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The finding that neural stem cells (NSCs) are able to divide, migrate, and differentiate into several cellular types in the adult
brain raised a new hope for restorative neurology. Nitric oxide (NO), a pleiotropic signaling molecule in the central nervous
system (CNS), has been described to be able to modulate neurogenesis, acting as a pro- or antineurogenic agent. Some authors
suggest that NO is a physiological inhibitor of neurogenesis, while others described NO to favor neurogenesis, particularly under
inflammatory conditions. Thus, targeting the NO system may be a powerful strategy to control the formation of new neurons.
However, the exact mechanisms by which NO regulates neural proliferation and differentiation are not yet completely clarified.
In this paper we will discuss the potential interest of the modulation of the NO system for the treatment of neurodegenerative
diseases or other pathological conditions that may affect the CNS.

1. Introduction

Neurogenesis is not limited to embryonic development as
previously thought and occurs throughout the entire adult
life of mammals, including humans. New neurons are con-
tinuously added to neural circuits and originate at two
principal brain regions: the subventricular zone (SVZ) of the
lateral ventricles, which generates olfactory bulb (OB) neu-
rons, and the subgranular zone (SGZ) of the dentate gyrus
(DG) of the hippocampus. Both regions harbor neural stem
cells (NSCs) that can be isolated and cultured in vitro in the
presence of growth factors, such as basic fibroblast growth
factor (bFGF), epidermal growth factor (EGF), or both. The
absence of growth factors results in the differentiation of cells
into neurons, astrocytes, or oligodendrocytes as discussed
in [1]. Neurogenesis has been exhaustively studied over the
past years, and despite the great progress that has been
achieved, the knowledge of the multiple aspects controlling
proliferation, differentiation, or survival of NSCs is far
from being known or understood. It was shown that neu-
rogenesis decreases with aging and is impaired in several
pathological conditions affecting the brain. Whether the

insult is acute, such as ischemic brain stroke, traumatic
brain injury, or epileptic seizures, or is a slow-progressing
disease like Alzheimer’s disease, Huntington’s disease, or
Parkinson’s disease, all these conditions are accompanied by
an inflammatory response in the brain [2]. Furthermore, the
blockade of neuroinflammation restores adult neurogenesis
[3, 4]. When an inflammatory response in the brain appears
following an injury, activation of the brain immune cells
takes place, particularly microglial cells. In inflammatory
conditions, microglial cells become “activated”, and among
a plethora of morphological and immunological alterations,
they are able to express the inducible nitric oxide synthase
(iNOS), producing high levels of nitric oxide (NO).

NO is a multifaceted gaseous signaling molecule with
several distinct functions in the central nervous system
(CNS) [5]. This molecule is simultaneously involved in
neuroprotection and in neurotoxicity, being also involved in
inflammatory mechanisms in the CNS [6, 7]. NO was shown
to modulate neurogenesis in the adult CNS as reviewed in
[8]. In physiological conditions, NO tonically inhibits neuro-
genesis in the brain, while in pathophysiological conditions

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sapientia

https://core.ac.uk/display/185623311?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Stem Cells International

it exerts a proneurogenic effect on the dividing population
of neuronal precursors. Moreover, the physiological effect
of NO is mostly mediated by the neuronal nitric oxide
synthase (nNOS), which is constitutively expressed, while
pathophysiological levels of NO are attained following
expression of iNOS [9–12]. Depending on the insult and
on its source, NO can act as an antiproliferative agent [9–
11] or stimulate neuronal precursor proliferation and dif-
ferentiation [12]. However, the exact mechanisms by which
NO regulates neuronal proliferation and differentiation are
not yet clarified, and further investigation on this matter is
needed. Since neuroinflammation is detrimental for adult
neurogenesis, it would be of great interest to elucidate the
role of inflammatory NO on the ongoing neurogenesis in
these conditions. Therefore, the main goal of this paper
is to elucidate the potential of the NO system modulation
for the treatment of neurodegenerative diseases or other
pathological conditions that may affect the CNS.

2. Neurogenesis following Brain Injury

Adult neurogenesis is implicated in many forms of plasticity
in the CNS. The neurogenic process can be summarized
in five main stages: (a) precursor cell proliferation, (b) fate
determination, (c) migration, (d) differentiation and inte-
gration, and (e) survival.

Various models of injury in the rodent brain have
been used to demonstrate that proliferation of stem cells is
particularly enhanced in the SVZ and DG after an insult,
which has been suggested to be a repair attempt from the
lesioned brain, as reviewed in [13]. It has been observed that
injury and pathological conditions affect adult neurogenesis,
having a particular impact in neurogenic regions, but also in
areas that are not normally considered as classical neurogenic
regions, as discussed in [14, 15].

Regarding the type of insult to the brain, this may be
acute, as ischemic brain stroke, traumatic brain injury or
prolonged seizures, or a slow-progressing neurodegenerative
disease. Neurogenesis decreases with aging and is impaired
in several neurodegenerative disorders, such as Huntington’s
disease [16, 17] or Alzheimer’s disease [18]. All these condi-
tions are accompanied by an inflammatory response in the
brain. However, the factors that attract neural progenitors
to the lesioned areas are still under investigation. Another
matter of hot debate is whether these new neurons are
functionally integrated and survive in the existing neuronal
circuitry.

3. Injury and Neuroinflammation

Inflammation is, by definition, a complex biological response
to certain noxious stimuli such as stress, injury, or infection
by external agents [19, 20]. After injury or exposure to
pathogens, an inflammatory response takes place, with the
involvement of two major groups of immune cells: (a) CNS
resident microglial cells and astrocytes and (b) infiltrat-
ing lymphocytes, monocytes, and macrophages from the
hematopoietic system [21, 22]. Therefore, the neuroinflam-
matory response attempts to protect the affected organism by

removing harmful stimuli or removing dead and damaged
cells, thereby initiating the healing process and return
the tissue to homeostasis. When activated, immune cells
release different regulating substances, such as complement
molecules, cytokines-like interferon (IFN)-gamma, tumor
necrosis factor (TNF)-alpha, interleukin (IL)-1beta, IL-18
and IL-6, chemokines such as stromal-derived factor (SDF)-
1alpha and monocytes chemoattractant protein-1 (MCP-
1), glutamate, reactive oxygen species (ROSs), and reactive
nitrogen species (RNSs) like NO, as extensively reviewed in
[23]. These inflammatory mediators are responsible for the
recruitment of resident microglia, stimulation of astrogliosis,
but also for the disruption of the blood-brain barrier (BBB)
and further recruitment of monocytes and lymphocytes from
the hematopoietic system to the site of inflammation [24–
26].

