
WARP Business Intelligence System

VIVIANA RAQUEL SILVA BATISTA
Outubro de 2017

WARP Business Intelligence System

Implementing continuous integration in a Business

Intelligence project

Viviana Raquel Silva Batista

Dissertation to obtain the Master of Science degree in

Computer Science, Specialization in

“Sistemas de Informação e Conhecimento”

Supervisor: Ana Maria Neves Almeida Baptista Figueiredo

Jury:

Presidente:

[Nome do Presidente, Categoria, Escola]

Vogais:

[Nome do Vogal1, Categoria, Escola]

[Nome do Vogal2, Categoria, Escola] (até 4 vogais)

Porto, February 2017

ii

To my mother and father for all of the motivation,

to my anchor in the hardest of times, Hugo,

this would never be possible without you.

iv

v

“Never forget what you are, for surely the world will not.

Make it your strength.

Then it can never be your weakness.

Armour yourself in it, and it will never be used to hurt you.”

George R. R. Martin

vi

vii

Abstract

Continuous delivery (CD) facilitates the software releasing process. Because the use of

continuous integration and deployment pipelines, allows software to be tested several times

before going into production. In Business Intelligence (BI), software releases tend to be

manual and deprived of pipelines, versions control might also be deficient because of the

project nature, which involves data and it’s impossible to version. How to apply CD concepts

to BI to an existing project where legacy code is extended and there is no version control over

project objects? Only few organizations have an automated release process for their BI

projects. Because due to projects nature it is difficult to implement CD to the full extent. Thus,

the problem was tackled in stages, first the implementation of version control, that works for

the organization, then the establishment of the necessary environments to proceed with the

pipelines and finally the creation of a test pipeline for one of the BI projects, proving the

success of this approach. To evaluate the success of this solution the main beneficiaries

(stakeholders and engineers) were asked to answer some questionnaires regarding their

experience with the data warehouse before and after the use of CD. Because each release is

tested before going into production, the use of CD will improve software quality in the long

run as well as it allows software to be released more frequently.

Key words: Business Intelligence, Continuous Delivery, Continuous Integration, pipelines, Data

Warehouse, releases

viii

Resumo

Continuous Delivery (CD) permite que as releases de software aconteçam em qualquer

momento sem problemas associados, utilizando pipelines de integração e de deployment.

Desta forma, o software é testado várias vezes antes de ser instalado em produção. Em

Business Intelligence (BI), as releases são tendencialmente manuais, sem pipelines e devido à

natureza do projecto (dados) o controlo de versões tende a ser inexistente. Como aplicar o

conceito de CD num contexto de BI a projetos de grandes dimensões, com legacy code

extenso e sem controlo de versões? Apenas algumas organizações têm um processo

automático de releases para os seus projectos de BI, porque devido à natureza dos projetos

que envolvem dados, é dificil implementar CD. Tendo em conta os estes factores, o problema

foi abordado por etapas, em primeiro lugar procedeu-se à implementação de um controlo de

versões, que se adapte às necessidades da organização. O passo seguinte foi a criação do

ambiente necessário para prosseguir com a instalação de pipelines e para terminar, a terceira

etapa, consistiu na criação de uma pipeline de teste para um dos projectos de BI,

comprovando assim o sucesso da solução proposta. Para avaliar o sucesso desta solução os

principais beneficiários (stakeholders e engenheiros) foram convidados a preencher

questionários, que permitem avaliar a sua experiência com o data warehouse antes e depois

da utilização da solução proposta neste trabalho. Como cada release é testada antes de ser

instalada em produção, garantindo que possíveis erros ja fora encontrados previamente, o

uso de CD melhorará a quailidade do software a longo prazo e permitirá que as releases

ocorram com mais frequência.

Palavras-Chave: Business Intelligence, Continuous Delivery, Continuous Integration, pipelines,

Data Warehouse, releases

ix

Acknowledgements

To my boyfriend, Hugo, for always helping me to overcome all obstacles and for never letting

me give up on the longest nights that do not seem to have an end. To my parents for their

help and motivation during these three years of hard work and keeping my spirits up, for their

comprehension on missed family dinners, my mad mood and above all for loving me through

the tougher of times.

