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Abstract

by Alyssa Crawford

This project investigated the statistical significance of baccalaureate student place-
ment tools such as tests scores and completion of a developmental course on pre-
dicting success in a college level algebra course at the University of Alaska (UA).
Students included in the study had attempted Math 107 at UA for the first time
between fiscal years 2007 and 2012. The student placement information had a
high percentage of missing data. A simulation study was conducted to choose the
best missing data method between complete case deletion, and multiple imputa-
tion for the student data. After the missing data methods were applied, a logistic
regression with fitted with explanatory variables consisting of tests scores, devel-
opmental course grade, age (category) of scores and grade, and interactions. The
relevant tests were SAT math, ACT math, AccuPlacer college level math, and the
relevant developmental course was Devm/Math 105. The response variable was
success in passing Math 107 with grade of C or above on the first attempt. The
simulation study showed that under a high percentage of missing data and correla-
tion, multiple imputation implemented by the R package Multivariate Imputation
by Chained Equations (MICE) produced the least biased estimators and better
confidence interval coverage compared to complete cases deletion when data are
missing at random (MAR) and missing not at random (MNAR). Results from
multiple imputation method on the student data showed that Devm/Math 105
grade was a significant predictor of passing Math 107. The age of Devm/Math
105, age of tests, and test scores were not significant predictors of student success
in Math 107. Future studies may consider modeling with ALEKS scores, and high

school math course information.
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1. Introduction

Research in the initial placement requirements for math courses taught at the
University of Alaska (UA) are important to ensure student success. A missing
data method is necessary for the analysis of student placement for Math 107,
an entry-level math course on college algebra at UA. The placement system was
flexible because a common placement test was lacking until recently. Students may
have used up to four different placement mechanisms including developmental
coursework and tests scores. Many students placed into Math 107 by having a
satisfactory grade in a developmental course titled intermediate algebra (Devm/
Math 105). Also, students may have used AccuPlacer college level math score
for placement into Math 107 and historically, students have used SAT Math or
ACT Math scores. More prerequisite information of the UA system and its three
universities may be found in the appendix tables A.1, A.2 and A.3. This project
addresses the issue of missing data using two missing data methods to answer the

following question:

Are SAT, ACT, AccuPlacer and MATH/DEVM 105 score/grade and age
significant predictors of successful completion of Math 107 for baccalaureate

degree seekers?

Age refers to the age of test or coursework and is defined as the time elapsed
between the start of the first attempt in Math 107 and the test date, or end date

of coursework.

This project compared and contrasted two missing data techniques: complete case
deletion, and multiple imputation. Complete case deletion is a common method in
which any observations with missing information are deleted. Multiple imputation
produces several data sets, each with different reasonable values filled in for the

missing data, and the data sets are combined for an overall analysis. For this
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project, the method of multiple imputation was implemented by the R package
Multivariate Imputation by Chained Equations (MICE). It is important to specify
the R package since several R packages exist for multiple imputation and the R

packages use different methods of imputation.

After applying the missing data method, a logistic regression model was fitted.
The model follows,

y; ~Bernoulli(;)

J
logit(m;) =fo + Z Bt
=i

where m; = P(y; = 1) is the probability of success. Success is defined as a final
grade C or above for the first attempt of Math 107. We let X, ; denote the jth
explanatory variable (j = 1,...,J) for the ith student. Explanatory variables were
scores and ages of ACT, SAT, AccuPlacer, and grade and age of Devm/Math
105. Interaction between age and score or grade were included when possible.
The regression coefficients (5’s) explained the relative effect of the explanatory
variable. This project was interested in unbiased estimation of the §’s, especially

after applying the missing data technique.

This project used readily available information from UA’s Decision Support Database
that included system-wide information from UA administrative information sys-
tems. Student registration information between Summer, 2007, and Spring, 2012,
revealed that 4,793 students met inclusion criteria for the project. The general
criterion was first attempt at taking Math 107, among 4-year degree seeking stu-
dents. Other details may be found in the methods section inclusion and exclusion

criteria or Figure B.1.

In order to choose between the complete case deletion or multiple imputation
methods for the student data, we conducted a simulation study to investigate the
two methods under a high degree of missingness and correlation. The best method

is the one with the least biased estimators and good confidence interval coverage.



1.1 Missing Data Background

1.1.1 Missing Data Patterns

Any discussion of missing data begins with Rubin’s (1976) classification of missing
data patterns: missing completely at random (MCAR), missing at random (MAR),
missing not at random (MNAR). These patterns are simply mathematical devices
to describe why values are missing, and are included here to help describe how well
a missing data technique will perform. The goal of missing data procedures should
not be to make estimates of missing data but to make valid inferences (Schafer
and Graham, 2002). Usually the goal is not to re-create the lost data but rather
to produce unbiased estimators (van Buuren, 2012). The mechanisms - MCAR,
MAR, and MNAR - are helpful in describing how estimators will perform and the

following definitions are conceptional.

e Missing Completely at Random (MCAR) occurs when the probability of
missing data on a variable is independent of other measured variables, and
of the value itself. An example could be a student who was sick on the day

the SAT test was given.

e Missing at Random (MAR) occurs when the probability of missing data on
one variable is related to other measured variables but not on the value itself.
An example of MAR would be a student who didn’t take an AccuPlacer test
because of their high SAT or ACT Score.

e Missing not at Random (MNAR) occurs when the probability of missing
data depends on the value itself. An example could be a student who didn’t

submit a low SAT score to the University because it was low.