Although inflammation in the CNS should be considered
as a process that seeks to protect, we also must take into
account its harmful properties as reported in [27]. The acti-
vation of recruited cells to the site of inflammation leads to
the release of inflammatory factors that contribute to create a
positive feedback loop of inflammatory activation, resulting
ultimately in neuronal loss and/or neuronal damage. Thus,
the inflammatory response may have a dual effect on the
cellular environment, beneficial and/or detrimental. The
severity of neuroinflammation can range from mild acute
to uncontrolled chronic inflammation, resulting in different
activation states of inflammatory cells and distinct biological
outcomes [28]. It is believed that neuroinflammation may
be involved in the mechanisms that lead to various CNS
diseases, also affecting the process by which new neurons are
generated in the brain [29].

3.1. Neurodegeneration. Neurodegeneration is characterized
by the slow progressive dysfunction and loss of neurons in
the CNS. Immune activation within the CNS is a classical
event following infections, ischemia, trauma, and neu-
rodegenerative diseases. The inflammatory response often
contributes to collateral CNS injury, which is characterized
essentially by neuronal loss and atrophy in different brain
regions. Neuronal susceptibility to cell death [30, 31]
and concomitant failure in self-repair mechanisms [32],
combined with inhibition of axonal growth and limited
repopulation by neuronal precursor cells are singled out as
the main causes for neurodegenerative events that follow
brain inflammation [33, 34]. However, not all immune
response in the CNS should be considered harmful, and
in many cases they actually are an important aid for cell
repair and regeneration. Particularly, microglial cells seem
to play an important role in facilitating the reorganization
of neuronal circuits and in triggering repair [35]. Thus, like
inflammation, microglial activation also appears to play a
dual role in neurodegeneration, acting either as detrimental
or beneficial, as reported in [36].

The relationship between neuroinflammation and neu-
rodegeneration is being studied in numerous models of
CNS disorders such as Alzheimer’s and Parkinson’s disease,
suggesting neuroinflammation as a critical process, if not
the primary cause, for CNS lesions seen in these diseases, as
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Table 1: Regulation of adult neurogenesis by inflammatory mediators.

Inflammatory factor Proliferation of NSC Differentiation of NCS Survival of NSC References

IL-1 ↑ or ↓ — ↓ [51]

IL-6 ↓ ↓ neuronal ↓ [4, 46, 52]

IFN-gamma ↓ ↑ neuronal ↓ [42, 53–56]

↑ — = [57, 58]

TNF-alpha

— ↓ neuronal ↓ [40]

— — ↓ [43, 54]

↑ ↓ neuronal (TNF-R1) = [59]

↑ ↑ neuronal (TNF-R2) ↑ [60]

↑ ↑ neuronal (TNF-R1) ↑ [61]

↑ astrocytic

↑ or ↓ ↑ neuronal (TNF-R2) ↑ or ↓ [36, 44]

↓ neuronal (TNF-R1)

SDF-1alpha ↑ or ↓ ↑ neuronal ↑ [62, 63]

The effects listed here may not be direct. ↑: increase; ↓: decrease; =: no change; —: no report.

extensively reviewed in [23, 37]. However, these studies also
revealed complex neuroimmune interactions, both at cellular
and molecular levels, thus demonstrating that immune cells
secrete both neurotoxic and neuroprotective molecules [2].
Although different triggering events could occur, a common
feature for the neurodegenerative event seems to be the
chronic activation of microglial cells.

3.2. Neuroinflammation and Production of New Neurons. As
mentioned in previous sections, neuroinflammation is a
complex process with different outcomes in neurogenesis,
which can be enhanced or suppressed [38]. Besides differ-
ences between mild acute and uncontrolled chronic inflam-
mation, the shift from pro- to antineurogenic inflammatory
status appears to be dependent on (a) the mechanism by
which microglia, macrophages, and/or astrocytes are acti-
vated, (b) the type of inflammatory mediators released, and
(c) for how long inflammatory cells, particularly microglia,
are activated [36].

3.2.1. Impaired Formation of New Neurons. Inflammation
and microglia activation were initially thought to inhibit
adult neurogenesis [3, 4], while recent studies indicate that
microglia can also support neurogenic events, as described
in [39]. It was shown that lipopolysaccharide-(LPS-) induced
activation of microglia impairs neurogenesis in rats [4],
apparently through the increased production of TNF-alpha
[40]. Additional evidences corroborating the detrimental
effect of LPS-activated microglia was provided by another
study, which showed that acute activation of microglia
with LPS reduces NSC survival and neuronal differentiation
[41]. Furthermore, suppression of microglial activation
with an antibiotic, such as minocycline, was also used to
demonstrate increased neurogenesis in the hippocampus,
thus indicating that the severity of impaired neurogenesis
correlates with the number of activated microglial cells [4].
Several other authors reported that the mechanism by which
microglia exert these effects involves the release of proin-
flammatory mediators, such as IL-1, IL-6, IFN-gamma, and

TNF-alpha, which seem to play an essential role in suppress-
ing neurogenesis [42–45] (Table 1). It has also been suggested
that ROS and RNS, particularly NO, can inhibit adult neuro-
genesis in inflammatory conditions [3, 46, 47]. In addition,
several studies demonstrated that neurogenesis could be
restored following treatment with anti-inflammatory drugs
[3, 4, 48, 49]. Neurogenesis was restored after treatment
with indomethacin, a nonsteroidal anti-inflammatory drug
(NSAID), after irradiation-induced inflammation [3] or
focal cerebral ischemia [49]. Other studies also reported
an increased survival of newly generated neuroblasts in
the striatum after stroke [49], or in the DG after middle
cerebral artery occlusion (MCAO) [50] when the activation
of microglia is inhibited by indomethacin or minocycline,
respectively.

