
1

ModeL4CEP: Graphical domain-specific modeling languages
for CEP domains and event patterns

Juan Boubeta-Puig*, Guadalupe Ortiz, Inmaculada Medina-Bulo

Department of Computer Science and Engineering, University of Cádiz, Avda. de la
Universidad de Cádiz nº 10, 11519, Puerto Real, Cádiz, Spain

Abstract

Complex event processing (CEP) is a cutting-edge technology that allows the analysis
and correlation of large volumes of data with the aim of detecting complex and
meaningful events through the use of event patterns, as well as permitting the inference
of valuable knowledge for end users. Despite the great advantages that CEP can bring to
expert or intelligent business systems, it poses a substantial challenge to their users, who
are business experts but do not have the necessary knowledge and experience using this
technology. The main problem these users have to face is precisely hand-writing the
code for event pattern definition, which requires them to implement the conditions to be
met to detect relevant situations for the domain in question by using a particular event
processing language (EPL). In order to respond to this need, in this paper we propose
both a graphical domain-specific modeling language (DSML) for facilitating CEP
domain definitions by domain experts, and a graphical DSML for event pattern
definition by non-technological users. The proposed languages provide high
expressiveness and flexibility and are independent of event patterns and actions’
implementation code. This way, domain experts can define the relevant event types and
patterns within their business domain, without having to be experts on EPL
programming, nor on other complicated computer science technological issues, beyond
an understandable and intuitive graphical definition. Furthermore, with these DSMLs,
users will also be able to define the actions to be automatically taken once a pattern is
detected in the system. Further benefits of these DSMLs are evaluated and discussed in
depth in this paper.

Keywords: Complex Event Processing, Model-Driven Development, Domain-Specific
Modeling Language, Event Processing Language.

* Corresponding author. Tel.: +34 956 483482

Email addresses: juan.boubeta@uca.es (Juan Boubeta-Puig), guadalupe.ortiz@uca.es
(Guadalupe Ortiz), inmaculada.medina@uca.es (Inmaculada Medina-Bulo)

Publisher version:

Boubeta-Puig, J., Ortiz, G., & Medina-Bulo, I. (2015). ModeL4CEP: Graphical domain-
specific modeling languages for CEP domains and event patterns. Expert Systems with
Applications, 42(21), 8095–8110. https://doi.org/10.1016/j.eswa.2015.06.045

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio de Objetos de Docencia e Investigación de la Universidad de Cádiz

https://core.ac.uk/display/185619696?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.eswa.2015.06.045

2

1. Introduction

Complex Event Processing (CEP) (Luckham, 2002) is an emerging technology

that allows us to process, analyze and correlate a huge amount of heterogeneous data in

form of events with the aim of detecting relevant or critical situations for a particular

domain in real time. For that purpose, the conditions describing situations to be detected

must be specified by using special templates known as event patterns. These patterns

are added into a CEP engine, the software responsible for analyzing and correlating

received events, as well as for raising alerts to users or systems interested in complex

events (situations) generated by the detected event patterns. These event patterns are

defined using specific languages developed for this purpose, known as Event Processing

Languages (EPLs), and allow us to implement the decision model for an expert or

intelligent business system, which is in charge of taking appropriate actions on demand.

CEP has already been applied to several domains such as health care (Boubeta-

Puig, Ortiz, & Medina-Bulo, 2011, 2014a; Yuan & Lu, 2009), home automation

(Boubeta-Puig, Ortiz, & Medina-Bulo, 2014b; Romero et al., 2011), network analysis

and surveillance (Gad, Boubeta-Puig, Kappes, & Medina-Bulo, 2012), maritime traffic

management (Boubeta-Puig, Medina-Bulo, Ortiz, & Fuentes-Landi, 2012), location-

based services (Uhm, Lee, Hwang, Kim, & Park, 2011), operational intelligence in

business (Chaudhuri, Dayal, & Narasayya, 2011), and transportation and traffic

management (Dunkel, Fernández, Ortiz, & Ossowski, 2011).

According to Vincent (Vincent, 2010), CEP systems, as well as other decision-

support systems, such as expert systems, take expert event-driven decisions, where

expert knowledge is encoded from the available subject matter experts. In this scope,

even though a diversity of domains can currently benefit from CEP technology, as

mentioned before, the main handicap for subject matter experts is the need to define the

event types for a concrete domain in the EPL syntax provided by the CEP engine to be

used in the system in question. This has two major drawbacks: on the one hand, a

domain of interest should be implemented as many times as EPLs are to be used. This

implies an increase of time required to define the CEP domain as well as more

expensive maintenance, since a modification in the domain –adding a new event type,

for example– will require a modification in each implementation related to the same

domain. On the other, since any domain definition will have to be implemented

manually, developing this task will be challenging for non-computer users.

3

In this regard, there are approaches (Bruns, Dunkel, Lier, & Masbruch, 2014;

Bruns, Dunkel, Masbruch, & Stipkovic, 2015a) which permit specifying what the

domain of each event is. Nevertheless, none of them offers the possibility to describe a

CEP domain composed of a set of event types together with their domain description.

The lack of these elements in the domain will prevent the chance of sharing the domains

among different modeling tools, which might belong to different users.

To solve these problems, we propose a graphical Domain-Specific Modeling

Language (DSML) that provides domain experts with an intuitive and user-friendly way

for defining the CEP domains of interest for which they need to detect critical situations

in real time. This will facilitate the unification of CEP domain descriptions, represented

as models, which might be shared by different experts.

Besides, in order to detect real-time situations using CEP technology, it is

necessary to implement event patterns using the EPL provided by the CEP engine in

question. To do this, high expertise in that language is needed. This causes users who

have a vast knowledge of the domain for which they need to define event patterns but

are inexperienced in CEP to be unable to define those event patterns themselves. In this

regard, a survey by ebizQ (BEA, 2007) concluded that 84% of respondents consider that

event pattern definition should be performed by domain experts, who really have all the

necessary knowledge for this, compared to 16% who think it is more convenient to

leave this task to programmers.

Although there are several approaches to event pattern definition (Stühmer et al.,

2009; Yao, Chu, & Li, 2011), among others, they are often oversimplified, providing

only a reduced set of operators and data windows. Thus, they have limitations regarding

the expressiveness of complex patterns to be modeled and hinder scalability of the

defined event patterns.

Given these problems and the amount of existent EPLs for implementing event

patterns, we also propose a graphical DSML in this paper, with the aim of creating a

“common language” so that any user can easily define a pattern, regardless of the

language required to implement and deploy the pattern in the CEP engine. Thanks to

Model-Driven Development (MDD) techniques, this pattern defined as a model will be

transformed into different EPLs with the following consequent advantages: EPL

technical aspects are hidden from end users, and productivity and software quality

4

improve since models are easier to maintain; furthermore, the automatic generated code

will be error-free.

In our previous work (Boubeta-Puig et al., 2014a), we defined a model-driven

approach for facilitating user-friendly design of complex event patterns. To support this,

a first version of a DSML for event pattern definition was proposed. However, this

DSML, composed of an abstract syntax –an EPL metamodel along with its restrictions–

and a concrete syntax establishing the relationship between the metamodel concepts and

their graphical representation, presented several limitations compared to our novel

DSMLs proposed in this paper. First of all, a DSML for CEP domain definition was not

considered in our previous work, lacking the above mentioned advantages. Secondly,

the graphical notation of the concrete syntax was not as user-friendly. Thirdly, the EPL

metamodel was incomplete and less understandable by end users, as will be discussed

throughout this paper.

Therefore, this work’s main contributions are two unprecedented and highly

expressive DSMLs for CEP domain and event pattern definition, including their

graphical notation, bringing CEP closer to any user, thus facilitating expert system

management to business experts, who master the business in question but certainly do

not need to have in deep knowledge of expert or intelligent systems. Thanks to the

contributed DSMLs, the business expert will be able to easily define the event types and

patterns relevant to a particular intelligent system and the latter would provide us with

the suitable action to be taken, without the need of learning any programming language,

in particular a CEP-based one.

The rest of this paper is organized as follows: Section 2 includes background on

MDD and CEP, while Section 3 describes related work. Sections 4 and 5 describe the

proposed DSMLs for CEP domain and event pattern definition, respectively. Then,

these languages are evaluated and discussed in Section 6. Finally, conclusions and

future work are highlighted in Section 7.

2. Background

In this section, the subject matters relevant to the scope of this paper, MDD and

CEP, are introduced.

5

2.1. Model-driven development

Currently, the software engineering community is more oriented towards the

development of applications based on models rather than technologies. MDD focuses

on essential aspects of the system, postponing the choice of the most appropriate

technology for implementation (Ortiz, 2007). Model definition and transformations

between models and models to code are key parts for developing automatic systems.

The high reusability and reliability of the code generated by this software paradigm, as

well as the increased productivity and less costly maintenance, have led to its

application in various fields, trying to satisfy different needs in both the business world

and the academic community (García-Molina, 2013; Stahl, Voelter, & Czarnecki,

2006).

