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In certain cuprates, a spin-1 resonance mode is prominent in the magnetic structure measured by
neutron scattering. It has been proposed that this mode is responsible for significant features seen in
other spectroscopies, such as photoemission and optical absorption, which are sensitive to the charge
dynamics, and even that this mode is the boson responsible for “mediating” the superconducting pairing.
We show that its small (measured) intensity and weak coupling to electron-hole pairs (as deduced from
the measured lifetime) disqualifies the resonant mode from either proposed role.
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Introduction.—One of the most striking features of the
high temperature superconducting cuprates is the sharp
resonance peak observed in inelastic neutron scattering
measurements [1–6]. This phenomenon has a clear and in-
timate relation to the superconductivity that occurs in these
materials —the resonance grows in intensity and narrows
at temperatures less than the superconducting Tc, and its
intensity is suppressed by perpendicular magnetic fields in
a way that correlates directly with the suppression of su-
perconductivity [7].

Since its discovery, there have been many interesting
theoretical proposals concerning the origin and implica-
tions of the resonance. One class of proposals identifies
the resonance peak as a signature of superconductivity,
relating its intensity to the condensation energy [8] or
condensate fraction [8,9] of the superconducting state.
Other proposals focus on the effect that scattering of
quasiparticles from the resonance has on various other
experimentally accessible properties of the cuprates, espe-
cially those that show dramatic changes as the temperature
is lowered from above to below Tc. For instance, this
idea has been invoked to explain the “peak-dip-hump”
structure [10,11] and the “kink” [12] in the quasiparticle
dispersion measured by angle resolved photoemission
spectroscopy (ARPES), and the pseudogap structure seen
in optical conductivity [13]. Finally, there are proposals
which consider the resonance mode to be the boson which
“mediates” an effective attraction between electrons which
is responsible for the high-temperature superconducting
pairing [11,14,15].

In this Letter, we address what the resonance mode can
and cannot do. In particular, we will show that the first
set of ideas requires that the integrated intensity associated
with the resonance, I0, be small in units of the total inte-
grated spin structure factor, while the latter require I0 � 1.
While apparently contradictory numbers exist in the ex-
perimental literature, a careful analysis [16–19] shows that
values of I0 in the few percent range can be deduced from
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all the absolute intensity measurements. (See Table I.)
Thus, the resonance peak may be a unique probe of the
superconducting condensate [9], and might account for the
condensation energy [8,17], but it cannot cause any signifi-
cant structure in ARPES and optical conductivity.

Possible relation to the condensation energy.—The con-
cept of condensation energy is not well defined when fluc-
tuation effects are important [20]. In the absence of better
estimates, we adopt the mean-field expression for the con-
densation energy:

U �
1
2rD2 � 2rT2

c . (1)

If the density of states is proportional to 1��2J� where J
is the exchange interaction in the t-J model invoked in
Ref. [8], the condensation energy can be expressed as

U �
T2

c

J
� J

µ
Tc

J

∂2

. (2)

In this context, Scalapino and White [21] have pointed out
that there is an exact relation between the nearest-neighbor
exchange contribution to the internal energy and the mag-
netic structure factor S��k, v� which in spatial dimension
d � 2 is

Umag � J
Z dv d �k

�2p�d11 �2 2 cos�kx � 2 cos�ky��S��k, v� .

(3)

TABLE I. Integrated spectral weight in the resonant peak well
below Tc in units such that a spin 1�2 per planar Cu atom would
have integrated weight equal to 1.

Material Tc (in K) I0 Reference

YBa2Cu3O6.5 52 0.017 [6]
YBa2Cu3O6.6 62.7 0.01 6 0.007 [16,17]
YBa2Cu3O6.7 67 0.014 [6]
YBa2Cu3O6.85 87 0.017 [6]
YBa2Cu3O6.99 93 0.011 [6]

Bi2Sr2CaCu2O81d 91 0.057 [5]
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Therefore, it is clear that if the condensation energy comes
principally from this term, and if it is due to the trans-
fer of spectral weight from a broad (in �k) background
into the resonant peak, then its intensity must be very
small, I0 � �Tc�J�2. Also in accord with these ideas, Dai
et al. [17] have shown that, in absolute units, the specific
heat is roughly equal to the temperature derivative of the
resonance intensity.