3.2.2. Enhancement of Neurogenesis. Contrary to what was
initially thought that neuroinflammation is detrimental to
adult neurogenesis, recent evidence indicates that under cer-
tain circumstances inflammation can also benefit the neuro-
genic process (Table 1). Apparently, neural stem cells become
“activated” following brain injury and migrate into the
lesioned areas, thus suggesting the inflammatory microen-
vironment as an important trigger for the migration of
newborn cells [64, 65]. Microglia was reported to play a dual
role on neurogenesis, suggesting neurogenesis inhibition
to be caused by microglial activation under inflammatory
conditions [53]. Other studies showed a persistent produc-
tion of neurons from adult NSC, even after the inhibition
of acute microglial activation, during recovery after stroke
[66, 67]. Moreover, it was demonstrated that long-term
survival of newborn neurons after status epilepticus (SE),
with concomitant chronic activation of microglia [68].
In vitro studies have also showed an important role for
microglia in directing the replacement of damaged or lost
cells [52, 69–71]. LPS-activated microglia and inflamma-
tion increase the integration of newly generated neurons
into the adult rat hippocampus [72]. More recently, long-
term accumulation of activated microglia, although with
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a downregulated inflammatory profile, was shown to be
concomitant with persistent neurogenesis in the adult SVZ
after stroke [73]. Other inflammatory mediators have also
been implicated in the improvement of migration and
proliferation of new neurons following brain damage, such
as SDF-1alpha and its receptor CXCR4 [62, 66] or trophic
factors such as GDNF and BDNF, who are involved in
the removal of damaged synapses [73]. In summary, all
these studies suggest a neuroprotective role of microglia for
newborns cells. Although microglia may have a detrimental
action in early stages of the inflammatory response that
follows acute insults, it could be converted into a protective
state during chronic activation.

3.2.3. Dual Role of Inflammation in Neurogenesis. It is now
widely accepted that microglia have a dual role in neurogen-
esis by favoring it or, alternatively, hindering neurogenesis.
Apparently, microglial cells and the inflammatory factors
they release, like NO (to be discussed below), seem to
have opposite roles in neurogenesis under inflammatory
conditions [38, 74]. However, it is important to reinforce
the idea that inflammation, essentially characterized by
activation of microglia, has distinct roles in various stages of
neurogenesis, this effect being dependent on the degree of
activation of immune cells, type of inflammatory mediator
released, and duration of the inflammatory response [38].
Nevertheless, there are lines of evidence for some of the
most important inflammatory mediators in the regulation of
neurogenesis and/or neuroprotection [23, 75, 76].

As noted, further studies should be conducted to assess
the interaction between neuroinflammation and neuroge-
nesis, particularly how neuroinflammation modulates self-
renewal, proliferation, migration, differentiation, integration
in the neuronal network, and, more importantly, survival
of newborn cells. As different authors have reported that
chronic inflammation can stimulate one or more stages of
neurogenesis, such as migration, proliferation, or differ-
entiation, the problem remains in the reduced long-term
survival of newborn neurons [23]. Moreover, since different
microglial phenotypes and morphologies can be identified
during inflammation, an extensive genetic and proteomic
characterization will be of great interest to understand more
accurately this complex crosstalk.

4. Nitric Oxide

Nitric oxide, a short-lived gaseous-free radical, is synthesized
by the nitric oxide synthase (NOS) family of enzymes
present in most of the cells of the body. NO is implicated
in a wide range of physiological processes within the
cardiovascular, immune, and nervous system, where it can
act as a non-canonical neurotransmitter [77], but it can
also be an important player in pathophysiological events.
Different members of the NOS family control different
functions of NO. The discovery of NO in the CNS was a
breakthrough in the concept of neuronal communication.
NO was characterized in the CNS for the first time as
an intracellular messenger to increase cyclic guanosine
3′,5′-monophosphate (cGMP) levels, after the activation of

glutamate receptors [78]. Later, the same authors also
described NO as a neuromodulator, particularly due to
its diffusible properties [79], thus acting not only in cells
that release NO, but also in neighboring cells where it can
therefore trigger its autocrine and/or paracrine functions.
Unlike other neurotransmitters, NO is synthesized on
demand, diffusing from nerve terminals since it is not
stored in vesicles nor released by exocytosis [5]. In the
CNS, NO is also associated with cognitive function, hav-
ing an important role in synaptic plasticity, and controls
biological functions, including body temperature, sleep-
wake cycle, appetite, and modulation of hormone release,
as reviewed in [7]. Another distinctive feature from clas-
sical neurotransmitters is that, unlike them, NO ends its
action after reacting with a substrate and not by enzymatic
degradation or reuptake. In addition, the key mecha-
nism to regulate the activity of NO is the control of its
synthesis.

Physiologically, NO interacts with several intracellular
targets activating different signaling pathways with a stim-
ulatory or inhibitory response. However, NO can also be
toxic to cells, in a mechanism dependent on the formation
of RNS [80, 81]. Oxidative stress and nitrosative stress, a
consequence of high levels of NO and RNS, have been
implicated in the pathogenesis of several neurodegenerative
disorders [80, 82, 83], which will be explored in Section 4.2.

4.1. NO as an Inflammatory Mediator. The NOS family
of enzymes is responsible for the synthesis of NO. Three
different enzyme isoforms have been identified in mam-
malian cells: (a) neuronal NOS (nNOS, type I), which is
constitutively expressed in brain neurons and is activated
by calcium/calmodulin, particularly following stimulation
of NMDA-type glutamate receptors; (b) endothelial NOS
(eNOS, type III), constitutively expressed in endothelial
cells and astrocytes and is regulated by calcium/calmodulin
and phosphorylation/dephosphorylation; (c) inducible NOS
(iNOS, type II) which is calcium-independent and its
regulation depends on de novo synthesis [80, 84, 85]. iNOS
is not normally expressed in the “healthy” brain but is
induced in glial and endothelial cells by proinflammatory
stimuli such as cytokines, bacterial/viral agents, and/or
hypoxia [80]. iNOS is mainly expressed in macrophages,
astrocytes, and microglial cells, upon neurotoxic, traumatic,
and inflammatory damage [7, 84, 86, 87], but it could
also be found in neurons [88, 89]. Once expressed, iNOS
continuously produces high amounts of NO, even for
several days [31, 87, 90–92]. The massive production of
NO by iNOS is toxic, since it inactivates the mitochondrial
respiratory chain enzymes that ultimately induce apoptosis
in target cells. Moreover, NO has been described as an
important activator of cyclooxygenase-II (COX-2) in glial
cells, also regulating leukocyte adhesion in vessels [80]. The
concentration achieved by NO seems to be a determining
factor for the effects observed locally in the brain. Thus,
in physiological concentrations, which are believed to range
from 0.1 to 100 nM, NO is relatively nonreactive, and its
actions are mainly mediated by binding to the heme group
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of soluble guanylate cyclase (sGC), leading to its activation
and subsequent production of cGMP [93].

