-cycle of the object or asset. It corresponds to
the IIC digital twin of an asset in the I4.0 domain, and contains its lifecy-
cle, technical functionality, and even procedures for sensor data integration
and monitoring. Each product, in order to be integrated into an Industry
4.0 network, needs an Administration Shell, which serves as the networks
standardized communication interface.
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Figure 5: Conceptual mapping between IIC ”digital twin” and RAMI 4.0 ”Administration
Shell”

Two elements play a key role in the definition of an AS: the Virtual
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Representation (VR) and Technical Functionality (TF). The Manifest is an
important part of the VR and can be seen as a directory of the VR data and a
container of the I4.0 component meta-information, as well as the link to other
assets and security indications. The Component manager (CM) is the link
of the I4.0 component to ICT technical services and allows external access
to VR and TF. The CM can thus connect in a Service-oriented Architecture
(SOA) or deploy the AS into a repository. Based on this functional view
(illustrated also on Figure 5) the ”physical part” of IIRA components can be
similarly handled as assets in the AS, the ”digital reference” shows analogous
functionality to CM, and the ”digital twin” in IIRA evidences a role similar
to the AS in RAMI 4.0. This does not mean that the two architectures
are equivalent but it is clear that there is a sort of functional ”alignment”
in the abstraction, modelling and provision of physical asset services to the
external world. It is worth to underline how the primary objective of the AS
remains the standardized integration of assets/things within I4.0 by means
of interleaved I4.0 components, whereas the ”digital twin” generally aims at
benefiting from the virtualization of physical assets in simulations and digital
augmentation of the environment.

In preliminary results from IIC & Plattform Industrie 4.0 (2017), the
authors showed how Industrial Digital Thread and Asset Efficiency, two spe-
cific paradigms for realizing testbeds in connected industrial organizations
(Infosys & IIC, 2015a,b), can be applied to evidence a mapping between
IT layers in RAMI 4.0 and functional domains in IIRA. In Figure 4 an il-
lustration of IIRA 3-tier architecture is reported in the case of arbitrary
testbeds (T1, Tn). ICT levels configuration in the factory field, along with
the functional viewpoints, the associated functional domains from IIRA, and
all relevant communication networks associated with each tier are also de-
picted. Moreover, a mapping between IIRA functional viewpoints with IT
layers associated to RAMI 4.0 architecture for arbitrary testbeds are also
reported on previous Figure 4. IIoT solutions, such as testbeds relying on
a SOA, can be considered to be semantically interoperable between the two
architectures at a functional level.

4.4. Link between RAMI 4.0 and OPC Unified Architecture

Both IIRA and RAMI 4.0 do not indicate any specific solution for devel-
oping the infrastructural layer underlying system communications and both
indicate OPC UA as a strategic player in the realization of industrial ser-
vices interoperability. But while IIRA refers to it as conceivable solution,
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in this section it is introduced how RAMI 4.0 explicitly shows a conceptual
correspondence with OPC UA in modelling information and services, too.

OPC UA is a product of the OPC Foundation (2015), an industry con-
sortium which creates and maintains standards for open connectivity of in-
dustrial automation devices and systems. OPC UA is a service-oriented,
platform-independent standard whose specification is organized into several
documents related to concepts, security model, address space model, services,
information model, mappings, profiles, data access, alarms and conditions,
programs, historical access, discovery and aggregates. OPC UA defines the
sets of services that servers can provide, mapped onto different communi-
cation protocols and in which data can be encoded in XML/text and UA
Binary. Transport protocols support TCP, SOAP/HTTP and HTTPs. OPC
UA enables interoperability by mapping concepts between property sets from
different domains and/or frameworks: the more aligned is the conceptual
modelling of functions (or services) the more natural will be the mapping
between referenced concepts and their direct use. Similar condition has been
discovered between OPC UA information model and RAMI 4.0 Administra-
tion Shell (RAMI 4.0 AS), in consideration of their service modelling analo-
gies (illustration in Figure 6 serves to explain the following concepts):