Scattering from a collective mode.—A collective mode
with a strongly temperature-dependent intensity is unusual,
so it is natural to attribute other strongly temperature-
dependent spectral features to the coupling between quasi-
particles and the collective mode. However, unless the
mode has large weight, it is as if it were hardly there
at all, however prominent it may appear in a scattering
experiment. Consider, for example, the electron-phonon
coupling in a weakly correlated metal with a very large
number, N , of atoms per unit cell. The scattering of elec-
trons from any one optical mode will not, generally, have
a significant effect on the electron dynamics —its effects
will be reduced by a factor of 1�N.

Several prominent features of the ARPES spectra of the
high-temperature superconductors have been attributed to
scattering of electrons from the resonant mode, in particu-
lar the pronounced peak-dip-hump structure in the “anti-
nodal region” of the Brillouin zone (near �k � �p, 0�) and
the kink in the electron dispersion seen especially in the
“nodal direction” (�0, 0� to �p, p�). These are order 1 ef-
fects, and so require a large intensity of the resonance peak
unless the coupling to quasiparticles is extremely large
[10]. On the same grounds, the pseudogap features in
the optical conductivity require a large scattering from the
resonant peak.

Therefore, it is clear that the resonance peak cannot
be responsible for both the condensation energy and the
pronounced structures in the scattering rates.

The spectral intensity of resonance peak is small.—The
resonance peak is the most prominent feature seen in
inelastic neutron scattering of the high-temperature su-
perconductors, YBa2Cu3O72d (YBCO) [1–4,17]. Even
though it turns on at a temperature which increases with
decreasing Tc and thus tracks the celebrated pseudogap
phenomenon, its most rapid evolution in intensity, life-
time, and width in k space occurs near Tc. In addition,
its frequency scales with Tc and its field dependence [7],
both in magnitude and anisotropy, is linked to the upper
critical field Hc2. These experiments establish a strong
connection between the resonance and both the spin
and orbital aspects of superconductivity. However, the
resonance is so prominent only because its spectral weight
is concentrated in a narrow range of frequency and �k.

Absolute intensity measurements reveal that the inten-
sity, when properly integrated over frequency and the Bril-
louin zone, is always rather small [16]. (See Table I.)
Simple considerations of the chemistry and physics of the
copper-oxide planes leads to the conclusion that each pla-
nar copper is in a d9 configuration with its orbital angu-
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lar momentum quenched by the crystal field, leaving only
a S � 1�2 degree of freedom. We therefore expect the
total integrated spectral weight per planar copper to be
h̄2S�S 1 1� � h̄2�3�4�. In YBCO, the measured spectral
weight in the resonance is [16] of the order of 1%–2%
of this. In Bi2Sr2CaCu2O81d, because the resonant peak
appears broader [5] in �k, its integrated strength might be
somewhat larger, but still at the 5% level. These ratios
are not subject to significant uncertainties. For example,
the same experimental methods show that in the undoped,
antiferromagnetic “parent” materials, the measured spec-
tral weights [22,23] are in quantitative agreement with the
results of spin-wave theory for a S � 1�2 system. Fur-
thermore, the relatively low doped hole densities, even at
“optimal” doping, implies that the total magnetic spectral
weight (below the charge transfer gap) cannot differ greatly
from S�S 1 1�.

A little mathematics.—Let us now carry out the sim-
plest calculation to illustrate our argument. The Hamilto-
nian which represents the coupling between the conduction
electrons and the spin mode is as follows:

H � H0 1 gS ? cy �sc 1 Hs , (4)

where H0 and Hs are the bare Hamiltonians for the con-
duction electrons and spins, respectively.