In this scope, a model is a simplified representation of a given reality with the

aim of understanding it better. To achieve this abstraction, irrelevant details of this

reality must be removed from the model regardless of whether it is represented using

textual or graphical notation. A graphical representation of a model is called a diagram.

Models are created by using DSMLs, whose definition consists of three distinct

parts: 1) the abstract syntax that consists of both a metamodel –a model describing

language concepts and relationships between them– and validation rules to check

whether a model is well formed, 2) the concrete syntax or DSML notation –the set of

useful graphical symbols for drawing diagrams–, and 3) transformations between

models and model to code for software automation. Note that a model, i.e. an instance

of a metamodel, may have different graphical notations. According to Fowler (Fowler

& Parsons, 2010), some advantages of using this language type are: development

productivity advancement, improved communication with domain experts, easier

adaptation to changes, and users help in the task of specifying what the system should

do, but not on how it should be conducted.

A metamodeling language is required for creating a model. This language also

has both an abstract syntax and a concrete syntax. The abstract syntax is defined by a

meta-metamodel, i.e., using the metamodel language itself, whereas the concrete syntax

can be defined either by graphical notations, such as Unified Modeling Language

(UML) class diagrams (OMG, 2014), or by textual notations, such as Emfatic (Eclipse

Foundation, 2012), a textual notation to define Ecore metamodel. Ecore is currently one

6

of the most used metamodeling languages and it is part of the Eclipse Modeling

Framework (EMF) metamodel architecture (Steinberg, Budinsky, Paternostro, & Merks,

2008).

Some authors (Atkinson et al., 2001; Kleppe, Warmer, & Bast, 2003) have

proposed a four-level architecture (see Figure 1) to explain the relationship between

models and metamodels, as detailed below:

• Data level (M0): it represents real-world data that conforms to a given model.

• Model level (M1): it characterizes models describing M0-level data. Every

model conforms to a metamodel.

• Metamodel level (M2): it characterizes metamodels describing M1-level models.

Every metamodel conforms to a meta-metamodel.

• Meta-metamodel level (M3): it characterizes meta-metamodels describing M2-

level metamodels. A meta-metamodel conforms to itself.

Figure 1. Four-layer modeling architecture.

2.2. Complex event processing

A CEP overview, together with its advantages as well as the existing language

types for using this technology are detailed in the following subsections.

7

2.2.1. Fundamentals

As previously mentioned, CEP is an emerging technology that allows us to

analyze and correlate huge amounts of data in form of events with the aim of detecting

relevant or critical situations (complex events) in real time.

An event can be defined as anything that happens or could happen (Luckham,

2012), but also anything that could happen but does not happen. A situation is an event

occurrence or an event sequence that requires an immediate reaction (Etzion & Niblett,

2011). Events can be classified into three main categories: a simple event is indivisible

and happens at a point in time, a complex event contains more semantic meaning which

summarizes a set of other events, and a derived event is generated when applying a

process to one or more other events (Event Processing Technical Society, 2010). Events

can be derived from other events by applying or matching event patterns, templates

where the conditions describing situations to be detected are specified. A CEP engine is

the software used to match these patterns over continuous and heterogeneous event

streams (timely ordered sequence of events of multiple types), and to raise alerts about

complex events created when detecting such event patterns.

As depicted in Figure 2, CEP is performed in three stages:

• Event capture: it consists of the reception of events to be analyzed by

CEP technology.

• Analysis: from the event patterns previously defined in the CEP engine,

it will process and correlate the information in the form of events in order

to detect critical or relevant situations in real time.

• Response: after detecting a concrete situation, it will be notified to the

system, software or device in question.

The main advantage of using this technology to process complex events is that

these can be identified and reported in real time, thus reducing latency in decision

making, unlike the methods used in traditional software for event analysis. According to

(Chandy & Schulte, 2010), other important advantages are: decision quality

improvement, faster and (semi-)automatic reply, information overload prevention and

human workload reduction.

8

Figure 2. Complex event processing stages.

2.2.2. Event processing languages

As already mentioned, in order to detect situations of interest on specific

domains it is necessary to define so-called event patterns. These are defined by using

specific languages developed for this purpose, known as EPLs. These languages can be

classified by the following language styles (Etzion & Niblett, 2011): stream-oriented,

rule-oriented and imperative.

Stream-oriented EPLs are SQL-like languages and algebra relational languages

which include new concepts, such as temporal relationships and data windows. Some of

these EPLs are: Esper EPL (EsperTech, 2015), Oracle EPL (Oracle, 2015), StreamSQL

(TIBCO, 2015) and CCL (Sybase, 2015).

Rule-oriented EPLs are classified into three subtypes: production rules, active

rules and logic-programming rules.

Production rules are if-condition-action type, i.e., when the condition is satisfied,

then the action is executed. Drools Fusion (JBoss Community, 2014) is one of most

well-known languages in this category.

Active rules, also known as Event-Condition-Action (ECA), are based on active

databases characterized by the following behavior: when an event happens, its

9

conditions are evaluated and, if these are satisfied, then the corresponding action is

carried out. IBM Operational Decision Management (IBM, 2014) provides one of these

languages.

Logic-programming rules are based on logic assertions and deductive databases,

allowing deductions through inferences from rules and a set of facts. ETALIS (Anicic &

Fodor, 2014) is a CEP solution implemented in Prolog that provides two rule-based

languages: ELE (ETALIS Language for Events) and EP-SPARQL (Event Processing

SPARQL).

Finally, imperative EPLs define rules in an imperative way where operators

define transformations over their inputs. Progress Apama (Software AG, 2014) is an

event processing platform that provides this language style.

Further information about other existing EPLs and CEP systems can be found in

the survey by Cugola and Margara (Cugola & Margara, 2012).

3. Related work

In recent years, various approaches have been proposed to define application

domains as well as event patterns in fields where CEP needs to be applied. Some of

these use ontological languages for such definitions. Other approaches employ MDD

techniques in order to define domains and event patterns as models, which will then be

transformed into the specific code required by the CEP system to be used.

In the following subsections, these ontological and model-driven approaches are

detailed.

3.1 Ontological approaches

Several works using ontologies for the representation of events and event

patterns have been found.

Sen et al. (Sen & Stojanovic, 2010; Sen, Stojanovic, & Stojanovic, 2010) have

proposed a semantic model for the representation of events and event patterns based on

Resource Description Framework Schema (RDFS) (W3C, 2014b), a language for

knowledge representation that provides the necessary elements for ontology description.

In particular, the defined ontology contains a set of concepts (Event, EventOperator,

EventSource and EventType) and a set of properties (hasStartTime, hasEndTime,

10

hasEventName, hasEventId, hasEventSource, hasEventType and composedOf). The

EventType and EventSource concepts allow us to classify events with similar

characteristics depending on the type and source from which they come. Each event has

a unique identifier (hasEventId) and a name (hasEventName). Whereas a simple event is

indivisible and occurs at a particular time (hasStartTime), a complex event can occur

over a period of time between start date (hasStartTime) and end date (hasEndTime).

Each complex event, being composed of other events, will additionally have a property

called composedOf. It is noteworthy that event operators considered in this ontology are

the same as those proposed by Chakravarthy and Mishra (Chakravarthy & Mishra,

1994), i.e., aggregation operator (COUNT), data windows (WITHIN), logical operators

(AND and OR) and temporal operator (SEQ). In this semantic model, an event pattern is

described as a set of events and event operators.

This model proposed by Sen et al. for event and event pattern representation

using ontologies has been used with some modifications in the ALERT European

project (Active support and reaL-time coordination based on Event Processing in

FLOSS development) (ALERT, 2013), which belongs to FP7 (the Seventh Framework

Programme for Research and Development). Specifically, a new concept called

“interaction pattern” has been added to such model, extending the event representation

by a set of properties that facilitate the event pattern definition: identifier, name and

pattern creation date. As in the previous model, aggregation operators, data windows,

logical operators and temporal operators are included.

Stühmer et al. (Stühmer et al., 2009) also present an RDFS ontology for events,

where an event can be represented as a simple or as a complex event. All events have a

type, start timestamp, end timestamp and, optionally, the message payload. Unlike other

proposals, a complex event is specialized by event operator types needed to define

concrete situations to be detected, such as AndEvent, OrEvent or NotEvent.

Paschke et al. (Paschke, Boley, Zhao, Teymourian, & Athan, 2012; Paschke,

2014) have created the Reaction RuleML model, which defines the following

ontological structure of concepts: event, situation, space, time, action and agent. These

concepts can be related to each other and also specialized by existing domain ontologies

–vocabularies related to a specific domain– and by ontologies for generic tasks and

activities, such as processing situations of interest. Each situation of interest will be

composed of its properties (hasProperties) and a description (hasContent) and will also

11

belong to one of the following categories: heterogeneous –situations which are

influenced by dynamic changes, time or frequency– or homogeneous –stable, iterative

or usual situations–.

