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Abstract

Ionic conductance in membrane channels exhibits a power law dependence on electrolyte 

concentration (G ~ cα). The many scaling exponents α reported in the literature usually require 

detailed interpretations concerning each particular system under study. Here, we critically evaluate 

the predictive power of scaling exponents by analyzing conductance measurements in four 

biological channels with contrasting architectures. We show that scaling behavior depends on 

several interconnected effects whose contributions change with concentration so that the use of 

oversimplified models missing critical factors could be misleading. In fact, the presence of 

interfacial effects could give rise to an apparent universal scaling that hides the channel distinctive 

features. We complement our study with 3D structure-based Poisson-Nernst-Planck (PNP) 

calculations giving results in line with experiments and validating scaling arguments. Our findings 

not only provide a unified framework for the study of ion transport in confined geometries but also 

highlight that scaling arguments are powerful and simple tools to offer a comprehensive 

perspective of complex systems, especially those where the actual structure is unknown.
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Ion permeation through nanometer-sized membrane channels differs significantly from 

transport in bulk conditions giving rise to striking phenomena like electroneutrality 

breakdown,1 local charge inversion,2,3 tunable ion selectivity4,5 or energy conversion from 

electroosmotic effects,6 among others.7 Nanoscale confinement is revealed in interfacial 

effects,8 entropic interactions,9,10 van der Waals11 and other short-range forces.7 Scaling 

laws aim at explaining how the size of objects affects their behavior albeit they can describe 

any functional relationship between two quantities that scale with each other over a 

significant interval.12–14 In fact, scaling arguments can be found in economics,15,16 

psychology17 or to explain human interaction activity18 among other fields. In this work, we 

investigate the scaling behavior of channel conductance (G) with salt concentration (c) in 

biological pores with distinct geometry and charge distribution. Interestingly, a number of 

previous studies suggest a power law dependence G ~ cα with a large variety of exponents α 
ranging between 0 and 1 that have been considered as a hallmark of each system, both in 

synthetic and biological pores.19–22 We show here that the scaling behavior of these complex 

systems depends on several interconnected effects, including the influence of the pore 

intrinsic properties as well as interfacial effects. A theoretical model based on 3D Poisson-

Nernst-Planck equations using the actual atomic structure of two protein channels provides a 

full description of the experiments and confirms our interpretations on the qualitative trends 

given by scaling laws. By bringing together the scaling behavior of very different ion 

channels, our findings give a broad perspective of conductance scaling in biological pores 

and establish a common framework for two contrasting types of membrane channels, the 

narrow ones key to signaling and neurotransmission and the wide ones involved in keeping 

cell homeostasis through solute interchange. The notion of a general approach to describe 

ion transport in pores with dimensions ranging from atomic scale to tenths of nanometers is 

not only important for protein channels, but it has become extremely relevant in the field of 

synthetic nanofluidics because in the last years not only channels below the nanoscale have 

been fabricated,23–26 but also abiotic nanopores with similar aspect ratios to biological ion 

channels.27,28
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Protein and proteolipidic nanopores.

We explore ion transport properties in a variety of biological ion channels that differ in their 

structure, charge distribution and geometry, as represented in Figure 1. On the one side, we 

consider channels formed by transmembrane proteins: the narrow Gramicidin A (gA) (r ~ 

0.4 nm)29 and the wide bacterial porin OmpF (three identical pores of r ~ 1–2 nm).30–34 On 

the other side, we deal with channels formed by combined assemblies of proteins and lipids 

(proteolipidic pores): the peptide antibiotic Alamethicin (Ala) forming two types of pores 

Ala-0 (r ~ 0.75nm), and Ala-1 (r ~ 1.2 nm) among other larger bigger oligomers35,36 and the 

SARS Coronavirus Envelope Protein (CoV-E).37–39

Experimental scaling of ion conductance.

