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Abstract

The solubility of a finite group with less than 6 non-supersoluble sub-
groups is confirmed in the paper. Moreover we prove that a finite insoluble
group has exactly 6 non-supersoluble subgroups if and only if it is isomor-
phic to A5 or SL2(5). Furthermore, it is shown that a finite insoluble
group has exactly 22 non-nilpotent subgroups if and only if it is isomor-
phic to A5 or SL2(5). This confirms a conjecture of Zarrin [Arch. Math.
(Basel), 99 (2012), 201–206].
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1 Introduction

Throughout this paper, G always denotes a finite group.
The results of the present article are motivated by a paper of Zarrin [13],

where an extension of the classical result of Schmidt [10] about the solubility
of a group with all proper subgroups nilpotent is proved. Zarrin showed that if
a group G has at most 21 non-nilpotent subgroups, then G is soluble. He also
proposed the following conjecture.

Conjecture 1.1. Let G be an insoluble group. Then G has exactly 22 non-
nilpotent subgroups if and only if it is isomorphic to A5 or SL2(5).

Our first main result confirms that conjecture.

Theorem A. Let G be an insoluble group. Then G has exactly 22 non-nilpotent
subgroups if and only if it is isomorphic to A5 or SL2(5).
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València, Spain, resteban@mat.upv.es
‡School of Mathematics and Statistics, Guangxi Normal University, Guilin 541004,

Guangxi, P. R. China, jklu@gxnu.edu.cn

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositori d'Objectes Digitals per a l'Ensenyament la Recerca i la Cultura

https://core.ac.uk/display/185620876?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


On the other hand, Huppert [7] proved that nilpotent in Schmidt’s theorem
can be replaced by supersoluble with the same conclusion. Therefore it seems
natural to ask: What is the minimum number of non-supersoluble subgroups to
guarantee solubility? Our second main result answers this question.

Theorem B. A group with less than 6 non-supersoluble subgroups is soluble.

Our last result shows that A5 and SL2(5) are the only insoluble groups with
exactly 6 non-supersoluble subgroups.

Theorem C. Let G be an insoluble group. Then G has exactly 6 non-supersoluble
subgroups if and only if it is isomorphic to A5 or SL2(5).

The notion that we use is standard and follows that in Doerk and Hawkes
[3] or Huppert [8]. We use SLm(q) and PSLm(q) to denote the special linear
group and the projective special linear group, respectively, of dimension m over
the field with q elements, where q is a prime power.

2 Proofs

The proofs of our results depend on the following lemmas.

Lemma 2.1. Let G be a group. The number of non-supersoluble subgroups of
G/Φ(G) is less than or equal to the number of non-supersoluble subgroups of G.

This follows from the fact that if H/Φ(G) is a non-supersoluble subgroup of
G/Φ(G), then H is a non-supersoluble subgroup of G.

Recall that a minimal simple group is a simple group whose maximal sub-
groups are soluble. Suppose that N is a non-trivial proper normal subgroup of
a group G such that Φ(G) = 1 and that all maximal subgroups of G are soluble.
Then there exists a maximal subgroup M of G such that G = NM . Since by
hypothesis N and M are soluble, then G is soluble. This implies the following
result.

Lemma 2.2. Let G be a non-soluble group whose maximal subgroups are soluble.
Then G/Φ(G) is a minimal simple group.

We will use the symbol δ(n) to denote the number of natural divisors of the
natural number n.

Lemma 2.3. The number of non-supersoluble subgroups of a minimal sim-
ple group is at least 6. The only minimal simple group with exactly 6 non-
supersoluble subgroups is A5.

Proof. By [12] (see also [8, Kapitel II, Bemerkung 7.5]), G is isomorphic to one
of the following groups:

1. PSL2(p), where p > 3 is a prime and 5 - p2 − 1;

2. PSL2(2q), where q is a prime;
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3. PSL2(3q), where q is an odd prime;

4. PSL3(3);

5. a Suzuki group Sz(2q), where q is an odd prime.

It will be enough to show that in all these cases the number of non-supersoluble
subgroups of G is at least 6.