Before defining the Reaction RuleML model, Paschke published a semantic

design pattern language for CEP (Paschke, 2009) on his own. This has been

implemented as an event pattern description language based on XML, an English

natural language description and an ontological language implemented as an OWL

(Web Ontology Language) vocabulary language (W3C, 2014a).

Yao et al. (Yao et al., 2011) have also proposed a CEP ontology that consists of

events classified as simple and complex events. Each event has a type and a set of

attributes. Simple events are also classified into RFID (Radio Frequency IDentification)

events and non RFID events. Moreover, complex events are composed of event

operators: logical and temporal operators. This ontology has been already applied to

health domains in which all information about a hospital has been monitored by means

of RFID devices.

All the analyzed ontological approaches have limitations compared to the

model-driven approach proposed in this paper. On the one hand, these ontological

approaches provide an incomplete set of operator types and data windows. This fact

implies a limitation in the expressiveness of complex patterns to be modeled.

Furthermore, the way in which some of these ontological models have been structured

hinders scalability and understanding of the defined event patterns. For example,

Stühmer’s model represents operators as classes specialized of ComplexEvent class,

instead of creating an operator class that generalizes the different operator types, and the

arity operator is not determined.

3.2 Model-driven approaches

The existing model-driven approaches have been classified into two categories –

textual and graphical– according to the notation used to represent event patterns.

Regarding approaches that provide a textual representation for event patterns,

there are several which deserve a special mention and are described below.

Zang et al. (Zang, Fan, & Liu, 2008) have defined a metamodel in which events

are interrelated with event operators, processes and contexts. These events can come

12

from various sources, such as services, databases, RFID devices and process activities.

Just as in previous proposals, event types are classified into simple and complex events,

which may be connected through causal relationships. This metamodel defines the

following operator types: logical, temporal, causal and RFID. These enable the

combination of events in order to create situations (complex events). Moreover, they

may be part of a context through which an event hierarchy could be created.

Cugola et al. (Cugola & Margara, 2010) have described TESLA, a complex

event specification language composed of event and event pattern textual models. It

provides temporal and content constraints, parameterization, negations, sequences,

iterations, aggregates and timers, as well as the possibility of combining event patterns

to create hierarchies of events. The author propose that TESLA event patterns can be

translated into automata. Subsequently, they have presented a new model called

CEP2U for dealing with uncertainty in CEP (Cugola, Margara, Matteucci, &

Tamburrelli, 2015). Two types of uncertainty are tackled in this work: uncertainty in the

data coming from sources (events) and uncertainty in event patterns. The uncertainty of

event patterns are modeled through Bayesian networks.

There are other model-driven approaches for CEP providing textual languages

that have been implemented in order to define event patterns restricted to a particular

domain. Mulo et al. (Mulo, Zdun, & Dustdar, 2013) have proposed an approach for

compliance monitoring in process-driven service-oriented architectures. Concretely,

they define a textual DSML for the specification of compliance directives and use

model-to-text transformations to generate compliance monitoring code.

Bruns et al. (Bruns et al., 2014) have defined a textual DSML called DS-EPL

(Domain-Specific Event Processing Language) with the aim of defining event patterns

on a specific domain, namely, a language for modeling event patterns in machine-to-

machine (M2M) domain. Furthermore, the authors have evaluated this DSML, applying

it to a solar power plant case study. In this approach, a new DSML would be required

for each domain where CEP needs to be applied, causing increased workload and

additional effort for each new language to be implemented. To solve this problem, we

propose an event pattern DSML independent of the domain where CEP needs to be

applied, providing the feature of being customized to any CEP domain based on the

event types modeled for the new domain to be incorporated. Besides, DS-EPL provides

a predefined set of event types that can be extended in order to define new ones;

13

however, the possibility of creating other event types independent of these predefined

ones is not considered. Furthermore, actions to be executed when detecting situations of

interest are not supported.

Afterwards, Bruns et al. (Bruns, Dunkel, Masbruch, & Stipkovic, 2015b) have

defined models for the M2M domain, M2M machine states and M2M events based on

DS-EPL. Therefore, this proposal has the same aforementioned limitations found in the

previous work, such as the difficulty for non-technical users to define event patterns by

using a textual notation, except for event patterns actions that are supported in this new

version.

Terroso-Saenz et al. (Terroso-Saenz et al., 2015) have also defined an event

model whose root element is the RootEvent. This is specialized by LocationEvent,

MovementEvent, RelationshipEvent and MovementChangeEvent. In particular, this

proposal aims to analyze entitities’ trajectory data in real time. According to the authors,

an entity’s trajectory is defined as the stream of location events related to it. A new

textual notation is proposed to define event patterns; this model is dependent on the

trajectory analysis domain.

On the other hand, Terroso-Saenz et al. (Terroso-Sáenz, Valdés-Vela,

Campuzano, Botia, & Skarmeta-Gómez, 2015) have created a CEP approach to perceive

the vehicular context. Specifically, they have proposed an intra-vehicular context

information model and a set of event patterns to detect the vehicular occupancy. One of

the main advantages of this approach is the use of Markov models to predict the next

destination of a person or vehicle, so the probability of taking appropriate actions is

considered in this work.

Although most of aforementioned approaches allow us to specify what the

domain of every event is, none of them offers the possibility of describing a CEP

domain composed of a set of event types together with their domain description. The

lack of these elements in the domain will prevent sharing the domains among different

modeling tools, which might belong to different users. Unlike the last mentioned

approaches, our approach is designed to be independent from application domains,

event languages and event processing systems.

14

Regarding approaches that provide a graphical representation for event patterns,

there are two metamodels, proposed by Obweger et al. and Etzion and von Halle, which

deserve a special mention and are described below.

Obweger et al. (Obweger, Schiefer, Kepplinger, & Suntinger, 2010; Obweger,

Schiefer, Suntinger, & Kepplinger, 2011) have proposed an event model, a correlation

model and a rule model, among others. The event model allows us to define the event

types to be handled in the system. There are three event types: simple values –number,

string and other event types–, data collections and data dictionaries. The correlation

model provides the ability to establish relationships between events. By means of the

rule model, the situations to be detected (complex events) are described. An event

pattern definition using Obweger’s metamodel consists of a set of components, a set of

precondition relationships, a set of inputs and a set of outputs. These components allow

us to establish the conditions to be met for detecting situations of interest, to specify

time intervals, and to indicate whether a pattern depends on another one previously

defined. In addition, these components can be linked by connecting the output ports of a

component –actions to be taken after detecting a defined situation– to the input ports of

another component –preconditions to be met in order to analyze the component

content–.

Etzion and von Halle (Etzion & von Halle, 2013) have presented a model-driven

approach for defining event patterns known as The Event Model. This approach is

based on the concepts described by the main author in (Etzion & Niblett, 2011).

According to the authors, the features of this approach are as follows: a structure to

carry out a rigorous modeling of the reality is provided, patterns are represented using

tables and can be automatically transformed into EPL code, and models are independent

of implementation.

The analyzed graphical approaches have used notations for event pattern

definition in table and/or textual formats, whereas our approach utilizes graphical nodes

and links. The latter are more intuitive for any user, regardless of their skills concerning

CEP technology.

There are other model-driven approaches for CEP which provide graphical

DSMLs. Nevertheless, these also fall outside the scope of this work because they were

created in order to define event patterns restricted to a particular domain. For instance,

15

Decker et al. (Decker, Grosskopf, & Barros, 2007) have proposed a graphical language,

called BEMN (Business Event Modeling Notation), with the aim of modeling event

patterns in the context of business processes.

4. Domain-specific modeling language for CEP domain definition

In this section, a DSML for defining CEP domains is proposed, specifying both

the abstract and concrete syntax for this language.

4.1. Abstract syntax

The abstract syntax of a DSML is composed of a metamodel, where the

language concepts and relationships between them are defined, as well as the

restrictions for model elements and their relationships in order to ensure the compliance

of domain rules. The next subsection describes the CEP domain metamodel and the

rules for checking that domain models are well-formed.

4.1.1 CEP domain metamodel

The proposed metamodel for defining CEP domains is described in detail in this

section. Figure 3 shows the metaclasses of this metamodel and their relationships,

which are described as follows:

• CEPDomain: it is the main metaclass, so the root of every model will be

a unique CEPDomain instance. This represents a concrete CEP domain

composed of one or more event types (Event). For every domain, it is

necessary to specify its name (domainName), a textual description

(domainDescription) and creation date (domainCreationDate).

• Event: it describes an event for a concrete CEP domain. Every event has

a type (typeName) and, additionally, may have an image that represents it

graphically, in this case its path (imagePath) must be indicated.

Furthermore, every event will be composed of one or more event

properties (EventProperty).

• EventProperty: it represents the property or attribute of an event. Every

property must have a name (name) and one of the following types (type):

Unknown, Boolean, Integer, Long, Double, Float or String. A property

may have an image that represents it graphically, in which case its path

16

(imagePath) must be indicated. Moreover, a property can contain one or

more properties, i.e., the definition of nested properties is supported.