The above three missing data patterns may inform us of how a missing data

technique will perform and this is discussed in the next section.

1.1.2 Missing Data Techniques

Missing data techniques are categorized as either traditional or modern. Tra-
ditional techniques include complete case deletion and single imputation, while

modern techniques include multiple imputation and the EM algorithm.
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Complete case deletion, also called listwise or case wise deletion, is a common tech-
nique implemented by most statistical software. For this technique any observation
with a missing value is thrown out. For MCAR, there is general agreement that
deletion of missing cases leads to no bias in estimators, but at a cost of reduced
sample size (Baraldi and Enders 2010). A smaller sample size leads to greater
standard errors and reduced power. However, when the MCAR assumption is not
valid, deletion of observations produces biased estimators (Baraldi and Enders
2010). The traditional technique of complete case deletion performs well when the
probability of missing values on one variable are independent of other variables or
the value itself (MCAR) but the technique performs poorly when probability of

missing data on one variable are correlated with other variables (MAR).

Single imputation means filling in missing data with reasonable values and results
in one complete imputed data set. Reasonable values could be the average of all the
observed data, or a fitted value from a linear regression on other variables. Single
imputation was not used here due to general agreement that single imputation
leads to biased estimators under the assumptions of MCAR or MAR (Baraldi and

Enders, 2010). It also seriously underestimates the vairance of the cofficents (5’s).

Modern data missing techniques like multiple imputation and maximum likelihood
(EM Algorithm) are far more complicated techniques that are not perfect fixes to
missing data, yet are highly recommended since they produce unbiased estimates
under MAR (Baraldi and Enders, 2010). Multiple imputation is the main focus in
this project since software for maximum likelihood like the EM algorithm is not
yet implemented for logistic regression models with missing data. For multiple
imputation, several data sets are created each with different imputed values and
these data sets are combined for analysis. Multiple imputation is best explained in
three steps: imputation, analysis and pooling. Multiple imputation involves first
an imputation step where several copies of datasets, each with different imputed
values, are produced. The method of imputation depends on software, and the
most important aspect of the imputation step is defining a imputation model.
For the second step, each dataset is analyzed separately using the same statistical
model. The final step is to pool together estimators using rules from Rubin (1987).
There are two estimates of variances: one for sampling variance and the other
describing extra variance caused by missing data. Of these steps, the imputation

stage is the most difficult, due to tough decisions about the imputation model.



1.1.3 Placement Background

Several barriers exist when analyzing student placement information because of
the historically inconsistent and flexible placement polices across the Universities.
Each University campus may have had different cutoff scores for the same Math
course and a common placement test was lacking until recently. Another barrier is
the lack of readily available official record of a specific prerequisite for a student.
This information may exist in an official capacity but is not available for efficient
analysis or development of management information. Also, sometimes students
have instructor permission to enter a course, and there is no official record for
reason. It appears that enforcement of each University’s policies depends on the
instructors, and instructors vary on the degree of enforcement. The universities

seem to show a reliance on tests in determining placement of students.

Additionally, we briefly make a case that student high school information is likely
an important predictor of student success. A study revealed that placement tests
AccuPlacer and Compass were weakly associated with college GPA while high
school GPA is strongly associated with college GPA (Belfield and Crosta, 2012).
Another study on universities with optional standardized testing policies for ad-
missions showed little differences in graduation rates and cumulative college GPA
between submitters and non-submitters (Hiss and Franks, 2014). The same study
showed that students with strong high school GPAs tended to have strong cu-
mulative college GPAs even with low or modest testing. These studies looked at
student success at a broad level of cumulative college GPA, however the project
presented here looks to investigate student success in a course. Still, it is likely
that student high school math grades and intensity are important to predicting
student success in Math 107. High school information was not used in this project

because it was not available for efficient analysis.



2. Methods

2.1 Student Data: Inclusion and Exclusion Cri-

teria

The following section describes who was eligible to be in the study. Please also

refer to figure B.1 in appendix B for a summary.

An important aspect of this project was to create an appropriate dataset from
the UA data system. This project examined UA students who were 4-year degree
seeking at the time of Math 107 and who first attempted the course between fiscal
years 2007 and 2012. Students included in the dataset were enrolled for credit and
had an official grade in Math 107 between Summer 2007 and Spring 2012. Official
grades were needed to determine the response variable pass or fail; grades included
as passing are grades C and above. We note that grade C- was considered not to
be passing. Final grades W and AU were assumed to be progressing toward a final
course grade below C, and were considered failures. There were 92 students with
final grades deferred (DF), no basis (NB), and not submitted (NS) and these were
not included in the dataset because these students likely had extreme situations

preventing them finishing the course with a GPA eligible grade.

