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ayudaron de forma directa en la realización del trabajo, se que sin ellos habŕıa sido mucho
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fuera extremadamente divertida y enriquecedora, que son mis estudiantes.

En particular hay algunos que han generado un gran impacto positivo en mi vida a los
cuales quiero hacer la mención especial: a Cami; sin duda alguna eres una de las personas
más inteligentes que conozco y me siento muy feliz de haberte conoćıdo, se que llegarás muy
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Chapter 1

Introduction

The aggressive maneuvers are movements of a system which require or produce operation in
the nonlinear part of the model or near the limits of the actuators or the states [1]. These
maneuvers are characterized by fast changes in the values of the state variables as well as
the use of their whole dynamic range.

The execution of aggressive maneuvers can be divided in two parts: the first part consists
on the planning of the trajectory and the second part is the execution. The trajectory
planning usually is stated as an optimal control problem which includes in the cost function
the characteristics of the desired trajectory: geometric form of the path, obstacle avoidance,
the dynamics and constraints of the system. In the literature, it is possible to find many
trajectory planning algorithms such as Potential Fields [2], Dynamic Programming [3] and
Model Predictive Control [4].

Once the trajectory has been planned is necessary to execute it. Classical methods of
control that depend on linear approximations do not work (PID, State-Feedback). This is
because given the nature of the trajectory the system operates in highly nonlinear regions and
as a consequence the linear approximations are not valid, consequently a linear model-based
controller will fail. Taking that into account there are two ways to execute the maneuver.

1. The first one is the Iterative Learning Control [1] [5]. It starts with a trajectory and a
control signal which is the result of an optimal control problem that uses a simplified
model based on basic principles. Then, it executes the maneuver. After the execution
of the maneuver, the result is analyzed and the control signal improved. The process
is repeated and in each iteration the control signal is adjusted according to the result
of the execution, until the performance is satisfactory. This approach deals with the
nonlinearities of the system and the non-modeled aerodynamic effects using the learning
algorithm to modify the control signals in order to produce the desired outcome.

2. The second alternative is to consider a complete model of the quadrotor [6]. Then, it
is possible to use this model with the desired trajectory and the system constraints to
find the control signals as a solution of an optimal control problem. These signals in
principle could produce the desired maneuver. In order to increase the robustness of
the control, it is implemented in closed loop. By closing the loop the Optimal Control
becomes a Model Predictive Control. Given that the system operates in the nonlinear
regime, this technique is known as a Nonlinear Model Predictive Control (NMPC).
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Besides the NMPC, there are other ways to execute aggressive maneuvers such as
Sliding Mode Control [7], Transverse Linearization [8], Quaternions [9] and Neural
Networks [10]. However, NMPC has three main advantages over these methods. First,
it handles multiple input multiple output (MIMO) systems easily, second it can explic-
itly take into account the nonlinearities of the model [11] which is highly desirable for
this application, and third the restrictions can be added to the controller design.

The advantages of the NMPC come associated with a speed implementation cost. Since
it is a control based on a nonlinear real time optimization, the applications are limited
by the speed of the optimization algorithm [12]. This implies that in order to use NMPC
in a fast dynamic system it is necessary to employ a very efficient nonlinear optimization
algorithm [13].

There are many NMPC implementations that differ mainly in the nonlinear optimization
algorithm: Recursive Neural Networks [12] Differential Evolution [14], Sequential Quadratic
Programming [11], Particle Swarm Optimization [11], Dynamic Particle Swarm Optimization
[15], Optimistic Optimization [16], Neighboring External Updates [17], Extended Modal
Series Method [18], among others.

Each one of these methods has its own characteristics which make them suitable for
certain types of problems. In this particular case, the most relevant method is the Extended
Modal Series Method (EMSM) because it is designed for input affine systems and does
not require iterations to give a solution. The EMSM is based on a explicit suboptimal
control law that depends only on the initial state of the system, which diminishes greatly
the computation time of the control signal. This is important because the execution of an
aggressive maneuver requires short sample periods for fast responses.

The system that will be used to test this controller is a modification of the classical
fixed pitch quadrotor. A quadrotor is an Unmanned Aerial Vehicle (UAV) formed by a
cross structure that in the center has the electronics and the battery and four motors with
the corresponding propellers at the end of each arm. The movements of the quadrotor
are completely determined by the differences of the thrust and torque produced by each
motor [19], which in turn are related to the form of the blade and the angular velocity of
rotation.

Usually, in order to control a quadrotor, the thrust and torque produced by each of the
motors is assumed to be directly proportional to the square of the angular velocity of the
motor and the proportionality constants are estimated or measured experimentally. This
constant depends on the shape of the blade, in particular the angle of attack.

As a result, the produced thrust can be changed not only through the angular velocity of
the motors but also changing the angle of attack of the blades. This last option is available
for a special kind of quadrotors and has the advantage of affecting the thrust directly while
the change of angular velocity has to pass first through the dynamics of the motor to change
the real angular velocity of the propellers and then the thrust, hence it is limited to the
bandwidth of the motors [20].

The quadrotors that can change the angle of attack of the blades are called the Variable
Pitch Quadrotors and despite being relatively recent, the evident advantage of not being
limited to the motor bandwidth has already being used to develop quadrotors that perform
aggressive maneuvers with good results [21]. Another advantage of these quadrotors is the

2



possibility to produce negative thrust, which enables them to perform maneuvers impossible
for fixed pitch quadrotors such as flips with constant altitude or inverted hover [20].

Because their characteristics, the Variable Pitch Quadrotors are an excelent alternative
to perform aggressive maneuvers. However, given that until recently their study has started
there is still much to explote related to the execution of aggressive maneuvers, for instance
the use of advanced control techniques such as NMPC for this application.

The goal of this work is to implement a NMPC to a Variable Pitch Quadrotor using the
EMSM. More precisely the general objective is:

• Design a Nonlinear Model Predictive Control law based on the Extended
Modal Series Method for the execution of Aggressive Maneuvers in a Vari-
able Pitch Quadrotor.

In order to achieve this result the following specific objectives were stated:

1. Model Mathematically a Variable Pitch Quadrotor including aerodynamic effects such
as Blade Flapping, Induced Drag, Translational Drag, Profile Drag, and Parasitic Drag.

2. Compute the trajectories corresponding to the aggressive maneuvers using Pontryagin’s
Maximum Principle to solve the associated Optimal Control Problem.

3. Implement in simulation a Nonlinear Model Predictive Control for the execution of the
aggressive maneuvers using the Extended Modal Series Method.

4. Compare the performance of the Nonlinear Model Predictive Controller with a Quaternion-
based one used in previous works.

The first, and main contribution is the implementation of a EMSM-based NMPC [18],
which to the best of the author’s knowledge has not been done before. This provide insights
on the EMSM-based controller design that could produce in improvements on the method
and become reference for future works on related topics.

The second contribution of this work is the application of NMPC to the execution of
aggressive maneuvers in this system, since it includes the construction of a complete model
(not only of the augmented model of the Variable Pitch Quadrotor but also the inclusion
of relevant aerodynamic effects) the resulting model can be used for future research in this
area.

The partial results of this master work will be presented in the 2018 European Control
Conference in Limassol, Cyprus, under the conference article C. Devia, M. Roa, D.
Patino, and J. Colorado. 2018. Towards a Nonlinear Model Predictive Control
using the Extended Modal Series Method. European Control Conference -ECC
2018, June 12-15, Limassol, Cyprus.

This work is divided as follows: In chapter 2 the complete dynamic system is explained
and detailed. In chapter 3 the Extended Modal Series Method is presented, initially the
preliminary results are shown and from there the main theoretical contribution of this work
is developed. After that, in chapter 4 the control architecture is addressed and each controller
described and explained. Finally, chapter 5 presents the simulation results and corresponding
analysis ending with overall conclusions and future work. Additional details or theoretical
background are located in the appendix .
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Chapter 2

Complete Dynamic System Model

This chapter presents the variable pitch quadrotor model. Section 2.1 describes the complete
model. An alternate model for the attitude dynamics based on quaternions is presented in
section 2.2. Finally drag effects are addressed in section 2.3.

2.1 Variable Pitch Quadrotor

Quadrotors have become a widely studied topic in the recent years. This is due to the
fact that they offer many desired characteristics for a wide range of applications. They can
achieve vertical landing and take-off [22], perform aggressive maneuvers [23], and can be
changed accordingly to the application requirements, varying size, the number of propellers
or adding additional sensors.

Basic Quadrotor Model

In order to model the system two different coordinate frames must be defined. The first
one, usually denoted by E = {x̂, ŷ, ẑ} corresponding to the inertial frame of reference fixed
on the ground and B = {x̂b, ŷb, ẑb} located in the center of mass of the quadrotor, where ẑb
point upwards and x̂b points to the front of the robot, see figure 2.1.

Figure 2.1: E and B frames of reference, taken from [19]

The two frames of reference are related by two vectors: the translational position ~P =
[x, y, z] which is the vector from the origin of E to the origin of B and the angular position
~Θ = [φ, θ, ψ] which corresponds to the Euler angles relating E and B. Figure 2.2 shows the
relations between the Euler Angles and the axis of the B frame of reference.
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Figure 2.2: B frame of reference, taken from [19]

The equations of motion of the quadrotor can be derived using several methods, including
newton’s equations and energy principles. The used model that includes the basic dynamics
is a combination of the results of previous works [19] [24] [25] [26] [27].

Basic Movements

The inputs of the system are the angular velocity of the four motors, denoted by w1, w2, w3, w4

respectively. Only through these inputs is possible to move the quadrotor, and since it has six
degrees of freedom (three translational and three angular) it is characterized as an under-
actuated system. The angular velocity generates thrust Fi and torque τi in each motor
(i = 1, 2, 3, 4). The direction of rotation of each motor is opposite to the adjacent ones, this
is done to produce torque both upwards and downwards and to control the yaw angle. It
is through the thrust and torque of each motor that the quadrotor moves in space. This is
achieved with four basic movements [19], each associated with a corresponding equation:

• Climb: this is the movement in the ẑb direction. This movement is achieved by
applying equal thrust to each of the four motors. The climb is represented by the
equation of Total Thrust:

Ft = F1 + F2 + F3 + F4 (2.1)

• Roll Rotation: In order to rotate the roll angle a torque must be applied in the
direction of x̂b, this is carried out by increasing the thrust of the motors M1 and M4
and reducing the thrust of M2 and M3. By doing so, a net torque is applied in the x̂b
direction which results in a roll rotation. The thrust of M1 and M4 must be the same,
as well as the thrust of M2 and M3, if not, the torque will point in a direction different
from x̂b. If L is the distance from the motors to the center of mass, the Roll Torque is
given by:

τφ =
L√
2

(F1 − F2 − F3 + F4) (2.2)

• Pitch Rotation: Similar to the roll rotation, a pitch rotation is achieved by applying
a torque in the body of the quadrotor, now in the ŷb axis. This is achieved by increasing
the thrust of motors M4 and M3 and decreasing the thrust of motors M1 and M2. Also
in order to guarantee that the torque points in the ŷb direction, the thrust in M1 and
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M2 must be the same, as with M3 and M4. If L is the distance from the motors to the
center of mass, the Pitch Torque is given by:

τθ =
L√
2

(−F1 − F2 + F3 + F4) (2.3)

• Yaw Rotation: The yaw rotation is achieved by a torque in the direction of the ẑb
axis. This torque is the sum of the contributions of each motor. Then if they all
produce the same torque the sum cancels. Hence, in order for a net torque to exist,
two opposite motors must increase the angular velocity while the other two need to
decrease it, resulting in a net torque in the ẑb which in turn produces a yaw rotation.
The Yaw Torque is given by:

τψ = τ1 − τ2 + τ3 − τ4 (2.4)

Each of the four movements can be achieved independently with the adequate increase and
decrease of angular velocity in the corresponding motors. Also, complex trajectories can
be decomposed in each of these four movements in which case the total changes in the
angular velocity of the motors will be the composition of the changes required by each of
the independent movements.

Complete System of the Quadrotor

With each of the four basic movements defined and associated with an equation, the system
dynamics can be addressed. In total 12 variables are needed to describe the system behavior
(without taking into account the motor dynamics). The torques over the center of mass τφ,
τθ and τψ (roll, pitch and yaw torques respectively) produce angular accelerations ṗ, q̇ and
ṙ in the B coordinate frame given by:

ṗ =

(
Iy − Iz
Ix

)
qr +

τφ
Ix

(2.5)

q̇ =

(
Iz − Ix
Iy

)
pr +

τθ
Iy

(2.6)

ṙ =

(
Ix − Iy
Iz

)
qp+

τψ
Iz

(2.7)

Where Ix, Iy and Iz are the moments of inertia around the x̂b, ŷb and ẑb axis respectively.
These accelerations can be integrated and transformed into angular velocities in the E co-
ordinate frame:

φ̇ = p+ q sinφ tan θ + r cosφ tan θ (2.8)

θ̇ = q cosφ− r sinφ (2.9)

ψ̇ =
sinφ

cos θ
q +

cosφ

cos θ
r (2.10)
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An integration of these angular velocities gives the angular position of the quadrotor ~Θ,
which together with the total trust Ft generates translational accelerations in the E frame
of reference. These accelerations can be expressed in terms of the translational position by:

ẍ =
Ft
m

[cosφ sin θ cosψ + sinφ sinψ] (2.11)

ÿ =
Ft
m

[cosφ sin θ sinψ − sinφ cosψ] (2.12)

z̈ =
Ft
m

cosφ cos θ − g (2.13)

Where m is the mass of the quadrotor and g is the gravity.

Motor and Propeller Model

Besides the dynamics of the quadrotor in flight, the model of the motor, the propellers and its
coupling needs to be taken into account. There are two main ways to analyze the dynamics
of the rotors: the energy method and the blade element method [28].

The detailed model of the propellers during flight is very complicated because when the
propellers move their shape changes due to the air that flows around them, as a result the
total torque and thrust needs to be calculated using an integral. This is a level of detail
that is unnecessary and unfeasible for any application mainly because it introduces many
new parameters and variables that need to be estimated because even in test conditions
are difficult to measure and second because its effects are negligible. As a result a close
form equation can be obtained after doing some approximations of the average shape of the
propeller [29].

Finally the thrust and torque produced by each propeller is given by (i denotes each
motor):

Fi = ρcR3ω2CLα

(αt
3
− L

2Rω
(E1q − E2p)

)
i = 1, 2, 3, 4 (2.14)

τi = ρcR4ω2
(CD0 + CDiαt

2

4
− CLααtw̄

3Rw

)
i = 1, 2, 3, 4 (2.15)

where ρ is the air density, c is the chord of the blade, ω is the angular velocity of rotation of
the propeller, CLα is the lift coefficient, DD0 and CDi are the parasitic and lift-induced drag
coefficient respectively. R is the blade radius, αt is the angle of attack, L is the distance
from the center of the quadrotor to the propeller, w̄ is the velocity in the ẑb direction. E1 is
0 for motors 2 and 4, 1 for motor 1 and -1 for motor 3. And E2 is 0 for motors 1 and 3, 1
for motor 2 and -1 for motor 4.

It is important to note that equations (2.14) and (2.15) are only the absolute value of the
thrust and torque of each motor. The direction of the thrust is in the sgn(αt)ẑb direction and
for the torque the directions alternate between adjacent propellers from ẑb to −ẑb. Because
of that, ω in the equations above is independent of the direction of rotation and always a
positive number. It is important to note that although the equations seem very complex, at
the end they have the following form (i denotes each motor):

Fi = K1iω
2αt +K2iω i = 1, 2, 3, 4 (2.16)
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τi = B1iω
2 +B2iω

2αt
2 +B3iωαt i = 1, 2, 3, 4 (2.17)

where the constants K1i , K2i , B1i , B2i and B3i can be calculated from measurements.
The motor dynamics can be modeled as a series RCL circuit [23]:

v = Ri + L
∂i

∂t
+

w

Kv

(2.18)

where v is the voltage, Ri is the internal resistance, i is the current, w is the rotational
velocity of the rotor, Kv is the voltage constant of the motor. On the other hand the torque
produced by the motor is:

τM =
i− io
KQ

(2.19)

where io is the no-load current and KQ is the torque constant. The previous considerations
can be simplified into a first order equation, thus the dynamics of the motor are modeled
by [25] with:

ω̇i = Kmi(ωi
des − ωi) i = 1, 2, 3, 4 (2.20)

where Kmi is a constant that enclosures the parameters of the motor and ωi
des is the desired

angular velocity.

2.2 Quaternion Model

This section focuses on the quaternion-based attitude dynamic model. Appendix A.3 con-
tains a brief explanation of quaternions and their use as rotation operators in space. If the
reader is not familiar with this mathematica tool is highly advised to read first appendix
A.3.

Recall that when modeling the quadrotor, two reference frames are needed, the inertial
frame of reference E and the body frame of reference B. The torques acted on the body
frame of reference and together with the thrust were translated into forces in the inertial
frame of reference. The relation between these two frames was given by the angular position
of the quadrotor represented by Euler’s angles φ, θ and ψ.

This is the conventional approach and is used in many applications. However, it has
two main disadvantages: first, it is computationally expensive since it requires constant
calculation of trigonometric functions and secondly it suffers from singularities for some
angular positions. The solution is to employ quaternions to represent these rotations in
space as explained in the previous subsections.

Using quaternions to represent these rotations implies replacing the angle-based position
towards a quaternion-based one. Meaning that the attitude of the quadrotor will be repre-
sented by a quaternion q(t) = q0(t) + q1(t)̂i+ q2(t)ĵ + q3(t)k̂, where q0, q1, q2 and q3 are the
quaternion components.

This change is reflected in the dynamic model equations. Since only the φ, θ and ψ angles
are replaced only the equations containing these state variables are affected, it means that
the angular rate dynamics remain the same while the attitude and translational velocities
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dynamics change to

q̇0 = 1
2
(−q1p− q2q − q3r)

q̇1 = 1
2
(q0p+ q2r − q3q)

q̇2 = 1
2
(q0q − q1r + q3p)

q̇3 = 1
2
(q0r + q1q − q2p)

(2.21)

ẍ = 2Ft
m

(q1q3 + q0q2) ÿ = 2Ft
m

(q2q3 − q0q1) z̈ = Ft
m

(q2
0 − q2

1 − q2
2 − q2

3)− g (2.22)

For details about this result see [30]. Note that although the equations in (2.21) are
still non linear the two main disadvantages of the angle attitude dynamics are overcome: no
trigonometric functions need to be computed and the equations have no singularities.