We approximate the imaginary part of the zero tempera-
ture spin susceptibility, measured via neutrons, as

Imx�q, v� � �p�3�g2
Lm2

BS�S 1 1�

3

Ω
I0�2p� �d�v 2 V� 2 d�v 1 V��f�q�

1
�1 2 I0�sgn�v�

LvLd
q

æ
, (5)

where V is the resonance frequency, gL is the Lande g
factor, and Lv and Lq are, respectively, the frequency
and momentum cutoffs. The structure factor of the reso-
nant mode, f�q�, is known to be peaked at �q in the
neighborhood of Q � �p, p�; for simplicity we will take
f�q� � �2p�dd�q 2 Q�, although the results are easily
generalized to the case in which f is a Lorentzian or Gauss-
ian. We will also take d � 2, although, of course, the real
cuprate superconductors are anisotropic three-dimensional
systems.

ARPES: The leading perturbative contribution to the
self-energy from the resonance peak for v . 0 is written
as

S�k, v� � I0g2
Z

d2q

µ
1

v 2 V 2 jk2q 1 ih

∂

3 d�q 2 Q� , (6)

where jk is the quasiparticle dispersion. Therefore, the
single particle spectrum has two poles located at

v1 � jk 2
I0g2

V
1 . . . ,

v2 � V 1 jk2Q 1
I0g2

V
1 . . . ,

(7)
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where . . . refers to terms of order O � I2
0 g4

V3 �. The weight of
each pole is

Zv1 � 1 2
I0g2

V2 1 . . . ,

Zv2 �
I0g2

V2
1 . . . .

(8)

To the same order, the scattering from the remaining (non-
resonant) spin fluctuations produces an additive contri-
bution to S proportional to g2�1 2 I0� which is of the
marginal Fermi liquid form, discussed elsewhere [24].

Optical conductivity: While a perturbative expression
for the conductivity, s�v�, itself is impossible, due to its
singular behavior at small v, it is straightforward to ob-
tain a perturbative expression for the so-called frequency-
dependent scattering rate [25], defined in terms of the real
and imaginary parts, s0 and s00, as

1�t��v� 	 vs0�s00 � 1�t�
0 �v� 1 1�t�

1 �v� . (9)

To lowest order, the contribution to the T � 0 scattering
rate from the resonance mode is

1�t�
0 �v� �

mv2

ne2 g2I0F�v� , (10)

where 4pe2n�m is the Drude weight and

F�v� �
p2e2

v3m2yFyD

�v 2 V�u�v 2 V� . (11)

To obtain the explicit expression for F�v�, we have used
the dispersion relation for the nodal quasiparticle with two
different velocities, where yF and yD are, respectively, the
velocities perpendicular and parallel to the Fermi surface.
A different assumed dispersion relation would not change
the overall conclusion of this paper, although it would
change the detailed structure of F�v�. The contribution
of the constant part of the spin susceptibility is, unsurpris-
ingly, as in a marginal Fermi liquid, linear in the frequency

1�t�
1 �v� ~ g2�1 2 I0� jvj . (12)

Since Matthiessen’s rule holds to this order, these scatter-
ing rates should simply be added (and so should the scat-
tering due to any other process).

Our analytic results are consistent with the more com-
plicated results obtained for more detailed and realistic
models previously [10,13]. However, the present results
highlight the fact that all effects of the resonance mode are
proportional to I0, and so are negligible if I0 is small.

What about the coupling constant?—The effects of the
resonant mode are not just proportional to I0, but depend
on the coupling strength g. Could we imagine obtaining
a large effect with a small I0 but a large g? Of course, a
large g is incompatible with any sort of perturbative treat-
ment, so such an approach probably does not make sense.
However, it also turns out that one can obtain a reason-
able estimate of the coupling constant from the experimen-
tally measured frequency width (lifetime) of the resonance
peak. The resonance mode in YBCO in the supercon-
ducting state is very sharp, with an intrinsic linewidth �G�
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of about 2 meV. In optimally doped material, the mode
is unobservable above Tc, but in underdoped material it
persists to higher temperatures. Here, the line broadens
[17] so that G 
 10 meV. Such a broadening is expected
whenever the resonance mode can decay into electron-hole
pairs. This decay channel is somewhat suppressed well be-
low Tc due to the limited phase space available for such
electron-hole pairs.