Figure 3. CEP domain metamodel.

4.1.2. Restrictions for CEP domain metamodel

Next, restrictions for CEP domain metamodel are presented. Table 1 shows the

validation rules that any model conformed to the metamodel must satisfy, as well as

describing restrictions for each metaclass.

Table 1. Restrictions for CEP domain metamodel.

Metaclass Restriction

CEPDomain The domain name (domainName) must be specified.
It must contain, at least, an event (Event).

Event The event type name (typeName) must be specified.
It must contain, at least, an event property (EventProperty).

EventProperty

The property name (name) must be specified.
If it is a nested property, this property cannot contain properties with the
same name (name) in the same nested level.
If it is a nested property, this property will not be able to have a property
type (type), since the type will be determined by its contained properties.

17

4.2. Concrete syntax

The concrete syntax of a DSML allows us to establish a relationship between

metamodel concepts and their textual or graphical representation.

In addition to the definition of both CEP domain metamodel and restrictions, a

graphical notation has been created for every element that can be used for designing a

CEP domain model. This concrete syntax for CEP domain models is shown in Table 2.

Table 2. Concrete syntax for CEP domain metamodel.

Name Notation
Event

EventProperty

5. Domain-specific modeling language for event pattern definition

In this section, a DSML for defining event patterns is proposed, specifying both

abstract and concrete syntax for this language.

5.1. Abstract syntax

As previously mentioned, the abstract syntax of a DSML is composed of a

metamodel, where the language concepts and relationships between them are defined, as

well as the restrictions for model elements and their relationships in order to guarantee

the compliance of domain rules. The next subsection describes the event pattern

metamodel and the rules for checking that event pattern models are well-formed.

5.1.1 Event pattern metamodel

The metamodel for defining event patterns in a user-friendly and intuitive way is

presented in the following lines. Figure 4 shows the main metaclasses of this metamodel

and their relationships, described below following top-down and left-right order:

• CEPEventPattern: it is the main metaclass of the metamodel, so the root

of every model will be an instance of CEPEventPattern that represents

an event pattern. This pattern can contain links (Link) –to establish

relationships between the rest of elements–, elements

(EventPatternElement) –necessary for defining conditions to be detected

by the pattern–, a complex event (ComplexEvent) –the event type to be

18

created when detecting the pattern– and actions (Action) –to be carried

out when detecting the pattern. For every event pattern, it is necessary to

specify its name (patternName), a textual description

(patternDescription), the domain to which this pattern belongs

(domainName), creation date (patternCreationDate), and whether the

pattern has been already transformed into code and deployed in the CEP

engine (patternDeployed).

• Link: it defines the graphical representation of one or more relationships

between operands (Operand) and operators (Operator). For every link

established between an operand and an operator, the order (order) of this

operand with respect to the rest of operands linked by this operator must

be specified. The value of order can be set between 1 and N, N being the

total number of operands linked by the operator.

• Operand: it is a data on which the linked operation is performed. There

are condition operands (ConditionOperand) –these can be linked by

condition operators– and pattern operators (PatternOperand) –these can

be linked by pattern operators–. Figure 5 illustrates ConditionOperand

and PatternOperand metaclasses, and Table 3 describes the operand

types. In order to define more complex event patterns, an operator

(Operator) can be, at the same time, an operand type, allowing it to be

linked by another operator. This is the reason why Figure 4 shows the

aggregation operator (AggregationOperator) as an operand type.

Besides, a complex event (ComplexEvent) is also considered as an

operand type, since it could be necessary to link it to an action (Action),

to be carried out on detection.

• Operator: it is used to express a specific operation between one or more

operands –depending on the arity of the operator. There are condition

operators (ConditionOperator) –these can be linked by condition

operands–, pattern operators (PatternOperator) –these can be linked by

pattern operands– and aggregation operators (AggregationOperator) –

aggregation functions that can be applied to some operands–. Figure 6

illustrates ConditionOperator, PatternOperator and

AggregationOperator. Notice that the arity of every operator –unary,

19

binary or n-ary– is not shown for clarity purposes; this information is

specified in Table 4, where operator types are described.

• UnaryOperator: an operator that must be linked by an operand.

• BinaryOperator: an operator that must be linked by two operands.

• NaryOperator: an operator that must be linked by two or more operands.

• EventPatternElement: it represents the elements to be used for pattern

definition. These elements are classified into two types:

EventPatternCondition –the conditions to be met to detect a concrete

event pattern– and DataWindow –if the condition search is only applied

to a subset of events or under temporal restrictions.

EventPatternCondition is, at the same time, classified into five

categories: ConditionOperand, PatternOperand, ConditionOperator,

PatternOperator and AggregationOperator. Figure 7 shows

DataWindow metaclass and Table 5 describes the data window types.

• ComplexEvent: it describes the complex event type to be created when

detecting the pattern. The complex event will have a concrete type

(typeName) and, additionally, an image that represents it graphically; in

this case its location (imagePath) must be specified. The type name

(typeName) will be the same as the event pattern name (patternName in

CEPEventPattern); therefore, the event pattern name will determine

which pattern has detected it. Moreover, every complex event will be

composed of one or more complex event properties

(ComplexEventProperty).

• Action: it indicates the action to be carried out once a complex event is

created when detecting its corresponding event pattern. These actions are

classified into two categories: Email –to send a complex event by email–

and Twitter –to send it to a Twitter account. Figure 8 illustrates Action

metaclass and Table 6 describes action types. Although only two action

types have been defined so far, this metamodel can be easily extended

with new actions, should it be necessary. In order to do that, a new

metaclass which extends to Action metaclass must be created per action

to be added.

20

Figure 4. Event pattern metamodel.

Figure 5. Event pattern metamodel: operands.

21

Figure 6. Event pattern metamodel: operators.

Figure 7. Event pattern metamodel: data windows.

Figure 8. Event pattern metamodel: actions.

22

Table 3. Operands of the event pattern metamodel.

Type Operand Description

Pattern

TimeInterval
It waits for the specified time period (years, months, weeks,
days, hours, minutes, seconds and milliseconds) before
turning to true.

TimeSchedule It turns into true at a defined time (dayOfWeek, dayOfMonth,
month, hour, minute, second).

WithinTimer

It is permanently evaluated to false if the contained pattern
expression does not turn to true during the specified time
period (years, months, weeks, days, hours, minutes, seconds
and milliseconds).

Pattern &
WithinTimer
Element

Event

It describes an event for a concrete CEP domain. Every event
must have a type name (typeName) and may have an image
representing it graphically, whose location (imagePath) must
be specified. Moreover, every event is composed of one or
more event properties (EventProperty).

Condition
EventProperty

A property describes a feature of an event. Every property
must have a name (name) and one of the following types:
Unknown, Boolean, Integer, Long, Double, Float or String.
The property may have an image which represents it
graphically, whose location (imagePath) must be specified.
Moreover, a property can, at the same time, contain one or
more properties, i.e., nested properties are supported.

Value It defines a Boolean, Integer, Long, Double, Float or String
value.

Table 4. Operators of the event pattern metamodel.

Type Subtype Operator Arity Description

Pattern

Every U It selects every event belonging to the
specified type.

EveryDistinct U
It is similar to Every, but eliminates
duplicated results according to a given
distinct-value expression.

FollowedBy N It determines a pattern expression that
must be followed by another.

Range U
It specifies the minimum (lowEndpoint)
and maximum (highEndpoint) number of
times a pattern expression must occur.

Repeat U It defines how many times (count) a
pattern expression must occur.

Until B
It checks a pattern expression until the
condition (another pattern expression) is
evaluated to true.

While B
It checks a pattern expression while the
condition (another pattern expression) is
evaluated to true.

Pattern &
Condition Logical

And N It returns a true value only if all operands
are true.

Or N It returns a true value if at least one
operand is true.

23

Not U
It returns a true value if the operand is
false, and a false value if the operand is
true.

Condition

Comparison

Equal B It returns a true value if operand1 =
operand2.

GreaterEqual B It returns a true value if operand1 >=
operand2.

GreaterThan B It returns a true value if operand1 >
operand2.

LessEqual B It returns a true value if operand1 <=
operand2.

LessThan B It returns a true value if operand1 <
operand2.

NotEqual B It returns a true value if operand1 ≠
operand2.

Arithmetic

Addition B It adds two numeric values.
Division B It divides one numeric value by another.

Modulus B It returns the remainder of dividing one
numeric value by another.

Multiplication B It multiplies two numeric values.

Subtraction B It subtracts one numeric value from
another.

Aggregation

Avg U It returns the average of the values in an
expression.

Count U It returns the number of the values in an
expression.

Max U It returns the highest value in an
expression.

Min U It returns the lowest value in an
expression.

Sum U It adds the values in an expression.