2.3 Drag Effects

This section briefly presents the main drag forces presented in the complete model:

• Blade Flapping This effect is caused by the translational motion of the propeller.
As the propeller rotates the tip velocity of the blade is affected by the translational
motion of the quadrotor: while the blade moves in the direction of displacement of
the quadrotor the velocity of the tip is greater than while it moves in the opposite
direction. This difference in tip velocities generates a flapping movement on the tip of
the rotor that can be modeled by:

β(ϕ) = β0 + βc cos(ϕ) + βs sin(ϕ),

where ϕ is the azimuth angle of the rotor and β is the flapping angle. This changes the
angle of attack of the blade, thus affecting the produced torque. The flapping force on
the motor i is given by:

∆i = Ti

(
Aflap

Vi
ωi

+Bflap
Ω

ωi

)
(2.23)

where Vi = (vx, vy, 0)T , Ω = (φ, θ, ψ)T and

Aflap =
1

r

−A1c A1s 0
−A1s A1c 0

0 0 0

 Bflap =

−B2 B1 0
B1 −B2 0
0 0 0

 (2.24)

The constants A1c and A1s depend on the geometry of the blade. While B1 and B2

can be approximated numerically (see [6]).

• Induced Drag The motor experiences a net instantaneous induced drag that directly
opposes the direction of apparent wind (VP ) as seen by the rotor and that is propor-
tional to the velocity of VP :

DI = KIVP VP = (Vx, Vy, 0)T (2.25)

The proportionality constant KI depends on the geometry of the propeller.
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• Translational Drag Also known as the momentum drag, it is a drag caused by the
induced velocity of the airflow as it goes through the rotor:

DT =

{
KT1VP low speeds

KT2V
4
z VP high speeds

VP = (Vx, Vy, 0)T (2.26)

The constants KT1 and KT2 can be calculated using Blade Element Theory.

• Profile Drag It is due to the transverse velocity of the rotor blades. It is zero at hover
and can be modeled as:

DP = ρc((cd0 + cdα)Ωr2 + Vzr)Vp VP = (Vx, Vy, 0)T (2.27)

Equation (2.27) can be approximated by a directly proportional relation DP ≈ KPVP
for ease in the implementation.

• Parasitic Drag It is a drag caused by the non-lifting surfaces of the quadrotor. It
includes drag arising from the airframe, motors and que guidance and control systems:

Dpar = Kpar|V |V V = (Vx, Vy, Vz)
T (2.28)

Unlike the previous effects, this drag is present in the complete body of the quadrotor rather
than each propeller, as such it is modeled in the overall system and not each motor model.
Finally, the drag effects can be summarized by:

τφ = L√
2
(Fz1 − Fz2 − Fz3 + Fz4)

τθ = L√
2
(−Fz1 − Fz2 + Fz3 + Fz4)

τψ = τ1 − τ2 + τ3 − τ4 − L√
2
(Fy1 + Fx1 + Fy2 − Fx2 − Fy3 − Fx3 − Fy4 + Fx4)

(2.29)

Where

Fxi =
1

ωi
(ρcR3

pω
2
iCLα)

α

3

(1

r
(A1cvx + A1svy)−B2p+B1q

)
− (KI +KT +KP )vx

Fyi =
1

ωi
(ρcR3

pω
2
iCLα)

α

3

(1

r
(A1svx − A1cvy) +B2p−B1q

)
− (KI +KT +KP )vy

Fzi = ρcR3
pω

2
iCLα

α

3

The model presented in this chapter is the one that will be used throughout the remainder
of the work. In particular in chapter 4 where the control is designed. As expected, the way
in which the model is divided into the motor-propeller system and the quadrotor system
will be reflected in the control design. Furthermore, the attitude and translational dynamics
subdivision of the quadrotor model will be present in the control architecture.

10



Chapter 3

Extended Modal Series Method

This chapter elaborates on the Extended Modal Series Method (EMSM) applied to the
solution of an Optimal Control Problem (OCP). Section 3.1 states the OCP to be solved
and briefly explains the procedure to solve the problem. Then section 3.2 presents the
preliminary results based on [18].

Next, in section 3.3 the main theoretical result of this work is presented, namely an
explicit formulation for the systems of ordinary differential equations, which were defined
implicitly in the previous section. First the desired system of ordinary differential equations
is presented, then the main result follows in theorem 1 with the corresponding proof.

Thanks to the closed form of the system of ordinary differential equations it is possible
to approximate a solution. Section 3.4 addresses this problem. Finally in section 3.5 the
complete procedure is summarized and the final result shown.

3.1 Problem Statement

Consider the following input-affine dynamic system:

ẋ = F (x) +G(x)u (3.1)

Where F : Rn → Rn and G : Rn → Rn×m are analytic vector functions of the states x ∈
Rn and u ∈ Rm is the system input. Satisfying F (0) = 0, G(0) = 0. The OCP is stated as
follows:

min
u∈U

{
J(x, u) =

1

2

∫ tf

to

(
xTQx+ uTRu

)
dt
}

Where U is the set of admissible inputs u(t), Q is a positive definite matrix, R is a positive
semi definite matrix, to is the initial time and tf is the final time. Subject to the system
dynamics of equation 3.1 and with fixed initial and final states, x(to) = xo and x(tf ) = xf
respectively. In order to solve this OCP Pontryagin’s Maximum Principle is used [31]. First
compute the Hamiltonian corresponding to the system 3.1:

H(x, λ, u) =
1

2

(
xTQx+ uTRu

)
+ λT

(
F (x) +G(x)u

)
(3.2)
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Where λ = λ(t) ∈ Rn are known as the costates. Now minimize the hamiltonian 3.2 with
respect to the input u to find the optimal input u∗

u∗ = min
u∈U

{
H(x, λ, u)

}
Replace u∗ in the hamiltonian 3.2 to obtain the optimal hamiltonian H∗. Finally solve the
set of 2n differential equations:

ẋ =
∂H∗

∂λ
λ̇ = −∂H

∗

∂λ
(3.3)

Subject to the boundary conditions x(to) = xo and x(tf ) = xf . Replacing the dynamic
system 3.1 in the hamiltonian 3.2 yields the following optimal control input:

u∗ = −R−1GT (x)λ (3.4)

Finally computing the system of differential equations 3.3 gives:

ẋ = F (x)−G(x)R−1G(x)Tλ (3.5)

λ̇ = −Qx− ∂xF (x)Tλ+

λ
T∂x1G(x)R−1G(x)Tλ

...
λT∂xnG(x)R−1G(x)Tλ

 (3.6)

The solution to this system of nonlinear differential equations gives the optimal control as
well as the optimal state trajectory. However, it often can not be found analytically and
approximations are required.

The reminder of this chapter details the use of the Extended Modal Series Method to
approximate the solution of this system of partial differential equations. In section 3.2 the
solutions of equations (3.5) and (3.6) are approximated by an infinite sum of vector functions
gi and hi which are themselves solutions of infinite systems of ordinary differential equations.
The systems that give rise to the functions gi and hi are expressed in closed form in section
3.3. Next, in section 3.4 the closed form is further developed and an approximate solution
found. Finally in section 3.5 the complete procedure is summarized and the final result
shown.

3.2 Preliminary Results

The Extended Modal Series Method can be used to transform equations 3.5 and 3.6 into a
series of ordinary differential equations that have analytic solutions [18]. Let us define the
functions

ψ(x, λ) , F (x)−G(x)R−1G(x)
T
λ (3.7)

φ(x, λ) , −Qx− ∂xF (x)Tλ+

λ
T∂x1G(x)R−1GT (x)λ

...
λT∂xnG(x)R−1GT (x)λ

 (3.8)
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where ψ : Rn × Rn → Rn and φ : Rn × Rn → Rn are nonlinear analytic vector functions
(since F and G are assumed to be analytic). With these definitions the system of nonlinear
differential equations can be written as:

ẋ = ψ(x, λ) λ̇ = φ(x, λ) (3.9)

Expanding ψ and φ in a Taylor Series around the point (x, λ) = (0, 0). It is obtained:

ẋ =

(
∂ψ

∂x

∣∣∣∣∣
x=0
λ=0

)
x+

(
∂ψ

∂λ

∣∣∣∣∣
x=0
λ=0

)
λ+

1

2


xT
(
∂2ψ1

∂x2

∣∣
x=0
λ=0

)
x

...

xT
(
∂2ψn
∂x2

∣∣
x=0
λ=0

)
x



+


xT
(
∂2ψ1

∂x∂λ

∣∣
x=0
λ=0

)
λ

...

xT
(
∂2ψn
∂x∂λ

∣∣
x=0
λ=0

)
λ

+
1

2


λT
(
∂2ψ1

∂λ2

∣∣
x=0
λ=0

)
λ

...

λT
(
∂2ψn
∂λ2

∣∣
x=0
λ=0

)
λ

+ . . . (3.10)

λ̇ =

(
∂φ

∂x

∣∣∣∣∣
x=0
λ=0

)
x+

(
∂φ

∂λ

∣∣∣∣∣
x=0
λ=0

)
λ+

1

2


xT
(
∂2φ1

∂x2

∣∣
x=0
λ=0

)
x

...

xT
(
∂2φn
∂x2

∣∣
x=0
λ=0

)
x



+


xT
(
∂2φ1

∂x∂λ

∣∣
x=0
λ=0

)
λ

...

xT
(
∂2φn
∂x∂λ

∣∣
x=0
λ=0

)
λ

+
1

2


λT
(
∂2φ1

∂λ2

∣∣
x=0
λ=0

)
λ

...

λT
(
∂2φn
∂λ2

∣∣
x=0
λ=0

)
λ

+ . . . (3.11)

Assuming that the solution has the form:

x(t) =
∞∑
i=1

gi(t) λ(t) =
∞∑
i=1

hi(t) (3.12)

Since the trajectory of the states and the costates depends on the time and the initial
conditions, it is possible to define the functions Λ and Γ as:

x(t) = Λ(xo, t) λ(t) = Γ(xo, t) (3.13)

Now multiplying by a factor ε the initial condition xo and replacing in x(t) = Λ(xo, t) and
λ(t) = Γ(xo, t) it is obtained:

xε(t) = Λ(εxo, t) = εg1(t) + ε2g2(t) + · · · =
∞∑
i=1

εigi(t) (3.14)

λε(t) = Γ(ελo, t) = εh1(t) + ε2h2(t) + · · · =
∞∑
i=1

εihi(t) (3.15)

Derivating xε(t) and λε(t) with respect to time in (3.14) and (3.15) to obtain ẋε(t) =

ψ(xε(t), λε(t)) and λ̇ε(t) = φ(xε(t), λε(t)). This gives the following system (using (3.10)
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and (3.11)):

εġ1(t) + ε2ġ2(t) + · · · = ε

[(
∂ψ

∂x

)
g1(t) +

(
∂ψ

∂λ

)
h1(t)

]

+ ε2

[(
∂ψ

∂x

)
g2(t) +

(
∂ψ

∂λ

)
h2(t) +

1

2


gT1 (t)

(
∂2ψ1

∂x2

)
g1(t)

...

gT1 (t)
(
∂2ψn
∂x2

)
g1(t)



+


gT1 (t)

(
∂2ψ1

∂x∂λ

)
h1(t)

...

gT1 (t)
(
∂2ψn
∂x∂λ

)
h1(t)

+
1

2


hT1 (t)

(
∂2ψ1

∂λ2

)
h1(t)

...

hT1 (t)
(
∂2ψn
∂λ2

)
h1(t)


]

+ . . . (3.16)

εḣ1(t) + ε2ḣ2(t) + · · · = ε

[(
∂φ

∂x

)
g1(t) +

(
∂φ

∂λ

)
h1(t)

]

+ ε2

[(
∂φ

∂x

)
g2(t) +

(
∂φ

∂λ

)
h2(t) +

1

2


gT1 (t)

(
∂2φ1

∂x2

)
g1(t)

...

gT1 (t)
(
∂2φn
∂x2

)
g1(t)



+


gT1 (t)

(
∂2φ1

∂x∂λ

)
h1(t)

...

gT1 (t)
(
∂2φn
∂x∂λ

)
h1(t)

+
1

2


hT1 (t)

(
∂2φ1

∂λ2

)
h1(t)

...

hT1 (t)
(
∂2φn
∂λ2

)
h1(t)


]

+ . . . (3.17)

Equations 3.16 and 3.17 hold for arbitrary ε. Thus, the coefficients that correspond to each
power of ε must be equal. This fact generates infinite systems of differential equations, each
associated with a power of ε and of 2n equations (n states and n costates):

ε :=


ġ1 =

(
∂ψ
∂x

)
g1 +

(
∂ψ
∂λ

)
h1

ḣ1 =
(
∂φ
∂x

)
g1 +

(
∂φ
∂λ

)
h1

ε2 :=



ġ2 =
(
∂ψ
∂x

)
g2 +

(
∂ψ
∂λ

)
h2 + 1

2


gT1
(
∂2ψ1

∂x2

)
g1

...

gT1
(
∂2ψn
∂x2

)
g1



· · ·+


gT1
(
∂2ψ1

∂x∂λ

)
h1

...

gT1
(
∂2ψn
∂x∂λ

)
h1

+ 1
2


hT1
(
∂2ψ1

∂λ2

)
h1

...

hT1
(
∂2ψn
∂λ2

)
h1



ḣ2 =
(
∂φ
∂x

)
g2 +

(
∂φ
∂λ

)
h2 + 1

2


gT1
(
∂2φ1

∂x2

)
g1

...

gT1
(
∂2φn
∂x2

)
g1



· · ·+


gT1
(
∂2φ1

∂x∂λ

)
h1

...

gT1
(
∂2φn
∂x∂λ

)
h1

+ 1
2


hT1
(
∂2φ1

∂λ2

)
h1

...

hT1
(
∂2φn
∂λ2

)
h1


Solving the system due to ε gives the functions g1(t) and h1(t), then substituting in the system
generated by ε2 it becomes a system of linear time-invariant non-homogeneous differential
equations whose solution is g2(t) and h2(t). This process can be repeated recursively in order
to obtain the functions gi(t) and hi(t) [18].
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3.3 Explicit Formulation

Equations (3.16) and (3.17) give a constructive method to form the systems of differential
equations. For the ω-th iteration there are 2n unknown functions:

gω(t) = (gω,1(t) . . . gω,n(t))T hω(t) = (hω,1(t) . . . hω,n(t))T

Let ξψω,l be the function corresponding to ġω,l, that is, the component l of the function that

multiplies εω expanded from ψ. Likewise let ξφω,l be the function corresponding to ḣω,l. With
this notation the system of ordinary differential equations that corresponds to the iteration
ω is:

ġω,l(t) = ξψω,l(t) ḣω,l(t) = ξφω,l(t) (3.18)

Where 1 ≤ l ≤ n and the unknowns are the vector functions gω(t) and hω(t).
The main result is a closed form formula for the functions ξψω,l(t) and ξφω,l(t). This result

is stated in the following theorem:

Theorem 1. Using the previously introduced notation, let ξψω,l be the function corresponding

to εω for gl. Likewise let ξφω,l be the function corresponding to εω for hl. Then they can be
calculated as follows:

ξψω,l =
ω∑

|α|+|β|=1

{
DαDβ

α!β!
ψl(0)Ω(α, β, ω)

}
(3.19)

ξφω,l =
ω∑

|α|+|β|=1

{
DαDβ

α!β!
φl(0)Ω(α, β, ω)

}
(3.20)

Where

Ω(α, β, ω) =
∑

|θ|=ω−|α|−|β|

{
n∏
q=1

( ∑
u+v=αq+βq+θq
αq≤u≤ωαq
βq≤v≤ωβq

GH

)}
(3.21)

G = G(αq, u) =
∑

σ(a)=u
|a|=αq

(
αq!

a1!a2! . . . aω!

)(
ω∏
t=1

gatt,q

)
(3.22)

H = H(βq, v) =
∑

σ(b)=v
|b|=βq

(
βq!

b1!b2! . . . bω!

)(
ω∏
t=1

hbtt,q

)
(3.23)

σ(x) =

ω∑
t=1

txt (3.24)

Proof. First rewrite (3.10) and (3.11) using the compact form of Taylor’s Formula [32] it is
an expansion in 2n variables:

ẋ = ψ(x, λ) = ψ(Λ,Γ) =

∞∑
|α|+|β|=1

DαDβ

α!β!
ψ(0)ΛαΓβ

=

∞∑
|α|+|β|=1

∂α1
x1
. . . ∂αnxn ∂

β1

λ1
. . . ∂βnλn

α1! . . . αn!β1! . . . βn!
ψ(0)Λα1

1 . . .Λαnn Γβ1

1 . . .Γβnn (3.25)
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λ̇ = φ(x, λ) = φ(Λ,Γ) =

∞∑
|α|+|β|=1

DαDβ

α!β!
φ(0)ΛαΓβ

=

∞∑
|α|+|β|=1

∂α1
x1
. . . ∂αnxn ∂

β1

λ1
. . . ∂βnλn

α1! . . . αn!β1! . . . βn!
φ(0)Λα1

1 . . .Λαnn Γβ1

1 . . .Γβnn (3.26)

Where α and β are indices with n positions each: α = (αi)
n
i=1, β = (βi)

n
i=1 and |α| =

∑n
i=1 αi.