Figure 2(a) shows conductance (G = I/V) measurements in a wide range of KCl 

concentration in channels reconstituted into neutral lipid membranes (DPhPC). All G(c) 

plots display a parallel slope or, in other words, a similar scaling –close to linearity (actually, 

G ~ c0.8)– for a wide range (2 mM - 2 M) of salt concentration (except for gA whose 

conductance saturates around ~1 M).40 Interestingly, the common scaling exhibited by such 

different systems is very similar to that measured for solution conductivity (Figure 2(a), 

inset). This is surprising for gA, which exhibits single-file transport of partially dehydrated 

cations41 despite having in fact almost zero net charge.42,43 Also, the absence of any charge 

effects in OmpF, Ala and CoV-E is intriguing. Although they are wide enough to allow the 

multiionic transport of hydrated ions, they are also known to display considerable ion 

discrimination at least in the low concentration limit.36,38,39

Figure 2(b) reports the values for the conductance measured when channels are reconstituted 

in negatively charged membranes of diphytanoyl phosphatidylserine (DPhPS). In this case, 

decreasing salt concentration changes conductance scaling in all channels except for gA. In 

concentrated solutions (c > 0.1 M), scaling is the same as in neutral membranes (Figure 2(a), 

G ~ c0.8) while in the low c regime, G is independent of salt concentration (G ~ c0). For 

charged membranes, the latter scaling is displayed by gA in the whole concentration range. 

Besides, the concentration at which the scaling changes varies with the channel considered, 

suggesting some intrinsic features of each system.

Results in Figure 2 were obtained at a particular applied potential (+100 mV for OmpF, gA 

and CoV-E, and +140 mV for Ala), although these results are expected to be voltage-

independent. Indeed, previous studies have shown that current rectifications in gA are very 

weak, and appear only at very high potentials, much larger than the one used here.44–46 

Alamethicin current has been shown to be almost voltage-independent.47 For the case of 

OmpF and CoV-E, we have measured IV curves for both neutral and charged lipids at high 

and low salt concentrations (Figures S2 and S3), showing that there is no rectification in the 

conditions of our study. Actually, for the case of OmpF, even under a salt concentration 

gradient the current rectification displayed by the channel is very mild, as shown in Figure 

S4.

Queralt-Martín et al. Page 3

Nano Lett. Author manuscript; available in PMC 2019 October 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To gain further insight into the factors modulating conductance scaling in Figure 2, we 

analyze separately two effects that could alter bulk-like ionic transport: membrane charge 

and protein charge. Figure 3(a) displays G measurements for OmpF (upper panel) and gA 

(lower panel) channels, showing that lipid composition determines the actual scaling. Data 

exhibit scaling exponents between 0 and 1 either in an uncharged narrow channel like gA or 

in a wide charged channel like OmpF. Note that scaling exponents in Figure 3(a) differ 

slightly from those reported in Figure 2 because the range of concentration has been 

shortened to focus on low concentration values where surface effects are expected.

Figure 3(b) shows that protein charge controls the scaling behavior in a similar way as done 

by membrane charge. The conductance scaling is measured for OmpF inserted in a charged 

membrane (DPhPS), and protein charges are modulated by changing solution pH. Clearly, 

channel charge is enough to control ion transport, which can vary from almost bulk 

conduction (G ~ c0.8) when the channel is neutral (its isoelectric point is ca. pH 4, at which 

the channel has no selectivity and displays no current rectification, so it can be considered to 

have an overall zero net charge)4,30 to G ~ c0.1 at pH 6 when the channel is negatively 

charged.30 Note that within this pH range (4–6), membrane charge remains unchanged, 

because DPhPS lipid polar heads have an effective pKa below 3.48

As seen, both protein and lipid charges can control the scaling behavior of G versus c, but it 

is still unclear whether each factor operates independently, or their effects somewhat 

interfere. Lipid composition is key for narrow channels like gA, given that charged polar 

heads create an electric double layer in the channel mouths that enhances channel current40 

(note the change observed in the scaling behavior of gA from G ~ c in Figure 2(a) to G ~ c0 

in Figure 2(b)). This effect should be secondary in wide pores with mouths comparable to 

the size of the double layer generated by lipid charges. However, a major role of the lipid 

charge is observed also in relatively large channels like Ala, CoV-E and specially OmpF 

(Figure 2(b) and Figure 3(a)), where diameter of channel mouths (including the protein 

walls) is larger than 4 nm.34

Here, we propose an interpretation for these results based on interfacial effects, specifically 

convergence resistance (also known as access resistance). The channel/solution interface 

may become the limiting step in ion conduction when the ion supply from the poorly 

conductive solution may not keep up with the demand of a crowded channel displaying high-

rate transport.49–51 This would happen in wide channels showing very effective permeation 

and not in narrow ones like gA where ion conduction is very poor.40 Classic theory for this 

diffusion limitation predicts that convergence resistance should only depend on the size of 

the pore aperture and on bulk solution conductivity (Hall’s equation),52,53 even though it is a 

phenomenon occurring at the pore/solution interface. However, it has been recently 

demonstrated that charged lipids induce an accumulation of counterions near the channel 

mouth increasing local ion conductivity and hence lowering convergence resistance.8 

Analysis of Figure 2 and Figure 3 suggests that a surface property (lipid charge) exerts a 

certain modulation of a bulk effect (convergence resistance) showing how surface and bulk 

contributions are mutually interconnected.
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Theoretical analysis of scaling arguments.