We checked and obtained test age and test score for placement tests AccuPlacer
College Level Math, and college-admission exams ACT Math, and SAT Math.
The test age was the time elapsed between the test date and the Math 107 start
date. If students had re-takes of the same test, the test with the most recent test
date was chosen for the dataset. Any test taken 31 days after the start date for
Math 107 was disregarded. Only 82 students who first-attempted Math 107 had
on record a COMPASS College Algebra exam or ASSET exam; these exams were

not used in the project.



For developmental coursework, Devm/Math 105, the age of the course was the
time elapsed from last date of Devm/Math 105 to the start date of Math 107. If
students had re-takes of Devm/Math 105, we selected the most recent course for
the dataset. Any Devm/Math 105 taken after the first attempt of Math 107 was

disregarded from dataset.

Students who were previously enrolled for Devim 066 were not included in the
study; this included 12 students. Devm 055 is a UAF course titled Advanced
Math Fast Track: Elementary/Intermediate Algebra Review. The course is a 20
hour review of algebra and was shown to increase pass rates greatly. Students who

took Devm 055 are likely better prepared and quite different from other students.

Also excluded from the study were 388 students that didn’t have any relevant tests
or developmental courses that were the subject of this project and because they

were likely quite different from the main student population.

2.2 Statistical Methods

2.2.1 Complete Case Deletion

For the complete case deletion, a separate logistic regression is fitted for datasets
having one of the predictors Devm/Math 105, SAT, ACT, or AccuPlacer. So there
were four models, each with a coefficient for score/grade, age and interaction. Let
Y; be a binary variable denoting pass or fail grade for student i (i = 1,...,n).

Passing grade includes grades C and above for the first attempt in Math 107. The



model is then,

y; ~Bernoulli(7;)

logit(m;) =Po + frais + Baxos + PaxiTas (2.1)

where

'4
continuous value test score

X145 = § or

| ordinal value Math/Devm 105 Grade

(Recent (1) Age of SAT, ACT, or Math/Devm 105 < 2 year

or
X245 =

)

Age of AccuPlacer < 1 year

| Not Recent (0) otherwise

For the complete case deletion method, the model included one placement criterion
at a time, due to the very few students having all placement criteria (83 out of
4,793).

For grades in Devm/Math 105, the letter grades A, B, C, D, and F were given
values 5, 4, 3, 2, and 1, respectively. For grades with plus or minus, the value was
the grade point rounded with usual rounding rules. For example a letter grade A-
has grade point 3.7, and this was rounded to 4 for the model. Grades AU and W
were given the same grade value as F. For grade incomplete (I), the grade value
was 3.0. Explanatory variable, age, was coded as a binary variable of either recent
(1) or not recent (0). The age of test or coursework was the time elapsed between
the start of the first attempted of Math 107 and the date of the most recent test
or end of most recent Devm/Math 105 coursework. The recent category for age
included ages for SAT, ACT, and Devim/Math 105 that were less than two years
and not recent if older. Since many students take the AccuPlacer test right before
Math 107, it was more reasonable to have recent age be less than one year and
not recent if older. The baseline for the logistic regression model was always not

recent (0).

Model selection began with the most complex model and we dropped terms with
the largest P-values until remaining coefficients were all significant (P-value <
0.05). Also, for model selection Akaike information criterion (AIC) values were

used.



For statistical inference, a description of the odds ratios is given. The magnitude
of coefficients in a logistic regression model is usually interpreted as odds ratios
given by 6/3; that is, the odds of X = x + 1 divided by the odds at X = x. For
odds ratios with a categorical variable, the baseline of the logit model was not
recent (0).

2.2.2 Multiple Imputation

The first concern with multiple imputation is addressing the MAR. assumption;
there is more discussion about the MAR assumption in the conclusion section.
The imputation step of the MICE package imputes missing values using the MICE
algorithm. The general process imputes on a variable-by-variable basis by spec-
ifying an imputation model for every variable while other variables are treated
as explanatory variables (including the actual response variable) with no missing
values. The MICE algorithm is an iterative process where the final dataset is the
last imputation of several cycles of imputation; the default is 5 iterations. The
steps of the algorithm are described below, but first notation must be stated. We
use X to denote a n x (p+1) matrix of the data, with one row for each observation,
one column for each of the p-many explanatory variables and one column for the
response variable. Let ¢ = 1,...,n indicate the rows and 7 = 1,...,(p + 1) the
columns of the X matrix. Also, we have a n x (p + 1) matrix, R, with entries
r; =1 if x; ; is observed and r; ;=0 if x;; is missing. The (p+1)th column is for
the actual response variable, so the entries of the p+1 column of R are 1. The
X matrix has missing values, and can be partitioned, X = (Xups, Xiniss) where
Xmiss corresponds to O-entries in the R-matrix. Let ¢; be a vector of parameters
(Bj,02) or (B;) for each column j of X, if the imputation model is a Bayesian
multivariate normal linear model or a Bayesian logistic regression model, respec-
tively. A Bayesian multivariate normal linear model is the imputation model if
column j corresponds to a continuous variable such as test scores or Devin/Math
105 grade, and a Bayesian logistic regression model if column j corresponds to a
binary variable such as recent versus not recent test score. For the imputation
model note that we consider column 5 as the temporary response variable denoted
as X; and the other p-many columns (including column p+1, the actual response
variable) as the explanatory variables denoted by X_;. Let x?”ss be entries need-

ing imputation from column j and x’_”}ss be the subset of rows of X_; for which

miss

X

Is missing.