NO can also be converted into more reactive species
commonly refereed as RNS. In high concentrations, NO
reacts directly with oxygen (O2) to produce nitrogen dioxide
(NO2), which in turn further reacts with NO originating
dinitrogen trioxide (N2O3). In addition, NO2 may oxidize
or nitrate, by adding a nitro (NO2

+) group to a great
variety of molecules, being a classic example the nitration of
tyrosine to 3-nitrotyrosine [94]. Moreover, NO reacts with
superoxide (O2

−) to produce peroxynitrite (ONOO−), an
extremely reactive molecule which can oxidize or nitrate
other molecules or, instead, decay forming other damaging
species, such as NO2 and/or the hydroxyl radical (OH•).
On the other hand, N2O3 can add a nitrosonium ion
(NO+) to thiols or amines, an event also designated as
nitrosation/nitrosylation, being a good example cysteine
than can be nitrosated to S-nitrosocysteine [94]. Both S-
nitrosylation and nitration typically lead to alterations in
protein function [94].

4.2. Neuronal Death. According to the literature, the role
of NO in the brain could be summed up in two radically
different outcomes: (a) as an intracellular signaling messen-
ger, regulating a wide variety of physiological events, such
as synaptic plasticity, blood flow, and neuronal development
[95] and (b) as a cytotoxic agent killing indiscriminately both
pathogenic and “healthy” host cells in disease [96, 97]. Strong
evidence has been reported in the literature supporting a role
of NO in the pathogenesis of neurodegenerative disorders,
including autoimmune and chronic neurodegenerative dis-
eases. As stated in previous sections, the role of NO seems to
be dependent on the concentration attained locally in tissues.
When produced in excess, NO shifts from a physiological to a
neurotoxic effector. NO overproduction may be due to nNOS
activation following persistent glutamate excitatory input
and/or iNOS expression, upon an inflammatory response.
Activated inflammatory cells generate increased levels of ROS
such as superoxide, hydrogen peroxide, and hydroxyl radical.
Moreover, NO can also induce the production of superoxide
by mitochondria [7]. NO and superoxide readily react to
form ONOO−, an extremely reactive molecule [81].

Likewise, the excessive release of both glutamate and NO,
coupled to oxidative stress and mitochondrial dysfunction,
appears to be involved in the majority of neurodegenerative
diseases. NO from inflammatory origin has been reported
as an important contributing factor to the vulnerability
of neurons, causing neuronal death both in vivo and in
vitro in rodents [98, 99]. Some authors have suggested this
neurotoxic effect as a consequence of enzymatic inhibition
of the respiratory chain, resulting in hypoxia, excitotoxicity,
and elevated levels of ONOO−, as reviewed in [81]. Fur-
thermore, the excessive NO release by glial cells leads to
the formation of ONOO−, which appears to be involved in
the mechanisms of neuronal death, some of them linked to
protein dysfunction due to nitration or s-nitrosylation [100].
Protein nitration is an irreversible chemical modification
affecting tyrosine phosphorylation or dephosphorylation,
which seriously affects several signaling pathways involved in

Table 2: Regulation of adult neurogenesis by NO under physiolog-
ical or inflammatory conditions.

Condition Proliferation
of NSC

Differentiation
of NCS

Survival
of NSC

References

Physiological

↓ = =
[8, 9, 106,

107]

↓ = ↓ [8, 108,
109]

↓ ↑ =
[8, 10, 11,
110–112]

↓ ↓ ↓ [8, 113,
114]

Inflammation

↑ = = [23, 115]

↑ ↑ =
[12, 23,
74, 116,

117]

↑ ↑ ↓ [23, 118]

The effects listed here may not be direct. ↑: increase; ↓, decrease; =, no change
or no report.

the control of cell survival, proliferation, or programmed cell
death, as reviewed in [101].

Although it has been implicated in acute injury events,
particularly due to a massive release during an inflammatory
response, NO has also been associated to slow progressive
disorders that can be genetically inherited or sporadic.
Parkinson’s disease, Alzheimer’s disease, Huntington’s dis-
ease, multiple sclerosis, and amyotrophic lateral sclerosis
are all neurodegenerative disorders in which NO has been
suggested to be involved, since all of them show evidence of
oxidative and nitrosative stress [80, 102]. ROS and RNS are
important factors in neuroinflammation-mediated neuro-
toxicity [103]. Furthermore, the presence of 3-nitrotyrosine
has been reported in several neurodegenerative diseases
linked to oxidative stress such as Alzheimer’s [104] or Parkin-
son’s disease [105]. Thus, understanding the involvement
of NO in the etiology of these disorders may highlight an
eventual beneficial potential role of selective NOS inhibitors.

4.3. Nitric Oxide and Neurogenesis. The role of NO as a mod-
ulator of neurogenesis is a matter of strong debate. Depend-
ing on the source, NO has a dual influence in the neurogenic
process both by inhibiting or stimulating neurogenesis
(Table 2).

The role of NO in neurogenesis has not been identified
until recently [9, 10, 110]. The authors of these contributions
had also described a cytostatic function of NO in the CNS,
demonstrating that nNOS-derived NO is involved in the
regulation of neurogenesis, particularly neural stem cell
function [9, 10, 110]. Since blood vessels are part of the SVZ
and dentate gyrus SGZ niches, which are also surrounded
by differentiated neurons expressing nNOS, NO is produced
in close proximity to NSCs. Several authors have described
another function for NO in the rostral migratory stream
(RMS), where SVZ-derived progenitor cells migrate into the
olfactory bulb and differentiate into neurons [119]. These
authors demonstrated that nitrergic neurons are in close
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Table 3: NO-dependent signal pathways in neurogenesis.