The subgroups of PSL2(pf ) have been studied in [2] (see also [8, Kapitel II,
Satz 8.27]). These subgroups fall into the following classes:

1. elementary abelian p-groups;

2. cyclic p-groups of order z, where z divides (pf±1)/k and k = gcd(pf−1, 2);

3. dihedral groups of order 2z where z is as in 2 above;

4. alternating groups A4 for p > 2 or p = 2 and f ≡ 0 (mod 2);

5. symmetric groups Σ4 for p2f − 1 ≡ 0 (mod 16);

6. alternating groups A5 for p = 5 or p2f − 1 ≡ 0 (mod 5);

7. semidirect products of elementary abelian groups of order pm with cyclic
groups of order t; here t | pm − 1 and t | pf − 1;

8. groups PSL2(pm) for m | f and PGL2(pm) for 2m | f .

Recall that, by [8, Kapitel II, Hilfssatz 6.2],

|PSL2(pf )| = pf (pf − 1)(pf + 1)/gcd(2, pf − 1).

Assume thatG ∼= PSL2(p) with p > 3 a prime and 5 - p2−1. Since PSL2(5) ∼=
PSL2(4), we can assume that p > 5. Therefore the only non-supersoluble proper
subgroups of G are of the form A4 for p > 2 and, when p2−1 ≡ 0 (mod 16), Σ4.
If p2−1 ≡ 0 (mod 16), there are two conjugacy classes of subgroups isomorphic
to A4 with normaliser isomorphic to Σ4. In this case, the number of non-
supersoluble proper subgroups isomorphic to A4 or Σ4 of G is 4p(p−1)(p+1)/(2·
24) = p(p−1)(p+1)/12. Therefore the number of non-supersoluble subgroups is
p(p−1)(p+1)/12+1 ≥ 7 ·6 ·8/12+1 = 29. Note that, in the previous argument,
we add 1 because we are counting the non-supersoluble subgroups of G, not
only the proper non-supersoluble subgroups of G. Otherwise, there is a unique
conjugacy class of self-normalising subgroups isomorphic to A4. The number
of such subgroups is the index of its normaliser, namely p(p − 1)(p − 2)/24.
Hence the number of non-supersoluble subgroups is p(p − 1)(p + 1)/24 + 1 ≥
11 · 10 · 12/24 + 1 = 56.

Assume now that G ∼= PSL2(2q), with q a prime number. If q = 2, then
G ∼= PSL2(4) ∼= PSL2(5) has 5 subgroups isomorphic to A4 and so it has 6
non-supersoluble subgroups. Therefore we can suppose that q ≥ 3. In this
case, the only possibility for a proper non-supersoluble subgroup of G has the
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following structure: It must be a semidirect product of an elementary abelian
group of order 2m with a cyclic group of order t with t | 2q − 1 and t | 2m − 1.
Since q is a prime, m = q. The normalisers of all these subgroups are semidirect
products of an elementary abelian group of order 2q with a cyclic subgroup of
order 2q − 1. Each of these normalisers in G has order 2q(2q − 1) and index
2q +1 in G. It follows that the number of all non-supersoluble proper subgroups
of G is (2q +1)

(
δ(2q−1)−1

)
. Hence the number of non-supersoluble subgroups

of G is greater than or equal to 2q + 1 + 1 = 2q + 2 ≥ 23 + 2 = 10.
Assume now that G ∼= PSL2(3q) with q an odd prime. There is a unique

conjugacy class of self-normalising subgroups isomorphic to A4 and, since 32q −
1 ≡ 8 (mod 16), there are no symmetric subgroups. The number of subgroups
isomorphic to A4 is 3q(3q − 1)(3q + 1)/24 = 3q−1(3q − 1)(3q + 1)/8 ≥ 32(33 −
1)(33 + 1)/8 = 819.

Assume now that G ∼= PSL3(3). A calculation with GAP [4] shows that G
possesses 1 093 non-supersoluble subgroups.

Finally, assume that G ∼= Sz(2q) with q an odd prime. The order of G is
22q(22q + 1)(2q − 1) by [11]. According to [1, Table 8.16], G has a unique conju-
gacy class of maximal subgroups of G of type [E1+1

2q ]C2q−1 and order 22q(2q−1).
Hence G has 22q + 1 subgroups of this type and, therefore, the number of non-
supersoluble subgroups of G is at least (22·3 + 1) + 1 = 66.

Proof of Theorem A. If G ∼= A5 or G ∼= SL2(5), then it is routine to check that
G has exactly 22 non-nilpotent subgroups.