Also

Λk = Λk(xo, t) =

∞∑
j=1

gj,k(t) Γk = Γk(xo, t) =

∞∑
j=1

hj,k(t) (3.27)

Now, changing the initial conditions x(to) = εxo, we have:

ψ(xε, λε) = ψ(Λ(εxo, t),Γ(εxo, t)) =

∞∑
|α|+|β|=1

DαDβ

α!β!
ψ(0)Λα(εxo, t)Γ

β(εxo, t) =

∞∑
j=1

εj ġj(t) (3.28)

φ(xε, λε) = φ(Λ(εxo, t),Γ(εxo, t)) =

∞∑
|α|+|β|=1

DαDβ

α!β!
φ(0)Λα(εxo, t)Γ

β(εxo, t) =

∞∑
j=1

εj ḣj(t) (3.29)

and

Λk(εxo, t) =

∞∑
j=1

εjgj,k(t) Γk(xo, t) =

∞∑
j=1

εjhj,k(t)

Then, the expansion becomes:

ψ(xε, λε) =

∞∑
|α|+|β|=1

DαDβ

α!β!
ψ(0)Ω̄(α, β) =

∞∑
k=1

εkξψk (3.30)

φ(xε, λε) =

∞∑
|α|+|β|=1

DαDβ

α!β!
φ(0)Ω̄(α, β) =

∞∑
k=1

εkξφk (3.31)

Where

Ω̄(α, β) =

n∏
q=1

( ∞∑
k=1

εkgk,q(t)
)αq n∏

q=1

( ∞∑
k=1

εkhk,q(t)
)βq

(3.32)

The purpose is to calculate the coefficient of εω for any ω. First consider Ω̄(α, β), for now
truncate the expansion of xε and λε up to the term m. Recalling the multinomial expansion:( m∑

k=1

εkgk,l(t)
)αl

=
∑
|k|=αl

αl!

k1! . . . km!

( m∏
t=1

gktt,l

)
εσ(k) (3.33)

Where σ(x) =
∑m

t=1 txt. Since k = (k1, . . . km), and |k| = αl, then:

min |σ(k)| = αl max |σ(k)| = mαl

Thus we can rewrite (3.33) as: (
m∑
k=1

εkgk,l(t)

)αl
=

mαl∑
ρ=αl

Fl(ρ)ερ (3.34)

The same can be done for the h’s, yielding:

Ω̄(α, β) =

n∏
q=1

(
mαq∑
ρ=αq

Fq(ρ)ερ

)
n∏
q=1

(
mβq∑
ρ=βq

Gq(ρ)ερ

)
(3.35)
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Now, note that the minimum power of ε in this expansion is the sum of the minimum powers
of each term of the product, i.e.

∑n
q=1(αq + βq), while the maximum power is the sum of

each maximum, i.e.
∑n

q=1 m(αq + βq).

Then, given α and β, the product ΛαΓβ only contributes to εω, where |α| + |β| ≤ ω ≤
m(|α|+ |β|). Recalling that m is the limit of the truncated series if m→∞ it is clear that
for a given order ω it is unnecessary to consider vectors α and β that satisfy ω < |α|+ |β|.

This allows to truncate the ‘external Taylor series’ (equations (3.25) and (3.26)) as well
as the ‘internal Taylor series’ (equation (3.27)) up to ω instead of ∞.

Furthermore we have an expression for Ω̄:

n∏
q=1

(
ωαq∑
ρ=αq

Fq(ρ)ερ

)(
ωβq∑
ρ=βq

Gq(ρ)ερ

)
=

n∏
q=1

(
ω(αq+βq)∑
µ=αq+βq

χ(µ)εµ

)
(3.36)

Where
χ(µ) =

∑
u+v=µ

αq≤u≤ωαq
βq≤v≤ωβq

Fq(u)Gq(v) (3.37)

Once more, the minimum power of (3.36) is the sum of the minimum powers of each term,
and the maximum is the sum of all the maximum powers:

n∏
q=1

(
ω(αq+βq)∑
µ=αq+βq

χ(µ)εµ

)
=

ω(|α|+|β|)∑
W=|α|+|β|

Θ(W )εW (3.38)

Where

Θ(W ) =
∑

|θ|=W−(|α|+|β|)

(
n∏
q=1

χ(αq + βq + θq)

)
(3.39)

Going back to (3.30) and (3.31) (which now go to ω) we have:

ω∑
|α|+|β|=1

(
DαDβ

α!β!
ψ(0)

ω(|α|+|β|)∑
W=|α|+|β|

Θ(W )εW

)
=

ω2∑
k=1

εkξψk (3.40)

ω∑
|α|+|β|=1

(
DαDβ

α!β!
φ(0)

ω(|α|+|β|)∑
W=|α|+|β|

Θ(W )εW

)
=

ω2∑
k=1

εkξφk (3.41)

Thus it follows directly that

ξψω =

ω∑
|α|+|β|=1

(
DαDβ

α!β!
ψ(0)Θ(ω)

)
ξφω =

ω∑
|α|+|β|=1

(
DαDβ

α!β!
φ(0)Θ(ω)

)
(3.42)

In order to write explicitly Θ(W ), first consider Fq(ρ) and Gq(ρ), which first appear in (3.34).
Evaluating at ε = 1 and using the multinomial theorem it follows that:

Fq(u) =
∑

σ(a)=u
|a|=αq

(
αq!

a1!a2! . . . aω!

)(
ω∏
t=1

gatt,q

)
(3.43)

Gq(v) =
∑

σ(b)=v
|b|=βq

(
βq!

b1!b2! . . . bω!

)(
ω∏
t=1

hbtt,q

)
(3.44)

Which together with (3.37) and (3.39) give the desired result.
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3.4 Solution

Once a closed form for the system of ordinary differential equations is known, it is possible
to elaborate on the solution of the system. In particular it can be transformed into a more
suitable form and also an approximate solution proposed, which is exactly what is done in
this section.

3.4.1 Non-homogeneous System of Differential Equations

We have the following equations:

ġω,l =

ω∑
|(α,β)|=1

[
Dα,β

(αβ)!
ψl(0)

Ω(α,β,ω)︷ ︸︸ ︷∑
|θ|=ω−|(α,β)|

[
n∏
q=1

[ ∑
u+v=αq+βq+θq
αq≤u≤ωαq
βq≤v≤ωβq

( ∑
σ(a)=u
|a|=αq

αq !

a!

ω∏
k=1

g
ak
k,q

)
︸ ︷︷ ︸

G(αq,u)

( ∑
σ(b)=v
|b|=βq

βq !

b!

ω∏
k=1

h
bk
k,q

)
︸ ︷︷ ︸

H(βq,v)

]]]
(3.45)

ḣω,l =

ω∑
|(α,β)|=1

[
Dα,β

(αβ)!
φl(0)

Ω(α,β,ω)︷ ︸︸ ︷∑
|θ|=ω−|(α,β)|

[
n∏
q=1

[ ∑
u+v=αq+βq+θq
αq≤u≤ωαq
βq≤v≤ωβq

( ∑
σ(a)=u
|a|=αq

αq !

a!

ω∏
k=1

g
ak
k,q

)
︸ ︷︷ ︸

G(αq,u)

( ∑
σ(b)=v
|b|=βq

βq !

b!

ω∏
k=1

h
bk
k,q

)
︸ ︷︷ ︸

H(βq,v)

]]]
(3.46)

With 1 ≤ l ≤ n equations (3.45) and (3.46) form the 2n system of first order differential
equations for the iteration ω with unknowns gω,l and hω,l.

Take (3.45), we want to ‘extract’ the unknown coefficient gω,l as follows:

1. To obtain gω,l we require in G(αl, u) aω = 1, this implies that σ(a) = u ≥ ω.

2. From the third sum we have that (for q = l) u+ v = θl + βl + αl ≥ ω, since v must be
positive .

3. From the second sum we have that:

|θ|+ |α|+ |β| = θ1 + · · ·+ θn + α1 + · · ·+ αn + β1 + · · ·+ βn = ω

Since the vectors θ, β and α correspond to indices the coefficients must be positive and
integers, hence we conclude that:

• For q = l, the third sum has only one term given by u = ω, v = 0, since
θl + βl + αl = ω.

• For q 6= l, the third sum has only one term given by u = 0, v = 0, since θq + βq +
αq = 0

4. Since u = ω we have in G(αl, u) that σ(a) = ω, and since aω = 1 we conclude that
a = (0, 0, . . . , 1), hence |a| = αl = 1.

5. Since v = 0 we have in H(βl, v) that the only option is b = (0, . . . , 0).
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6. For q 6= l since u = v = 0, the same applies for G(αq, u) and H(βq, v). In sumary:{G(αl, u) = gω,l

H(βl, v) = 1
for q = l

{G(αq, u) = 1

H(βq, v) = 1
for q 6= l

7. So, we have that:

n∏
q=1

( ∑
u+v=αq+βq+θq
αq≤u≤ωαq
βq≤v≤ωβq

G(αq, u)H(βq, v)

)
= gω,l

8. Now, in the second sum we have that |θ|+ |α|+ |β| = ω and we already know that:{ αl = q

θl + βl = ω − 1
for q = l

{θq = 0
αq = 0
βq = 0

for q 6= l

However, if βl 6= 0 then the sum H(βl, v) would be empty because there exist no b
such that |b| = βl 6= 0 and σ(b) = 0. And the emptiness of H(βl, v) would imply that
H(βl, v) = 0 and the product

∏n
q=1 would be zero. Thus we conclude that the only

choice is θl = ω − 1 and βl = 0.

9. As a result the second sum has only one term, given by the index vectors:

α = (0, 0, . . . ,

l-th place︷︸︸︷
1 , . . . , 0)

β = (0, 0, . . . , 0, . . . , 0)
θ = (0, 0, . . . , ω − 1, . . . , 0)

10. These vectors also define the first sum, hence we conclude that gω,l appears only once
in 3.45 and is multiplied by ∂

∂xl
ψ(0)

The same analysis applies for hω,l, in this case the index vectors become:

α = (0, 0, . . . , 0, . . . , 0) β = (0, 0, . . . ,

l-th place︷︸︸︷
1 , . . . , 0) θ = (0, 0, . . . , ω − 1, . . . , 0)

And the coefficient is ∂
∂λl
ψ(0). This can be extended to (3.46). Note that these vectors are

the only ones that satisfy |α|+ |β| = 1. Hence equations (3.45) and (3.46) can be written as:

ġω,l =
∂

∂x1
ψ1(0)gω,1+· · ·+ ∂

∂xn
ψn(0)gω,n+

∂

∂λ1
ψ1(0)hω,1+· · ·+ ∂

∂λn
ψn(0)hω,n+

ω∑
|α|+|β|=2

{
DαDβ

α!β!
ψl(0)Ω(α, β, ω)

}

ḣω,l =
∂

∂x1
φ1(0)gω,1+· · ·+ ∂

∂xn
φn(0)gω,n+

∂

∂λ1
φ1(0)hω,1+· · ·+ ∂

∂λn
φn(0)hω,n+

ω∑
|α|+|β|=2

{
DαDβ

α!β!
φl(0)Ω(α, β, ω)

}
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Or in vector form: [
ġω
ḣω

]
=

 ∂
∂x
ψ ∂

∂λ
ψ

∂
∂x
φ ∂

∂λ
φ

 ∣∣∣∣∣
x=0
λ=0

[
gω
hω

]
+

[
χψω
χφω

]
(3.47)

Where

χψω,l =

ω∑
|(α,β)|=2

[
Dα,β

(αβ)!
ψl(0)

∑
|θ|=ω−|(α,β)|

[
n∏
q=1

[ ∑
u+v=αq+βq+θq
αq≤u≤(ω−1)αq
βq≤v≤(ω−1)βq

( ∑
σ(a)=u
|a|=αq

αq !

a!

ω−1∏
k=1

g
ak
k,q

)( ∑
σ(b)=v
|b|=βq

βq !

b!

ω−1∏
k=1

h
bk
k,q

)]]]
(3.48)

χφω,l =

ω∑
|(α,β)|=2

[
Dα,β

(αβ)!
φl(0)

∑
|θ|=ω−|(α,β)|

[
n∏
q=1

[ ∑
u+v=αq+βq+θq
αq≤u≤(ω−1)αq
βq≤v≤(ω−1)βq

( ∑
σ(a)=u
|a|=αq

αq !

a!

ω−1∏
k=1

g
ak
k,q

)( ∑
σ(b)=v
|b|=βq

βq !

b!

ω−1∏
k=1

h
bk
k,q

)]]]
(3.49)

And
gω = (gω,1, . . . , gω,n)T hω = (hω,1, . . . , hω,n)T

χψω = (χψω,1, . . . , χ
ψ
ω,n)T χφω = (χφω,1, . . . , χ

φ
ω,n)T

It is clear that χψ1 = 0 and χφ1 = 0. Note that in equations (3.48) and (3.49) the products go
to ω− 1 instead of ω this is because the case k = ω would require |(α, β)| = 1 which cannot
happen due to the lower limit of the outer sum. Similarly the upper interval for u and v in
the third sum go up to (ω − 1)αq and (ω − 1)βq respectively since the limits u = ωαq and
v = ωβq are reached only for aω = 1 and bω = 1 which would imply |(α, β)| = 1.

3.4.2 Approximations

In the previous section we found that in each iteration the system that has to be solved is
given by equation (3.47), whose solution is:[

gω(t)
hω(t)

]
= e(t−to)A

[
gω(to)
hω(to)

]
+

∫ t

to

e(t−s)A
[
χψω(s)
χφω(s)

]
ds (3.50)

Where

A =

 ∂
∂x
ψ ∂

∂λ
ψ

∂
∂x
φ ∂

∂λ
φ

 ∣∣∣∣∣
x=0
λ=0

(3.51)

Now, we can expand:

e(t−s)A =
∞∑
k=0

1

k!
(t− s)kAk ≈ I + (t− s)A+

1

2
(t− s)2A2 +

1

6
(t− s)3A3 + . . . (3.52)

Taking the expansion to the N -th term, define:

ΦN(t, s) =
N∑
k=0

1

k!
(t− s)kAk ≈ I + (t− s)A+

1

2
(t− s)2A2 + · · ·+ 1

N !
(t− s)NAN (3.53)
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For convenience ΦN(t, s) can also be expressed as a 2× 2 matrix of n× n matrices:

ΦN(t, s) =

Ω1,1
N (t, s) Ω1,2

N (t, s)

Ω2,1
N (t, s) Ω2,2

N (t, s)

 (3.54)

Thus, the general solution can me approximated by:[
gω(t)
hω(t)

]
= ΦN(t, to)

[
gω(to)
hω(to)

]
+

∫ t

to

ΦN(t, s)

[
χψω(s)
χφω(s)

]
ds (3.55)

Now, recalling the boundary conditions:

• For ω = 1
gω(to) = xo gω(tf ) = xf (3.56)

• For ω > 1
gω(to) = 0 gω(tf ) = 0 (3.57)

The functions gω and hω can be explicitly calculated using these boundary conditions:

• For ω = 1 The explicit solution is:

g1(t) = Ω1,1
N (t)g1(to) + Ω1,2

N (t)h1(to)

h1(t) = Ω2,1
N (t)g1(to) + Ω2,2

N (t)h1(to)
(3.58)

Evaluating the first equation in t = tf

g1(tf ) = Ω1,1
N (tf )g1(to) + Ω1,2

N (tf )h1(to) (3.59)

Hence

h1(to) =
(

Ω1,2
N (tf )

)−1(
g1(tf )− Ω1,1

N (tf )g(to)
)

(3.60)

Replacing g1(to) = xo gives:

g1(t) = Ω1,1
N (t)xo + Ω1,2

N (t)
(

Ω1,2
N (tf )

)−1(
xf − Ω1,1

N (tf )xo

)
h1(t) = Ω2,1

N (t)xo + Ω2,2
N (t)

(
Ω1,2
N (tf )

)−1(
xf − Ω1,1

N (tf )xo

) (3.61)

• For ω > 1 The explicit solution is:

gω(t) = Ω1,1
N (t)gω(to) + Ω1,2

N (t)hω(to) +
∫ t
to

(Ω1,1
N (t, s)χψω(s) + Ω1,2

N (t, s)χφ)ω(s))ds

hω(t) = Ω2,1
N (t)gω(to) + Ω2,2

N (t)hω(to) +
∫ t
to

(Ω2,1
N (t, s)χψω(s) + Ω2,2

N (t, s)χφ)ω(s))ds

(3.62)
For convenience define:

Θg
N,ω(t, to) =

∫
t

to

[
Ω1,1
N (t, s)χψω(s) + Ω1,2

N (t, s)χφω(s)

]
ds

Θh
N,ω(t, to) =

∫
t

to

[
Ω2,1
N (t, s)χψω(s) + Ω2,2

N (t, s)χφω(s)

]
ds

(3.63)
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such that
gω(t) = Ω1,1

N (t)gω(to) + Ω1,2
N (t)hω(to) + Θg

N,ω(t, to)

hω(t) = Ω2,1
N (t)gω(to) + Ω2,2

N (t)hω(to) + Θh
N,ω(t, to)

(3.64)

Taking into account that gω(to) = 0 we can evaluate t = tf in the first equation and
obtain:

gω(tf ) = Ω1,2
N (tf )hω(to) + Θg

N,ω(tf , to) = 0 (3.65)

Hence

hω(to) = −
(

Ω1,2
N (tf )

)−1

Θg
N,ω(tf , to) (3.66)

Finally we obtain

gω(t) = −Ω1,2
N (t)

(
Ω1,2
N (tf )

)−1

Θg
N,ω(tf , to) + Θg

N,ω(t, to)

hω(t) = −Ω2,2
N (t)

(
Ω1,2
N (tf )

)−1

Θg
N,ω(tf , to) + Θh

N,ω(t, to)
(3.67)

Remarks:

1. Note that the approximation of the matrix exponential implies that all the matrices
are really matrices of polynomials of t, thus all the multiplications, integrations and
sums are in the end operations of polynomials, which result in a vector of polynomials.
It is of interest to calculate the order of this polynomial, this is a long calculation but
in the end the order of the polynomial for the ω-th order is

Nω = N + ωNω−1 + 1

Where N is the order of the Taylor expansion of the exponential function and N0 = N .

2. This equations make sense only if
(

Ω1,2
N (tf )

)−1

is well defined.

Together equations 3.67 and 3.67 allow the explicit computation of the suboptimal control
law that solves the associated optimal tracking control problem:

uK(t) = −R−1GT

(
K∑
ω=1

gω(t)

)(
K∑
ω=1

hω(t)

)

3.5 EMSM Summary of Results

To summarize this section: an approximate solution to the Optimal Control Problem

min
uεU

{
J(x, u) =

1

2

∫ tf

to

(
xTQx+ uTRu

)
dt
}

s.t. ẋ = F (x) +G(x)u x(to) = xo x(tf ) = xf

Was found using the Extended Modal Series Method to approximate the solution of the
system of partial differential equations given by the Maximum Principle:

ẋ = F (x)−G(x)R−1G(x)Tλ
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λ̇ = −Qx− ∂xF (x)Tλ+

λ
T∂x1G(x)R−1G(x)Tλ

...
λT∂xnG(x)R−1G(x)Tλ


This was done assuming that the solution had the form:

x(t) =
∞∑
i=1

gi(t) λ(t) =
∞∑
i=1

hi(t)

After some mathematical manipulation it was found that the functions gi(t) and hi(t) satis-
fied the following system of ordinary differential equations:

ġω,l =
ω∑

|(α,β)|=1

[
Dα,β

(αβ)!
ψl(0)

Ω(α,β,ω)︷ ︸︸ ︷∑
|θ|=ω−|(α,β)|

[
n∏
q=1

[ ∑
u+v=αq+βq+θq
αq≤u≤ωαq
βq≤v≤ωβq

( ∑
σ(a)=u
|a|=αq

αq !

a!