Table 5. Data windows of the event pattern metamodel.

Data window Description
Batching
TimeInterval

Tumbling window that batches events and releases them every specified time
period (years, months, weeks, days, hours, minutes, seconds, milliseconds).

Batching
EventInterval

Tumbling window up to the specified number of events (size).

Sliding
TimeInterval

Sliding window by the specified time period (years, months, weeks, days,
hours, minutes, seconds, milliseconds).

Sliding
EventInterval

Sliding window by the specified number of events (size).

Table 6. Actions of the event pattern metamodel.

Data window Description

Email

It specifies the email account(s) where the detected complex event will be
sent. At least the mail sender (from), mail receiver (to), as well as the host
(host), port (port), user name (user) and password (password) must be
indicated. In addition, email subject (subject) and copy recipients (cc) may be
indicated.

Twitter It specifies the Twitter account where the detected situations (complex
events) will be registered.

24

5.1.2. Restrictions for the event pattern metamodel

Next, restrictions for the event pattern metamodel are presented. Table 7 shows

the validation rules that any event pattern model conformed to the metamodel must

satisfy, as well as describing restrictions for each metaclass.

Table 7. Restrictions for the event pattern metamodel.

Metaclass Restriction

CEPEventPattern

The event pattern name (patternName) must be specified.
It must contain, at least, an event (Event) or data window
(DataWindow).
It must include the complex event (ComplexEvent).
If a pattern operator (PatternOperator) is used, only one data
window (DataWindow) containing all pattern conditions may be
used.

Link Two equal operators cannot be linked.
Nested properties cannot be linked.

ComplexEvent

The complex event type (typeName) must be specified.
It must contain, at least, a complex event property
(ComplexEventProperty).
Complex event properties must be unique.

ComplexEventProperty

The complex event property name (name) must be specified.
It must be linked by an event property (EventProperty), an
arithmetic operator (ArithmeticOperator) or aggregation operator
(AggregationOperator).

Event The event type (typeName) must be specified.
It must contain, at least, an event property (EventProperty).

EventProperty

The property name (name) must be specified.
It must be contained into an event (Event) or an event property
(EventProperty).
If it is a nested property, this property will not be able to contain
some properties with the same name (name) for the same nested
level.

Operator It cannot have inbound links with the same source.
UnaryOperator It must have one inbound link.

BinaryOperator It must have two inbound links.
It must have inbound links with orders 1 and 2.

NaryOperator
It must have at least two inbound links.
It must have inbound links with orders 1, 2...N, N being the total
number of operators linked to the operator.

AggregationOperator It must be linked to a complex event property
(ComplexEventProperty).

EveryDistinct The first inbound link must link an Event (Event) and the second
one must link an event property (EventProperty).

While

The first inbound link must link a logical operator
(LogicalOperator) or an Every, EveryDistinct or FollowedBy
operator, and the second one must link a logical operator or
comparison operator (ComparisonOperator).

Range
The lowEndpoint value must be less or equal than the highEndpoint
value.
It must link an Until operator with order 1.

25

Repeat The count value must be positive.

TimeInterval It must have at least one attribute (years, months, weeks, days,
hours, minutes, seconds, milliseconds) set to a positive value.

TimeSchedule

It must have at least one attribute (dayOfWeek, dayOfMonth, month,
hour, minute, second) set to a positive value.
The dayOfWeek attribute must be set to a value between 0 (Sunday)
and 6 (Saturday), the dayOfMonth attribute must be set between 1
and 31, the month attribute between 1 and 12, hour between 0 and
23, minute between 0 and 59, and second between 0 and 59.

WithinTimer It must have at least one attribute (years, months, weeks, days,
hours, minutes, seconds, milliseconds) set to a positive value.

DataWindow It must contain at least one event (Event).
BatchingEventInterval It must have the size attribute set to a positive value.

BatchingTimeInterval It must have at least one attribute (years, months, weeks, days,
hours, minutes, seconds, milliseconds) set to a positive value.

SlidingEventInterval It must have the size attribute set to a positive value.

SlidingTimeInterval It must have at least one attribute (years, months, weeks, days,
hours, minutes, seconds, milliseconds) set to a positive value.

ArithmeticOperator The two operands must have a numeric type: Integer, Long, Double
or Float.

ComparisonOperator The two operands must have the same type: Boolean, Integer,
Long, Double, Float or String.

Value

A value must be specified.
If the value is Boolean, it must be true or false.
It must be linked with a logical (LogicalOperator), comparison
(ComparisonOperator) or arithmetic operator
(ArithmeticOperator).

Email

The to attribute must have at least one correct email address.
The from attribute must have at least one correct email address.
If the cc attribute is used, it must have at least one correct email
address.
The port attribute must be greater or equal to 0, and less or equal to
65535. Common ports are: 25, 465, 475, 587 and 2525.

5.2. Concrete syntax

In addition to the definition of both the event pattern metamodel and restrictions,

a graphical notation has been created for every element that can be used for designing

an event pattern model. This concrete syntax for event pattern models is shown in Table

8.

Table 8. Concrete syntax for the event pattern metamodel.

Category Name Notation
 Link

Value

Simple Events
Event

EventProperty
Complex Events ComplexEvent

26

ComplexEventProperty

Pattern Timers
TimerInterval
TimerSchedule
WithinTimer

Pattern Operators

Every
EveryDistinct
FollowedBy

Range
Repeat
Until
While

Logical Operators
And
Not
Or

Comparison Operators

Equal
GreaterEqual
GreaterThan

LessEqual
LessThan
NotEqual

Arithmetic Operators

Addition
Division
Modulus

Multiplication
Subtraction

Aggregation Operators

Avg
Count
Max
Min
Sum

Data Windows

BatchingEventInterval
BatchingTimeInterval
SlidingEventInterval
SlidingTimeInterval

Actions
Email
Twitter

6. Evaluation and discussion

This section evaluates and discusses the novel DSMLs for the definition of CEP

domains and event patterns described in Sections 4 and 5, respectively.

27

6.1 ModeL4CEP evaluation

As previously stated, we defined a model-driven approach for facilitating user-

friendly design of complex event patterns in our previous work (Boubeta-Puig et al.,

2014a), where a first version of a DSML for event pattern definition was proposed.

However, this DSML, composed of an abstract syntax –an EPL metamodel along with

its restrictions– and a concrete syntax establishing the relationship between the

metamodel concepts and their graphical representation, offered several limitations

compared to our new DSMLs proposed in this paper. First of all, a DSML for CEP

domain definition was not considered in our previous work, lacking the mentioned

advantages. Secondly, the graphical notation of the concrete syntax was less user-

friendly. Thirdly, the EPL metamodel was incomplete and less understandable by end

users as enumerated in the following lines: 1) actions to be carried out when detecting

event patterns were not included; 2) events could not have nested properties; 3) the

number of metamodel restrictions was lower, so the model validation process was less

rigorous; 4) metaclasses lacked some properties providing useful information, such as

the pattern creation date or domain name; 5) metaclass names were closer to EPL syntax

than end users, such as “Output” instead of “EventPattern”, or “Length” data window

instead of “SlidingEventInterval”; 6) an event pattern had to be modeled normally

linking operators to operands, designing the pattern from right to left, instead of linking

operands to operators with the purpose of designing the pattern in a more natural way

from left to right; 7) there were some metamodel elements which did not provide

valuable information for event pattern definition, for example, “PropertyReference”

operand, since an event property could be referenced directly using a link.

To demonstrate the usefulness and strength of our novel DSMLs defined in this

paper, we have done a comparative analysis (see Table 9) in which we determine how

every metaclass of CEP domain and event pattern metamodels could be transformed

into Esper EPL, Oracle EPL, StreamSQL and CCL code –some of the best known EPLs

today–. Notice that other time units could be used for operators with time specified in

seconds, by default they are indicated in seconds in the table. Next, the most significant

aspects of this comparison are detailed.

28

Table 9. A comparison between the metaclasses of CEP domain and event pattern
metamodels and their equivalent Esper EPL, Oracle EPL, StreamSQL and CCL code.