The algorithm used by MICE was as follows:

1. Starting imputations were random draws from the observed data. The soft-
ware filled in values for the entries of X,,;ss (i.e. entries in X that correspond
to locations of 0’s in the R-matrix) with random draws from the observed
data.

2. For each iteration (tin1,2,3...,T):

For each column j of explanatory variables (j=1,..,p) with missing val-

ues:

i. Draw vector ¢; from its fully conditional distribution.

A. If column j is a continuous variable then ¢; = (8;,0?), and we
used the usual formulas for the least square estimator 5’s and
o? with a small amount of added random noise (see algorithm
3.1, van Buuren, 2012).

B. If column j is binary variable then ¢; = (3;), and we used a it-
eratively reweighted least square estimator with added random

noise (see algorithm 3.4, van Buuren, 2012).

miss

ii. Simulate new values x7"** using the qASj as follows:

A. If continuous predictor, then we used the formula for condi-

miss

tional distribution of normal random values to simulate ]

then we added random noise, N(0,02;).
B. If binary predictor, then for each missing value in that column
calculate 7, the inverse logit of linear combination of predictors,

and simulate a 0/1 from Bernoulli distribution.

3. At the end of the Tth iteration in (2) we recorded the imputed values that

were simulated.

4. Steps 2 and 3 were done in parallel for a total of m=10 imputed datasets.

Note: A separate set of §'s are estimated for each column containing missing
values. And these §’s are unrelated to the 5’s we estimate for the eventual logistic

regression that uses pass/fail for Math 107 as the response vairable.

We point out that the Bayesian normal linear model imputed all missing values

for a particular column in one shot, while the Bayesian logistic regression model
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imputed values one at a time within each column. For the imputation models, mul-
tivariate normal data was an assumption; this assumption is known to be robust
against departures (van Buuren, 2012). The imputation models were Bayesian
multivariate normal linear model for test scores, and Devm/Math 105 grade and
a Bayesian logistic regression model for the categorical variables ages of tests, and
ages of Devm/Math 105. There were 30 iterations of the MICE algorithm and a
total of 10 imputed datasets.

For the analysis step, ten imputed datasets were fitted with the following model,

y; ~Bernoulli(;)

8
logit(m;) =050 -+ Z B%55 (2.2)
=1

where 1;—1 when a student earns grade C or above on their first attempt in Math
107. There is a 3; for each of the scores, grade and age of the SAT, ACT, Accu-
Placer, and Devimn/Math 107. Interactions were not included in the imputation or
analysis model due to the inability of MICE package to easily handle the inter-
actions. The age of tests and coursework were categorical with levels recent (1)
and not recent (0) with the same definitions given in the complete case deletion
model. Also grades for Math/Devm 105 and tests scores were coded the same as

in the complete case deletion model.

For the last step, the calculations for pooling imputed datasets were straightfor-
ward and developed by Rubin (1987). These formulas may be found in Rubin
(1987) or van Buuren (2012).
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3. Simulation Study Set up

The purpose of the simulation study was to investigate and choose the best method
between complete case deletion and multiple imputation. The simulation study
had two degrees of missingness (high and low) and two missing data patterns
(MAR and MNAR).

We simulated n=1,000 samples of predictors X ~ MV N3(u, ) where p =

(500,20,100) and Y is the covariance matrix, corresponding to variances o? =

(5500, 100, 50) and correlations as follows

109 09
09 1 09
09 09 1

The response variable Y; was a binary response from Bernoulli(r;) where

e B

Ty eTs

Xy = (17%17%’27%’3)7 and B — (50;51752753)T - (—2570-0370-0670-09)T-

The simulation had missing data patterns MAR between X; and X, and MNAR
on X3. For MNAR, when X3 < 200, there was a 0.5 chance of missingness on X3
for the low degree grouping and 0.7 chance on the high degree group. On average
the percent missing on X3 is 50%, and 70% for the low and high degree percent

missing, respectively.

For MAR condition between X; and X,

when 500 < X; < 580 and 22 < X, < 28 then

27 is missing with probability wpiddiing

12



X9 1s missing with probability amiddiing-
otherwise

21 18 missing with probability w

x5 18 missing with probability «

In order to achieve a low and big degree of missing values, the following settings

were used.

Low Degree High Degree

Winiddling 0.2 0.4

Omiddling 0.4 0.8
w 0.3 0.4875
a 0.6 0.975

The above setting created on average about 28% missing for both X; and X, on

the low degree setting and about 47% missing for both for the high degree.

The missing data methods used in the simulation were complete case deletion,
and multiple imputation. For complete case deletion, the logistic regression model
was similar to the student data method for complete case deletion (equation 2.1),
so there is a separate logistic regression model for each of the predictors X;, Xs,
and X3. For multiple imputation, the R package MICE was used, and a Bayesian
normal linear regression was selected for imputation of all variables. For the
high degree of missingness there was 20 iterations of the MICE algorithm, and
10 iterations for low degree of missingness. The number of imputed datasets was
five for both situations. The logistic regression model for the multiple imputation
method was similar to the student data method for multiple imputation (equation

2.2} by having each predictor in the same logistic regression.