The conductance of nanopores has been typically described as the addition of bulk and 

surface contributions.54,55 This treatment follows directly the analogy with glass capillaries 

where the surface conductance of a stagnant layer, physically separated from the rest of the 

fluid, is reported to be decisive.54 However, such treatment presents at least two serious 

drawbacks, one conceptual and another operational. Firstly, no such surface-attached phase 

exists in aqueous membrane channels (ions just interchange their role and position 

continuously due to thermal agitation). Second, the bulk + surface model fails to reproduce 

the experimental results because no saturation of conductance is predicted at low salt 

concentration55 (see Figure 2(b) and Figure 3). Alternative formulations have been proposed 

in the context of the Donnan description7,8,20,55 which yield the following expression:

G = πD2κb/4L ρp/2c 2 + 1 (1)

where ρp is the effective excess counterion concentration due to the protein charges; D and L 
are the pore diameter and length, respectively, and κb is the bulk conductivity. Equation (1) 

does not contain separate contributions for the bulk and surface conductances, but a single 

expression with two limiting cases for bulk- (ρp << c, G ~ c) and surface-controlled (ρp >> 

c, G ~ c0) conductance. Intermediate exponents between c0 and c1 just reflect the transition 

from one regime to the other depending on the pore characteristics (ρp). Interestingly, recent 

approaches using the space-charge theory have stressed the limitations of the Donnan 

treatment at low c when the EDL overlaps and suggest the scaling G ~ c0.5 for the surface-

governed low concentration limit.56 Exponents lower than 0.5 are explained invoking ion 

adsorption onto the pore surface via Langmuir isotherm.20,56 However, our experiments with 

different lipid charges (Figure 2(a)) suggest that, at least in biological channels, deviations 

from equation (1) are probably not related to the limitations of the Donnan treatment20,56 but 

due to overlooking interfacial effects. Access resistance can be added to equation (1) via 

Hall’s equation but considering also that the effective excess counterion concentration due to 

lipid charges, ρl, changes the effective solution conductivity in the channel mouth:8

1/G = πD2κb/4L (ρp + ρl)/2c 2 + 1
−1

+ Dκb ρl/2c 2 + 1
−1

(2)

Note that ρl also alters the channel proper conductance. By using equation (2), an excellent 

agreement between theory and experiments can be found in the case of OmpF channel.8 

Unfortunately, equation (2) has no such straightforward limiting cases as equation (1) 

because the effects from different factors (pore geometry, pore charge, and membrane 

charge) are closely interconnected. Anyway, some estimations about the dominating scaling 

factor can be made considering separately the roles of membrane and protein charges in 

equation (2).

First, we consider the case where lipid membranes are uncharged (ρl ~ 0). In the high 

concentration range, protein charge effects become negligible (ρp << c) so that both pore and 

Queralt-Martín et al. Page 5

Nano Lett. Author manuscript; available in PMC 2019 October 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



convergence conductance scale linearly with concentration. In the low concentration limit 

(ρp >> c), we can get some insight by considering that in the parallel arrangement of 

equation (2) both factors play a role when they are comparable:

πD2κb/4L ρp/2c 2 + 1
Dκb

≈ 1. (3)

This leads to the following condition:

D
L ≈ 8c

πρp
≈ 5c

2ρp
(4)

Considering typical values L ~ 5 nm and D ~ 1–2 nm, interfacial effects showing bulk-like 

scaling (G ~ c) are expected to appear in the millimolar low concentration limit provided 

that ρp > 100 mM, which is the case of all channels studied here except of gA. In the case of 

the uncharged gA we find an association between two terms that yields bulk-like scaling, 

which leads to G ~ c in any case. Interestingly, both low and high concentration scaling 

predictions based on equation (2) for uncharged membranes agree with the experiments 

reported in Figure 2(a).