NO source Effect Signaling pathway References

nNOS

↓ proliferation (SVZ)
Nitrosylation of EGF receptor [127]

(PI3-K)/Akt pathway [107, 127]

↓ neurogenesis (DG)
PSA-NCAM and CREB [134]

cAMP phosphorylation [113]

eNOS
↑ neurogenesis (DG and SVZ) ↑ BDNF and VEGF [135]

↑ neurogenesis (DG) ↑ VEGF [128]

iNOS

↑ proliferation (SVZ)
ERK 1/2 pathway [74]

cGMP/PKG pathway [115]

↑migration (NT2 cell line) cGMP/PKG pathway [136]

↑ neurogenesis (DG) NMDA receptor [130, 137]

↑ neurogenesis (DG and SVZ) L-VGCC [138]

↑ astrogliogenesis JAK/STAT-1 pathway [112]

↑: Increase; ↓: decrease; Brain-derived neurotrophic factor, BDNF; Vascular endothelial growth factor, VEGF; L-type voltage-gated Ca2+ channel, L-VGCC.

vicinity to the RMS and that the NO generated regulates the
migration and proliferation of progenitors that could also
express nNOS [119]. Other groups have demonstrated NO
production to be induced by neurotrophic factors, which in
turn act in target cells inducing cell cycle arrest and/or exit
favoring differentiation [111, 120, 121].

It should be noted here that the majority of the studies
on the effect of NO in adult neurogenesis are focused mainly
on the modulation of proliferation. In this context, the
evaluation of survival rates of newly formed neurons is also
important, since NO is known to be a regulator of apoptosis
[118]. Several studies have shown that NO inhibits apoptosis
by preventing increases in caspase-3 activity [122], which has
been described to increase short-term survival of progenitor-
cell progeny in the adult rat DG following SE [123].

Production of NO via nNOS has been demonstrated to
have an important antiproliferative effect both in vitro and in
vivo, but also as being involved in neuronal differentiation,
survival, and synaptic plasticity [9, 10, 107, 113, 124]. It
was shown that chronic nNOS inhibition enhances neuro-
genesis. Indeed, the selective inhibition of nNOS with 7-
nitroindazole (7-NI) greatly increased cell proliferation in
the SVZ, RMS, and OB, but not in the DG, in adult mice
[10]. This antiproliferative effect of NO has been confirmed
by others, that have shown that when NO production is
inhibited either by using an intraventricular infusion of
an NOS inhibitor in the rat brain or by using an nNOS-
knockout mouse model, proliferation is greatly increased in
the olfactory subependymal zone and in the DG [9, 108, 113,
125]. Moreover, the inhibitory role of nNOS-derived NO
on SVZ and DG neurogenesis has also been demonstrated
in the context of cerebral ischemia [126]. Other authors
suggested NO to be a negative regulator of SVZ neurogenesis
by modulating the activity of the EGF receptor [107], via
nitrosylation of specific cysteine residues [127] (Table 3).
Accordingly to these studies, the antiproliferative effect can
be partially explained by the inhibition of the EGF receptor
and the phosphoinositide-3-kinase (PI3-K)/Akt signaling
pathway [107, 127]. Moreover, these authors described the
antimitotic effect of NO to correlate with the nuclear

presence of the cyclin-dependent kinase inhibitor p27Kip1

[127].
On the contrary, by using pharmacological or genetic

approaches, an opposite role has been found for NO synthe-
sized by eNOS in the SVZ and iNOS in the DG following
focal ischemia, which seems to stimulate neurogenesis [12,
128]. Moreover, increased immunoreactivity against iNOS
following transient ischemia was shown to correlate with a
decrease of nNOS in the hippocampus, which is concomitant
with an increased neurogenesis [116, 129]. Numerous works
showed that ischemia-induced neurogenesis in DG involves
the activation of NMDA receptors [130], which is simul-
taneous to increased iNOS expression [131, 132] (Table 3).
However, in a study regarding the effects of NO in cell
proliferation, both nNOS- and iNOS-derived NO increases
neurogenesis following seizures in the DG of adult rats [133].
Other authors reported that NO released under inflam-
matory conditions is involved in NSC differentiation into
astrocytes by a mechanism dependent on the activation of
the JAK/STAT-1 signal transduction pathway [112]. Recently
we showed that supraphysiological levels of NO induce the
proliferation of SVZ-derived neural stem cells through the
activation of two signaling pathways, in a biphasic manner.
Thus, the mitotic effect of NO is initially mediated by
the direct activation of signaling pathway downstream of
the EGF receptor, but bypassing the EGF receptor [74].
Downstream of the EGF receptor, there is an increased
activation of the mitogen-activated protein (MAP) kinase
ERK pathway following exposure to NO, which activates
several downstream targets, namely p90RSK, and further
decreases nuclear levels of p27Kip1, thus allowing cell cycle
progression [74]. Furthermore, the proliferative effect of
supraphysiological levels of NO, following longer periods of
exposure (24 h), is mediated by increased signaling through
the cGMP/cGMP-dependent kinase (PKG) pathway [115].
In addition, we also showed that NO from iNOS origin
promotes proliferation of NSC in the hippocampus of adult
mice following SE [74].

Altogether these findings illustrate that NO is a modu-
lator of neurogenesis in diverse ways, and the different NO
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synthases are important players in this effect on neurogenesis
[11, 139, 140]. NO effects on neurogenesis are dependent
on the developmental period and source of NO (Table 3).
Furthermore, NO can have concentration-dependent effects,
depending on the local concentration and surrounding
molecular environment. Apparently, under physiological
conditions NO acts as a negative regulator of neurogenesis
[9, 10, 110], while in inflammatory conditions a decrease
in nNOS and increase in iNOS may act as a mechanism to
enhance neurogenesis [12, 74, 107, 141, 142]. However, the
exact molecular mechanisms underlying this dual effect of
NO on neurogenesis, are not fully clarified and more studies
need to be conducted.