Metaclass Esper EPL Oracle EPL StreamSQL CCL
EventPattern
Condition

from pattern MATCHING FROM PATTERN MATCHING
from where FROM WHERE FROM WHERE FROM WHERE

ComplexEvent
insert into
select

INSERT INTO
SELECT

SELECT INTO INSERT INTO
SELECT

ComplexEvent
Property

property
as alias

property
AS alias

property
AS alias

property
AS alias

TimeInterval timer:interval
(n seconds)

time_interval
(n seconds)

interval(n) n seconds

TimeSchedule timer:at
(*,*,*,*,*,*)

 time(n) AT n

WithinTimer timer:within
(n seconds)

WITHIN n
SECONDS

Event Event Event Event event
EventProperty Property Property Property property

Value
‘string’ ‘string’ ‘string’ ‘string’
Number Number Number number
true or false true or false TRUE or FALSE TRUE or FALSE

Every Every EVERY EVERY

EveryDistinct every-distinct DISTINCT
ROWS

FollowedBy -> FOLLOWED BY -> and THEN ,

Range [a:b] BETWEEN a
AND b

BETWEEN a
AND b

BETWEEN a
AND b

Repeat [n] BETWEEN 1
AND n

BETWEEN 1
AND n

n ROWS

Until Until UNTIL
While While FOREACH FOR
And and and , AND AND and && AND and &&
Or Or OR OR and || OR and ||
Not Not NOT NOT and ! NOT and !
Equal = = == =
GreaterEqual >= >= >= >=
GreaterThan > > > >
LessEqual <= <= <= <=
LessThan < < < <
NotEqual != != != != and <>
Addition + + + +
Division / / / /
Modulus % % % mod
Multiplication * * * *
Subtraction - - - -
Avg Avg AVG Avg AVG
Count Count COUNT Count COUNT
Max Max MAX Max MAX
Min Min MIN Min MIN
Sum Sum SUM Sum SUM
Batching
TimeInterval

win:time_batch
(n seconds)

RETAIN BATCH
OF n SECONDS

WITHIN
n TIME

KEEP EVERY
n SECONDS

Batching win:length_ RETAIN BATCH WITHIN KEEP EVERY

29

EventInterval batch(n) OF n EVENTS n ON id n ROWS
Sliding
TimeInterval

win:time
(n seconds)

RETAIN
n SECONDS

SIZE n ADVANCE
n TIME

KEEP
n SECONDS

Sliding
EventInterval

win:length
(n)

RETAIN
n EVENTS

SIZE n ADVANCE
n TUPLES

KEEP
n ROWS

Firstly, the EventPatternCondition metaclass represents the conditions to be

fulfilled to detect a critical or relevant situation. This metaclass will be transformed into

a search clause –normally used when neither pattern operator nor operand have been

included in the conditions, for example, (from...where) in EPL Esper– or into a

pattern clause –when conditions include some pattern operator or operand, for example,

(from...pattern) in EPL Esper–.

The ComplexEvent and ComplexEventProperty metaclasses, which describe the

complex event type to be created when detecting a pattern with their properties, are

directly related to the clause that is responsible for creating the complex events of this

type and insert them into a specific flow for them –insert into... select

property as alias…, in Esper EPL–.

Regarding the pattern operands defined in the metamodel –TimeInterval,

TimeSchedule, WithinTimer and Event–, Oracle EPL does not have any equivalent to

TimeSchedule, and StreamSQL and CCL do not have equivalents to WithinTimer. In

contrast, condition operands –EventProperty and Value– are similar for all these EPLs.

Regarding the pattern operators –Every, EveryDistinct, FollowedBy, Range,

Repeat, Until and While–, there are more difficulties to find their analog clauses. The

Every operator, which selects each event of the specified type, exists for all these EPLs,

except for StreamSQL. Note that, although the latter does offer the Every operator, it

can only be associated with a time interval and, therefore, does not provide the same

functionality as the rest of languages –every event is selected by default in StreamSQL,

not requiring the use of a specific operator for this purpose–.

Moreover, the EveryDistinct operator is only available for Esper EPL and CCL;

however, a similar behavior to this operator could be defined using the Every, And and

Not operators, such as Every a = Event AND NOT b = Event (b.id =

a.id).

30

Since Oracle EPL, CCL and StreamSQL make no distinction between Range

and Repeat operators, the use of the BETWEEN...AND... operator can be proposed

as a solution to obtain the same behavior; except to CCL that does offer n ROWS as a

repetition operator.

Likewise, there are no exact matches for Until and While. On the one hand, the

Until operator in CCL can only indicate a timestamp as stop condition, whereas the

Esper Until operator is more generic, permitting the setup of other condition types. On

the other hand, there is no operator identical to While of Esper EPL, but the FOREACH

operator of StreamSQL and FOR of CCL can be considered similar to While.

The other metaclasses of this comparative –logical, comparison, arithmetic and

aggregation operators as well as data windows– have equivalent elements for all the

analyzed EPLs. Furthermore, some metaclasses have more than one equivalent operator

for the same language as is the case, for example, of the And operator.

Therefore, event patterns can be defined as models by end users once and,

thereafter, can be transformed into the concrete EPL provided by the CEP engine

required at that moment. Obviously, this results in significant time saving and,

especially, in minimizing the number of errors produced by programmers when writing

the event pattern code by hand, since it is a fully automatic process.

6.2 A comparative study with other approaches for CEP domain and event

pattern definition

We have conducted a comparative study of our DSML for CEP domains and event

patterns (ModeL4CEP) with other existing approaches, detailed in Section 3. Table 10

summarizes the results of the study in which our solution is compared to the ontological

approaches, whereas Table 11 shows the results in which our solution is compared to

the model-driven ones, according to 16 criteria.

The results reveal that our novel solution has many strengths over other existing

approaches. A noteworthy advantage is that our DSML for CEP domain definition

facilitates the description of event types and properties for the domain for any user,

expert in a particular domain but not in CEP. One of the most important contributions

offered by this DSML is the unification of CEP domain description (event types and

properties) by using models, hiding the implementation details necessary to define such

31

domains from domain experts. Regarding the other analyzed approaches, even though

they support event types to be used for defining event patterns, most of them do not

offer the possibility of describing a CEP domain composed of a set of event types

together with their domain description. The lack of these elements in the domain will

prevent the chance of sharing the domains among different modeling tools, which might

belong to different users.

Another relevant strength is that our DSML for event pattern definition provides

users with an intuitive and user-friendly way to describe both situations to be detected

in a particular domain and the actions to be notified to interested users by email or

social networking services, among others. One of the most important aspects of this

DSML is the possibility of modeling patterns regardless of the implementation. Despite

the fact that there are some proposals –(ALERT, 2013; Etzion & von Halle, 2013;

Obweger et al., 2011; Sen & Stojanovic, 2010)– that support event pattern graphical

definition, all of them present limitations compared to our solution. Some approaches

represent the event patterns as interconnected window nodes composed of buttons and

dropdowns, which are used by users to add event properties together with their

conditions, what may cause the design of vast and awkward event patterns. Other

proposals use interconnected graphical nodes for event pattern definition where pattern

conditions must be implemented in EPL code by hand; this is undoubtedly an

impediment for non-expert CEP users.

Our approach, as well as some other included in Table 11, allows the creation of

events with nested properties, providing greater flexibility when defining event types.

Moreover, the possibility of defining hierarchies of events is really important, since it

enables us to create complex events depending on other simple and complex events.

Another key aspect of our approach is its availability of numerous pattern timers,

pattern operators, logical operators, comparison operators, arithmetic operators,

aggregation operators and data windows. Although the majority of approaches include

these types of operators and data windows, there are only a few available per type. As

an example, Sen et al. (Sen & Stojanovic, 2010) only provide us with an aggregation

operator (COUNT), data windows (WITHIN), logical operators (AND and OR) and

temporal operator (SEQ). This is an important limitation when defining more complex

event patterns.

32

Although most of approaches include actions to be executed when detecting

event pattern conditions, these actions basically consist on generating response events in

order to notify detected situations. Nevertheless, our approach supplies us with more

sophisticated actions, such as email or social networking services.

Some related works deal with uncertainty in CEP; however ModeL4CEP does

not. We consider it a relevant issue to improve our approach by providing it with the

ability to model uncertainty in event patterns, for example, through Bayesian networks,

as adopted by Cugola et al. (Cugola et al., 2015).

Table 10. Comparative study of ModeL4CEP with other existing ontological
approaches.

Criteria ModeL4CEP ALERT13 Pas12 Pas14 Sen10 Stü09 Yao11

CEP domain

definition
X

CEP domain

graphical

definition

X

Event pattern

definition
X X X X X X X

Event pattern

graphical

definition

X X X

Elements

represented as

graphical nodes

X X X

Definition of

events with nested

properties

X

Event hierarchy

definition
X X X X X

Pattern timers X X X X X X X

Pattern operators X X X X X X X

Logical operators X X X X X X X

Comparison

operators
X X X X X X X

33

Arithmetic

operators
X X X X X X X

Aggregation

operators
X X X X X X

Data windows X X X X X X X

Actions X X X X X X X

Uncertainty

supported

Table 11. Comparative study of ModeL4CEP with other existing model-driven
approaches.