The presence of charged membranes increases significantly both pore and interfacial 

conductance. In the high concentration limit both protein and lipid charge effects become 

negligible so that the overall conductance should scale linearly with concentration. For low 

c, assuming that ρl ~ ρp (ρp is probably higher than ρl in some cases) and following a similar 

reasoning to that implicit in equation 3, the condition required for interfacial conductance to 

play a role is D/L ~ 2/π. For L = 5 nm this requires a pore diameter of D > 3 nm, which is 

wider than all the channels studied here, so that no interfacial effects should appear in Figure 

2(b). Therefore, the conductance saturation observed at low concentrations arises from the 

pore conductance, which is controlled by the protein and lipid charges in order to preserve 

charge neutrality. The transition from high- to low-concentration occurs at concentrations 

comparable to ρp. For the case of gA, which again has zero net charge, the G ~ c0 scaling 

appears in all concentration range probably because of its narrow entrances leading to 

extremely high lipid charge concentration ρl. This means that, in practice, the condition ρl 

<< c necessary to obtain linear scaling is not met in our experiments with gA.

Numerical calculation of conductance scaling.

To understand the origin of the dominant contributions to conductance scaling we use a 

three-dimensional Poisson–Nernst–Planck (PNP-3D) model57 implemented as described in 

detail elsewhere.58,59 We use the 3D atomic structure of gA and OmpF available at the 
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Protein Data Bank (codes 1JNO and 2OMF, respectively). Note that no structure is available 

for Ala or CoV-E proteolipidic pores. Given each protein structure, the channel fixed charge 

density was obtained to calculate the apparent pKa of the channel residues. Ion fluxes and 

concentrations along the pore were calculated using bulk pH, salt concentrations, and 

electric potential at the channel entrances as boundary conditions. The existence of a 

charged membrane was simulated adding a small charged region over the ion inaccessible 

membrane region. Ion diffusion coefficients were introduced as free parameters. More 

details about the procedure are given as Supplementary Information.

Figure 4(a) and (b) show a good agreement between conductance calculations (dashed lines) 

and experimental data (points) for gA and OmpF in neutral (Figure 4(a)) and charged 

(Figure 4(b)) membranes, although the numerical model tends to overestimate the measured 

conductance, as previously reported.60,61 Conductance scaling displays approximate bulk 

conduction in neutral membranes (G ~ c0.7, Figure 4(a)), while membrane charge reveals 

surface conduction in the low concentration regime (G ~ c0, Figure 4(b)). According to the 

scaling arguments mentioned before, the transition between bulk and surface conduction 

should occur around ρp. Calculations in Figure 4 (b) show that in the case of OmpF, 

conductance scaling changes close to 0.1 M, which actually corresponds to the average 

protein charge density of the channel reported in previous studies.30 In practice, this means 

that ion concentration inside the channel is regulated by surface pore charges due to 

electroneutrality requirements, so that extremely diluted bulk solutions do not imply low 

pore conductance because surface conduction prevails. Conversely, very concentrated 

solutions screen the channel charges so effectively that pore selectivity is “salted-out” and 

bulk conductance is observed.30

We have computed the profile of the equilibrium electric potential (for zero current) along 

the channel + membrane system for OmpF (Figure 4(c)) and gA (Figure 4(d)), in the low 

salt regime (c = 5 mM) where charge effects become apparent. For neutral membranes, the 

potential well in the case of gA is almost two-fold deeper than in OmpF, which agrees with 

the well-known ideal selectivity of gA and the relatively weaker ion charge discrimination of 

OmpF.30,40,62 The potential drop in gA is confined to the inner part of the pore, whereas for 

OmpF a remarkable fraction of the total potential drop occurs in interfacial regions due to 

the presence of charged residues near the channel mouths.30 In both channels charged 

membranes enhance the potential well across the channel itself pointing to an increase in 

pore conductance, as interpreted in the previous section. Charged lipids, actually 

surrounding channel mouths, broaden the potential well (especially in the case of gA) so that 

a significant part of the equilibrium voltage falls into the solution. Note that carrier 

accumulation by lipid charges in OmpF is not significant because this effect is already 

induced by charged residues in the pore mouths.

Next, the non-equilibrium performance of the channel is analyzed. The profile of applied 

potential is obtained by subtraction of the equilibrium potential from the overall potential 

under an externally applied voltage of 100 mV. Note that interfacial effects will be caused by 

any applied potential drop falling outside the pore. The profile of applied potential is shown 

for OmpF (Figure 4(e)) and gA (Figure 4(f)). Figure 4(f) demonstrates that for gA interfacial 

effects are negligible in any case because almost 90% of the total drop occurs in the pore 
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itself regardless of the lipid charge. In contrast, interfacial effects are significant in OmpF 

and depend crucially on the membrane charge (45% of the total drop falls outside the 

channel in neutral membranes in contrast to 28% in charged ones for the conditions depicted 

in Figure 4(e)).