Conversely, assume that G has exactly 22 non-nilpotent subgroups. Let H
be a maximal subgroup of G. If H is nilpotent, then H is certainly soluble. If
H is non-nilpotent, then H has less than 22 non-nilpotent subgroups. By [13,
Theorem A], H is soluble. It follows that G is a minimal non-soluble group,
and so G/Φ(G) is a minimal simple group. Then, according to [13, Theorem A],
G/Φ(G) ∼= A5 and G/Φ(G) has exactly 22 non-nilpotent subgroups, and every
second maximal subgroup of G/Φ(G) is nilpotent. Hence every second maximal
subgroup of G is nilpotent. By [9, Satz], G ∼= A5 or SL2(5), as desired.

Proof of Theorem B. Assume that the number of non-supersoluble subgroups
of a group G is less than 6. We prove that G is soluble by induction on |G|.
Clearly, we may assume that every maximal subgroup of G is soluble. If G
were not soluble, G/Φ(G) would be a minimal simple group with less than 6
non-supersoluble subgroups by Lemmas 2.1 and 2.2. This would contradict
Lemma 2.3. Therefore G is soluble, as desired.

Proof of Theorem C. Assume that G has exactly 6 non-supersoluble subgroups.
Suppose, arguing by contradiction, that G is not isomorphic to A5 or SL(2, 5).
Let us choose G of least order. Since G is not soluble, G contains a minimal
non-soluble subgroup S. By Lemma 2.2, S/Φ(S) is a minimal simple group. By
Lemma 2.3, the only minimal simple group with at most 6 non-supersoluble sub-
groups is A5. If S < G, then the number of non-supersoluble subgroups of S is
less than the number of non-supersoluble subgroups ofG, and so is the number of
non-supersoluble subgroups of S/Φ(S). Hence S = G. By Lemma 2.3, G/Φ(G)
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is isomorphic to A5. If Φ(G) = 1, then G ∼= A5, contrary our supposition. Hence
Φ(G) 6= 1. Let Φ(G)/K be a chief factor of G. By [8, Kapitel III, Satz 3.6 and
Satz 3.8], Φ(G) is a nilpotent {2, 3, 5}-group. By a result of Gaschütz [5], G/K
is a quotient of a universal Frattini extension with elementary abelian kernel.
Suppose that Φ(G)/K is a 3-group. Then Φ(G)/K is an irreducible module of
dimension 4 for A5 by [6, Example 1]. In this case, given a Sylow 5-subgroup
C/K of G/K, Φ(G)C/K is a non-supersoluble subgroup of G/K. On the other
hand, let T/Φ(G) be one of the 6 non-supersoluble subgroups of G/Φ(G). Then
T/K is also a non-supersoluble subgroup of G/K. Moreover Φ(G)C/K cannot
be obtained in this way because Φ(G)C/Φ(G) is supersoluble. Hence G/K has
more than 6 non-supersoluble subgroups, and the same can be said about G.
Suppose that Φ(G)/K is a 5-group. Then Φ(G)/K is an irreducible module of
dimension 3 for A5 by [6, Example 1], namely, the head of the corresponding
Frattini module. A Sylow 3-subgroup T/K of G/K does not centralise Φ(G)/K
since Φ(G)/K is acted on faithfully by G/Φ(G). Therefore, by [3, Chapter A,
Proposition 12.5], [T/K,Φ(G)/K] is a non-trivial normal subgroup of Φ(G)T/K
on which T/K acts faithfully. In particular, [T/K,Φ(G)/K](T/K) cannot be
supersoluble, since 3 does not divide 5 − 1. Arguing as above, we conclude
that G/K has more than 6 non-supersoluble subgroups. In particular, we can
assume that Φ(G) is a 2-group. By [6, Example 1], the only possibility for
Φ(G)/K is that Φ(G)/K has order 2, the head of the corresponding Frattini
module. Therefore G/K ∼= SL2(5). Suppose that K/L is a chief 2-factor of
G. Note that K/L is an irreducible module for SL2(5) and so for A5, by [3,
Chapter B, Proposition 3.12]. By [8, Kapitel V, Satz 25.5], the Schur multiplier
of SL2(5) is trivial. It follows that K/L is not cyclic and so it has dimension 4
([6, Example 1]). By considering a Sylow 5-subgroup C of G, we obtain that
Φ(G)C/L is not supersoluble. As above, G/L has more than 6 non-supersoluble
subgroups, and the same can be said about G, contrary to assumption. We con-
clude that G ∼= A5 or G ∼= SL2(5).

The converse is clear by Lemma 2.3.
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