• RAMI 4.0 AS structure: the data in the AS (Header) is specified in
terms of requirement properties; the component manager (Body) ad-
ministers sub-models which have hierarchically organised properties, re-
ferring to individual data and functions of the physical assets through
views over the properties. Properties of all sub-models constitute the
Manifest of the AS, which can hence serve as a discoverable table of con-
tents of all data and functions. Finally, I4.0-compliant service-oriented
API make methods (intended as a composition of functions in sub-
models) of the CM available externally;

• OPC UA information model: servers contains the definition of real ob-
jects (physical or software) accessed from the Address Space. Objects,
in turn, are modelled in terms of Views (business, operational or per-
mission based aggregation of elements), Attributes, Variables, Methods
and relationships to other Objects. Elements of models are represented
in the Address Space as Nodes, assigned to classes representing differ-
ent aspects of the objects behaviour. Methods are functions similar
to methods of a class in Object Oriented Programming, whose scope
and behaviour is specified in terms of attributes and/or variables data,
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or eventually of other methods (in other nodes). Methods are orches-
trated in order to define service models, invoked by using the proper
discovery and service calls.
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Figure 6: Service modelling analogies between OPC UA server and RAMI 4.0 Adminis-
tration Shell

It is worth to note, at this point, that both methodologies not only assign
a similar role and meaning in the specification of fundamental concepts (for
instance assets vs. nodes ; assets properties vs. object attributes and vari-
ables; sub-models vs. object methods composition and orchestration; com-
ponent manager vs. address space) but for specific functionality they share
even the same terminology, like in the case of views. An example of effective
ongoing initiative demonstrating the integration compatibility of OPC UA
into RAMI 4.0 AS is the Open Asset Administration Shell, an Open Source
Project (openAAS) which aims at implementing an OPC-UA-based AS (it
was expected by the end of 2017).

4.5. RAMI 4.0 and IIRA layers in the Cloud: a possible set of connected
functionality

Figure 7 depicts a possible realization for the integration of the multiple
layers in the case of a hypothetical manufacturing ecosystem. In this case
different factories are modelled with different methodologies (in the example
one factory with RAMI 4.0 and one factory with IIRA), conveying their
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infrastructural virtualization into a connected, cloud-based uniform service
orchestration interface.
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Figure 7: Example of virtualized and connected services from RAMI 4.0 and IIRA layers
in the case of a cloud-deployed manufacturing environment

Figure 7 shows how, in a (methodologically) heterogeneous distributed
manufacturing ecosystem, every asset (shop-floor components, computational
resources, monitoring and control systems, human operators, etc.) partici-
pating in the IoT connected network (f11 to f1N for Factory 1; f21 to f2M for
Factory 2) can be implicitly connected to its asset lifecycle, which is in turn
exposed in terms of cloud-able services (like big data, simulation, resource
planning, dashboard, etc.) through the virtualization of layer-specific func-
tionality coming from each architecture: asset representation, data collection
and analysis, optimization of processes, planning, operation and strategy.
Paradigms such as digital twin (originally associated with factory assets vir-
tualization in IIRA and which finds its counterpart in RAMI 4.0 AS) and
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service virtualization (associated both with the asset life-cycle and the manu-
facturing value chain) formalize this interconnectivity and realizes a uniform
cloud service layer (Service Orchestration Cloud Interface in Figure 7) where
heterogeneous factory assets and computing functionalities can coexist and
be provided in a homogeneously virtualized manner.