ω∏
k=1

g
ak
k,q

)
︸ ︷︷ ︸

G(αq,u)

( ∑
σ(b)=v
|b|=βq

βq !

b!

ω∏
k=1

h
bk
k,q

)
︸ ︷︷ ︸

H(βq,v)

]]]

ḣω,l =
ω∑

|(α,β)|=1

[
Dα,β

(αβ)!
φl(0)

Ω(α,β,ω)︷ ︸︸ ︷∑
|θ|=ω−|(α,β)|

[
n∏
q=1

[ ∑
u+v=αq+βq+θq
αq≤u≤ωαq
βq≤v≤ωβq

( ∑
σ(a)=u
|a|=αq

αq !

a!

ω∏
k=1

g
ak
k,q

)
︸ ︷︷ ︸

G(αq,u)

( ∑
σ(b)=v
|b|=βq

βq !

b!

ω∏
k=1

h
bk
k,q

)
︸ ︷︷ ︸

H(βq,v)

]]]

With the boundary conditions

• For ω = 1
gω(to) = xo gω(tf ) = xf

• For ω > 1
gω(to) = 0 gω(tf ) = 0

A solution to these ordinary differential equations was approximated expanding the expo-
nencial function and at last the solution was found to be

• For ω = 1

g1(t) = Ω1,1
N (t)xo + Ω1,2

N (t)
(

Ω1,2
N (tf )

)−1(
xf − Ω1,1

N (tf )xo

)
h1(t) = Ω2,1

N (t)xo + Ω2,2
N (t)

(
Ω1,2
N (tf )

)−1(
xf − Ω1,1

N (tf )xo

)
• For ω > 1

gω(t) = −Ω1,2
N (t)

(
Ω1,2
N (tf )

)−1

Θg
N,ω(tf , to) + Θg

N,ω(t, to)

hω(t) = −Ω2,2
N (t)

(
Ω1,2
N (tf )

)−1

Θg
N,ω(tf , to) + Θh

N,ω(t, to)

Where

Θg
N,ω(t, to) =

∫
t

to

[
Ω1,1
N (t, s)χψω(s) + Ω1,2

N (t, s)χφω(s)

]
ds

Θh
N,ω(t, to) =

∫
t

to

[
Ω2,1
N (t, s)χψω(s) + Ω2,2

N (t, s)χφω(s)

]
ds
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and

ΦN(t, s) =

Ω1,1
N (t, s) Ω1,2

N (t, s)

Ω2,1
N (t, s) Ω2,2

N (t, s)

 =
N∑
k=0

1

k!
(t−s)kAk ≈ I+(t−s)A+

1

2
(t−s)2A2+· · ·+ 1

N !
(t−s)NAN

Finally with the functions gi(t) and hi(t) the solution of the original OCP can be approxi-
mated by:

uK(t) = −R−1GT

(
K∑
ω=1

gω(t)

)(
K∑
ω=1

hω(t)

)
Which is the control law given by this technique and the one that will be used in the angular
control of the quadrotor in section 4.3.3.
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Chapter 4

Quadrotor Control

This chapter describes the proposed control architecture for the complete dynamic system
presented in chapter 2 and each of the controllers. Initially, the control architecture is
explained in section 4.1. Next, each of the parts of the control is further detailed.

First, in order to produce the best translational reference points a discrete optimal control
problem is solved for each trajectory resulting in time varying reference values for transla-
tional position and velocity which are used in the overall online control, this off-line problem
is presented in section 4.2.

Because of the decoupled nature of the dynamic system it is natural to divide the control
in three cascade controllers: the translational control, the angular control and the motor
control. Given that the overall control is a Nonlinear Model Predictive Control (NMPC)
each of the three controllers is an optimal control. Only quadratic cost functions will be
considered, since no motivation to consider other more complicated cost functions exists.
The design of these controllers is presented in section 4.3. Finally the quaternion model-
based attitude control is designed in section 4.4.

It is important to clarify the following distinction: whenever the angular control is men-
tioned, it makes reference to the attitude control using the angle-based attitude model. While
the quaternion control refers to the attitude control using the quaternion-based model. Both
controllers are interchangeable as long as the references are transformed accordingly. The
main control architecture described in section 4.1 uses an angular control which later will be
changed for the quaternion control described in section 4.4.

4.1 Control Architecture

As mentioned previously, the decoupling of the system dynamics into the attitude, transla-
tional and motor dynamics naturally leads to a division in the control. This is motivated
by two reasons: First the complete system is not controllable which from the beginning is
an issue. However the separated systems are controlable. Second, it is easier to design three
small controls than a big one, also the physical insight for each separate dynamic system is
clearer than for the complete model.

The control will consist on a single loop, first the translational control computes the
optimal accelerations, these are then translated into angular references that enter the angular
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control. The output of the angular control are the open loop optimal torques and thrust that
are feed into the motor controllers and in turn these return values for ωdi and αi which enter
the system and then the loop closes with the computation of the new optimal accelerations
on the next sampling time. The three controllers (translational, angular and motor) are
optimal controllers with fix final time, the final time of one control is the sample time of the
previous control, this is done to guarantee the stability of the overall control.

With this in mind the control will be divided into four parts:

1. Translational Control: In order to design this control only the translational dynamics
are considered. However with a slight modification: the states remain vx, vy, vz, x, y
and z while the inputs are changed to ax, ay and az, the accelerations in each axis.
This is done because if the inputs are taken as φ, θ, ψ and Ft then there is no analytic
solution to the optimal control problem. On the other hand with this approach an
optimal solution can be found and the translation of the optimal inputs a∗x, a

∗
y and a∗z

can be addressed later guaranteeing that the optimality is preserved.

2. Angular References: As mentioned before the output of the translational control are
optimal accelerations a∗x, a

∗
y and a∗z. These need to be translated into optimal angle

references φ∗, θ∗ and ψ∗ for the angular control, this problem is only mathematical
manipulation and as a result optimal angular references are obtained.

3. Angular Control: Once the angular references are known it is necessary to address
the corresponding tracking problem subject to the angular dynamics. This optimal
control problem does not have analytic solution and is where the Extended Modal
Series Method is applied. In this part the state variables are φ, θ, ψ, p, q and r, while
the control inputs are the torques τφ, τθ and τψ

4. Motor Control: Once the optimal torques τ ∗φ , τ ∗θ and τ ∗ψ and total force F ∗t are known it
is up to the motor control to provide them. The values for τ ∗φ , τ ∗θ , τ ∗ψ and F ∗t determinate
uniquely the desired forces of each motor F ∗i , hence references in the torques and total
force translate into force references for each motor allowing a separation which assigns
to each motor a different force reference F ∗i . In this part an explicit optimal control is
designed for the motor-propeller system in order to achieve the required force Fi.

Figure 4.1 shows graphically the complete control of the drone together with the input and
output variables of each block.

4.2 Reference Generation

Before performing the aggressive maneuvers it is necessary to generate the reference points
for the quadrotor. These positions will be the references for the outer translational controller
during the execution of the maneuver. The generation process must take into account the
shape of the trajectory as well as the control limitations.

Since only translational position and velocity references are required for the outer control
loop and the purpose of this control is only to generate references, the drone can be modeled
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Figure 4.1: Control architecture. The yellow box is the off-line reference generator presented
in section 4.2. The blue boxes correspond to control blocks explained in section 4.3 (only the
control architecture of motor 1 is shown given that is the same for the others). The orange
boxes correspond to dynamic systems whose models were presented in chapter 2. The green
boxes represent the inputs of the overall system. The purple dotted lines are measurements
of state variables.

as a particle in space with dynamics:

v̇x = ax ẋ = vx v̇y = ay ẏ = vy v̇z = az ż = vz

Because of the symmetry of the system, it is necessary to consider only one dimension, which
in matrix form is written as: [

v̇x
ẋ

]
=

[
0 0
1 0

] [
vx
x

]
+

[
1
0

]
ax (4.1)

Now, consider the quadratic optimal control problem with limitations on both the absolute
control inputs (ax) and the rate of change of the control inputs (ȧx):

min
ax(t)

{
J =

∫ tf

to

(x− xref)2Q+ a2
xR +

(
ȧx

)2

D
}

(4.2)

s.t.

[
v̇x
ẋ

]
=

[
0 0
1 0

] [
vx
x

]
+

[
1
0

]
ax

axmin
≤ ax ≤ axmax

ȧxmin
≤ ȧx ≤ ȧxmax
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The discrete form of this problem has a known analytical solution, and since the problem is
solved offline it is possible to take a small sample time making it very accurate. The first
step is to discretize the dynamic system with a sampling time of Ts. Then rewrite the cost
function as a sum. The result is the discrete quadratic optimal control problem

min
ax[k]

{
J =

N∑
k=1

(x[k]− xref[k])2Q+ a2
x[k]R + ∆a2

x[k]D
}

(4.3)

s.t.

[
vx[k + 1]
x[k + 1]

]
= Ad

[
vx[k]
x[k]

]
+Bdax[k]

axmin
≤ ax[k] ≤ axmax

∆axmin
≤ ∆ax[k] ≤ ∆axmax

Where N =
to−tf
Ts

and ax[k] = ∆ax[k] + ax[k − 1] and Ad and Bd are the discrete version of
matrices A and B with sampling time Ts.

This optimal control problem can be expressed as a convex optimization problem (for
details see appendix A.2), hence if it is feasible the solution is a global minimum. The
solution of this optimization problem gives the optimal translational positions and velocities
for the execution of the maneuver, including the constraints in the control. These will be
the references for the closed loop translational control.

4.3 Closed Loop Control

In this section the four parts of the control architecture are further detailed and explained.

4.3.1 Translational Control

Consider the optimal control problem:

min
u(t)=(ax(t),ay(t),az(t))T

{
J(x, u) =

1

2

∫ tf

to

(
xTQx+ uTRu

)
dt
}

Where x(t) = (vx(t), vy(t), vz(t), x(t), y(t), z(t))T is the state vector. Subject to the modified
translational dynamics:

v̇x = ax
v̇y = ay
v̇z = az

ẋ = vx
ẏ = vy
ż = vz

(4.4)

Since there is no motivation to consider cost for cross variables the matrices Q and R will
be diagonal. Furthermore, given that the drone needs to move in space the cost associated
with the translational position is zero, and with no preference for one axis over the other we
have that:

Q = diag(q, q, q, 0, 0, 0) R = diag(r, r, r) (4.5)

Given the symmetric nature of the resulting problem it is possible to consider only one
dimension and the results will be the same for the other axis:

min
ax(t)

{1

2

∫ tf

to

(
qx2(t) + ra2

x(t)
)
dt
}

s.t. v̇x = ax ẋ = vx
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Applying Pontryagin Maximum Principle gives the following system of ordinary differential
equations:

v̇x = −1
r
λ1

ẋ = vx

λ̇1 = −qvx − λ2

λ̇2 = 0

Defining k =
√
q/r the solution is:

vx(t) = C1e
kt + C2e

−kt +
1

r
C4

x(t) =
C1

k
ekt − C2

k
e−kt +

1

r
C4t+ C3

λ1(t) = −rk(C1e
kt − C2e

−kt)

λ2(t) = C4

And the optimal control is:
a∗x(t) = k(C1e

kt − C2e
−kt)

If we set x(to) = (vxo, xo)
T and x(tf ) = (vxf , xf )

T . The constants can be found solving the
linear system: 

ekto e−kto 0 1
r

1
k
ekto − 1

k
e−kto 1 to

r

ektf e−ktf 0 1
r

1
k
ektf − 1

k
e−ktf 1

tf
r



C1

C2

C3

C4

 =


vxo
xo
vxf
xf


The same procedure can be performed on the other axis and as a result the optimal controls
a∗x(t), a

∗
y(t) and a∗z(t) will be known.

4.3.2 Angular References

Next, the problem of translating these optimal accelerations into angles and forces is ad-
dressed. Given that all the accelerations are optimal the superscript ∗ will be ignored. It is
clear that the modified translational dynamics imply:

ax =
Ft
m

(cos(φ) sin(θ) cos(ψ) + sin(ψ) sin(ψ))

ay =
Ft
m

(cos(φ) sin(θ) sin(ψ)− sin(ψ) cos(ψ))

az =
Ft
m

cos(φ) cos(θ)− g

In order simplify notation redefine az = az + g. It follows that

Ft = m
√
a2
x + a2

y + a2
z (4.6)

Now, define:

ξx =
max
Ft

= cos(φ) sin(θ) cos(ψ) + sin(φ) sin(ψ)

ξy =
may
Ft

= cos(φ) sin(θ) sin(ψ)− sin(φ) cos(ψ)

ξz =
maz
Ft

= cos(φ) cos(θ)
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After solving:

φ = sin−1(ξx sin(ψ)− ξy cos(ψ)) θ = tan−1

(
1

ξz

√
ξ2
x cos2(ψ) + ξ2

y sin2(ψ)

)

These equations enable the transformation of optimal accelerations into optimal angles which
are the inputs of the angular control.

4.3.3 Angular Control

The optimal angular control problem is:

min
u(t)

{
J(x, u) =

1

2

∫ tf

to

(
xTQx+ uTRu

)
dt
}

Where u(t) = (τφ(t), τθ(t), τψ(t))T and x(t) = (p(t), q(t), r(t), φ(t), θ(t), ψ(t))T Subject to the
angular dynamics (2.5), (2.6), (2.7), (2.8), (2.9) and (2.10). This problem does not have
analytic solution, but noting that the model is affine with respect to the input, it is possible
to apply the Modified Extended Modal Series Method to solve the tracking problem. The
first step is to write the system in an affine form:



ṗ
q̇
ṙ

φ̇

θ̇

ψ̇

 =



(
Iy−Iz
Ix

)
qr(

Iz−Ix
Iy

)
pr(

Ix−Iy
Iz

)
qp

p+ q sinφ tan θ + r cosφ tan θ
q cosφ− r sinφ

sinφ
cos θ

q + cosφ
cos θ

r


︸ ︷︷ ︸

F (x)

+



1
Ix

0 0

0 1
Iy

0

0 0 1
Iz

0 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

G(x)

τφτθ
τψ

 (4.7)

Then the solution of the optimal control problem is given by Pontryagin Maximum Principle
equations whose solution can be approximated using the Modified Extended Modal Series
Method described in chapter 3.

4.3.4 Motor Control

From the angular control the optimal torques are calculated: τ ∗φ , τ ∗θ and τ ∗ψ and from (4.6)

the desired total force is known: F d
t .Now, using equations (2.1), (2.2), (2.3) and (2.4) these

inputs can be translated into desired forces for each motor F d
i :

F d
1

F d
2

F d
3

F d
4

 =


1 1 1 1
L√
2
− L√

2
− L√

2
L√
2

− L√
2
− L√

2
L√
2

L√
2

1 −1 1 −1


−1

F d
t

τ dφ
τ dθ
τ dψ

 (4.8)
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With this decoupling it is possible to solve only one problem for each motor. At a given
instant let ωi be the actual angular velocity, αi the actual angle of attack, Fi the actual
produced force and F d

i the desired force. Since the change in αi is assumed instantaneous
while the change of ωi requires time, the angle of attack is changed to the value that minimizes
the error ∆Fi = |F d

i − Fi|, given that the angle of attack is bounded. It is likely that this
value will be the maximum or the minimum and ∆Fi 6= 0.

At the same time it is possible to calculate the required value of ωi that would produce
the desired force F d

i , with an angle of attack of ᾱi, let ωdi be this value.
Now, the problem is to achieve the desired angular velocity ωdi in a fix amount of time

tf (given by the sample time of the control). This can we rewritten as an optimal control
problem:

min
u

{∫ tf

to

(ruu
2)dt

}
s.t. ω̇i = Kmi(u− ωi) ωi(to) = ωi ωi(tf ) = ωdi

This problem can be solved analytically. Using Pontryagin’s Maximum Principle the optimal
corresponding differential equations are

ω̇∗i = −Kmiωi −−
λK2

mi

2rU
λ̇∗ = λKmi

Those solution is:

ωi =
Kmi

4ru
(C2e

Kmi t − C1e
Kmi t) λ = C1e

Kmi t

Using the boundary conditions the constants can be calculated as:

C1 =
4ru(ωie

−Kmi tf − ωdi e−Kmi to)
Kmi(e

Kmi (tf−to) − eKmi (tf−to))

C2 =
4ru(ωie

Kmi tf − ωdi eKmi to)
Kmi(e

Kmi (tf−to) − e−Kmi (tf − to))
And finally the optimal control can be found to be:

ωdi = u∗ = −C1Kmi

2rU
eKmi t

Now, as the angular velocity of the motor increases the resulting force will increase as well.
Since ωdi was calculated with a value for the angle of attack of ᾱi which is lower than the
real value of αi (that is assumed to be saturated) the produced force will be greater than
predicted.

As a consequence, after some time the real force Fi will match the desired force F d
i for

a value of ωi < ωdi . From that point αi will tend to ᾱ in such a way that the produced
force will be kept equal to F d

i . Finally when t = to the angular velocity will be ωdi and the
produced force will be F d

i with an angle of attack of ᾱ.
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4.4 Quaternion Control

As shown in section 2.2 quaternions are only an alternative form of representing the attitude
state of the system and thus are equivalent to an Euler’s angle representation in the sense
that it is possible to translate from one system to another (for details see appendix A.3). As
a result any quaternion controller can be regarded as an attitude controller based on Euler’s
angles which is translated to a quaternion system.