5. Potential Neurogenic Targets in
Nitrergic Pathways

Repair of damaged tissues and organs is essential for the
survival of organisms. Although the CNS has pools of neural
stem cells, these have a limited ability for repair and endoge-
nous cell replacement. Some strategies have been studied
over the past years to promote brain repair, particularly:
(a) neural precursor or stem cell transplantation or (b)
stimulation of endogenous neurogenesis. Moreover, exces-
sive proliferation of NSCs associated with tumor formation
is a major concern in the clinical application of both these
strategies. Since most brain disorders that could benefit
from enhanced neurogenesis are normally accompanied
by neuroinflammation, understanding how the inflamma-
tory response affects the neurogenic process is of major
importance for the design of safe and efficient therapeutic
strategies.

As discussed previously, NO was described to have a dual
role on the regulation of adult neurogenesis. NO synthesized
from nNOS appears to decrease neurogenesis or to act as
an antiproliferative agent [9, 10, 107, 108, 110, 113, 127],
whereas NO from iNOS and eNOS origin seems to stimulate
neurogenesis [12, 74, 128, 142]. Taking this evidence into
account, the modulation of the NO system may be a good
target for the development of strategies to improve brain
repair. Next, some of the most relevant therapeutic strategies
for brain repair using the modulation of the nitrergic system
will be discussed.

5.1. Nitric Oxide-Releasing Drugs. Nitric oxide-releasing
drugs are pharmacologically active substances that release
NO in vivo or in vitro. Two large groups of NO-releasing
drugs can be found today: (a) NO donors and (b) NO-
releasing nonsteroidal anti-inflammatory drugs. Although
the clinical application of these drugs to improve brain repair
seems remote, their potential application in the treatment of
CNS disorders is a matter of great interest. Several studies
have been carried out in order to understand how these
drugs control neurogenesis. In fact, there seem to exist
good reasons to believe that the use of these drugs may be
advantageous in the treatment of brain disorders.

5.1.1. Nitric Oxide Donors. Nitric oxide-releasing com-
pounds are clinically used for the treatment of patients with

coronary heart disease [143]. Different types of NO-releasing
agents have been developed and are commercially available,
such as sodium nitroprusside (SNP), firstly described as
a vasodilator, which is used to manage acute hypertensive
crisis; or molsidomine, used in the therapy of angina pectoris
and heart failure. SIN-1, another NO donor, is known as
both NO and ONOO− donor mainly because during NO
release from SIN-1 superoxide is also generated [144, 145]. A
wide range of NO-releasing drug classes have been developed
recently. Among them are diazeniumdiolates, also known as
NONOates (such as DEA/NO, SPER/NO, or DETA/NO) that
release NO spontaneously under physiological conditions.
Preclinical studies have shown a potential application for
NONOate in cardiovascular disease, but further studies need
to be conducted for their use in the clinic [145]. Chemically
distinct NO donors differ in their half-life time and amounts
of NO released in vitro. Moreover, depending on pH value,
temperature, presence of cofactors, and light, the amount of
NO released could be altered [144–146].

These compounds have also been useful to study physi-
ological processes and molecular mechanisms in which NO
is involved. NO was described to act as an antiproliferative
agent in the CNS under physiological conditions, thus affect-
ing neurogenesis [127]. Interestingly, in this work the authors
described NO to be antiproliferative through the inhibition
of the EGF receptor by S-nitrosylation [127]. Moreover,
other authors have also described NO physiological levels to
be antiproliferative in the brain [11, 107].

Numerous studies have used NO donors to investigate
the effect of high concentrations of NO on neurogenesis,
thus mimicking NO concentrations that can be achieved
locally in the brain following an inflammatory response.
Several groups reported nitric oxide-releasing drugs to
enhance recovery after brain injury, partly by increasing
neurogenesis in the DG and SVZ [147–150], following
ischemic stroke [147, 151] and traumatic brain injury [148].
One study found that exogenous administration of NO
using DETA/NO increases cell proliferation and survival
in mice hippocampus [117]. We have shown that high
concentrations of NO, which could be attained locally in
the brain following an inflammatory response, have a dual
effect on the proliferation of SVZ-derived NSCs [74, 115].
In fact, the effect of NO on the proliferation appears to be
dependent on the period of exposure and concentration of
NO achieved. Thus, a slight elevation on NO levels above
the physiological range has a proliferative effect in an initial
stage (1 day). On the contrary, continuous release of NO
overtime (for 2 days) had an antiproliferative effect in SVZ-
derived NSCs [74, 115]. This evidence is important to realize
that controlling neuroinflammation, thus controlling NO
production, will improve the outcome from the neurogenic
process following brain injury. Other groups have shown that
high concentrations of NO could also modulate other neuro-
genic stages, such as migration [136, 152] or differentiation
[112].

In fact, the studies published in the literature about
the effect of high levels of NO in neurogenesis, using NO
donors, seem to bring contradictory evidence. However, it
should be noted that in most of these works the NO donors
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used are chemically distinct and/or have distinct kinetics
on NO release. Therefore, the evidence should be carefully
interpreted to prevent misleading conclusions. Nevertheless,
all these studies appear to be consensual on the following:
NO is an important modulator of neurogenesis.

5.1.2. Nitric Oxide-Releasing Nonsteroidal Anti-Inflammatory
Drugs. Nitric oxide-releasing nonsteroidal anti-inflammato-
ry drugs (NO-NSAIDs) are a group of compounds with
potential therapeutic applications in several clinical con-
ditions. These drugs are synthesized by grafting a NO-
donating moiety to classical NSAID, such as aspirin (NO-
aspirin), flurbiprofen (NO-flurbiprofen), naproxen (NO-
naproxen), diclofenac (NO-diclofenac), and ibuprofen (NO-
ibuprofen) [143, 153, 154]. At present, NSAIDs are used
for the treatment of a variety of inflammatory conditions.
However, NSAIDs have a limited therapeutic application
in chronic conditions, mainly due to their significant side
effects in the gastrointestinal (GI) tract and kidneys. In
the last decades, a great effort has been done to improve
NSAID safety. Therefore, NO-NSAID may be considered
as an important therapeutic attempt to overcome the side
effects by NSAID. The release of NO from these drugs mimics
the physiological production of NO by constitutive NOS,
which appears to reduce the toxicity when compared to
the parent NSAID [153, 155]. Moreover, this modification
strongly reduces the side effects of NSAID, without affecting
the anti-inflammatory effectiveness [153].