4.6. Case study preliminary design

In this section, the preliminary architecture of a prototype smart factory
is presented as a case study, demonstrating the applicability of the theoretical
results. One of the main goals of the project is the realization of an intelligent
Manufacturing Execution and Support System (MESS). The project is in the
phase of defining, assembling and establishing the integration guidelines for a
next generation, heterogeneous, collaborative I4.0 CPPSs (Figure 8). Further
details will be published in a separate paper later on.
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Figure 8: Case study preliminary architecture of RAMI 4.0 and IIRA virtualized and con-
nected services/assets in GINOP Project’s Manufacturing Execution and Support System
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The case study focuses on the implementation and standardization of digi-
talized manufacturing assets and services in a connected prototypical factory.
The basic paradigm for machine-to-machine and the human-to-machine col-
laboration in the project is centered around the concept of the CPPS, an
entity that, strictly coupled with its Digital Twin representation, enables the
creation of adaptive production systems. The main factory deployment lay-
ers are depicted in Figure 8 and major architectural components are reported
hereafter.

Public Cloud: it encompasses architectural components dedicated to the
development and integration of enterprise-level manufacturing services
(process simulation, DT of the CPPSs and 3D visualization and vali-
dation of the manufacturing environment, data analysis, scheduling of
production activities, and so forth).

Private Cloud: it represents the actual deployment layer of the MESS,
whose main functionality comprises the management and persistence
of operational and service data, the orchestration (adapting scheduled
activities to real-time events emerging from production) and execution
(governing and directing) of manufacturing processes, as well as the
interface to both upper and lower layer of the architecture.

On-premises production system: it focuses on the realization of stan-
dardized and connected of I4.0 components (CPPSs whose physical
assets may be robots, web cameras, Kinect controllers, and an IIS
intended for automated guided vehicles domain - AGVs - and orien-
tation cameras). Each CPPS is the realization of the RAMI 4.0 AS
and embodies the instantiation of its physical resources and provides
capabilities related to communication, information and data, manage-
ment of operations in augmented reality (CPPS layers on Figure 8),
adopting a unified OPC UA modelling approach on top of the I4.0
components stack. A CPPS in the case study consists of autonomous
and cooperative elements and sub-systems, connected with each other
in a context-aware manner:

• the physical resources (asset instances);

• the cyber component (robot, camera and controllers), which is the
interface on the ”nearest” hardware with computing capacity and
network connection;
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• the task dispatching controller is an asynchronous event based
communication hub, where every CPPS is reachable in a stan-
dardized way and able to report its own status;

• the process planner is the adaptive virtualization of the environ-
ment to perform a functionality requested by the MESS;

• the process controller implements a precedence graph of tasks and
executes them based on the CPPS status reports. A CPS is bound
to its process components in terms of assigned resource, assigned
functionality and assigned process precedence;

• Each CPPS functionality/service is modelled and provided via the
Address Space of a dedicated OPC UA Server (interface details
on Figure 8).

5. Conclusions

Cloud computing and cloud manufacturing became well known paradigms
and many different applications have been developed over them. Despite this,
the main challenges in cloud technology (like interoperability and security)
still remain, especially due to the evolution and application of cloud-based
(I)IoT systems which comprise of an enormous volume of heterogeneous con-
nected devices, tools and machines. There is a strong demand for new system
architectures, in order to address new emerging industrial requirements for
globally interconnected structures. In this paper two significant frameworks,
IIRA and RAMI 4.0, have been compared with each other and the latter
with respect to OPC UA. The authors have derived common functional and
modelling similarities in the interoperability and virtualization layers of each
architecture and provided an example of how manufacturing services can be
conceptualized and orchestrated in both architectures and provided to the
external world via a common cloud-based interface. A preliminary architec-
ture for a project case study has also been presented, in which the practical
applicability of theoretical results has been introduced. An interpretation
has been provided, too, of how a combination of IIC and RAMI 4.0 archi-
tectural guidelines may find relevant coexistence in end-to-end and comple-
mentary IIoT solutions. This observation can generate further discussions
on a broader context of integrated industrial IoT solutions. Interoperabil-
ity remains a central problem in the industrial implementations of new ICT
paradigms and significant efforts have to be invested both in the fields of
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research and industrial applications, as this approach will probably be the
key to realize the advantages promised by Industry 4.0 scenarios.

Acknowledgements

This research has been supported partially by the European Commis-
sion through the EU H2020 projects EXCELL under grant No. 691829 and
GINOP-2.3.2-15-2016-00002.