The main contribution of the quaternions is to provide an attitude representation of the
dynamic system which does not suffer from singularities and does not involve trigonometric
functions. Thus the contribution is in the representation of the dynamic system and not
the controller synthesis. The quaternion control raises from the fact that it is unpractical to
model the dynamic system using quaternions and then transforming back to Euler’s angles
to compute the control signal (this transformation defeats the purpose of the quaternion
representation).

Taking that into account, there are two main differences when using the quaternion
representation to design a controller:

1. Since the differential equations involve only products of the attitude state variables p,
q, r, q0, q1, q2 and q3 it is a second order Taylor multivariable expansion. Unlike the
Euler’s angle representation that yields an infinite series. As a consequence the use of
approximation techniques such as the EMSM may produce more accurate results given
that the vector function F (x) does not need to be approximated.

2. The quaternion system representation is not controllable given that the quaternion
needs to be unitary. Then, it is not possible to reach every point in the state space.
This can be proven differentiating the norm |q|2 with respect to time and replacing
equations 2.21.

Given that in the quaternion representation the system is not controllable pole placement
control methods such as state feedback are not possible. Hence two alternatives appear: use
PID controllers in cascade combination or more advanced techniques such as Backstepping
or Sliding Mode Controllers. In this case three PID controllers will be used.

First the angular references are translated into quaternion references. Note that the
optimal accelerations that come from the translational controller could directly produce
quaternion references solving the system of nonlinear equations:

ax = 2
√
a2
x + a2

y + a2
z(q1q3 + q0q2)

ay = 2
√
a2
x + a2

y + a2
z(q2q3 − q0q1)

az =
√
a2
x + a2

y + a2
z(q

2
0 − q2

1 − q2
2 − q2

3)− g

q2
0 + q2

1 + q2
2 + q2

3 = 1

(4.9)

For q0, q1, q2 and q3 .

32



Let qd = qd0 + qd1 î + qd2 ĵ + qd3 k̂ denote the reference quaternion. The error quaternion qe

cannot be computed as the difference between q and qd. Instead it is computed as:

qe = q∗qd = (q0 − q1î− q2ĵ − q3k̂)(qd0 + qd1 î+ qd2 ĵ + qd3 k̂) (4.10)

If qe = qe0 + qe1 î+ qe2ĵ + qe3k̂ then

qe0 = q0q
d
0 + q1q

d
1 + q2q

d
2 + q3q

d
3

qe1 = q0q
d
1 − q1q

d
0 − q2q

d
3 + q3q

d
2

qe2 = q0q
d
2 + q1q

d
3 − q2q

d
0 − q3q

d
1

qe3 = q0q
d
3 − q1q

d
2 + q2q

d
1 − q3q

d
0

(4.11)

Note that if q = qd then qe = 1 + 0̂i+ 0ĵ + 0k̂.
In order to relate the error quaternion components with the corresponding torques

consider the hover attitude φ = θ = ψ = 0 which translates to the desired quaternion
qd = 1 + 0̂i+ 0ĵ + 0k̂. Now the error quaternion has components:

qe0 = q0 qe1 = −q1 qe2 = −q2 qe3 = −q3

Next consider three cases:

1. q = α0 + α1î in this case the attitude of the quadrotor is a rotation along the x axis,
hence a roll torque τφ is required to recover the hover state.

2. q = α0 + α2ĵ in this case the attitude of the quadrotor is a rotation along the y axis,
hence a pitch torque τθ is required to recover the hover state.

3. q = α0 + α3k̂ in this case the attitude of the quadrotor is a rotation along the z axis,
hence a yaw torque τψ is required to recover the hover state.

In each case the direction of the torque is given by the sign of α1, α2 and α3 respectively.
The direct relation between the error quaternion components qe1, qe2 and qe3 and the torques
τφ, τθ and τψ suggest three SISO parallel controllers for three separate angular dynamics:

1. For φ:

ṗ ≈ τφ
Ix

q̇1 =
1

2
p ⇐⇒ Hp(s) =

1

2Ixs2
(4.12)

2. For θ:

q̇ ≈ τθ
Iy

q̇2 =
1

2
q ⇐⇒ Hq(s) =

1

2Iys2
(4.13)

3. For ψ:

ṙ ≈ τψ
Iz

q̇3 =
1

2
r ⇐⇒ Hr(s) =

1

2Izs2
(4.14)

The three transfer functions (4.12), (4.13), (4.14) were obtained assuming that the products
pq, qr, pr are negligible and near hover attitude. However, the analysis can be extended to
any attitude because of the rotational invariance of the complete attitude dynamics. Each
transfer function has two poles in the origin and so a P controller will make the system
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marginally stable. Thus PID controllers are required. The tuning is done using the transfer
functions 4.12, 4.13 and 4.14: Consider the usual PID controller:

C(s) =
ki + skp + s2kd

s
(4.15)

And the transfer function

H(s) =
1

2Is2
(4.16)

If p1, p2 and p3 are the desired poles then after a straight forward computation

kd = −2I(p1 + p2 + p3)
kp = 2I(p1p2 + p1p3 + p2p3)

ki = −2ip1p2p3

(4.17)

Recalling that the quaternion control refers to the attitude control using the quaternion-
based model it is necessary to clarify how it integrates in the overall control architecture
of figure 4.1. First of all the input references φ∗, θ∗, ψ∗ are translated into the reference
quaternion qd.

Now, unlike the angular control which is an optimal open loop control, the PID quaternion
based control is intrinsically closed loop requiring the measurement of the state variables to
produce a control signal. Given that these measurements are not available for every sample
time the attitude model of the quadrotor is used instead. The result is shown in figure 4.2.

Figure 4.2: Angular and Quaternion controllers.

To summarize, given a desired trajectory an off-line discrete optimal control problem
with sample time Ts is solved in order to compute the translational position and velocity
references regarding the system as a particle in space. These references are then feed to
the translational optimal controller which is has a closed form control law with horizon of
prediction Th,t and sample time Ts,t = Ts.

The output of the translational controller are optimal translational accelerations a∗x[k],
a∗y[k] and a∗z[k], the first of which is translated into angular references φ∗, θ∗ and ψ∗ that are
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the input to the optimal angular controller. This control has horizon of prediction Th,a = Ts,t
and sample time Ts,a.

The output of the angular controller are optimal torques τ ∗φ [k], τ ∗θ [k] and τ ∗ψ[k], which
together with the optimal thrust F ∗T [k] (calculated from a∗x[k], a∗y[k] and a∗z[k]) give the desired
forces and torques for each motor F ∗i [k], τ ∗i [k]. Next, first one of these forces becomes the
reference of each motor control, which is also an optimal controller with prediction horizon
Th,c = Ts,a and sample time Ts,c.

At last, the output of these controllers are the inputs of the model, namely, the optimal
angular velocities ω∗i and angles of attack α∗i . The loop closes when after a time Ts,t the
translational state variables are used to solve the new optimal translational control problem
and the process is repeated.

It is important to note that this type of architecture implies that the angular and motor
control are open loop controllers and the only time when the sensed state variables are used
is then the translational loop closes. Meaning that if Th,a = naTs,a, then only in the initial
time the measured angular positions will be used in the OCP, for the remaining na − 1
computations of the control signal the predicted angular position is used.

The time diagram of this process is shown in figure 4.3

Figure 4.3: Time diagram of the control architecture. The red vertical lines are the times
when the loop closes and the measured state variables are available. The prediction horizons
are in purple, while the sample times are in green. Note that Ts,t = Ts, Th,a = Ts,t and
Th,c = Ts,c
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Chapter 5

Results

This chapter presents the simulation results of the complete control system applied to the
variable pitch quadrotor model. The main objective is to test the proposed Nonlinear Model
Predictive Control based on the Extended Modal Series Method, this is done in two ways:
first the performance of the EMSM controller is analyzed independently and then comparing
to the Quaternion based control. In both instances two criteria are used: the Parametric
Uncertainty and External Disturbance Robustness.

All simulations were carried out in Simulink with fixed step size and ODE solver Runge-
Kutta, the parametric values are shown in appendix A.4. In section 5.1 the trajectories used
during the simulations are detailed and explained.

The main results are presented in the following sections. Section 5.2 explains the process-
ing of the simulation output data and analysis methodology. Finally sections 5.3, 5.4 and
5.5 present the complete results with the corresponding analysis. The last section addresses
conclusions and future work.

5.1 Trajectories

The trajectories used to test the algorithm are all rectilinear, i.e. formed by concatenation
of linear segments. This is done because the most common way to generate trajectories is
through the use of waypoints, which are reference positions in space connected by linear
displacements.

The time of each linear segment is the same (1 second). Thus, they are only defined
by the end points of each segment (given that the starting point is the end of the previous
segment). Three trajectories with increasing aggressiveness corresponding to different shapes
are considered (figures 5.1, 5.2 and 5.3). In order to further test the controllers each trajectory
has three variations changing the length the linear segment (L1 = 1[m], L2 = 1.5[m] and
L3 = 2[m]). All the trajectories start at the origin and the first segment corresponds to the
take-off.

The three trajectories are:

1. First trajectory: it is a movement in the xy plane keeping the altitude constant. The
diamond shape in the plane guarantees a change of velocity in only one direction at
the time alternating between the x and y direction. This is a change of direction of
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180 degrees. The complete trajectory in space and the corresponding components are
shown in figure 5.1 (for line segment length L3).

Figure 5.1: First trajectory with segment length L3

2. Second trajectory: This second trajectory includes non-aggressive changes in altitude.
The y trajectory is very similar to the first case while the x trajectory has a more
aggressive turn at the beginning. As before the complete trajectory and in each com-
ponent is shown in figure 5.2 for segment length L3.

Figure 5.2: Second trajectory with segment length L3

3. Third trajectory: This third and final trajectory shown in figure 5.3 exhibits a very
aggressive change in altitude. The movement in the y axis is the less aggressive of the
three with pauses between changes of direction, while the movement in the x axis is
more aggressive with two strong changes of direction, that require a higher acceleration
and deceleration.

Figure 5.3: Third trajectory with segment length L3
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5.2 Presentation of the Results

The Extended Modal Series Method controller was tested using two criteria:

• Parameter Uncertainty : This approach aims to unveil the effect that a change in the
values of a set of parameters in the model has in the controller performance. The
selected parameters for parameter variation were the moments of inertia Ix, Iy, Iz and
the mass M . The percentage of variation was 80%, 90%, 110% and 120% for all the
parameters. Seeking to appreciate the effect that every parameter change had on the
control performance, all the parameters were changed one by one. As a result for
a fix trajectory and segment length this criteria required 17 simulations, 4 for each
parameter corresponding to the percentage variations and the reference with nominal
values.

• External Disturbances : The external disturbances are perturbations on the model rep-
resented by offsets in the state variables. Although the quadrotor model has 12 state
variables the most common and significant perturbations occur in the vx and vy states
and emulate side wind currents. These perturbations have three parameters: magni-
tude, duration and direction. The chosen values for these parameters are:

– Magnitude: M1 = 0.5[m/s] and M2 = 1[m/s].

– Duration: 30% (from 40% to 70% of the total time interval), and 60% (from 20%
to 80% of the total time interval).

– Direction: 0 [rad], π/4 [rad], π/2 [rad], 3π/4 [rad], π [rad], 5π/4 [rad], 3π/2 [rad],
7π/4 [rad].

Hence, for a given trajectory and segment length 33 simulations were required, 32
corresponding to the product of possible magnitudes, durations and directions and the
reference one without any perturbation.

Two types of overall results were investigated:

1. Performance of the EMSM controller : In first instance the robustness of the EMSM
controller is tested in face of parameter uncertainty and external disturbances. The
first criteria explores the critical model parameters by comparing the performance while
varying the values in the simulation model for each of the selected parameters. The
second criteria presents the general response of the control to perturbations character-
ized by different magnitudes, duration and orientation. With the purpose of evaluating
the performance of the EMSM the results of all the simulations were normalized with
respect to the reference results (the ones obtained without any parameter variation
and external disturbance), in the tables these results are labeled as EMSM Reference
Normalized.

2. Comparison with the Quaternion controller : Given that the most common control used
in the variable pitch quadrotor is a Quaternion-based one, it is natural to compare it
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with the proposed controller. Once more these results are divided into parameter un-
certainty and external disturbance criteria. With the objective of comparing the per-
formance of the Quadrotor-based controller all the simulation results were normalized
with respect to the EMSM reference results (the ones obtained without any param-
eter variation and external disturbance). This is done for the parameter uncertainty
and external disturbance perturbations, in the tables these results are labeled as Q/E
Normalized.

The variables used to measure the performance of the control were:

• Square of the norm 2 of the state variables error, denoted ||δp||, ||δq||, ||δr||, ||δφ||,
||δθ||, ||δψ||, ||δvx||, ||δvy||, ||δvz||, ||δx||, ||δy|| and ||δz||.

• Square of the norm 2 of the average energy ||u||, is the average signal energy over the
four control signals.

This set of variables is called Performance Variables and to avoid long table captions they
appear in all the result tables. For a single trajectory and a given segment length the behavior
of the quadrotor during the simulations may be affected by the shape of the trajectory. For
instance, if during the velocity disturbance the quadrotor is moving in the direction of
the disturbance the position error may be higher than if the quadrotor was moving in a
direction perpendicular to the disturbance. These magnifications of the errors produced
by the trajectory itself are unavoidable. Thus, in order to obtain trajectory independent
conclusions before analysis the results of each trajectory T1, T2 and T3 with segment length
L1 were averaged. Taking into account the above description 4 tables were used for the
analysis:

1. Table 5.3 shows the EMSM Reference Normalized parametric uncertainty results av-
eraged over the three trajectories with segment length L1.

2. Table 5.4 shows the Q/E Normalized parametric uncertainty results averaged over the
three trajectories with segment length L1.

3. Table 5.5 shows the EMSM Reference Normalized external disturbance results averaged
over the three trajectories with segment length L1.

4. Table 5.6 shows the Q/E Normalized external disturbance results averaged over the
three trajectories with segment length L1.

In the four tables, the final two rows show the mean and standard deviation of each mea-
sured variable (each column). These values represent the global behavior of the variable
across every case in both the parametric uncertainty and external disturbance simulations
for reference normalization and Q/E normalization.

The reason why tables 5.3, 5.4, 5.5 and 5.6 are not averaged over all the segment lengths
is because for L2 and L3 the Quaternion controller is unable to control the quadrotor for some
cases, and thus the comparison is meaningless. However, it is still possible to average the
performance variables in the cases that can be controlled for every trajectory and segment
length, the corresponding results are arrange in the following tables:
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1. Table 5.7 shows the EMSM Reference Normalized parametric uncertainty results av-
eraged over all the performance variables for each trajectory and segment length.

2. Table 5.8 shows the Q/E Normalized parametric uncertainty results averaged over all
the performance variables for each trajectory and segment length.

3. Table 5.9 shows the EMSM Reference Normalized external disturbance results averaged
over all the performance variables for each trajectory and segment length.

4. Table 5.10 shows the Q/E Normalized external disturbance results averaged over all
the performance variables for each trajectory and segment length.

As stated before the values in these tables give a global indication of the measured variables
behavior across all the cases (the ones that could be controlled). Although the results of
tables 5.7 , 5.8, 5.9 and 5.10 are not averaged by trajectory or segment length in a sense
they are independent of the trajectory because the particular effect that the trajectory may
have on a single case is averaged over the remaining cases.

Since the tables 5.7, 5.8, 5.9 and 5.10 are all normalized with respect to the nominal
EMSM controller performance it is necessary to specifically present this performance, which
is shown in table 5.1. The first three rows present the EMSM controller performance for
each trajectory corresponding to segment length L1, while the last row contains the mean
which are the values used to normalize the remaining results.

Tra ||δp|| ||δq|| ||δr|| ||δφ|| ||δθ|| ||δψ|| ||δvx|| ||δvy|| ||δvz|| ||δx|| ||δy|| ||δz|| ||u||
Und. rad/s rad m/s m ×1011

T1 0.0492 0.0419 0.0326 0.0014 0.0011 0.0002 0.0607 0.0675 0.0183 0.0043 0.0034 0.0007 501106

T2 0.0764 0.0931 0.4262 0.0013 0.0013 0.0054 0.1689 0.1516 0.0385 0.0053 0.0050 0.0018 113945

T3 0.0380 0.0973 1.3478 0.0013 0.0011 0.0109 0.1516 0.0379 0.1221 0.0055 0.0026 0.0044 281598

Mean 0.0545 0.0774 0.6022 0.0013 0.0012 0.0055 0.1271 0.0856 0.0596 0.0051 0.0037 0.0023 148551

Table 5.1: Nominal Results

Table 5.2 shows the color coding used to analyze the table results.

Color min max Meaning

- 0.25 4 times better
0.25 1.1 1.1 to 4 times better
0.9 1.1 almost the same
2 4 4 to 1.1 times worse
4 - 4 times worse

NaN

Table 5.2: Color Coding

For the EMSM Reference Normalized tables, cells with color and indicate that the
results of the reference were better than the corresponding case, while cells with color and

indicate that the current simulation results were better than the reference ones. For the
Q/E Normalized tables, cells with color and indicate that the Quaternion results were
better than EMSM ones, while cells with color and indicate that the EMSM results
were better than the Quaternion.
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5.3 Parametric Uncertainty Robustness

This section analyzes the parametric uncertainty robustness of the proposed controller.