To my friends who showed me that academic life is nothing without their company, who

accompanied me every weekend in our second home. To Ana Almeida (May our reunions

always happen over ice cream), Bruno Gomes, Miguel Vilaça, Nuno Lima e Ricardo Costa, for

all the hours of laughter provided during the masters, for always keeping my spirit up and not

letting me forget that I was able to finish this stage.

To Farfetch for giving me the opportunity to belong to an ever growing and innovative family.

To my BI team for helping me in this project and for giving me the opportunity to learn more

each day.

To Professor Ana Almeida, for the support during the writing of this document and for helping

me in all the necessary moments. To all the teachers that lead me to through this path and to

success.

To the very noble institution that welcomed me for seven years, Instituto Superior de

Engenharia do Porto, for letting me grow up and become the adult that I am.

x

xi

Table of Contents

1 Introduction and Contextualization ... 19

1.1 Context and problem .. 19
1.1.1 Business Concepts .. 19
1.1.2 Engineering purpose ... 21
1.1.3 Point of View .. 22
1.1.4 Assumptions ... 23
1.1.5 Engineering information .. 23
1.1.6 Implications ... 23

1.2 Problem .. 23

1.3 Objective .. 25

1.4 Expected / achieved results .. 25

2 Value analysis .. 28

2.1 Value offer... 28
2.1.1 New concept development model ... 28
2.1.2 Value, value for the customer and perceived value 34
2.1.3 Value Proposition ... 35

2.2 CANVAS ... 35

2.3 Analysing value ... 38

3 State of the art .. 40

3.1 State of the art in existing solutions / approaches .. 40
3.1.1 Continuous Delivery: Database .. 40
3.1.2 Continuous Delivery: ETL ... 43
3.1.3 Continuous Delivery: Database / ETL General Tools 44
3.1.4 Continuous Delivery: Deployment ... 46

3.2 Solutions/approaches identified ... 46

3.3 Evaluation of existing solutions/approaches .. 46

3.4 Conclusion ... 47

4 Solution design .. 49

4.1 Proposed Architecture ... 51
4.1.1 Architecture ... 51
4.1.2 Detailed Architecture ... 54
4.1.3 Alternatives ... 58

4.2 Final Architecture .. 59
4.2.1 Setting up git repositories .. 60
4.2.2 Setting up pipeline on Jenkins ... 61
4.2.3 Setting up pipeline on Octopus .. 63

4.3 Conclusion ... 63

xii

5 Evaluation .. 64

5.1 Solution Evaluation ... 64
5.1.1 Assessment Variables .. 64
5.1.2 Supporting Hypothesis ... 65
5.1.3 Evaluation Methodology ... 67
5.1.4 Hypothesis Testing ... 68

6 Conclusion ... 71

xiii

List of Figures

Figure 1 – Continuous Integration and Continuous Delivery relation 20

Figure 2 - WARP Layers ... 20

Figure 3 – Comparison between Compare & Sync and DBMaestro ... 43

Figure 4 - Concept Architecture ... 52

Figure 5 – Release pipeline workflow .. 53

Figure 6 – UML Component Diagram ... 54

Figure 7 – Data Flow Diagram .. 55

Figure 8 – UML Sequence diagram of feature lifecycle ... 56

Figure 9 – UML activity Diagram of pipeline workflow .. 57

Figure 10 - Repository workflow .. 57

Figure 11 - Alternative architecture components .. 58

Figure 12 – Alternative repository workflow ... 59

Figure 13 - Final Architecture ... 59

Figure 14 - Some of the CI repositories created .. 61

Figure 15 - Defined pipeline on Jenkins ... 62

Figure 16 - Pipeline after sucess of the first three stages .. 62

Figure 17 - Pipeline after every stage is successful .. 62

Figure 18 - Octupus pipeline .. 63

xiv

List of Tables

Table 1 - State driven vs Migration Driven ... 41

Table 2 – Difference between Jenkins and TeamCity .. 45

xvi

Acronyms and Symbols

List of Acronyms

BI Business Intelligence

CI Continuous Integration

CD Continuous Delivery

ETL Extract, Transform and Load

xviii

19

1 Introduction and Contextualization

This chapter purpose to contextualize and introduce the problem, focusing on business

concepts, setting up the problem in the organization, also identifying the target audience,

made assumptions and possible implications. Finally, problem definition, its main objective

and the expected results are presented.