References

Bommadevara, N., Kaplan, J., Starikova, I., 2016. Leaders and laggards
in enterprise cloud infrastructure adoption. http://www.mckinsey.com/
business- functions/digital-mckinsey/our- insights/leaders-and- laggards-
in-enterprise-cloud-infrastructure-adoption, [Retrieved April 23, 2018].

Chen, D., Doumeingts, G., Vernadat, F., 2008. Architectures for enterprise
integration and interoperability: Past, present and future. Comput. Ind.
59 (7), 647–659.

Cloud-standards.org, 2018. The cloud standards wiki. http : / / cloud -
standards.org, [Retrieved April 23, 2018].

EC, 2017. European commission sets out path to digitise european indus-
try. https://ec.europa.eu/digital-single-market/en/news/commission-sets-
out-path-digitise-european-industry, [Retrieved April 23, 2018].

Fabode, S., 2016. New Business Models For IoT and IIoT Businesses.
https://medium.com/startup-grind/new-business-models- for- iot-and-
iiot-businesses-2e5177d11a4a, [Retrieved April 23, 2018].

Gøtze, J., 2016. Reference architectures for Industry 4.0. https://coe.
qualiware.com/reference-architectures-for-industry-4-0/, [Retrieved April
23, 2018].

Hein, A., 2017. Prepare for the new era of IIoT using OPC UA con-
nectivity. https://www.honeywellprocess.com/library/news-and-events/
presentations/hon-emea17-prepare-for-the-new-era-of-iiot-using-opc-ua-
connectivity.pdf, [Retrieved April 23, 2018].

21

http://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/leaders-and-laggards-in-enterprise-cloud-infrastructure-adoption
http://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/leaders-and-laggards-in-enterprise-cloud-infrastructure-adoption
http://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/leaders-and-laggards-in-enterprise-cloud-infrastructure-adoption
http://cloud-standards.org 
http://cloud-standards.org 
https://ec.europa.eu/digital-single-market/en/news/commission-sets-out-path-digitise-european-industry
https://ec.europa.eu/digital-single-market/en/news/commission-sets-out-path-digitise-european-industry
https://medium.com/startup-grind/new-business-models-for-iot-and-iiot-businesses-2e5177d11a4a
https://medium.com/startup-grind/new-business-models-for-iot-and-iiot-businesses-2e5177d11a4a
https://coe.qualiware.com/reference-architectures-for-industry-4-0/
https://coe.qualiware.com/reference-architectures-for-industry-4-0/
https://www.honeywellprocess.com/library/news-and-events/presentations/hon-emea17-prepare-for-the-new-era-of-iiot-using-opc-ua-connectivity.pdf
https://www.honeywellprocess.com/library/news-and-events/presentations/hon-emea17-prepare-for-the-new-era-of-iiot-using-opc-ua-connectivity.pdf
https://www.honeywellprocess.com/library/news-and-events/presentations/hon-emea17-prepare-for-the-new-era-of-iiot-using-opc-ua-connectivity.pdf


IIC & Plattform Industrie 4.0, 2017. Industrial Internet Consortium & Plat-
form Industrie 4.0. https://www.infosys.com/engineering-services/white-
papers/Documents/industrial-internet-consortium-architecture.pdf, [Re-
trieved April 23, 2018].

Industrial Internet Consortium, 2015. Industrial Internet Reference Architec-
ture. https://www.iiconsortium.org/IIRA.htm, [Retrieved April 23, 2018].

Infosys & IIC, 2015a. IIC - Asset Efficiency Testbed. http : //www.
iiconsortium.org/asset-efficiency.htm, [Retrieved April 23, 2018].

Infosys & IIC, 2015b. IIC - Industrial Digital Thread Testbed. http://www.
iiconsortium.org/asset-efficiency.htm, [Retrieved April 23, 2018].

Lee, E. A., 2008. Cyber physical systems: Design challenges. Tech. Rep.
UCB/EECS-2008-8, EECS Department, University of California, Berkeley.