Since NSAIDs are primarily used as anti-inflammatory
drugs, many of the studies with NO-NSAID have been
essentially about its anti-inflammatory effects. Numerous
studies in the literature have reported the anti-inflammatory
effect of NO-NSAID in animal models of acute or chronic
inflammation. More recently, there has been increasing
concern about the potential application of these drugs in
CNS disorders, particularly in neurodegenerative diseases,
such as Alzheimer’s disease. Numerous reports suggested
NO-NSAID to be a suitable approach for the treatment of
Alzheimer’s disease, since they are less toxic to the GI tract
than NSAID following chronic ingestion. Moreover, NO-
NSAID also inhibit caspase activity thus protecting neurons
against cytokine-induced apoptosis during Alzheimer’s dis-
ease [153]. As reported by Hauss-Wegrzyniak and coworkers,
chronic ingestion of NO-flurbiprofen reduced the activity
state of microglial cells in a rat model of Alzheimer’s
disease, when comparing to animals treated with aspirin
[156]. Other authors also described NO-flurbiprofen to
reduce brain beta-amyloid in a mice model of Alzheimer’s
disease, which was associated with activation of microglial
cells, the presumed responsible for clearing beta-amyloid
deposits [157]. Interestingly, these authors reported NO-
aspirin to be more efficacious than ibuprofen or celecoxib,
a selective COX-2 inhibitor [157]. The neuroprotective effect
of different NO-NSAID has additionally been described in
other animal models of brain damage. Treatment with NO-
aspirin was shown to be more neuroprotective than aspirin,
following MCAO [158]. In fact, the results from these
experiments are of great interest since they strongly suggest
that NO release is determinant for the protective action of

NO-aspirin in this animal model. Although the mechanism
underlying this effect is still unclear, NO improved blood
flow to the ischemic region, thereby reducing the lesioned
area. Moreover, the ability of NO-NSAID to inhibit caspase
activity is also important for this effect [159].

Given the ability of NSAID in crossing the BBB [160],
the use of NO-NSAID in the treatment of CNS disorders
can be a very useful tool, in particular for the control
of neuroinflammation that, as noted above, may affect
neurogenesis [155]. Therefore, it is important to conduct
more studies to understand the mechanisms and levels
within which NO released by NO-NSAID may promote
neurogenesis.

5.2. PDE Inhibitors. The main cellular signaling pathway
stimulated by NO is the activation of sGC, subsequent pro-
duction of cGMP, and further activation of protein kinases
that regulate various physiological events [161]. Neurons
synthesize cGMP in response to NO by activation of sGC,
a heterodimeric heme-containing enzyme. NO reacts with
the heme group of the sGC, which undergoes a conforma-
tional change, converting GTP into the second messenger
cGMP [93, 162]. Some studies suggest that NO can also
downregulate sGC activity, particularly in neuroinflam-
matory conditions [163]. cGMP-dependent kinases, which
are serine/threonine kinases, are activated by cGMP and
are involved in several physiological phenomena including
long-term potentiation in the hippocampus and long-term
depression in the cerebellum [93, 162]. In physiological
conditions, intracellular cGMP levels are controlled by
cyclic nucleotide phosphodiesterases (PDEs) [94]. PDEs are
enzymes that hydrolyze the 3′-phosphodiester bound of
cyclic adenosine monophosphate (cAMP) or cGMP, origi-
nating their corresponding monophosphates, 5′-AMP or 5′-
GMP, respectively. cGMP-related physiological functions can
be regulated by controlling the levels of PDE type 5 (PDE5)
enzymes, which specifically hydrolyze cGMP. Moreover,
cGMP also modulates the activity of PDE [164].

The use of selective PDE inhibitors has been proven to
be useful in the clinic, particularly PDE5 inhibitors, which
are drugs used to treat erectile dysfunction and pulmonary
arterial hypertension [164–166]. Sildenafil, commercially
available as Viagra, is classically considered as a PDE5
inhibitor; however, it also inhibits PDE1 and PDE6 [166–
168]. Similarly to sildenafil, two other inhibitors with higher
selectivity for PDE5 were developed for the treatment of
erectile dysfunction: tadalafil (Cialis) and vardenafil (Levi-
tra). More recently, a new compound was developed, T0156,
which potently inhibits PDE5 [169]. In fact, T0156 inhibits
PDE5 with higher potency than sildenafil also presenting
higher selectivity for PDE5 in comparison to PDE6 [169]. In
erectile dysfunction, PDE5 inhibition enhances relaxation of
the cavernosal smooth muscle by NO and cGMP, thus allow-
ing blood flow and stimulating penile erection [170, 171].
In the lung, PDE5 inhibitors act as vasodilators, increasing
blood supply, antagonizing the vasoconstriction of smooth
muscle, and decreasing pulmonary arterial resistance, thus
treating pulmonary hypertension (for comprehensive review
see [172–174]).



Stem Cells International 9

In the CNS, neurogenesis generally declines with aging
and is correlated with the emergence of neurodegenerative
diseases. Moreover, the levels of NO gradually decrease in
aging, which is concomitant with a decrease in cGMP levels.
As demonstrated in aged rats, cGMP levels are decreased as
a consequence of the increasing phosphodiesterase activity
when compared to young adult rats [175]. Several authors
described NO and cGMP to be important effectors in the
regulation of different events related with the neurogenic
process, particularly proliferation, migration, differentiation,
growth, axon guidance, and cell survival [115, 136, 152,
176, 177]. Furthermore, brain PDE5 was reported to have
a role in learning and memory, physiological events that
are closely dependent on neurogenesis. Therefore, targeting
PDE5 activity as a strategy to reverse the deleterious effects
on neurogenesis, and thus enhancing it, seems to be a
promising strategy to be applied in clinic. However it should
be noted that the use of PDE5 inhibitors as an effective
therapy for neurodegenerative diseases is dependent on their
permeability to the BBB. For instance, sildenafil is known to
cross the BBB and can be easily administered.