5.3.1 EMSM Controller

Par. % ||δp|| ||δq|| ||δr|| ||δφ|| ||δθ|| ||δψ|| ||δvx|| ||δvy|| ||δvz|| ||δx|| ||δy|| ||δz|| ||u||
ref 0 1 1 1 1 1 1 1 1 1 1 1 1 1

Ix

0.6 21.0 1.35 4.78 9.64 0.95 3.67 1.02 1.18 0.95 1.18 1.30 0.88 2.61
0.8 0.77 1.15 2.57 1.01 1.16 2.25 1.01 0.93 0.96 1.13 0.81 0.92 0.91
1.2 1.48 1.20 0.93 1.47 1.32 0.85 0.95 0.80 1.01 0.88 0.93 1.06 0.87
1.4 2.00 1.03 0.98 1.28 1.09 0.76 1.04 0.96 1.08 1.10 0.88 1.20 0.95

Iy

0.6 1.03 8.97 2.39 1.28 5.36 1.87 1.04 0.97 0.98 0.99 0.97 0.94 1.62
0.8 0.93 1.22 0.62 0.92 1.01 0.61 1.06 0.98 1.04 1.01 1.20 0.94 0.80
1.2 0.83 1.53 0.57 0.99 1.28 0.49 1.02 0.95 1.01 1.02 0.96 0.90 0.75
1.4 0.89 2.08 0.46 0.98 1.65 0.40 1.00 0.90 0.94 1.23 1.00 0.87 0.75

Iz

0.6 1.00 1.05 0.81 1.03 1.04 0.43 1.00 0.84 0.98 1.04 0.77 0.93 0.67
0.8 0.86 1.09 0.59 1.08 1.21 0.57 1.04 0.91 0.94 0.91 0.93 0.84 0.80
1.2 0.89 1.18 1.24 0.99 1.00 1.18 1.04 0.95 0.97 1.07 1.06 0.78 1.21
1.4 0.92 1.17 0.74 1.24 1.09 0.70 1.04 0.92 1.02 0.99 0.68 1.05 0.98

M

0.8 1.09 1.59 1.16 1.15 1.12 0.90 1.44 1.29 1.24 1.54 1.36 7.64 0.98
0.9 1.11 1.19 2.90 1.05 1.12 2.43 1.21 1.21 1.05 1.25 1.14 3.17 1.35
1.1 0.86 0.94 0.47 1.01 1.14 0.50 0.96 0.85 0.94 0.95 0.80 1.49 0.70
1.2 0.75 0.89 0.13 0.95 1.15 0.21 0.76 0.71 0.96 0.55 0.66 6.21 0.59

Mean 2.20 1.68 1.31 1.59 1.39 1.11 1.04 0.96 1.00 1.05 0.97 1.81 1.03

STD 4.86 1.89 1.18 2.07 1.03 0.92 0.13 0.14 0.07 0.20 0.19 2.01 0.48

Table 5.3: EMSM Reference Normalized Parametric Uncertainty

At first glance table 5.3 shows that the main differences appear in the angular states
rather than the translational states except for in the variation of mass. These results are
coherent, since the moments of inertia belong to the attitude dynamics while the mass is
located in the translational dynamic model. The effect of the mass on the attitude states
can be explained by the fact that the attitude loop is contained inside the translational loop.

The complete performance of the angular rate of change state variables translates almost
exactly to the angular states. This is expected given that in rough terms the second variables
are an integration of the first ones. Another expected result is the direct effect of mass
variation in the z state variable

Besides this preliminar analysis there are no other clear patterns in the table. For al-
most every case some performance variables exhibit a better result while others present the
opposite behavior. Thus, no clear critical parameter is revealed. The mean values for each
performance variable indicate that the most sensible state variables are the p and q angular
rates of change, the φ and θ angles and the height z.

Looking at the average energy of the control signals many cases present a decrease with
respect to the reference, but there is no clear trend and also in average over all the cases the
used energy is the same.
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The results in table 5.3 indicate that the EMSM controller is very robust with respect to
parametric uncertainty with particular expected results such as the direct effect of the mass
uncertainty in the height error and the global effect of the moments of inertia changes in the
attitude state variables.

5.3.2 EMSM and Quaternion Controllers

Par. % ||δp|| ||δq|| ||δr|| ||δφ|| ||δθ|| ||δψ|| ||δvx|| ||δvy|| ||δvz|| ||δx|| ||δy|| ||δz|| ||u||
ref 0 7.21 7.80 1.86 2.66 2.83 1.21 1.03 1.13 0.97 0.91 0.98 0.79 1.35

Ix

0.6 7.41 4.88 0.93 1.21 1.89 0.69 1.05 1.03 1.06 1.18 1.12 0.94 0.88
0.8 24.6 7.66 4.52 5.51 3.13 3.39 1.07 1.10 0.95 1.04 0.97 1.02 2.85
1.2 13.9 6.05 4.34 4.98 3.29 3.09 1.16 1.06 1.03 1.09 0.90 1.02 2.84
1.4 74.6 19.2 7.50 10.5 6.93 6.89 1.05 1.43 1.17 0.98 0.80 1.37 7.04

Iy

0.6 5.50 14.0 1.09 2.06 1.33 0.72 0.95 1.10 1.07 1.00 1.03 0.97 0.96
0.8 7.09 10.9 4.83 3.78 2.74 2.57 1.04 1.05 0.96 1.25 0.96 1.14 3.12
1.2 16.9 9.76 3.85 5.99 3.43 3.09 1.25 1.09 1.04 1.28 0.96 0.95 2.66
1.4 12.3 15.8 3.80 3.99 6.21 2.78 1.10 1.21 0.99 1.08 1.15 0.97 2.54

Iz

0.6 – – – – – – – – – – – – –
0.8 1082 469. 1086 138. 61.4 770. 1.83 2.55 5.08 0.92 1.16 29.3 137.
1.2 6.04 5.59 1.49 2.47 2.21 1.30 1.11 1.10 0.95 1.16 0.99 0.90 1.44
1.4 8.46 7.15 2.70 2.86 2.67 2.01 1.06 1.14 1.00 1.15 1.29 1.10 1.93

M

0.8 227. 167. 422. 27.6 16.2 442. 2.22 1.63 2.47 1.61 1.50 7.36 71.1
0.9 49.5 24.9 4.99 10.2 6.24 4.26 1.34 1.43 1.19 1.38 0.93 2.69 5.09
1.1 4.35 4.26 0.99 1.69 1.90 0.78 0.91 0.92 0.95 0.65 0.69 2.47 0.95
1.2 5.01 3.38 0.62 1.79 1.55 0.47 0.83 0.85 0.98 0.70 0.73 7.24 0.82

Mean 97.1 48.7 97.0 14.0 7.76 77.8 1.19 1.24 1.37 1.09 1.01 3.77 15.2

STD 268. 119. 283. 33.6 14.7 214. 0.35 0.40 1.05 0.23 0.20 7.15 36.8

Table 5.4: Q/E Normalized Parametric Uncertainty

Table 5.4 compares the performance of the EMSM controller with the Quaternion con-
troller for parametric uncertainty. Three trends are highly noticeable:

1. Almost for every case the EMSM is better than the Quaternion control with respect
to the attitude states. This is a very important result since it shows that the overall
performance of the proposed controller is better than the benchmark, with respect to
parametric uncertainty and also in the reference case.

It is important to keep in mind that this is a normalized result, meaning that it is not
absolute in the sense that very low values do not directly indicate that the EMSM is a
very good controller. What low values mean, is that the EMSM control is better than
the Quaternion-based one, but it could happen that for certain cases the performance
of the Quaternion control is very poor while the EMSM remains the same.

2. The empty row corresponding to the 80% variation of the Iz moment of inertia. This
happened because in that particular case the Quaternion control was unable to control
the system and as a result the comparison was meaningless. A side effect of this is
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presented in the following row. The extremely low values for the 90% variation of
the Iz moment of inertia most likely indicate that in this case the Quaternion control
provided very poor performance (almost unable to control the system).

3. Compared with the attitude states, the translational states show little difference. This
is a consequence of the fact that both the EMSM and Quaternion controllers are in
the attitude loop, while the translational control is the same. Hence this means that
despite the difference in the performance of the attitude controllers, the translational
control is able to compensate for them and provide similar results in both cases. Of
course, this is a global analysis and there are small particular differences for given cases
and performance variables.

Several conclusions can be drawn from this analysis: first that the EMSM is much more
robust than the Quaternion control with respect to parameter uncertainty, second that the
overall performance of the EMSM is much better than the Quaternion control and finally
that despite the differences the translational control is able to compensate for them and
provide similar results for both controllers.

5.4 External Disturbance Robustness

This section analyzes the external disturbance robustness of the proposed controller.

5.4.1 EMSM Controller

Table 5.5 shows the EMSM Reference Normalized results with respect to external distur-
bances. Several clear patterns can be noted:

1. There is a clear global increase in the error of the vx, vy, x and y state variables. This
is a direct consequence of the wind perturbations.

2. As for the attitude state variables, q shows a minor error increase but not significant.
On the other hand the attitude state variables r and ψ exhibit a significant improve-
ment. This effect is more difficult to explain, however a possible explanation is that
the continuous perturbations produce a constant attitude correction which not only
compensates for the external disturbances but as a side effect improves the r and ψ
errors.

3. In most cases the average energy is less than the reference case. However not very
significantly.

Beside these patterns the remaining performance variables remain the same with very low
standard deviation, meaning that in general the EMSM controller is very robust with respect
to external disturbances.
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mag T ori ||δp|| ||δq|| ||δr|| ||δφ|| ||δθ|| ||δψ|| ||δvx|| ||δvy|| ||δvz|| ||δx|| ||δy|| ||δz|| ||u||
ref 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

M1

30%

0 0.91 1.18 1.57 1.03 0.96 1.29 1.47 0.94 0.98 2.38 1.10 0.91 0.90
π/4 1.11 1.21 1.42 1.03 1.20 1.26 1.15 1.52 1.06 1.66 2.06 1.05 0.96
π/2 0.91 1.18 0.60 1.03 1.18 0.56 1.02 1.96 0.93 1.10 2.84 0.88 0.77
3π/4 0.87 1.09 2.02 0.95 1.14 1.82 1.49 1.48 0.96 2.34 1.66 0.69 0.96
π 0.90 1.04 0.60 0.96 1.06 0.56 1.98 0.94 0.98 3.48 0.96 0.81 0.71

5π/4 0.89 1.07 0.30 0.93 1.02 0.36 1.44 1.68 0.95 2.02 3.18 1.02 0.61
3π/2 0.87 1.01 0.51 0.86 1.13 0.47 0.95 2.28 1.02 0.85 5.01 0.89 0.69
7π/4 0.89 1.08 0.42 1.01 0.92 0.40 1.19 1.54 1.02 1.49 2.90 0.99 0.68

60%

0 0.93 1.04 0.66 1.09 1.15 0.49 2.53 0.96 0.99 4.99 1.17 0.94 0.80
π/4 0.93 1.23 0.60 0.95 1.06 0.59 1.75 1.97 0.98 3.09 3.40 0.85 0.72
π/2 1.04 1.24 0.66 1.02 1.25 0.65 1.05 3.42 1.03 1.09 6.46 0.90 0.91
3π/4 1.04 1.14 0.96 1.17 1.05 0.76 1.71 2.14 0.93 3.21 3.56 0.79 0.88
π 0.78 1.27 0.44 1.05 1.09 0.40 2.47 0.91 0.94 5.16 0.87 0.88 0.64

5π/4 0.98 1.40 1.22 1.03 1.29 0.91 1.67 2.31 0.99 3.07 4.78 1.10 1.00
3π/2 1.10 1.14 1.28 1.07 1.18 0.98 1.04 3.26 1.01 0.97 7.45 0.90 0.92
7π/4 0.94 1.12 0.45 1.07 1.16 0.67 1.71 2.19 0.97 2.91 4.47 0.86 0.73

M2

30%

0 1.01 1.35 0.71 1.40 1.05 0.77 3.21 0.93 1.02 7.41 0.89 1.10 0.93
π/4 0.92 1.16 0.47 0.96 1.21 0.54 2.04 3.07 0.91 3.96 5.25 0.80 0.76
π/2 0.97 1.15 0.50 1.00 1.23 0.40 1.04 5.21 0.98 1.11 10.1 1.07 0.67
3π/4 0.96 1.18 0.45 0.90 1.06 0.42 2.50 2.89 0.93 5.34 4.99 0.86 0.77
π 0.91 1.17 0.36 1.07 0.97 0.32 4.00 0.87 1.04 9.13 0.90 0.85 0.67

5π/4 0.99 1.19 1.04 1.06 1.15 0.91 2.69 3.55 1.09 5.49 8.19 1.25 0.97
3π/2 1.13 1.25 1.05 1.12 1.23 0.84 1.02 6.01 0.86 1.07 14.5 0.76 0.92
7π/4 1.06 1.17 0.78 0.94 1.08 0.60 2.02 3.42 0.94 3.95 7.68 0.78 0.88

60%

0 1.03 1.36 0.85 1.13 1.08 0.80 7.01 0.98 0.97 17.1 1.10 0.86 1.06
π/4 1.06 1.18 1.11 1.18 0.99 0.82 4.11 5.53 1.02 9.06 11.0 0.88 0.84
π/2 1.45 1.14 0.86 1.26 1.16 0.90 1.02 10.5 0.96 0.94 22.8 0.95 1.01
3π/4 1.20 1.34 1.65 1.02 1.05 1.32 4.06 6.14 0.96 9.97 12.1 1.01 1.24
π 0.93 1.30 0.86 1.14 1.22 0.83 7.18 0.99 0.98 18.4 0.98 0.90 0.96

5π/4 1.08 1.20 0.46 1.03 1.12 0.38 3.94 6.17 1.05 9.31 14.7 0.81 0.72
3π/2 1.28 0.99 0.77 1.13 1.09 0.60 1.07 10.8 0.97 1.22 26.5 0.77 0.91
7π/4 1.13 1.27 0.81 1.15 1.21 0.66 3.86 5.79 0.96 8.59 14.0 0.86 0.83

Mean 1.01 1.18 0.83 1.05 1.11 0.74 2.31 3.13 0.98 4.63 6.33 0.91 0.85

STD 0.13 0.10 0.41 0.10 0.09 0.33 1.60 2.60 0.04 4.41 6.40 0.11 0.14

Table 5.5: EMSM Reference Normalized External Disturbance

5.4.2 EMSM and Quaternion Controllers

In table 5.6 the Q/E normalized external disturbance response is presented. This table
shares many similarities with table 5.4 and the same analysis can be applied, namely:

1. Globally the attitude states present a lower average error with the EMSM controller
than with the Quaternion based one.

2. In this instance two cases cannot be presented because the Quaternion control was un-
able to control the system (magnitude M1, duration 30%, orientation π and magnitude
M2, duration 60%, orientation π).
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mag T ori ||δp|| ||δq|| ||δr|| ||δφ|| ||δθ|| ||δψ|| ||δvx|| ||δvy|| ||δvz|| ||δx|| ||δy|| ||δz|| ||u||
ref 0 0 7.21 7.80 1.86 2.66 2.83 1.21 1.03 1.13 0.97 0.91 0.98 0.79 1.35

M1

30%

0 5.84 7.18 1.64 2.55 3.07 1.11 1.51 1.18 1.11 2.24 1.19 1.09 1.22
π/4 11.4 6.46 2.83 3.27 2.51 1.95 1.26 1.58 1.08 1.47 1.70 1.35 1.96
π/2 5.79 4.37 1.21 2.03 1.93 0.82 1.05 2.12 0.98 1.04 2.95 0.89 0.95
3π/4 10.1 7.18 2.64 2.70 2.61 1.78 1.69 1.67 1.03 2.69 2.08 1.04 1.76
π – – – – – – – – – – – – –

5π/4 214. 190. 842. 53.0 29.6 438. 2.14 2.21 2.74 2.42 2.64 28.2 88.9
3π/2 141. 110. 573. 30.4 23.1 279. 1.58 2.38 1.98 1.17 3.98 12.5 61.4
7π/4 6.13 5.91 1.11 2.27 1.66 0.94 1.42 1.67 0.98 1.90 2.85 0.97 1.12

60%

0 11.8 8.72 2.12 3.02 2.87 1.41 2.51 1.16 1.01 4.60 0.99 0.94 1.39
π/4 8.53 6.50 2.26 2.39 2.10 1.24 1.71 2.29 1.02 2.74 3.32 1.02 1.43
π/2 9.90 6.33 3.43 3.75 2.98 2.23 1.12 3.58 1.10 1.05 6.33 1.23 2.05
3π/4 4.45 5.01 3.30 1.88 2.01 2.52 1.91 2.20 1.05 3.55 3.28 1.21 1.28
π 11.2 9.39 2.96 4.09 3.01 1.81 2.52 1.10 1.10 5.50 0.89 1.03 1.82

5π/4 62.6 20.7 8.39 11.9 8.90 6.48 1.92 2.36 0.96 3.48 3.91 1.37 9.36
3π/2 8.10 4.74 0.84 2.42 2.06 0.68 1.07 3.59 1.08 1.18 7.60 1.07 1.01
7π/4 7.10 5.98 1.70 1.99 2.16 1.32 1.78 2.33 1.05 2.73 4.42 0.93 1.27

M2

30%

0 7.32 8.56 2.52 2.38 2.43 1.74 3.43 1.17 1.03 7.29 1.06 0.97 1.35
π/4 48.6 13.1 5.08 8.36 5.31 4.55 2.38 3.21 1.06 4.45 5.28 1.15 3.82
π/2 429. 106. 28.7 86.7 26.8 14.6 2.05 10.4 1.98 2.02 14.4 21.1 17.3
3π/4 9.15 7.36 8.59 3.76 3.22 5.50 2.88 3.29 1.04 5.90 5.62 1.19 3.45
π 50.7 75.9 263. 13.9 8.20 200. 4.41 1.11 1.57 9.74 1.10 3.50 26.9

5π/4 7.94 6.50 3.76 3.05 2.49 2.64 2.77 3.68 1.08 5.48 7.94 0.94 1.68
3π/2 11.3 9.76 2.28 3.23 3.19 1.43 1.05 5.86 0.96 0.90 13.8 0.83 1.49
7π/4 6.35 5.92 2.70 1.86 2.02 2.06 2.16 3.30 0.97 3.99 7.43 0.92 1.46

60%

0 7.09 6.94 4.72 2.31 2.61 2.88 7.01 1.10 1.04 16.8 1.17 1.08 2.49
π/4 9.23 6.99 1.29 2.09 2.65 1.11 3.91 5.68 0.96 8.54 11.1 0.70 1.28
π/2 14.2 6.09 4.47 3.91 3.25 3.39 1.03 10.7 1.04 1.00 23.1 0.90 2.74
3π/4 156. 56.9 15.5 35.2 14.0 12.0 4.14 6.67 1.20 9.62 11.1 2.77 16.1
π – – – – – – – – – – – – –

5π/4 8.77 7.08 2.79 2.56 2.32 1.60 4.00 5.95 1.01 9.59 13.7 0.81 1.50
3π/2 9.42 4.04 1.46 2.97 1.71 1.12 1.00 10.4 0.99 1.15 24.7 0.85 1.23
7π/4 76.5 26.3 8.37 15.4 7.57 6.10 4.38 6.35 1.05 9.30 13.6 1.66 5.62

Mean 44.5 24.3 58.3 10.2 5.85 32.4 2.35 3.60 1.17 4.34 6.60 3.07 8.61

STD 87.6 41.9 182. 18.3 7.42 96.3 1.37 2.85 0.38 3.74 6.34 6.22 19.0

Table 5.6: Q/E Normalized External Disturbance

3. In general the translational states present the same response, indicating that the trans-
lational controller is able to compensate for the differences of the attitude controllers
in presence of disturbances.