1.1 Context and problem

1.1.1 Business Concepts

The concepts considered for this project are the following:

Business intelligence (BI) – According to Hans Luhn, BI is a “System that provides means for

selective dissemination to each of its action points in accordance with their current

requirements or desires.” (Luhn 1958). This paper was first published in 1958.

Data warehouse (DW) – Following the definition of Ralph Kimball, “A data warehouse is a

system that extracts, cleans, conforms, and delivers source data into a dimensional data store

and then supports and implements querying and analysis for the purpose of decision making.”

(Kimball & Caserta 2015)

ETL – Extract, Transform and Load are the processes the data goes through between the

operational source systems and the DW/BI (Kimball n.d.).

Agile – Considering the Agile Manifesto description, Agile is a methodology that focus on

delivering good products to customers by operating in an environment that values the people,

embraces modeling and planning, understanding the workflow changes through its lifecycle

(Beck et al. 2001). More than that, it’s a mindset and a behaviors set used to leverage agile

practices and techniques. (Noone n.d.)

20

Continuous integration (CI) – CI is “a software development practice where members of a

team integrate their work frequently, usually each person integrates at least daily—leading to

multiple integrations per day” (Duvall et al. 2007).

Continuous delivery (CD) – The concept of continuous delivery is defined as a discipline where

software is built in a way that it can be released to production at any time (Fowler 2013).

In figure 1 it is represented the Continuous Integration and Continuous Delivery relation.

Figure 1 – Continuous Integration and Continuous Delivery relation

WARP - Expression used in the organization to represent a fully automated release process. It

can be represented by layers, starting from the center with test automation, followed by CI,

CD and the last layer is WARP, as shown on Figure 2. Each superior layer depends on the

success of the previous, the innermost layer represents the implementation of automatic

tests, if successfully completed, the team proceeds to the next layer, CI. Here the team

focuses on using CI correctly together with tests automation. The next step in archiving WARP

is CD, releases, in this stage occur through pipeline but its ownership is of DevOps instead of

the team. At the final layer the team has complete ownership of its release pipeline, therefore

they are responsible for releases frequency and any possible error found during this process.

Figure 2 - WARP Layers

21

1.1.2 Engineering purpose

Purpose of this solution

The company begun the activity as a startup in 2007. Since then, it had an exponential growth,

leading to the lack of organized documentation and consequently information is dispersed,

being many times centered on individuals, in their implicit knowledge. This leads to an extra

difficulty in understanding and manipulating projects.

Currently, the company uses CI in every project, CD is used partially though company projects.

Starting to use CD in big projects with a large amount of legacy code and outdated

architectures can be complex and time consuming. Consequently, using CD tends to be

overlooked over value deliverance. Regarding the BI team, CD wasn’t even previously

considered because of the small size of the team and the product. Now that the team as

grown from five to twenty people, it’s unreliable to have a manual release process and no

version control over the code developed, due to errors caused by releases and delay in

delivering value.

The purpose of this solution is to provide an autonomous automatic release process for a BI

project, developing a CD solution that includes a solution for project CI and the deploy process

automation. With this solution, it’s possible to bridge the lack/delay in releases which this

project currently faces, as well as reduce the errors induced by the current release process.

The solution will be implemented to the data warehouse and ETL process, the cube will be

addressed in a near future.