The simulation study consisted of 1,000 datasets with sample size 1,000 and the
methods described above. To compare the methods, the confidence interval cov-
erage was examined. Confidence interval coverage (CIC) was the proportion of
times the true value of a coefficient was contained in its confidence interval. We
attempted to achieve a significance level of 0.05, so theoretically, 95% of the gen-

erated confidence intervals should contain the true values of the 8’s. Also bias and
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mean square error (MSE) were used for comparison; definitions are given below,

DYy
g2l
Bias =3 — 3

MSE =Var(5;) + Bias®

where k=1,000 is the number of simulated datasets.
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4. Results

4.1 Description of Missing values

Among the 4-year degree seeking students who first attempted Math 107, approxi-
mately 63.1% of the 4,793 students had received a final grade in the developmental
course Math/Devm 105. The test scores generally had a high degree of missing
data; 48.7% of students had either not taken or didn’t submit SAT Math scores.
Also, the ACT and AccuPlacer tests had high percentages of missing with 73.6%,
and 61.7%, respectively.

There were about 15 combinations of missing and observed values; these are de-
picted in Figure B.2 in appendix B. About 56% of students had one of four combi-
nations of observed and missing values: either (1) developmental math alone, (2)
SAT score alone, (3) developmental math with SAT score or (4) developmental
math with AccuPlacer score. The most abundant (16.4%) among the 4,793 stu-
dents was “developmental math alone”, and the second most abundant was SAT

score alone (14%).

4.2 Complete Case Deletion

The complete case deletion model (equation 2.1) for Devm/Math 105 had statis-
tically significant interaction between grade and age (P-value < 0.05), and it was
reasonable to keep both main effect terms for grade and age (table 4.1). The full
model had a AIC value of 3741.28, which was lower then that of the model with
just an intercept, 3969.2. When Math/Devm 105 was taken recently (<2 years),

15



the estimated odds of passing Math 107 on the first attempt are multiplied be-

tween 1.808 and 2.179 for every one-unit increase in Math/Devm 105 grade, with

significance level 0.05.

TABLE 4.1: Final Complete Case Deletion Models (equation 2.1). Only significant
coefficients are shown here. For full model coefficients that show insignificant terms,
see appendix C.

Model Term Value Std. Error Wald Chi-Square P-values*
Math/Devm 105 (n=3,023)
Intercept -0.1186 0.4808 0.0608 0.8052
Grade 0.1735 0.1246 1.9368 0.1640
Age (baseline: not recent (0)) -2.0037 0.5163 15.0624 0.0001
Grade*Age 0.5121 0.1334 14.7410 0.0001
SAT (n=2,460)
Intercept -1.1956 0.2879 17.2440 <.0001
Test Score 0.00339  0.000566 35.9095 <.0001
ACT (n—1,264)
Intercept -1.5469 0.3404 20.6472 <.0001
Test Score 0.0929 0.0159 34.2083 <.0001
AccuPlacer (n=1,834)
Intercept 0.2759 0.1494 3.4071 0.0649
Test Score 0.0141 0.00369 14.6482 0.0001

* P-values are used to determine whether each term is significantly different than 0.

For the complete case deletion model (equation 2.1) that included students who

had a SAT score, only the coefficient for the test score was statistically significant

(P-value < 0.05). The coefficients in table 4.1 result after dropping the interaction

and test age. The AIC for the model with only SAT Score and intercept was
3217.63, which, was lower than the AIC for the intercept only model with 3252.3.
The estimated odds of first attempt pass in Math 107 for students who had a SAT

score multiply between 1.257 and 1.569 for each 100-unit increase in SAT score.

Or put another way, a 100-unit increase in SAT score has at least a 25.7% and at

16



most 56.9% increase in the odds of passing Math 107. Students who took the SAT
test and scored 500 had between 60.3% and 64.2% probability of passing Math
107 on the first attempt.

Results for the complete case deletion model (equation 2.1) for ACT showed the
interaction between test score and age was not statistically significant (P-value >
0.05) and the same was true for the main term of test age. The model with the
lowest AIC was one that included ACT Score and the intercept (AIC=1664.45),
while the intercept only model had AIC of 1697.9. The ACT math score was
significant (P-value < 0.05) and the estimated odds of passing Math 107 on the
first attempt lie between 1.362 and 1.895 for each 5-unit increase in ACT score
(table 4.1). The probability of passing Math 107 on the first attempt for a student
with a ACT math score of 20 was between 54.8% and 60.5%. The significance

level was 0.05 for both confidence intervals.

Finally the complete case deletion model (equation 2.1) that included students
with AccuPlacer scores showed a similar pattern of significance as the SAT and
ACT models. AccuPlacer college level score and age interaction were not signif-
icant and neither was the main effect term for age of test (P-value < 0.05). The
test score was significant (table 4.1) and the model including the intercept and
test score coefficient had a better AIC versus the intercept only model (2245.86
vs 2259.09). For each 20-unit increase in AccuPlacer score, the estimated odds of
first-attempt pass Math 107 lie between 1.148 and 1.534 (table 4.1). Those stu-
dents who scored 46 on the AccuPlacer test had between 69.9% and 73.% chance
of passing Math 107 on the first attempt.