4. On average the mean control energy is also lower for the EMSM than for the Quaternion
control.

Also, as explained in table 5.4 these values are Q/E normalized, meaning that a low number
does not imply a very good performance of the EMSM controller, but that compared with the
Quaternion based one, is better. Overall the main conclusion that can be derived from tables
5.5 and 5.6 is that the EMSM control is very robust with respect to external disturbances and
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also that across all the attitude state variables has better performance than the Quaternion
based control.

5.5 Trajectory Comparison Performance

Tables 5.7, 5.8, 5.9 and 5.10 show the mean of the performance variables for all the trajec-
tories and segment lengths. The empty rows correspond to instances where any case could
be controlled and thus no data is available.

Tra Leng ||δp|| ||δq|| ||δr|| ||δφ|| ||δθ|| ||δψ|| ||δvx|| ||δvy|| ||δvz|| ||δx|| ||δy|| ||δz|| ||u||

T1

L1 1.61 1.75 2.51 1.17 1.28 2.06 1.08 0.97 0.92 0.78 0.85 2.57 1.23
L2 1.49 1.42 1.36 1.55 1.56 1.24 0.98 1.00 0.93 0.91 0.99 1.55 1.15
L3 1.48 1.16 1.78 1.47 0.98 2.53 1.00 0.95 1.05 0.88 0.96 2.31 1.37

T2

L1 1.65 2.02 1.03 1.72 1.63 0.82 0.98 1.01 1.10 1.21 1.17 1.68 1.11
L2 1.56 1.38 1.13 1.06 1.23 1.04 0.98 0.99 0.98 1.17 0.91 1.93 1.18
L3 1.15 0.41 0.71 0.77 0.66 1.19 123. 300. 4355 11.5 37.3 1362 120.

T3

L1 3.36 1.29 0.40 1.88 1.28 0.45 1.05 0.90 0.99 1.15 0.89 1.19 0.75
L2 1.44 1.78 1.42 1.17 1.21 1.21 1.02 1.27 1.01 0.92 1.94 1.26 1.51
L3 – – – – – – – – – – – – –

Table 5.7: EMSM Reference Normalized Parametric Uncertainty Trajectory Comparison

Tra Leng ||δp|| ||δq|| ||δr|| ||δφ|| ||δθ|| ||δψ|| ||δvx|| ||δvy|| ||δvz|| ||δx|| ||δy|| ||δz|| ||u||

T1

L1 124. 85.3 269. 15.3 9.35 220. 1.42 1.21 1.76 0.79 0.88 6.68 32.0
L2 24.2 21.7 56.7 8.82 7.07 37.6 1.10 1.10 1.04 0.87 1.00 2.31 12.0
L3 9.73 6.08 5.51 4.22 2.19 6.62 1.09 1.07 1.06 0.87 1.03 2.28 3.36

T2

L1 39.9 34.1 16.4 13.6 7.12 7.93 1.01 1.21 1.26 1.25 1.20 3.07 6.90
L2 270. 199. 8.68 17.3 9.19 11.8 1.05 1.67 2.86 1.08 0.95 22.9 6.82
L3 – – – – – – – – – – – – –

T3

L1 126. 26.5 5.70 13.3 6.80 5.66 1.14 1.29 1.09 1.21 0.95 1.55 6.66
L2 44.6 108. 3.94 11.4 11.5 2.99 1.11 2.12 1.60 1.16 1.27 5.13 2.87
L3 – – – – – – – – – – – – –

Table 5.8: Q/E Normalized Parametric Uncertainty Trajectory Comparison

In every table the last row is empty meaning that both the EMSM and Quaternion
controllers were unable to control the system for trajectory T3 and segment length L3, this
is due to the high level of aggressiveness that this particular configuration implies. However
tables 5.8 and 5.10 also present an empty row for the trajectory T2 and segment length L3,
the fact that this row is not empty in tables 5.7 and 5.9 means that the EMSM controller
was able to control the system in this trajectory while the Quaternion control failed. Besides
that three more observations can be made from these tables:

1. Tables 5.8 and 5.10 show that across all the trajectories and segment lengths the EMSM
controller is much better than the Quaternion one with respect to the attitude states.
Also that the translational control is able to compensate for these differences resulting
in very similar translational variables behavior.
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Tra Leng ||δp|| ||δq|| ||δr|| ||δφ|| ||δθ|| ||δψ|| ||δvx|| ||δvy|| ||δvz|| ||δx|| ||δy|| ||δz|| ||u||

T1

L1 0.99 1.27 1.34 0.90 1.09 1.17 3.22 2.94 0.87 4.86 6.21 0.85 1.05
L2 0.92 1.22 1.47 1.09 1.36 1.31 1.93 1.93 0.88 3.31 3.90 0.65 1.13
L3 1.10 0.82 1.45 1.10 0.82 2.08 1.58 1.51 1.02 2.18 2.65 1.12 1.26

T2

L1 0.96 1.20 0.92 1.19 1.12 0.77 1.80 1.89 1.09 4.73 4.73 1.01 0.95
L2 1.14 1.16 1.03 0.97 1.10 1.02 1.34 1.43 0.96 2.64 2.20 1.39 1.17
L3 1.13 0.46 0.65 0.81 0.73 1.08 1.32 1.58 3954 1.72 1.05 1678 1.14

T3

L1 1.07 1.07 0.24 1.06 1.13 0.26 1.93 4.56 0.98 4.30 8.06 0.86 0.54
L2 1.41 1.39 1.40 1.12 1.11 1.45 1.51 8.10 1.05 2.34 8.94 1.01 1.62
L3 – – – – – – – – – – – – –

Table 5.9: Reference Normalized External Disturbance Trajectory Comparison

Tra Leng ||δp|| ||δq|| ||δr|| ||δφ|| ||δθ|| ||δψ|| ||δvx|| ||δvy|| ||δvz|| ||δx|| ||δy|| ||δz|| ||u||

T1

L1 38.0 36.4 154. 9.32 6.41 85.2 3.52 3.15 1.19 4.96 6.13 4.72 16.8
L2 13.7 13.9 38.7 6.30 5.45 24.1 2.01 2.05 0.97 3.17 3.95 1.10 8.83
L3 7.53 4.69 3.02 3.12 1.89 4.12 1.63 1.61 1.03 2.09 2.60 1.13 2.49

T2

L1 8.68 9.88 4.53 3.70 3.42 2.53 1.77 2.10 1.19 4.69 4.79 1.16 2.67
L2 115. 71.7 3.69 8.24 5.95 5.77 1.17 2.01 1.57 2.86 2.07 4.28 2.93
L3 – – – – – – – – – – – – –

T3

L1 84.5 24.8 5.86 17.3 7.43 4.07 2.07 5.36 1.11 4.20 8.28 3.08 5.30
L2 59.6 284. 3.68 14.1 13.5 3.58 1.86 4.26 1.97 3.31 8.17 5.42 2.57
L3 – – – – – – – – – – – – –

Table 5.10: Q/E Normalized External Disturbance Trajectory Comparison

2. The translational variables are more robust to parametric uncertainty than the attitude
variables. Nevertheless, there is not a single state variable particularly affected by
changes in parametric values.

3. Across all the trajectories and segment lengths the external disturbances translate
directly into errors in the vx, vy, x and y state variables.

5.6 Conclusions and Future Work

In this thesis a Nonlinear Model Predictive Controller for the a Variable Pitch Quadrotor
was designed and tested in simulation. Given that the dynamical system is input affine
it has non-linearities that make the PDEs resulting from Pontryagin’s Maximum Principle
impossible to solve analytically.

In order to overcome this problem, a new method for solving this kind of system of
equations was used: the Extended Modal Series Method. It relies on the approximation
of the optimal solution by a sum of functions which are themselves solutions to systems of
ODEs.

In the original publication, these systems of ODEs were defined implicitly, slowing the
implementation of the controller. The first and main contribution of this work was to find
a closed form not only for the systems of ODE but also for the control law which enables
faster implementation and also further theoretical development.
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On the other hand, the Variable Pitch Quadrotor is a modification of the traditional
quadrotor, where the angle of attack of the blades in the propellers can change, enabling
almost instantaneous changes in thust and torque and also negative thrust generation.

That modification makes the Variable Pitch Quadrotor an ideal system to execute aggres-
sive maneuvers. Given the nature of the task, the system continuously operates in nonlinear
regimes of the dynamic system, which make traditional linealization control techniques not
feasible.

In order to control the Variable Pitch Quadrotor while it performed the aggressive maneu-
vers a EMSM-based NMPC was used. The use of an NMPC in this application is the second
contribution of this work, together with the complete Variable Pitch Quadrotor model, in-
cluding relevant drag effects.

In order to test the proposed EMSM-based NMPC, the simulation results were analyzed
independently and also compared with a Quaternion-based control. Two criteria were used
for the analysis: Parameter Uncertainty and External Perturbation Robustness. Every anal-
ysis showed the same general results: the EMSM-based control is more robust to parameter
uncertainty and external perturbations than the quaternion-based control.

As a general conclusion it can be stated that the EMSM-based NMPC is a very powerful
control technique in the sense that it has all the advantages of a traditional NMPC, but at
the same time overcomes the usual disadvantages of computation times by employing the
EMSM to approximate the solution of the OCP. The closed form of the control law only
increases the implementation speed enabling the application of this control to many other
dynamic systems.

Other conclusions that can be drawn from this work are:

• Given that the EMSM control is an optimal controller it produced better performance
than the Quaternion-based controller. This was expected, being the EMSM an optimal
controller which took into account the system nonlinearities and constraints.

• The overall design of the control architecture divided into cascade controllers corre-
sponding to each of the natural subdivisions of the complete dynamic system not only
facilitates the design of each controller but also gives a physical insight that a single
controller would otherwise not have.

• The quaternion-based attitude model presents some very interesting advantages over
the traditional Euler angles model. In particular the fact that the model is a multi-
variable polynomial reduces the complexity of the associated PMP partial differential
equations, possible enabling more accurate solutions.

• The Variable Pitch Quadrotor is a very versatile dynamic system that not only has
the advantages of a traditional quadrotor such as vertical landing and take-off and
independent movement in the three spatial axis but also is capable of agile maneuvers
thanks to the possibility of almost instantaneous thrust and torque change and also
generation of negative thrust.

Finally, throughout the thesis some questions remained unanswered while other appear.
Given that they were not in the scope of the research no solution was given to them and are
now proposed for future work:
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• Continue with the theoretical development of the Extended Modal Series Method con-
trol technique. The closed form allows for many questions to be addressed, for instance
bounds for the approximation errors, convergence and stability analysis.

• Generalization of the Extended Modal Series Method for more general cost functions
and the effects on the overall method.

• Further development in the computational aspects of the implementation, for instance
writing faster algorithms or looking for shortcuts in the code implementation of the
algorithms in order to make the control signal computation quicker.

• Implementation in simulation in other input affine dynamic systems.

• Experimental validation of the control technique, not necessarily in the Variable Pitch
Quadrotor but any fast nonlinear dynamic system.

• Explore in more detail the possibilities of solving the PMP system of partial differential
equations associated with the Quaternion-based attitude model.

• Compare the EMSM-based NMPC with other advance control techniques such as Slid-
ing Modes and Backstepping. In order to see whether the advantages presented when
compared with the Quaternion control still hold true.
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A.1 Taylor Polynomial

Taylor’s Theorem gives a formula for the Taylor polynomial:

f(a+ h) ≈
N∑
k=0

1

k!
(Dkf(a)(hk)) (A.1)

There are, however multiple terms of each sum that give the same result. All that matters
is the number of times a index ij occurs

Denote by αi the number of times the index i appears for 1 ≤ i ≤ n, then it follows that
if α = (α1, ...αn) then:

1. All the terms of k-th order satisfy that:

|α| =
n∑
i=1

αi = k (A.2)

2. All the terms with equal α give the same result.

3. hi1hi2 . . . hik = hα1
1 h

α2
2 . . . hαnn

4. ∂i1∂i2 . . . ∂ik = ∂α1
1 ∂α2

2 . . . ∂αnn

Using this notation Taylor’s formula becomes [32]:

Theorem 1. Assume U to be a convex open subset of Rn and let f ∈ Ck+1(U,Rp), for
k ∈ N0. Then we have, for all a and a+ h ∈ U

f(a+ h) =
∑
|α|≤k

hα

α!
Dαf(a) + (k + 1)

∑
|α|=k+1

hα

α!

∫ 1

0

(1− t)kDαf(a+ th)dt (A.3)

Where α! = α1!α2! . . . αn!, hα = hα1
1 h

α2
2 . . . hαnn and Dα = ∂α1

1 ∂α2
2 . . . ∂αnn

Proof: see [32]
So the k-th order term of the Taylor Polynomial is:∑

|α|=k

hα

α!
Dαf(a) =

∑
|α|=k

hα1
1 h

α2
2 . . . hαnn

α1!α2! . . . αn!
∂α1

1 ∂α2
2 . . . ∂αnn f(a) (A.4)

A.2 Discrete Quadratic Optimal Control Problem

Consider the following discrete quadratic optimal control problem
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min
∆uk

{
J =

N∑
k=1

(
(yk − ydk)TQ(yk − ydk) + uTkRuk

)
+

N−1∑
k=0

∆uTkD∆uk

}
s.t.

xk+1 = Akxk +Bkuk ukmin
≤ uk ≤ ukmax

yk = Ckxk ykmin
≤ yk ≤ ykmax

uk+1 = uk + ∆uk ∆ukmin
≤ ∆uk ≤ ∆ukmax

The first step is to transform the inputs into state variables, this is done with the following
transformations:

[
xk+1

uk+1

]
︸ ︷︷ ︸
x̃k+1

=

[
Ak Bk

0 I

]
︸ ︷︷ ︸

Ãk

[
xk
uk

]
︸︷︷︸
x̃k

+

[
0
I

]
︸︷︷︸
B̃k

∆uk

yk =
[
Ck 0

]︸ ︷︷ ︸
C̃k

[
xk
uk

]
︸︷︷︸
x̃k

The new state variables transform in the cost function as follows:

(yk − ydk)TQ(yk − ydk) + uTkRuk =
[
yTk − ydk

T
uTk

] [Q 0
0 R

] [
yk − ydk
uk

]
=

([
xTkC

T
k uTk

]
−
[
ydk
T

0
])[Q 0

0 R

]([
xTkCk
uk

]
−
[
ydk
T

0

])

=

([
xTk uTk

]︸ ︷︷ ︸
x̃k

[
CT
k 0

0 I

]
︸ ︷︷ ︸

ΓTk

−
[
ydk
T

0
]

︸ ︷︷ ︸
ỹTk

)[
Q 0
0 R

]
︸ ︷︷ ︸

Q̃

([
Gk 0
0 I

]
︸ ︷︷ ︸

Γk

[
xk
uk

]
︸︷︷︸
x̃k

−
[
ydk
T

0

]
︸ ︷︷ ︸
ỹk

)

= (Γkx̃k − ỹk)T Q̃(Γkx̃k − ỹk)

Hence the final cost function is:

J =
N∑
k=1

(Γkx̃k − ỹk)T Q̃(Γkx̃k − ỹk) +
N−1∑
k=0

∆uTkD∆uk (A.5)

This can be written in matrix form, expand the first sum to obtain
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N∑
k=1

(Γkx̃k − ỹk)T Q̃(Γkx̃k − ỹk) =
N∑
k=1

x̃Tk ΓTk Q̃Γkx̃k − 2x̃Tk ΓTk Q̃ỹ
d
k + ỹd

T

k Q̃ỹdk

= x̃T1 ΓT1 Q̃Γ1x̃1 − 2x̃T1 ΓT1 Q̃ỹ
d
1 + ỹd

T

1 Q̃ỹd1 + x̃T2 ΓT2 Q̃Γ2x̃2 − 2x̃T2 ΓT2 Q̃ỹ
d
2+

+ ỹd
T

2 Q̃ỹd2 + · · ·+ x̃TNΓTNQ̃ΓN x̃N − 2x̃TNΓTNQ̃ỹ
d
N + ỹd

T

N Q̃ỹdN

=
[
x̃T1 x̃T2 . . . x̃TN

]︸ ︷︷ ︸
x̃T


ΓT1 Q̃Γ1 0 . . . 0

0 ΓT2 Q̃Γ2 . . . 0
...

...
...

0 0 . . . ΓTNQ̃ΓN


︸ ︷︷ ︸

Γ̂T ̂̃QΓ̂


x̃1

x̃2

. . .
x̃N


︸ ︷︷ ︸

x̃

− 2
[
x̃T1 x̃T2 . . . x̃TN

]︸ ︷︷ ︸
x̃T


ΓT1 Q̃ 0 . . . 0

0 ΓT2 Q̃ . . . 0
...

...
...

0 0 . . . ΓTNQ̃


︸ ︷︷ ︸

Γ̂T ̂̃Q


ỹd1
ỹd2
. . .
ỹdN


︸ ︷︷ ︸
ỹd

+
[
ỹd

T

1 ỹd
T

2 . . . ỹd
T

N

]︸ ︷︷ ︸
ỹdT


Q̃ 0 . . . 0

0 Q̃ . . . 0
...

...
...

0 0 . . . Q̃


︸ ︷︷ ︸̂̃Q


ỹd1
ỹd2
. . .
ỹdN


︸ ︷︷ ︸
ỹd

= x̃T Γ̂T ̂̃QΓ̂x̃− 2x̃T Γ̂T ̂̃Qỹd + ỹd
T ̂̃Qỹd

Similarly for the second sum

N−1∑
k=0

∆uTkD∆uk = ∆uT0D∆u0 + ∆uT1D∆u1 + · · ·+ ∆uTN−1D∆uN−1

=
[
∆uT1 ∆uT2 . . . ∆uTN−1

]︸ ︷︷ ︸
∆uT


D 0 . . . 0
0 D . . . 0
...

...
...