Mission requirements

One of the problems software organizations face, is how quickly it's possible to deliver

features to users. Currently, organizations focus on requirements management and the

impact on the delivery speed, being fast delivery of new features the main objective. In most

of these cases, different software development methodologies and other software lifecycle

stages are forgotten, as in the release process. With this, the need for an agile methodology

solution urges, one that enables developers, testers, build and operations personnel to work

together effectively. (Humble et al. 2010)

The customer

This project has, as customers, the BI teams and consequently their stakeholders, which are

the main beneficiaries since software will be delivered faster and less prone to errors later on.

It is expected that the resulting process is used by the teams during development stages and

later while releasing it. In addition, stakeholders are the ones that will benefit the most from

the process, since their requests will not only be addressed faster but also be released quicker.

22

Satisfying customer requirements

Through this solution, the customers will use a CD approach for their development cycle, with

this, version control and releases stop being a set-back on a task lifecycle, they will be just

another step in the cycle. This solution will lead to faster and more frequent deliveries of

value without leading to errors on the ETL process, since there is minimal human

interventions during the process and better code coverage quality, as version control will keep

track of software code and allows comparison between files, identifying differences, and

merging the changes if needed prior to committing any code.

Definition of value for the customer

The ability to easily release software with control and less chance of error, with the addition

of having a system easy to install on any machine. Also, the availability of a version control

system that allows him to keep up with every alteration made on the software. Both features

will be of great value for the customers.

Adaptation of existing projects

Having the knowledge of previous developed technologies with many years of use in the

global market, it’s wiser to use these technologies instead of creating/using new ones. Still,

the goal is to have a solution design especially for this project, so using an existing solution,

even though it’s possible, isn’t an option. Due to different necessities, all through the project

in different stages, it’s essential to use different approaches in each stage, there isn’t a

solution that fits all the requirements.

1.1.3 Point of View

The proposed solution should be able to support the follow requirements present in a CD

solution:

- CI, using a version control tool over every system object. This will provide an historic

of every modification of an object during its existence and allow multiple developers

to develop several tasks at the same time while merging every change during the

development;

- Business-facing tests and technology-facing tests and regarding the development

process. These must always run successfully before releasing the feature into

production, which allows the customers to predict how the new release will affect the

system;

- Automated deploy/release for wanted features, each release should be relative to

one task, following the CD methodologies.

23

Personal views of stakeholders

As referred before, the BI teams are the main customers of this solution, releases are quicker

and more frequent. Business stakeholders are the ones that ask for new features and having

them frequently released with success makes them an interested part in this solution.

1.1.4 Assumptions

Currently, the organization has a team focused on CD that is responsible for managing team’s

pipelines. The software used for deploys and orchestrating jobs are the same, Octopus and

Jenkins, respectively. But other tools can be used to help each team fulfilling their needs,

being the use of the previous tools are mandatory. An additional conditioning factor is the

availability of developers and release expert for this project that due to commitment with the

organization can’t be 100% focused on the project.

1.1.5 Engineering information

For this project the supporting information used consists on the values presented in the book

“Continuous Delivery Reliable Software Releases Through Build, Test and Deployment

Automation“(Humble et al. 2010) and also the guidelines expressed in the Agile Manifesto

(Beck et al. 2001).

1.1.6 Implications

The pipeline developed needs to be constantly updated and improved to accomplish the

team’s needs. Also, the goal for this pipeline is to be used in the development cycle of each

team so, monetarization of successful releases during its usage is important to find new ways

to improve and realizing the importance of them.

1.2 Problem

The purpose of the present chapter is to expose and explain the problem, for which the need

to carry out this project arose. BI value chain and delivery doesn’t fall under the traditional

waterfall development umbrella. (Larson & Chang 2016) The need for real-time analyses has

increased over the years (Halper 2015), so it’s necessary to deliver value faster. Projects that

deliver solutions quickly to business users and incrementally improve within each release have

greater value delivered continuously. (Kenney n.d.) Deployment of BI system are complex and

require a formal support to ensure the health of the system, without it, the risk of failure

increases. Incremental releases allow a controlled deployment and recognition of value by the

stakeholders (Larson & Chang 2016).