The administration of PDE5 inhibitors as a possible
therapy for Alzheimer’s disease has been studied, due to
their ability to reverse deficits in long-term memory caused
by pharmacological agents or aging. Different authors have
described that the administration of sildenafil enhances
memory and restores learning ability in animal models [178–
184]. Beyond this important role, PDE5 inhibitors appear
to stimulate neuronal plasticity, particularly through the
enhancement of endogenous neurogenesis in the adult brain.
In addition, the administration of PDE5 inhibitors, such as
sildenafil, but also tadalafil, positively affected neurogenesis
in the OB, SVZ, and the DG of rats by a mechanism
involving the intracellular increase of cGMP levels [185–
187]. Moreover, the administration of PDE5 inhibitors has
also been associated to neuronal function recovery in rats
following a stroke [188] or after ischemic injury either in
young adult rats as in aged rats [187, 189]. Furthermore,
PDE5 inhibition by sildenafil stimulated cell proliferation in
rat SVZ cultures [190]. In a recent report, it was shown that
sildenafil has a neuroprotective role, improving the clinical
symptoms and neuropathology in a mouse model of multiple
sclerosis, thus suggesting PDE5 as an important target for the
therapy of this disease [151].

In summary, this evidence supports the idea that the
use of PDE5 inhibitors merits further investigation in order
to clarify their involvement on neurogenesis, but also to
understand the mechanisms underlying these effects.

6. Future Prospects

Stimulation of endogenous adult neurogenesis and mod-
ulation of injury-induced neurogenesis is presently being
considered as a potential therapeutic approach for neuronal
repair in neurodegenerative disorders, as opposed to the
more invasive approach of transplantation of exogenous
stem cells. Understanding how the inflammatory response
affects neurogenesis is fundamental to better design ther-
apeutic strategies for safe and efficient regulation of

endogenous neurogenesis. Therefore, the knowledge of the
inflammatory agents that modulate proliferation and/or
differentiation of NSCs is of great usefulness if its action
could be correctly targeted and controlled, for instance, with
selective drugs for the agent of interest.

Nitric oxide, which acts as a nonspecific cytotoxic medi-
ator and a biological messenger, in immunological response,
has been attracting increasing importance from pharmaceu-
tical companies. Indeed, several nonsteroidal anti-inflamma-
tory NO-releasing drugs (NO-NSAID) are currently under
investigation and were shown to be beneficial in models
of several neurodegenerative conditions accompanied by
inflammation [153, 191]. As an alternative to conventional
NSAIDs with significant side effects, pharmacologically
improved and therapeutically enhanced NO releasing non-
steroidal anti-inflammatory drugs with less side effects are
being developed as reviewed in [192]. Moreover, besides the
clinical applications of PDE5 inhibitors, they appear to be a
good strategy for the treatment of certain CNS disorders and
further improve neurogenesis. These drugs have already been
shown to be important modulators of the nitrergic system,
preventing neurodegeneration and favoring neurogenesis.

In light of these facts, the modulation of the NO system
seems to be a good target for the development of strategies
to improve brain repair. However, despite all good evidence
that drugs that modulate the NO system have given, further
studies are necessary. In fact, a full understanding of how
inflammation affects neurogenesis is essential to the devel-
opment of therapeutic strategies that can induce neuroge-
nesis from endogenous neural precursor cells, and further
investigation needs to be conducted to better understand the
mechanisms underlying the effect of neuroinflammation in
cellular regeneration in the diseased brain.

Acknowledgments

This work was supported by the Foundation for Science
and Technology, (FCT, Portugal), COMPETE and FEDER
(project PTDC/SAU-NEU/102612/2008). B. P. Carreira is
supported by FCT (fellowship SFRH/BPD/78901/2011).

References

[1] H. Suh, W. Deng, and F. H. Gage, “Signaling in adult neu-
rogenesis,” Annual Review of Cell and Developmental Biology,
vol. 25, pp. 253–275, 2009.

[2] S. Amor, F. Puentes, D. Baker, and P. Van Der Valk, “Inflam-
mation in neurodegenerative diseases,” Immunology, vol. 129,
no. 2, pp. 154–169, 2010.

[3] M. L. Monje, H. Toda, and T. D. Palmer, “Inflammatory
blockade restores adult hippocampal neurogenesis,” Science,
vol. 302, no. 5651, pp. 1760–1765, 2003.

[4] C. T. Ekdahl, J. H. Claasen, S. Bonde, Z. Kokaia, and O.
Lindvall, “Inflammation is detrimental for neurogenesis in
adult brain,” Proceedings of the National Academy of Sciences
of the United States of America, vol. 100, no. 23, pp. 13632–
13637, 2003.

[5] S. Moncada and J. P. Bolaños, “Nitric oxide, cell bioenergetics
and neurodegeneration,” Journal of Neurochemistry, vol. 97,
no. 6, pp. 1676–1689, 2006.



10 Stem Cells International

[6] B. Liu, H. M. Gao, J. Y. Wang, G. H. Jeohn, C. L. Cooper, and
J. S. Hong, “Role of nitric oxide in inflammation-mediated
neurodegeneration,” Annals of the New York Academy of
Sciences, vol. 962, pp. 318–331, 2002.

[7] V. Calabrese, C. Mancuso, M. Calvani, E. Rizzarelli, D. A.
Butterfield, and A. M. Stella, “Nitric oxide in the central ner-
vous system: neuroprotection versus neurotoxicity,” Nature
Reviews Neuroscience, vol. 8, no. 10, pp. 766–775, 2007.

[8] A. Contestabile and E. Ciani, “Role of nitric oxide in the
regulation of neuronal proliferation, survival and differenti-
ation,” Neurochemistry International, vol. 45, no. 6, pp. 903–
914, 2004.

[9] M. A. Packer, Y. Stasiv, A. Benraiss et al., “Nitric oxide nega-
tively regulates mammalian adult neurogenesis,” Proceedings
of the National Academy of Sciences of the United States of
America, vol. 100, no. 16, pp. 9566–9571, 2003.
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