An analogous problem was solved long ago, where in-
stead of the resonant mode, the crystal-field excitations
in metallic rare-earth systems were investigated. Simply
adopting the expressions obtained there for the damping
of an electronic collective mode due to electron-hole exci-
tations, one obtains [27,28]

G � 4p�gN�0��2V , (13)

where N �0� is the density of states at the Fermi energy, or
more precisely the density of particle-hole states with mo-
mentum �Q and energy V. In order to invert this equation
to obtain an estimate of g, we can use the measured values
of G and V, but we need an estimate of N�0�. In the normal
state, this can be done in several ways. First, on the ba-
sis of the theoretical expectation that the bandwidth of the
electrons is renormalized down to something of order J,
or for that matter from the measured ARPES spectra, it is
possible to obtain a rough dimensional estimate of the nor-
mal state density of states, N�0� � 1�W � 1��100 meV�,
to obtain an estimate of g:

g � 14 meV . (14)

This is not a large coupling. The conventionally defined di-
mensionless coupling constant l � 2I0g2N�0��V is only
l � I0�10. Needless to say, such a feeble (small I0) bo-
son coupled so weakly (small g) to electron-hole pairs can-
not mediate a strong pairing interaction; searches for the
mechanism of high Tc must begin elsewhere.

One might worry that our estimate of N �0� is somewhat
too large, as it does not take into account any suppression
of the density of states due to the pseudogap observed
above Tc in underdoped materials —a smaller assumed
N�0� would give rise to a larger estimate of g. However, a
more direct estimate of the density of states can be obtained
from the measured [29] specific heat in the normal state;
for YBCO, g 	 Cy�T approaches a normal state value of
around 2 mJ�gm-at K2, which corresponds to a density of
states per copper of N�0� � 11 eV21, in good agreement
with our dimensional estimate.

Finally, an independent estimate of the coupling con-
stant can be obtained from the measured lifetime in the
superconducting state. Here the particle-hole continuum
is dominated by the nodal quasiparticles, whose dis-
persion is presumably known. It is straightforward to
see that the appropriate density of states per spin with
momentum �Q and energy V computed within this model
is pv��yFyDk2

n�, where �knode � �kn, kn� is the position
of the nodal point measured from �p�2, p�2�. With
this expression for the density of states, and taking the
257002-3
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canonical values of yD � 1.2 3 106 cm�s [30], yF �
1.7 3 107 cm�s, and kn � 1�8 3 1028 cm [31], we
obtain an estimate g � 2 meV and l � 0.01I0.

Although it takes us a bit into the realm of specula-
tion, it is worth noting that the remarkably small value
of the coupling to the resonant mode is not, altogether, un-
expected. If we think of the resonant mode, in some loose
sense, as a would-be antiferromagnetic magnon [11], then
an argument due to Schrieffer [32] implies that it couples
only through gradient couplings to particle-hole pairs. In
particular, one might expect the average coupling to be
roughly proportional to the reciprocal space width around
�k � �Q occupied by the resonant peak. Since this width
is of order 20% of the width of the Brillouin zone, it is
reasonable to expect the coupling to the antiferromagnetic
resonance itself to be correspondingly reduced relative to
an order 1 microscopic coupling between electrons and
spins.

Conclusion.—The resonance mode is important because
it is the most prominent feature of an especially simple
correlation function. It is one of the salient features of high
temperature superconductivity whose understanding will
eventually result in significant insight into the mechanism
of high-temperature superconductivity. However, to the
best of our knowledge, its spectral weight is always small.
Therefore, the existence and character of the resonance
mode may well be a direct consequence of the high-
temperature superconductivity in the cuprates but it cannot
be the “glue” in any conventional pairing theory, nor can
it account for anomalies in photoemission and optical
absorption data. This conclusion is reinforced by the
observation that many [33,34] of the putative signatures
of scattering from the resonant peak are observable in
La22xSrxCuO4, where no resonant mode has been seen in
neutron scattering.
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