Li, B.-H., Zhang, L., Wang, S.-L., Tao, F., Cao, J., Jiang, X., Song, X.,
Chai, X., 2010. Cloud manufacturing: a new service-oriented networked
manufacturing model. Computer integrated manufacturing systems 16 (1),
1–7.

Liu, Y., Xu, X., Oct 2016. Industry 4.0 and cloud manufacturing: A compar-
ative analysis. Journal of Manufacturing Science and Engineering 139 (3),
034701–034701–8.

Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., Ghalsasi, A., 2011. Cloud
computing the business perspective. Decision Support Systems 51 (1), 176
– 189.

Mourad, M., Nassehi, A., Schaefer, D., 2016. Interoperability as a key enabler
for manufacturing in the cloud. Procedia CIRP 52 (Supplement C), 30 – 34,
the Sixth International Conference on Changeable, Agile, Reconfigurable
and Virtual Production (CARV2016).

Ning, L., Xiaoping, L., 2012. A resource virtualization mechanism for cloud
manufacturing systems. In: van Sinderen, M., Johnson, P., Xu, X., Doume-
ingts, G. (Eds.), Enterprise Interoperability. Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 46–59.

22

https://www.infosys.com/engineering-services/white-papers/Documents/industrial-internet-consortium-architecture.pdf
https://www.infosys.com/engineering-services/white-papers/Documents/industrial-internet-consortium-architecture.pdf
https://www.iiconsortium.org/IIRA.htm
http://www.iiconsortium.org/asset-efficiency.htm
http://www.iiconsortium.org/asset-efficiency.htm
http://www.iiconsortium.org/asset-efficiency.htm
http://www.iiconsortium.org/asset-efficiency.htm


NSF, 2016. Cyber-Physical Systems. https://www.nsf.gov/pubs/2017/
nsf17529/nsf17529.pdf, [Retrieved April 23, 2018].

OPC Foundation, 2015. OPC Unified Architecture. https://opcfoundation.
org/developer-tools/specifications-unified-architecture, [Retrieved April
23, 2018].

Pai, M., 2017. Interoperability between IIC Architecture and Industry
4.0 Reference Architecture for Industrial Assets. https://www.infosys.
com/engineering-services/white-papers/Documents/industrial- internet-
consortium-architecture.pdf, [Retrieved April 23, 2018].

Panetto, H., Molina, A., 2008. Enterprise integration and interoperability in
manufacturing systems: Trends and issues. Comput. Ind. 59 (7), 641–646.

Schwab, K., 2015. The fourth industrial revolution: What it means and how
to respond. https://www.foreignaffairs.com/articles/2015-12-12/fourth-
industrial-revolution, [Retrieved April 23, 2018].

Uslnder, T., Epple, U., 2015. Reference model of industrie 4.0 service archi-
tectures. at - Automatisierungstechnik 63, 858–866.

VDI, VDE, ZVEI, 2015. Gma status report: Reference architecture model
industrie 4.0 (rami 4.0). https://www.zvei.org/fileadmin/user upload/
Presse und Medien / Publikationen / 2016 / januar / GMA Status Report
Reference Archtitecture Model Industrie 4.0 RAMI 4.0 /GMA-Status-
Report-RAMI-40-July-2015.pdf, [Retrieved April 23, 2018].

Wang, V. X., Xu, X. W., 2013. An interoperable solution for cloud manufac-
turing. Robotics and Computer-Integrated Manufacturing 29 (4), 232–247.
URL http://dx.doi.org/10.1016/j.rcim.2013.01.005

Weins, K., 2017. Cloud computing trends: 2017 state of the cloud sur-
vey. https://www.rightscale.com/blog/cloud- industry- insights/cloud-
computing-trends-2017-state-cloud-survey, [Retrieved April 23, 2018].

Weissberger, A., 2011. IEEE CIO Says Cloud Interoperability a Bigger Prob-
lem than Security. http://techblog.comsoc.org/2011/06/, [Retrieved April
23, 2018].