0 0 . . . D


︸ ︷︷ ︸

D̂


∆u1

∆u2

. . .
∆uN−1


︸ ︷︷ ︸

∆u

= ∆uT D̂∆u

Hence the total cost function can be written in matrix form as:

J = x̃T Γ̂T ̂̃QΓ̂x̃− 2x̃T Γ̂T ̂̃Qỹd + ỹd
T ̂̃Qỹd + ∆uT D̂∆u (A.6)
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On the other hand the discrete dynamic system evolution can also be expressed in a
compact form evaluating the system x̃k+1 = Ãkx̃k + B̃k∆uk at each sample time

x̃1 = Ã0x̃0 + B̃0∆u0

x̃2 = Ã1(Ã0x̃0 + B̃0∆u0) + B̃1∆u1 = Ã1Ã0x̃0 + Ã1B̃0∆u0 + B̃1∆u1

x̃3 = Ã2(Ã1Ã0x̃0 + Ã1B̃0∆u0 + B̃1∆u1) + B̃2∆u2

= Ã2Ã1Ã0x̃0 + Ã2Ã1B̃0∆u0 + Ã2B̃1∆u1 + B̃2∆u2

...

x̃N = ÃN−1ÃN−2 . . . Ã1Ã0x̃0 + ÃN−1ÃN−2 . . . Ã1B̃0∆u0 + ÃN−1ÃN−2 . . . Ã2B̃1∆u1 + . . .

· · ·+ ÃN−1ÃN−2B̃N−3∆uN−3 + ÃN−1B̃N−2∆uN−2 + B̃N−1∆uN−1

Arranging matrix form



x̃1
x̃2
x̃3

.

.

.
x̃N−2
x̃N−1
x̃N


︸ ︷︷ ︸

x̃

=



Ã0

Ã1Ã0

Ã2Ã1Ã0

.

.

.

ÃN−3 . . . Ã0

ÃN−2 . . . Ã0

ÃN−1 . . . Ã0


︸ ︷︷ ︸

Ã

x̃0+



B̃0 0 0 . . . 0 0 0

Ã1B̃0 B̃1 0 . . . 0 0 0

Ã2Ã1B̃0 Ã2B̃1 B̃2 . . . 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ÃN−3 . . . Ã1B̃0 ÃN−3 . . . Ã2B̃1 ÃN−3 . . . Ã3B̃2 . . . B̃N−3 0 0

ÃN−2 . . . Ã1B̃0 ÃN−2 . . . Ã2B̃1 ÃN−2 . . . Ã3B̃2 . . . ÃN−2B̃N−3 B̃N−2 0

ÃN−1 . . . Ã1B̃0 ÃN−1 . . . Ã2B̃1 ÃN−1 . . . Ã3B̃2 . . . ÃN−1ÃN−2B̃N−3 ÃN−1B̃N−2 B̃N−1


︸ ︷︷ ︸

B̃



∆u1
∆u2
∆u3

.

.

.
∆uN−2
∆uN−1

∆uN


︸ ︷︷ ︸

∆u

We obtain

x̃ = Ãx̃0 + B̃∆u (A.7)

Replacing in the cost function

J = (Ãx̃0 + B̃∆u)T Γ̂T ̂̃QΓ̂Ãx̃0 + B̃∆u− 2(Ãx̃0 + B̃∆u)T Γ̂T ̂̃Qỹd + ỹd
T ̂̃Qỹd + ∆uT D̂∆u (A.8)

Several of the terms on this sum do not depend on ∆u hence are irrelevant in the op-
timizatio problem with respect to ∆u and can be ignored. Taking that into account and
expending yields:

J = 2∆uT B̃T Γ̂T ̂̃Q(Γ̂Ãx̃0 − ỹd) + ∆uT (B̃T Γ̂T ̂̃QΓ̂B̃ + D̂)∆u (A.9)

All that is left is to express the constraints in a convenient form, first recall the constraints
on the input and the output:

ukmin
≤ uk ≤ ukmax

{
uk ≤ ukmax

−uk ≤ −ukmin

ykmin
≤ yk ≤ ykmax

{
yk = Ckxk ≤ ykmax

−yk = −Ckxk ≤ −ykmin

Can be written in matrix form using the augmented state x̃k as:
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[
yk
uk

]
=

[
Ck 0
0 I

] [
xk
uk

]
≤
[
ukmax

ykmax

]
=⇒ Γkx̃k ≤ ỹmax[

−yk
−uk

]
=

[
−Ck 0

0 −I

] [
xk
uk

]
≤ −

[
ukmin

ykmin

]
=⇒ −Γkx̃k ≤ −ỹmin

Arranging in matrix form

Γ1 0 . . . 0
0 Γ2 . . . 0
...

...
...

0 0 . . . ΓN
−Γ1 0 . . . 0

0 −Γ2 . . . 0
...

...
...

0 0 . . . −ΓN


︸ ︷︷ ︸

Sγ


x̃1

x̃2
...
x̃N


︸ ︷︷ ︸

x̃

≤



ỹ1max

ỹ2max

...
ỹNmax

−ỹ1min

−ỹ2min

...
−ỹNmin


︸ ︷︷ ︸

ỹlim

(A.10)

Replacing x̃ gives

Sγx̃ = Sγ(Ãx̃0 + B̃∆u) = SγÃx̃0 + SγB̃∆u ≤ ỹlim (A.11)

Now recalling the constraints in the rate of change of the input

∆ukmin
≤ ∆uk ≤ ∆ukmax

{
∆uk ≤ ∆ukmax

−∆uk ≤ −∆ukmin

In matrix form: 

I 0 . . . 0
0 I . . . 0
...

...
...

0 0 . . . I
−I 0 . . . 0
0 −I . . . 0
...

...
...

0 0 . . . −I


︸ ︷︷ ︸

SI


∆u0

∆u1
...

∆uN−1


︸ ︷︷ ︸

∆u

≤



∆u1max

∆u2max

...
∆uNmax

−∆u1min

−∆u2min

...
−∆uNmin


︸ ︷︷ ︸

∆ulim

(A.12)

Finally all the constraints can be written in a single equation:[
SγB̃
SI

]
︸ ︷︷ ︸

S

∆u ≤
[
ỹlim − SγÃx̃0

∆ulim

]
︸ ︷︷ ︸

Mlim

(A.13)

So the original optimal control problem can be written as a quadratic optimization prob-
lem

54



min
∆u

{
J = 2∆uT B̃T Γ̂T ̂̃Q(Γ̂Ãx̃0 − ỹd) + ∆uT (B̃T Γ̂T ̂̃QΓ̂B̃ + D̂)∆u

}
(A.14)

s.t. S∆u ≤Mlim

This optimization problem is convex, thus if a solution exist then it is a global solution.

A.3 Quaternions

A.3.1 Quaternion definition and properties

Quaternions are an extension of the complex numbers in the sense that a quaternion is
written as

q = q0 + q1î+ q2ĵ + q3k̂ (A.15)

where q0, q1, q2 and q3 are real numbers and the quaternion units î, ĵ and k̂ satisfy the
relations:

î2 = ĵ2 = k̂2 = îĵk̂ = −1 (A.16)

Quaternions can also be thought as vectors with four components in the sense that if q and
r are the quaternions:

q = q0 + q1î+ q2ĵ + q3k̂

r = r0 + r1î+ r2ĵ + r3k̂

(A.17)

Then their sum is another quaternion defined as expected:

r + q = (r0 + q0) + (r1 + q1)̂i+ (r2 + q2)ĵ + (r3 + q3)k̂ (A.18)

However, unlike common vectors the relations of the quaternion units A.16 allow the defini-
tion of the multiplication of quaternions using the distributive law:

rq =(q0 + q1î+ q2ĵ + q3k̂)(r0 + r1î+ r2ĵ + r3k̂)

=q0r0 + q0r1î+ q0r2ĵ + q0r3k̂ + q1r0î+ q1r1î
2 + q1r2îĵ + q1r3îk̂

+ q2r0ĵ + q2r1ĵ î+ q2r2ĵ
2 + q2r3ĵk̂ + q3r0k̂ + q3r1k̂î+ q3r2k̂ĵ + q3r3k̂

2

=(q0r0 − q1r1 − q2r2 − q3r3) + (q0r1 + q1r0 − q2r3 + q3r2)̂i

+ (q0r3 + q1r3 + q2r0 − q3r1)ĵ + (q0r3 − q1r2 + q2r1 + q3r0)k̂ (A.19)

This multiplication is known as a quaternion product. The quaternion units suggest another
way to represent quaternions and that is as a sum on an scalar and a vector:

q = q0 + q1î+ q2ĵ + q3k̂ = qo + ~q (A.20)

Where ~q = q1î + q2ĵ + q3k̂ can be interpreted as a vector in the space. Using this last form
the addition and multiplication of quaternions can be expressed in a more compact form: If
q = q0 + ~q and r = r0 + ~r then

r + q = (ro + q0) + ~q + ~r

rq = r0q0 − ~r · ~q + r0~q + q0~r + ~r × ~q
(A.21)
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As an extension of the complex numbers it is natural to extend the notions of norm and
complex conjugate as the following operations: Let q = q0 + ~q = q0 + q1î + q2ĵ + q3k̂ be a
quaterion, then its norm |q| is defined as:

|q|2 = q2
0 + |~q|2 = q2

0 + q2
1 + q2

2 + q2
3 (A.22)

and the complex conjugate:

q∗ = q0 − ~q = q0 − q1î− q2ĵ − q3k̂ (A.23)

A.3.2 Quaternions as rotation operators

Let ~v be a vector in space, that is ~v ∈ R3. Although ~v is not a quaternion it can be identified
with the quaternion v = 0+~v, v is called a pure quaternion since it does not have scalar part.
This identification is bijective and allows the definition of a quaternion acting on a vector
using the quaternion multiplication simply replacing the vector with the corresponding pure
quaternion: If ~v is a vector and q a quaternion then

q~v ≡ q(0 + ~v) = −~q · ~v + q0~v + ~q × ~v (A.24)

This product is not necessarily a pure quaternion, and so can not be identified with a vector
in space, which is what would be desired of a rotation operator acting on a vector. In order
to guarantee that the resulting quaternion is pure the definition of the rotation operator
given by the quaternion q is:

Rq(~v) = qvq∗ (A.25)

There v is the quaternion corresponding to ~v. Although equation A.25 gives a pure quater-
nion it still does not represent a rotation operation since the norm of the resulting vector
needs not to be the same as the original one (which is required for a rotation). In order to
preserve the norm of the vector ~v an unit quaternion q is required.

If q is an unit quaternion then using the scalar plus vector notation we have that

q = q0 + q̃û (A.26)

Where û is a unit vector and q2
0 + q̃2 = 1, this last condition implies that an angle α exists

such that q0 = cos(α) and q̃ = sin(α). Replacing the unit quaternion q can be written as

q = cos(α) + sin(α)û (A.27)

And so at last we obtain the desired result:

Theorem 2. Let q be an unit quaternion. Then the rotation operator given by the quaternion
q is defined as:

Rq : R3 −→ R3

~v 7−→ Rq(~v) = qvq∗
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Where v is the pure quaternion associated with ~v. If q = q0 + ~q then the operator can be
written explicitly as:

Rq(~v) = (q2
0 − |~q|2)~v + 2(~q · ~v)~q + 2q0(~q × ~v) (A.28)

This operator is linear and satisfies |Rq(~v)| = |~v|. Further if q = cos(α) + sin(α)û then the
axis of rotation is the vector û and the angle of rotation is 2α.

Proof. See [33]

Since Rq is a linear operator fixing a basis B it has a corresponding matrix [Rq]B. In the
canonical basis E the corresponding matrix is given by:

[Rq]E =

2(q2
0 + q2

1)− 1 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) 2(q2

o + q2
2)− 1 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) 2(q2
0 + q2

3)− 1

 (A.29)

Since quaternions q = q0 + q1î + q2ĵ + q3k̂ and Euler’s angles {φ, θ, ψ} can be used to
represent rotations in space it is possible alternate between the two explicitly using the
following equations [30] :

q0

q1

q2

q3

 =


cos(φ/2) cos(θ/2) cos(ψ/2) + sin(φ/2) sin(θ/2) sin(ψ/2)
sin(φ/2) cos(θ/2) cos(ψ/2)− cos(φ/2) sin(θ/2) sin(ψ/2)
cos(φ/2) sin(θ/2) cos(ψ/2) + sin(φ/2) cos(θ/2) sin(ψ/2)
cos(φ/2) cos(θ/2) sin(ψ/2)− sin(φ/2) sin(θ/2) cos(ψ/2)

 (A.30)

φθ
ψ

 =

arctan 2(2(q0q1 + q2q3), q2
0 − q2

1 − q2
2 + q2

3)
arcsin(2(q0q2 − q3q1))

arctan 2(2(q0q3 + q1q2), q2
0 + q2

1 − q2
2 − q2

3)

 (A.31)

A.4 Parametric values for the simulation

Quadrotor parameters:

1. Mass: m = 0.43[Kg]

2. Moments of inertia: Ix = 4.856× 10−3, Iy = 4.856× 10−3, Iz = 8.801× 10−3

3. Distance form the center of mass to the motors L = 0.2m

4. Propeller moment of inertia: Ir = 1× 10−5

5. Propeller lift constant #1: Ki
1 = 3.88× 10−7

6. Propeller lift constant #2: Ki
2 = 0

7. Propeller torque constant # 1: Bi
1 = 9.96× 10−9

8. Propeller torque constant # 2: Bi
3 = 4.33× 10−9
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9. Maximum angle of attack αmaxi = 1.2rad

10. Minimum angle of attack αmini = −1.2rad

11. Nominal angle of attack ᾱi = 0.5rad

12. Maximum x-axis velocity vxmax = 20m
s

13. Maximum y-axis velocity vymax = 20m
s

14. Maximum z-axis velocity vzmax = 20m
s

15. Maximum x-axis acceleration axmax = 5 m
s2

16. Maximum y-axis acceleration aymax = 5 m
s2

17. Maximum z-axis acceleration azmax = 5 m
s2

18. Motor dynamic constant Kmi = 100.

Control parameters:

1. Reference generation optimal control problem cost function matrices:

Q = diag(10, 10) R = 0.04

2. Translational optimal control problem cost function matrices:

Q = diag(1, 1, 1, 0, 0, 0) R = diag(0.1, 0.1, 1)

3. Extended Modal Series Method cost function matrices:

Q = 1× 10−5diag(1, 1, 1, 5, 5, 5) R = diag(4, 4, 4)

4. Motor input cost function weight ru = 10.

5. Angular control sampling time Tang = 2[ms].

6. Angular prediction horizon Hpang = 50[ms].

7. Translational control sampling time Ttra = 50[ms].

8. Translational prediction horizon Hptra = 0.5[s].

9. Motor control sampling time Tmot = 80[µ s].

10. Motor prediction horizon Hpmot = 2[ms].

11. Reference generation optimal control problem saturations:

Sat =
[
4 4 10 10 20 20

]
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A.5 Algorithms

A.5.1 Extended Modal Series Method Algorithm

Algorithm 1 OCP solution using EMSM

1: procedure Extended Modal Series Method . Sub optimal control law
2: Input the functions F and G, the matrices Q and R and the performance criteria e1 and e2.
3: Construct the functions ψ and φ (equations 3.7 and 3.8)
4: K ← 1 . Initialize the order of the approximation
5: J0 = 0 . Initialize the value of the cost function
6: Expand ψ and φ in a Taylor Series around (0, 0) up to order K (for ψ(xε;λε) change φ(0) for ψ(0))
7: Approximate the vector functions xε(t) and λε(t) by

xε(t) ≈
K∑
k=1

εkgk(t) λε(t) ≈
K∑
k=1

εkhk(t)

8: Replace xε(t) and λε(t) in the approximations and expand.
9: k ← 0

10: for k ≤ K2 do . To obtain the coefficient for εK

11: if k = K then
12: Replace εk with 1
13: else
14: Replace εk with 0
15: end if
16: end for
17: Evaluate and assign the previous expression to ΨK(t) for the ψ approximation and to ΦK(t) for the

φ approximation.
18: Form the 2n system of differential equations ġK(t) = ΦK(t), ḣK(t) = ΨK(t).
19: Solve the system of differential equations, using the boundary conditions{

g1(to) = xo
h1(tf )− 2Pg1(tf ) = 0

for K = 1 or

{
gK(to) = 0
hK(tf )− 2PgK(tf ) = 0

for K > 1

20: Update the control law and the corresponding state trajectory

uK(t) = −R−1GT
(

K∑
k=1

gk(t)

)(
K∑
k=1

hk(t)

)
xK(t) =

K∑
k=1

gk(t)

21: Evaluate the control performance JK = 1
2

∫ tf
to

(
xTK(t)QxK(t) + uTK(t)RuK(t)

)
dt

22: if |JK−JK−1|
|JK | > e1 or ‖x(tf )− xf‖ > e2 then

23: K ← K + 1
24: Go back to step 6 . Increase the order of the approximation
25: end if
26: end procedure
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A.5.2 Explicit formula for ξψω,l

The algorithm consists only in the evaluation of the formula given by (3.19) and (3.20). It
is the same for ξψω,l and ξφω,l, changing only in the function that is derivated in step 4 (ψl for

ξψω,l and φl for ξφω,l), therefore only one is shown in algorithm 2.

Algorithm 2 Explicit formula for ξψω,l

1: procedure Malgus Formula
2: ξψω,l = 0
3: for 1 ≤ |α|+ |β| ≤ ω do

4: Calculate DαDβ

α!β! ψl(0)
5: X3 ← 0
6: for |θ| = ω − |α| − |β| do
7: X2 ← 1
8: for 1 ≤ q ≤ n do
9: X1 ← 0

10: for u+ v = αq + βq + θq do
11: if αqβq 6= 0 then
12: if αq ≤ u ≤ ωαq then
13: Calculate Fq(u) from (3.43)
14: end if
15: if βq ≤ v ≤ ωβq then
16: Calculate Gq(v) from (3.44)
17: end if
18: else
19: Fq(u)Gq(v) = 0
20: end if
21: X1 = X1 + Fq(u)Gq(v)
22: end for
23: X2 = X2X1

24: end for
25: X3 = X3 +X2

26: end for
27: ξψω,l = ξψω,l +X3

28: end for
29: end procedure
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