4.3 Multiple Imputation

The results from multiple imputation (equation 2.2) showed that Devm/Math
105 grade was significant (P-value < 0.05) and the test scores were statistically
insignificant except for ACT scores (table 4.2). We may infer that a one letter
grade increase in Devm/Math 105 grade has between a 60% and 92% increase
in the estimated odds of a student passing Math 107 on the first attempt, with

significance level 0.05.
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TABLE 4.2: Final Multiple Imputation Model. The multiple im-
putation had 30 iterations, and 10 imputed data sets. (n=4,793)

Model Term Estimate Std. Error  t-stat

df  P-values

Intercept -2.932 0.334  -8.771
Math 105 grade 0.563 0.045 12.503
ACT Score 0.059 0.015  3.822

25.027  <0.0001
57.890  <0.0001
18.411 0.001

4.4 Simulation Study

Only results for Bl are shown; the gy and f3 estimators showed similar results.

When the degree of missingness is low, multiple imputation had the least bias
(-0.0007) compared to complete case (0.0139) and the MSE was smaller (0.00003)

with the multiple imputation method, see table 4.3. The same pattern exists

between the methods under a high degree of missingness.

When there is a low degree of missingness, about 95.6% of the 1,000 confidence

intervals from the multiple imputation method contained the true value of 5; =

0.03 (table 4.3). The multiple imputation method met the theoretical coverage

(95%) under a low and high degree of missingness. However, the complete case

deletion method had poor coverage under both degrees of missingness.

TABLE 4.3: Comparison of §; estimate with high and low missingness along

with two missing data methods. Complete case (CC) for just X1, and multiple

imputation (MI). CIC stands for confidence interval coverage. The true value for
B1 was 0.03. (simulation iterations: 1,000)

Degree of Missing

Low

High

A

Method Bias MSE SE(p) CIC Bias

A

MSE SE() CIC

MI -0.0007 0.00003 0.0051 0.956 -0.00078
CC 0.0139  0.0002 0.0033 0.005 0.0138

0.00007  0.009 0.967
0.0002 0.0039 0.014
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5. Conclusions

Performance of missing data methods is dependent on the three types of miss-
ingness: MCAR, MAR and MNAR. In the simulation study with MAR, MNAR,
high correlation and high missingness, the method of multiple imputation pro-
duced better confidence interval coverage (table 4.3) compared to complete case
deletion. The simulation study does present some evidence that the complete case
method produces terrible confidence interval coverage (table 4.3) under a miss-
ing data pattern involving MNAR and MAR. Future studies should consider even

higher degrees of missingness and low correlation.

The missing data mechanism behind the Math 107 dataset is likely MAR or
MNAR. The best method for the student data would then be the multiple im-
putation method since the evidence from the simulation suggests that confidence
interval coverage is dramatically better for multiple imputation, and multiple im-
putation had the least biased estimators (table 4.3) under MAR and MNAR situ-
ations. We should be cautious and note that the simulation was for a specific set

up and perhaps should not be overgeneralized.

For the student data, the age of tests were not significant under both missing data
methods. The test scores were significant predictors of student success when using
the complete case method (table 4.1), yet with the multiple imputation method
the test scores were insignificant (table 4.2). One disadvantage of the multiple
imputation method is the differences in parameter estimators after re-running
imputation. This reflects the uncertainly of what value to impute (van Buuren,
2012). The ACT score was sometimes significant (P-value < 0.05) and others
times not significant. The high percent of missing information among students
(73%) for a ACT score is likely the reason for this issue.

It is obvious from the two missing data methods that the developmental course

Devm/Math 105 grade was an important explanatory variable for predicting the
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success of first attempts in Math 107 (table 4.1, table 4.2). A college course
might offer more information about a student’s ability to pass another college
course. An interaction between the Devm/Math 105 grade and age would have
been interesting to include in the analysis using the multiple imputation method,

and future studies may want to investigate this.

Other explanatory variables for success in Math 107 exist such as high school
math coursework that were not available for effective analysis. Future studies
should consider the use of ALEKS, and high school math courses as predictors of
student success. It is important to note that models are a simplification and there
is likely not a correct model. The model presented here offers insight on whether
placement tests and a specific developmental math course are predictors of success
in Math 107; it illustrates the use of missing data techniques which is common to

many data sets.
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Appendix A

Math 107 Prerequisites

TABLE A.1l: Cut off Scores For Math 107

ACT SAT AccuPlacer COMPASS ASSET
Math Math College College College
Level Algebra Algebra
Math
UAA  22-25 520-589 50-59 NA NA
UAF  23-27 530-600 50-89 50-55 41-55
UAS NA NA 63-84 NA NA

TABLE A.2: Recommended Age of Prerequisites

Placement Test

Math/Devm 105

UAA Within last two years

UAF
UAS

One calendar year

Two calendar years

21



TaBLE A.3: Math 107 Course Description and Prerequisites by University

University

Description and Prerequisites

UA Anchorage

UA Fairbanks

UA Southeast

MATH A107 College Algebra 4 Cr

Contact Hours: 4 4+ 0

Prerequisite: Math A105 with minimum grade of C.
Registration Restrictions: If prerequisite is not satisfied, appro-
priate SAT or ACT scores or approved UAA Placement Test
required. Courses Attributes: UAA GER Quantitative Skill Re-
quirement. Special Note: A student may apply no more than
7 credits from any combination of Math A107, Math A108, and
Math A109 toward the graduation requirements for any bac-
calaureate degree. Covers equation and inequalities, function
theory, solution of equations, greater than first degree, matrices,
determinants, systems of equations, and inequalities, exponen-
tial, and logarithmic functions, graphs and equations of conic
sections, binomial theorem and sequences and series includes ap-
plications of all theses topics.