Criteria ModeL4CEP Bru14 Bru15 Cug10 Cug15 Etz13 Mul13 Obw11 Ter15a Ter15b Zan08

CEP domain

definition
X X X X

CEP domain

graphical

definition

X X

Event

pattern

definition

X X X X X X X X X X X

Event

pattern

graphical

definition

X X X

Elements

represented

as graphical

nodes

X X

Definition of

events with

nested

properties

X X X X X

Event

hierarchy

definition

X X X X X X X X X X

34

Pattern

timers
X X X X X X X X X X X

Pattern

operators
X X X X X X X X X X X

Logical

operators
X X X X X X X X X X X

Comparison

operators
X X X X X X X X X X X

Arithmetic

operators
X X X X X X X X X X X

Aggregation

operators
X X X X X X X X X X X

Data

windows
X X X X X X X X X X X

Actions X X X X X X X

Uncertainty

supported
 X X X

7. Conclusions and Future Work

In this paper, a graphical DSML has been proposed for CEP domain definition

to facilitate any user, expert in a particular domain but not in CEP, the description of

event types and properties for the domain. This DSML allows us to unify CEP domain

descriptions by using models, hiding the implementation details necessary to define

such domains from domain experts.

Besides, a highly expressive graphical DSML has been defined for event pattern

definition. Its main purpose is to provide users with an intuitive and user-friendly way

to describe both situations to be detected in a particular domain and the actions to be

notified to interested users by email or social networking services, among others. The

main advantage of this DSML is that business experts will easily define the pattern to be

detected in the expert system in question even if they have no expertise on

programming languages. Besides, this DSML allows modeling event pattern regardless

of the language finally used for their implementation. Thanks to the use of MDD, every

event pattern might be graphically designed once and then could be automatically

transformed into any particular EPL, such as Esper EPL, Oracle EPL, StreamSQL or

35

CCL, as well as into any action code to be executed, such as XML. As a result, the

patterns defined by the business expert can be detected and prioritized by the expert or

intelligent business system in order to provide an appropriate response, consequently

triggering a suitable action.

As part of our work-in-progress, we are creating two graphical modeling editors:

an editor that supports the modeling of domains conformed to our CEP domain DSML

and another editor supporting the modeling of event patterns conformed to our event

pattern DSML.

The CEP domain editor will enable the graphical design and automatic

validation of CEP domains, as well as exporting and importing them so that they can be

shared and reused by other domain experts.

Regarding the event pattern editor, we already proposed one for designing event

pattern models in our previous work (Boubeta-Puig et al., 2014a). However, these

models conform to our previous event pattern DSML with the aforementioned

limitations. In addition to solving these limitations, the key feature of our coming event

pattern editor is its ability to reconfigure itself for different CEP domains, modeled by

domain experts. The fact that the editor will be able to reconfigure the tool palette

dynamically from different CEP domain models will allow users to enjoy a graphical

interface adapted to the specific context required. Moreover, this graphical editor will

enable CEP novices to concentrate on modeling both the situations to be detected and

the actions to be carried out, hiding all implementation details from them. Thus, it will

be possible to export and import the designed and validated pattern models as well as

reusing them in different information systems through the transformation of these

models into both the EPL code required by the chosen CEP engine and the code of

actions to be carried out, thereby, bringing to reality the definition of critical or relevant

situations in real time by non-technological users.

In our future work, we plan to extend ModeL4CEP with the ability to model

uncertainty in event patterns, for example, through Bayesian networks.

36

Acknowledgements
This work was funded by the Spanish Ministry of Science and Innovation under

the National Program for Research, Development and Innovation, project MoD-SOA

(TIN2011-27242).

References
ALERT. (2013). Active support and reaL-time coordination based on Event pRocessing

in FLOSS developmenT. Retrieved February 17, 2015, from http://www.alert-
project.eu/

Anicic, D., & Fodor, P. (2014). ETALIS - Event-driven Transaction Logic Inference
System. Retrieved June 12, 2014, from https://code.google.com/p/etalis/

Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R., … Zettel,
J. (2001). Component-Based Product Line Engineering with UML (1st ed.).
London; New York: Addison-Wesley Professional.

BEA. (2007). Event Processing Market Pulse 2007. ebizQ. Retrieved from
http://complexevents.com/wp-
content/uploads/2007/10/eventprocessing_survey.pdf

Boubeta-Puig, J., Medina-Bulo, I., Ortiz, G., & Fuentes-Landi, G. (2012). Complex
event processing applied to early maritime threat detection. In Proceedings of
the 2nd International Workshop on Adaptive Services for the Future Internet
and 6th International Workshop on Web APIs and Service Mashups (pp. 1–4).
Bertinoro, Italy: ACM.
http://doi.org/http://doi.acm.org/10.1145/2377836.2377838

Boubeta-Puig, J., Ortiz, G., & Medina-Bulo, I. (2011). An Approach of Early Disease
Detection using CEP and SOA. In Proceedings of The Third International
Conferences on Advanced Service Computing (pp. 143–148). Rome, Italy:
IARIA. Retrieved from
http://www.thinkmind.org/index.php?view=article&articleid=service_computati
on_2011_6_30_10134

Boubeta-Puig, J., Ortiz, G., & Medina-Bulo, I. (2014a). A Model-driven Approach for
Facilitating User-friendly Design of Complex Event Patterns. Expert Systems
with Applications, 41(2), 445–456.
http://doi.org/http://dx.doi.org/10.1016/j.eswa.2013.07.070

Boubeta-Puig, J., Ortiz, G., & Medina-Bulo, I. (2014b). Approaching the Internet of
Things through Integrating SOA and Complex Event Processing. In Z. Sun & J.
Yearwood (Eds.), Handbook of Research on Demand-Driven Web Services:
Theory, Technologies, and Applications (pp. 304–323). IGI Global. Retrieved
from http://dx.doi.org/10.4018/978-1-4666-5884-4.ch014

Bruns, R., Dunkel, J., Lier, S., & Masbruch, H. (2014). DS-EPL: Domain-specific
Event Processing Language. In Proceedings of the 8th ACM International
Conference on Distributed Event-Based Systems (pp. 83–94). New York, NY,
USA: ACM. http://doi.org/10.1145/2611286.2611296

Bruns, R., Dunkel, J., Masbruch, H., & Stipkovic, S. (2015a). Intelligent M2M:
Complex event processing for machine-to-machine communication. Expert
Systems with Applications, 42(3), 1235–1246.
http://doi.org/10.1016/j.eswa.2014.09.005

Bruns, R., Dunkel, J., Masbruch, H., & Stipkovic, S. (2015b). Intelligent M2M:
Complex event processing for machine-to-machine communication. Expert

37

Systems with Applications, 42(3), 1235–1246.
http://doi.org/10.1016/j.eswa.2014.09.005

Chakravarthy, S., & Mishra, D. (1994). Snoop: an expressive event specification
language for active databases. Data & Knowledge Engineering, 14(1), 1–26.

Chandy, K. M., & Schulte, W. R. (2010). Event Processing: Designing IT Systems for
Agile Companies. USA: McGraw-Hill.

Chaudhuri, S., Dayal, U., & Narasayya, V. (2011). An overview of business intelligence
technology. Communications of the ACM, 54(8), 88–98.
http://doi.org/10.1145/1978542.1978562

Cugola, G., & Margara, A. (2010). TESLA: A Formally Defined Event Specification
Language. In Proceedings of the Fourth ACM International Conference on
Distributed Event-Based Systems (pp. 50–61). New York, NY, USA: ACM.
http://doi.org/10.1145/1827418.1827427

Cugola, G., & Margara, A. (2012). Processing flows of information: From data stream
to complex event processing. ACM Computing Surveys, 44(3), 1–62.
http://doi.org/10.1145/2187671.2187677

Cugola, G., Margara, A., Matteucci, M., & Tamburrelli, G. (2015). Introducing
uncertainty in complex event processing: model, implementation, and validation.
Computing, 97(2), 103–144. http://doi.org/10.1007/s00607-014-0404-y

Decker, G., Grosskopf, A., & Barros, A. (2007). A Graphical Notation for Modeling
Complex Events in Business Processes. In 11th IEEE International Enterprise
Distributed Object Computing Conference (pp. 27–36). Annapolis, MD.
http://doi.org/10.1109/EDOC.2007.41

Dunkel, J., Fernández, A., Ortiz, R., & Ossowski, S. (2011). Event-driven Architecture
for Decision Support in Traffic Management Systems. Expert Systems with
Applications, 38(6), 6530–6539. http://doi.org/10.1016/j.eswa.2010.11.087

Eclipse Foundation. (2012). Emfatic. Retrieved April 5, 2014, from
http://www.eclipse.org/modeling/emft/emfatic/

EsperTech. (2015). Esper - Complex Event Processing. Retrieved February 28, 2015,
from http://www.espertech.com/esper/

Etzion, O., & Niblett, P. (2011). Event Processing in Action. Stamford, USA: Manning.
Retrieved from http://www.manning.com/etzion/

Etzion, O., & von Halle, B. (2013). ER 2013 tutorial: modeling the event driven world.
Technology. Retrieved from http://www.slideshare.net/opher.etzion/er-2013-
tutorial-modeling-the-event-driven-world

Event Processing Technical Society. (2010). Event Processing Glossary - Version 2.0.
Retrieved March 11, 2014, from http://www.complexevents.com/wp-
content/uploads/2011/08/EPTS_Event_Processing_Glossary_v2.pdf

Fowler, M., & Parsons, R. (2010). Domain Specific Languages (1st ed.). Massachussets,
USA: Addison Wesley.