In summary, detailed numerical calculations performed in the two channels with available 

3D structure confirm the trends anticipated by inspection of scaling behavior discussed in 

the previous section. Interfacial effects (lipid charges) manage to regulate the total 

conductance of either narrow or wide channels by using different mechanisms: in the 

intrinsically conductive OmpF they just control the access resistance and, in contrast, in the 

highly resistive gA they increase pore conductance by accumulation of carriers.

Concluding remarks.

Experiments performed in protein channels show a variety of scaling behaviors in the G(c) 

dependence as a result of the existence of competing mechanisms. We show that power laws 

are not an intrinsic feature of any of the channels studied, but they are a strong function of 

multiple factors like solution concentration, pH and membrane charge. This suggests that the 

diversity of scaling laws reported in the literature for similar systems probably arises from 

different outcomes on the balance of the contending mechanisms. Simple scaling arguments 

can explain satisfactorily most of the experimental findings provided that all contributing 

factors are considered. We have shown that competing mechanisms could display similar 

scaling behavior, or the dominating mechanism could mask the presence of others, leading 

to wrong conclusions. In particular, we show that the apparent universal scaling found in 

biological channels with dissimilar characteristics appears because interfacial effects 

depending on solution conductivity dominate. The use of atomic 3D structure-based PNP 

formalism provides calculations in line with experiments and validates scaling arguments. 

The found agreement underscores the usefulness of scaling qualitative arguments as 

diagnostic tools in systems where the actual structure is unknown such as proteolipidic 

channels or inhomogeneous abiotic nanopores.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Structure and current traces of the different channels studied.
Cartoons representing the channel structures show a lateral view in the upper panel and a top 

view in the middle panel. OmpF and gA are represented with their resolved three-

dimensional structures (PDB codes 2OMF and 1JNO, respectively), while Ala and CoV-E 

display cylinders exemplifying monomers conforming a putative oligomeric state. In the 

lower panel, representative current traces of each channel are displayed at 1 M KCl 

concentration in neutral lipid. More detailed traces and technical information are shown in 

Figure S1.
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Figure 2. Conductance scaling with salt concentration.
Single-channel conductance G = I/V measured across different biological pores inserted in a 

neutral (a) or charged (b) membrane, for a wide range of symmetrical KCl concentrations at 

pH 6. Applied voltage was always 100 mV, except for Ala conductance which was recorded 

at 140 mV. Inset in (a) displays the measured conductivity in the same range of KCl 

concentrations. Solid lines correspond to equation G ~ cα, with α displayed next to each 

line. Dashed lines are drawn to guide the eye. Data are means of at least three independent 

experiments ± S.D. (when not visible, error bars are smaller than symbol size).
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Figure 3. Effect of membrane and channel charge on conductance scaling.
(a) Single-channel conductance G measured at pH = 6 for different salt concentrations 

across OmpF (upper panel) or gA (lower panel) inserted in different membranes with 

varying ratios of neutral (DPhPC) and charged (DPhPS) lipid, as indicated. (b) Single-

channel conductance as a function of salt concentration measured for OmpF inserted in a 

charged membrane (DPhPS) under different solution pH, as indicated. In (a) and (b), the 

applied voltage was 100 mV; dashed lines correspond to fitting to equation G ~ cα, with α 
displayed next to each line; data are averages of at least three independent experiments ± 

S.D.
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Figure 4. Numerical calculations obtained from the PNP-3D model.
(a)-(b) Experimental (points) and calculated (dashed lines) single-channel conductance G 

scaling with concentration c across OmpF or gA, as indicated, inserted in a neutral DPhPC 

(a) or charged DPhPS (b) membrane. Applied voltage in calculations was 100 mV. Solid 

lines correspond to equation G ~ cα, with α displayed next to each line. (c)-(f) Theoretical 

predictions for the equilibrium ((c) and (d)) and applied ((e) and (f)) potential profiles in 

OmpF or gA inserted in a neutral or charged membrane, as indicated. Vertical dashed lines 

correspond approximately to the location of channel mouths. KCl salt concentration used is 

5 mM. In (e) and (f), horizontal dotted lines indicate the value of the applied potential on 

both solutions (from −50 mV to +50 mV, ΔV = 100 mV).
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