Math F107X Functions for calculus (m)

Contact Hours: 4 4+ 0

A study of algebraic, logarithmic and exponential functions; se-
quences and series; conic sections; and as time allows system of
equation, matrices and counting methods. A brief review of ba-
sic algebra in the first week prepares students for rigor expected.
The primary purpose of this course, in conjunction with Math
F'108, is to prepare students for calculus. Note: Credit may be
earned for taking Math F107 or Math F161X, but not for both.
Also available via eLearning and Distance Education.
Prerequisites: DEVM F105 or DEVM F106 with a grade of B
(3.0) or higher; or two years of high school algebra and Math
F107X placement or higher. (4.5+0)

Math S107 College Algebra

4 Credits (340) GER

A detailed study of linear quadratic, rational, radical, exponen-
tial, logarithmic functions; operations on and applications of
these functions, and select topics from algebra.

Prerequisite: Math 105 with a C (2.00) or higher or placement
test. 22




Appendix B

Figures and Graphs

Inclusion and Exclusion Criteria

Enrollment in Math 107
between
Spring 2007 and Spring 2012
Student was credit enrolled with official grade
Student Count: 8,870

- | Excluded students with
First Attempts first attempt grades of

Count after exclusions: 8,228 NB, NS, DF.
Count of exclusion (92)

Excluded tests with |

multiples records. Most 4-Year Degree Seeking
Sl se_lected. at time of First Attempt of Math107
Count of exclusion (1,231) 5193
Excluded Compass, ASSET |
tests. For each student, find most

73,9 R
¢ ) recent ACT, SAT and
Excluded tests taken after / AconPlaver Test

the first attempt in Math 107
(424) |

Most Recent Attempt
Math/Devm 105

Excluded attempt of Math/

Devm 105 with grades of | ——— | Student was cr.edit entolled with Excluded students with final
NB, NS, DF official grade grade in DEVM 066
(11) (12)

Excluded multiple attempts Final Dataset Removed students with no
4793 relevant

of Math/Devm 105. Most .
testing or coursew ork
recent attempt selected. 388
(221 repeat attempts) (388)
(count of people)

Ficure B.1: Flow Chart of Inclusion and Exclusion Criteria for the study.

23



Froparfion of missings

0.015
0.018
0018
0.030
0.030
0.043
0.050
0.050
0.051
0.053
0.083
0.126
0.130
0.140
0.164

04 05 06 07

0.2 03
Combinatians

0.1
1

L]

Math Grade
SAT Score
ACT Score

ACC., Score

Math Grade
SAT Score
ACT Score

ACC, Score

FiaUurE B.2: Missing data combinations for students who first attempted Math

107 between fiscal years 2007 and 2012 (n=4,793). Light grey squares represent

observed data and dark grey squares represent missing values. The numbers

along the right side of the matrix graph represents the proportions of students

with the combination over the total sample size. The math grade column refers
to Devim/Math 105.
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Appendix C

More Results
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TABLE C.1: Full Complete Case Deletion Model.

Model Term Value

Std. Error

Wald Chi-Square p-values*

Math/Devmn 105 (n=3,023)

Intercept -0.1186
Grade 0.1735
Age -2.0037
Grade*Age 0.5121

SAT (n=2,460)

Intercept -1.0727
Test Score 0.00302
Test Age -0.1304
Age*Score 0.000482

ACT (n=1,264)

Intercept -1.4432
Test Score 0.0900
Test Age -0.3171
Age*Score 0.0112

AccuPlacer (n=1,834)

Intercept -0.1087
Test Score 0.0230
Test Age 0.5802
Age*Score -0.0128

0.4808
0.1246
0.5163
0.1334

0.3804
0.000773
0.5931
0.00117

0.4973
0.0247
0.7052
0.0334

0.2767
0.00782
0.3320
0.00894

0.0608
1.9368
15.0624
14.7410

7.9522
15.2068
0.0484
0.1704

8.4208
13.3098
0.2022
0.1131

0.1543
8.6341
3.0543
2.0627

0.8052
0.1640
0.0001
0.0001

0.0048

.0001
0.8259
0.6798

0.0037
0.0003
0.6530
0.7367

0.6944
0.0033
0.0805
0.1509

* p-values are used to determine whether each term is significantly different than 0.
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TaBLE C.2: Full Multiple Imputation Model. ACC stands for
AccuPlacer and m105 stands for Devm/Math 105.