Gad, R., Boubeta-Puig, J., Kappes, M., & Medina-Bulo, I. (2012). Hierarchical Events
for Efficient Distributed Network Analysis and Surveillance. In Proceedings of
the 2nd International Workshop on Adaptive Services for the Future Internet
and 6th International Workshop on Web APIs and Service Mashups (pp. 5–11).
Bertinoro, Italy: ACM.
http://doi.org/http://doi.acm.org/10.1145/2377836.2377839

García-Molina, J. (2013). Desarrollo digirido por modelos: un nuevo paradigma de
construcción de software. In J. García, F. Ó. García, V. Pelechano, A. Vallecillo,
J. M. Vara, & C. Vicente-Chicote (Eds.), Desarrollo de software dirigido por
modelos: conceptos, métodos y herramientas (pp. 289–306). Ra-Ma. Retrieved

38

from http://www.ra-ma.es/libros/DESARROLLO-DE-SOFTWARE-
DIRIGIDO-POR-MODELOS-CONCEPTOS-METODOS-Y-
HERRAMIENTAS/82019/978-84-9964-215-4

IBM. (2014, June 12). Operational Decision Manager [CT253]. Retrieved June 12,
2014, from http://www-03.ibm.com/software/products/en/odm

JBoss Community. (2014). Drools Fusion. Retrieved November 13, 2013, from
http://www.jboss.org/drools/drools-fusion.html

Kleppe, A., Warmer, J., & Bast, W. (2003). MDA Explained: The Model Driven
Architecture: Practice and Promise (1st ed.). Boston: Addison-Wesley
Professional.

Luckham, D. (2002). The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems. MA, USA: Addison-Wesley.
Retrieved from http://portal.acm.org/citation.cfm?id=515781

Luckham, D. (2012). Event Processing for Business: Organizing the Real-Time
Enterprise. New Jersey, USA: Wiley. Retrieved from
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470534850.html

Mulo, E., Zdun, U., & Dustdar, S. (2013). Domain-specific language for event-based
compliance monitoring in process-driven SOAs. Service Oriented Computing
and Applications, 7(1), 59–73. http://doi.org/10.1007/s11761-012-0121-3

Obweger, H., Schiefer, J., Kepplinger, P., & Suntinger, M. (2010). Discovering
Hierarchical Patterns in Event-Based Systems. In IEEE International
Conference on Services Computing (SCC) (pp. 329–336). Miami, FL, USA.
http://doi.org/10.1109/SCC.2010.51

Obweger, H., Schiefer, J., Suntinger, M., & Kepplinger, P. (2011). Model-driven rule
composition for event-based systems. International Journal of Business Process
Integration and Management, 5(4), 344–357.
http://doi.org/10.1504/IJBPIM.2011.043392

OMG. (2014). Unified Modeling Language. Retrieved May 7, 2014, from
http://www.uml.org/

Oracle. (2015). Oracle Event Processing. Retrieved February 3, 2015, from
http://www.oracle.com/technetwork/middleware/complex-event-
processing/overview/index.html

Ortiz, G. (2007, April 12). Integrating Extra-Functional Properties in Model-Driven
Web Service Development. Retrieved February 25, 2015, from
http://rodin.uca.es/xmlui/handle/10498/16036

Paschke, A. (2009). A Semantic Design Pattern Language for Complex Event
Processing. In Intelligent Event Processing, Papers from the 2009 AAAI Spring
Symposium (pp. 54–60). Retrieved from
http://www.aaai.org/Library/Symposia/Spring/2009/ss09-05-010.php

Paschke, A. (2014). Reaction RuleML 1.0 for Rules, Events and Actions in Semantic
Complex Event Processing. In A. Bikakis, P. Fodor, & D. Roman (Eds.), Rules
on the Web. From Theory to Applications (pp. 1–21). Springer International
Publishing. Retrieved from http://link.springer.com/chapter/10.1007/978-3-319-
09870-8_1

Paschke, A., Boley, H., Zhao, Z., Teymourian, K., & Athan, T. (2012). Reaction
RuleML 1.0: Standardized Semantic Reaction Rules. In A. Bikakis & A. Giurca
(Eds.), Rules on the Web: Research and Applications (Vol. 7438, pp. 100–119).
Springer Berlin / Heidelberg. Retrieved from
http://www.springerlink.com/content/k13040qqqv262882/abstract/

39

Romero, D., Hermosillo, G., Taherkordi, A., Nzekwa, R., Rouvoy, R., & Eliassen, F.
(2011). The DigiHome Service-Oriented Platform. Software: Practice and
Experience, 43(10), 1205–1218. http://doi.org/10.1002/spe.1125

Sen, S., & Stojanovic, N. (2010). GRUVe: A Methodology for Complex Event Pattern
Life Cycle Management. In B. Pernici (Ed.), Advanced Information Systems
Engineering (Vol. 6051, pp. 209–223). Springer Berlin Heidelberg. Retrieved
from http://dx.doi.org/10.1007/978-3-642-13094-6_17

Sen, S., Stojanovic, N., & Stojanovic, L. (2010). An approach for iterative event pattern
recommendation. In Proceedings of the 4th ACM International Conference on
Distributed Event-Based Systems (DEBS) (pp. 196–205). New York, NY, USA:
ACM. http://doi.org/10.1145/1827418.1827459

Software AG. (2014). Apama Analytics & Decisions Platform. Retrieved June 12, 2014,
from
http://www.softwareag.com/corporate/products/bigdata/apama_analytics/overvie
w/

Stahl, T., Voelter, M., & Czarnecki, K. (2006). Model-Driven Software Development:
Technology, Engineering, Management. John Wiley & Sons.

Steinberg, D., Budinsky, F., Paternostro, M., & Merks, E. (2008). EMF: Eclipse
Modeling Framework (2nd ed.). Addison-Wesley Professional.

Stühmer, R., Anicic, D., Sen, S., Ma, J., Schmidt, K.-U., & Stojanovic, N. (2009).
Lifting Events in RDF from Interactions with Annotated Web Pages. In A.
Bernstein, D. R. Karger, T. Heath, L. Feigenbaum, D. Maynard, E. Motta, & K.
Thirunarayan (Eds.), The Semantic Web - ISWC 2009 (pp. 893–908). Springer
Berlin Heidelberg. Retrieved from http://0-
link.springer.com.diana.uca.es/chapter/10.1007/978-3-642-04930-9_56

Sybase. (2015). SAP Sybase Event Stream Processor. Retrieved February 20, 2015,
from http://www.sap.com/uk/pc/tech/database/software/sybase-complex-event-
processing/index.html

Terroso-Sáenz, F., Valdés-Vela, M., Campuzano, F., Botia, J. A., & Skarmeta-Gómez,
A. F. (2015). A complex event processing approach to perceive the vehicular
context. Information Fusion, 21, 187–209.
http://doi.org/10.1016/j.inffus.2012.08.008

Terroso-Saenz, F., Valdes-Vela, M., den Breejen, E., Hanckmann, P., Dekker, R., &
Skarmeta-Gomez, A. F. (2015). CEP-traj: An event-based solution to process
trajectory data. Information Systems, 52, 34–54.
http://doi.org/10.1016/j.is.2015.03.005

TIBCO. (2015). StreamBase Studio. Retrieved February 15, 2015, from
http://www.streambase.com/products/streambasecep/streambase-studio/

Uhm, Y., Lee, M., Hwang, Z., Kim, Y., & Park, S. (2011). A multi-resolution agent for
service-oriented situations in ubiquitous domains. Expert Systems with
Applications, 38(10), 13291–13300. http://doi.org/10.1016/j.eswa.2011.04.150

Vincent, P. (2010, March 12). The Return of the Expert System? Retrieved from
http://www.tibco.com/blog/2010/03/12/the-return-of-the-expert-system/

W3C. (2014a). OWL Web Ontology Language. Retrieved June 9, 2014, from
http://www.w3.org/TR/owl-features/

W3C. (2014b). RDF Schema 1.1. Retrieved June 5, 2014, from
http://www.w3.org/TR/rdf-schema/

Yao, W., Chu, C.-H., & Li, Z. (2011). Leveraging complex event processing for smart
hospitals using RFID. Journal of Network and Computer Applications, 34(3),
799–810. http://doi.org/10.1016/j.jnca.2010.04.020

40

Yuan, S.-T., & Lu, M.-R. (2009). An value-centric event driven model and architecture:
A case study of adaptive complement of SOA for distributed care service
delivery. Expert Systems with Applications, 36(2), 3671–3694.
http://doi.org/10.1016/j.eswa.2008.02.024

Zang, C., Fan, Y., & Liu, R. (2008). Architecture, Implementation and Application of
Complex Event Processing in Enterprise Information Systems Based on RFID.
Information Systems Frontiers, 10(5), 543–553. http://doi.org/10.1007/s10796-
008-9109-0