23

https://www.nsf.gov/pubs/2017/nsf17529/nsf17529.pdf
https://www.nsf.gov/pubs/2017/nsf17529/nsf17529.pdf
https://opcfoundation.org/developer-tools/specifications-unified-architecture
https://opcfoundation.org/developer-tools/specifications-unified-architecture
https://www.infosys.com/engineering-services/white-papers/Documents/industrial-internet-consortium-architecture.pdf
https://www.infosys.com/engineering-services/white-papers/Documents/industrial-internet-consortium-architecture.pdf
https://www.infosys.com/engineering-services/white-papers/Documents/industrial-internet-consortium-architecture.pdf
https://www.foreignaffairs.com/articles/2015-12-12/fourth-industrial-revolution
https://www.foreignaffairs.com/articles/2015-12-12/fourth-industrial-revolution
https://www.zvei.org/fileadmin/user_upload/Presse_und_Medien/Publikationen/2016/januar/GMA_Status_Report__Reference_Archtitecture_Model_Industrie_4.0__RAMI_4.0_/GMA-Status-Report-RAMI-40-July-2015.pdf
https://www.zvei.org/fileadmin/user_upload/Presse_und_Medien/Publikationen/2016/januar/GMA_Status_Report__Reference_Archtitecture_Model_Industrie_4.0__RAMI_4.0_/GMA-Status-Report-RAMI-40-July-2015.pdf
https://www.zvei.org/fileadmin/user_upload/Presse_und_Medien/Publikationen/2016/januar/GMA_Status_Report__Reference_Archtitecture_Model_Industrie_4.0__RAMI_4.0_/GMA-Status-Report-RAMI-40-July-2015.pdf
https://www.zvei.org/fileadmin/user_upload/Presse_und_Medien/Publikationen/2016/januar/GMA_Status_Report__Reference_Archtitecture_Model_Industrie_4.0__RAMI_4.0_/GMA-Status-Report-RAMI-40-July-2015.pdf
http://dx.doi.org/10.1016/j.rcim.2013.01.005
https://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2017-state-cloud-survey
https://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2017-state-cloud-survey
http://techblog.comsoc.org/2011/06/


Wu, D., Rosen, D. W., Wang, L., Schaefer, D., 2014. Cloud-based manufac-
turing: Old wine in new bottles? Procedia CIRP 17 (Supplement C), 94
– 99, variety Management in Manufacturing.

Xu, X., 2012. From cloud computing to cloud manufacturing. Robotics and
Computer-Integrated Manufacturing 28 (1), 75–86.

Yadgarova, Y., Taratukhin, V., 2016. An Interoperable Cloud Environment of
Manufacturing Control System. Springer International Publishing, Cham,
pp. 3–12.

Zhang, L., Luo, Y., Tao, F., Li, B., Ren, L., Zhang, X., Guo, H., Cheng,
Y., Hu, A., Liu, Y., 2012. Cloud manufacturing: A new manufacturing
paradigm. Enterprise Information Systems 8, 1–21.

Zhang, Y., Zhang, G., Liu, Y., Hu, D., Jun. 2017. Research on services
encapsulation and virtualization access model of machine for cloud manu-
facturing. J. Intell. Manuf. 28 (5), 1109–1123.

Zissis, D., Lekkas, D., 2012. Addressing cloud computing security issues.
Future Gener. Comput. Syst. 28 (3), 583–592.

24


	Introduction
	Motivations and related work
	Cloud, Cloud Manufacturing and Factories of the Future
	Cloud characteristics and deployment models
	Cloud standardization
	Cloud Manufacturing
	Cloud Manufacturing Interoperability


	Industry 4.0 Interoperability and Standardization
	IIRA
	RAMI 4.0
	Industrial interoperability: IIRA versus RAMI 4.0
	Link between RAMI 4.0 and OPC Unified Architecture
	RAMI 4.0 and IIRA layers in the Cloud: a possible set of connected functionality
	Case study preliminary design

	Conclusions