Model Term Estimate Std. Error t-stat df p-values*
Intercept -2.912 0.379 -7.678 41.070 0.000
m105 grade 0.566 0.046 12.294 54.053 0.000
m105 age -0.118 0.222 -0.531 24.654 0.600
SAT score 0.00015 0.001  0.112 14.581 0.913
SAT age 0.259 0.207 1.254 23.774 0.222
ACT score 0.053 0.031  1.734 13.190 0.106
ACT age -0.292 0.235 -1.242 19.340 0.229
ACC score 0.005 0.008  0.617 11.450 0.549
ACC age -0.037 0.111 -0.334 30.656 0.741

* p-values are used to determine whether each term is significantly different

than 0.
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Appendix D

R Code for Simulation

B <- 1000 # Number of Simulation Iterations

m <- 5 # Number of IMPUTED datasets

tmax <- 10 #20 of high degree of missing and 10 of low degree of missing
# For Creating Missingness MAR#

# Adjust porportions for more or less missingness #

# situation 1: low degree: 0.2, 0.4 AND 0.3, 0.6 # #

# situation 2: high degree: 0.4, 0.8 AND 0.4875, 0.975 #
x1middling_prob_cut_off <- 0.2

x2middling_prob_cut_off <- 0.4

x1lnonmid_prob_cut_off <- 0.3

x2nonmid_prob_cut_off <- 0.6

# For Creating Missingness MNAR#

x3_prob_cut_off <- 0.5 #low 0.5 and high 0.7

n <- 1000 # sample size
rr <- matrix( ¢(1.0, 0.9, 0.9, 0.9, 1, 0.9, 0.9, 0.9, 1.0 ), nrow=3,ncol=3)
pp <- nrow(rr)

x1 <- rep(NA,n)

x2 <- rep(NA,n)

x3 <- rep(NA,n)

true.pi <- rep(NA,n)

lin <- rep(NA,n)

yy <- rep(NA,n)

for( i in 1:n ) {
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dd <- mvrnorm( 1, rep(0,pp), rr )
# mvrnorm(n = 1, mu, Sigma, tol = le-6, empirical = FALSE)
x1[i] <= sqrt(5500)*dd[1]+500; # similar to sat score#
x2[i] <= sqrt(100)*dd[2]+20; # similar to act score#
x3[i] <= sqrt(50)*dd[3]+100;
¥

x1 <- round(x1)

x2 <- round(x2)

x3 <- round(x3)

# linear regression part#

lin <- -25 + 0.03*x1 + 0.06*x2 + 0.09%x3 ;

true.pi <- exp(lin)/ (1+exp(lin));

vy <~ rbinom( n, 1, true.pi )

HHHHHHHHHUHSHE - create missingness —— #H#HFHHHHAHHHHAHY
middling.x1 <- function(xl) # SAT-like

{
return ( (x1>=500) & (x1<=580) )
}
middling.x2 <- function(x2) # ACT-like
{
return ( (x2>=22) & (x2<=28) )
}

mxl <- x1

mx2 <- x2

which.middling <- (middling.x2(x2) & middling.x1(x1))
which.not.middling <- !which.middling

which.middling <- which.middling * (1:n)

which.not.middling <- which.not.middling * (1:n)

which.middling <- which.middling[ which.middling != 0 ]
which.not.middling <- which.not.middling[ which.not.middling !'= 0 ]

for( j in which.middling ) {
H## w.p. 0.2, toss x1, retain x2
H## w.p. 0.2, toss x2, retain xl
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Hiti w.p. 0.6, keep both

cointoss <- runif (1)

if ( cointoss < xlmiddling_prob_cut_off ) {
mx1[ j ] <- NA

} else if (cointoss < x2middling_prob_cut_off ) {
mx2[ j ] <- NA

for( j in which.not.middling ) {

H## w.p. 0.4, toss xl1, retain x2
H## w.p. 0.4, toss x2, retain xl
Hiti w.p. 0.2, keep both

cointoss <- runif (1)
if ( cointoss < xlnonmid_prob_cut_off ) {
mx1[ j ] <- NA
} else if (cointoss < x2nonmid_prob_cut_off ) {

mx2[ j ] <- NA

mx3 <- x3
for( j in 1:length(x3) ) {
cointoss <- runif (1)
if ( x3[j] < 200 & cointoss < x3_prob_cut_off ) {
mx3[ j ] <- NA

+
HHudHHHHA# - end of create missingness —-— ##HHHHHHHHHHHHHIY

mi <- data.frame(yy, mxl, mx2, mx3)

####### Multiple Imputation ####H##

imp <- mice(mi, method=c("","norm","norm","norm"), m=m, maxit=tmax, print=F)
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fit <- with(imp, glm( yy = mxl + mx2 + mx3, family=binomial(logit)))
pfit <- pool(fit)

####### Complete Case ##H#H#HH#
separate_x1 <- glm( yy ~ mxl, family=binomial(logit), data=mi)

sx1.summary <- summary (separate_x1)

separate_x2 <- glm( yy ~ mx2, family=binomial(logit), data=mi)

sx2.summary <- summary (separate_x2)

separate_x3 <- glm( yy ~ mx3, family=binomial(logit), data=mi)

sx3.summary <- summary (separate_x3)
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