24

A BI project includes different objects coming from reports and dashboards, databases, ETL

process and any other object that can be important to the project. Ownership of this object's

is responsibility of the BI team, therefore any changes and deployments are managed by them.

The amount and diversity of objects brings complexity to each object deployment since there

isn’t a “fit all” solution.

Reports and dashboards don’t have the same properties as databases or the ETL process.

Consequently, this group needs to be managed independently from the other two, regarding

both version control and deployment. On the other hand, databases and ETL have

dependencies among them. The latter accesses to two type of databases, the operational and

the data warehouse. The first one only provides data to the process, almost no writing is

required, while the second is the target of the writing process and the reading process by the

reports and dashboards. Any release related with databases can have impact on the ETL and

the same goes for ETL changes, which are reflected on the database. Another important

concern is about data, which is the core attribute of a BI project. Its integrity and security is

complex, so it is necessary to take precautions regarding these issues and the company’s data

management guidelines. Because there are projects with different architectural objects the

development of an automatic deployment process is complex and costly.

Before CD was mainstream and used by big organizations, the term CI was used. It was

popularized in the '90s and since then is broadly used for software development (Ståhl &

Bosch 2014). CD is the natural evolution of CI, the term was first used on 2010, by Jez Humble

and David Farley. Per them, CD is “a pattern for getting software from development to release”

automatically and ready to install anywhere necessary (Humble et al. 2010). This pattern is a

deployment pipeline, which is, an automated implementation of an application build, test,

deploy and release process. Every change made on an application triggers a new instance of

the pipeline. Which will create the installers, tests them proving they can be released. Each

stage of the pipeline concluded with success proves the stability of the installers and proves to

be a release candidate. Once all stages are successful the installers can be release (Humble et

al. 2010).

CD is considered an agile methodology, it’s even a part of the agile manifesto, and “Our

highest priority is to satisfy the customer through early and continuous delivery of valuable

software.” (Beck et al. n.d.) CD practices lead to lower risks in releases, accelerated value

delivery, improved quality of products/services, lower costs and motivated, happier teams

(Humble n.d.). Some studies have proven the benefits described and showed above. This

benefits include is also the gain of independence, any developer can deploy an application to

test or production environment (Itkonen et al. 2016).

Applying the concepts of CI to data warehouse development has historically been more

complex (DANIEL PERIANEZ 2014). Automation tools target conventional development,

therefore, are not designed to address the requirements of BI (Swoyer 2016). However, BI

projects can harvest the benefits of CD, in a thoughtful manner. Because BI is a data-driven

25

process, it’s needed to find tools that are tailored to deal with the team’s needs, having in

mind the agile and CD principles.

Unlike other components of the project, data can’t be easily integrated. Either the developer

creates an insert script or data is copied from a production-live environment. This means that

it isn’t possible to apply versioning to data. These scripts, should be held with attention since

their behaviour alters the data, and so, possible rollbacks can be hard to do. Regarding other

objects such as XML packages, reports and DML, files version control and CD is easier to

maintain, but concerning XML packages it isn’t possible to merge two files since each one’s

components have distinct identifiers. In this case the solution is to replace the previous

version with the new one, this requires the team to have an organized when editing this files

and methodical with their commits and merges.

1.3 Objective

The main purpose of this work is to create a CD release pipeline, providing BI development

teams with a version control over project objects, automatic testing of features and automatic

deploy. Tests should range from feature tests to regression tests and user acceptance though

several controlled environments allowing tests to eliminate errors in earlier stages of release,

which results in frequent releases with little time spent on them and less prone to errors.

This solution is aimed at BI teams and consequently stakeholders, since more frequent

releases means more features and requirements developed, which faces the biggest setback

with the current release process. Stakeholders often see their requests unfulfilled timely

because releases are delayed due to any difficulty. The absence of version control and

automatic deploys for database objects as well as ETL process, affect the ease of integration,

delivery of features and in some cases the release can mislead the ETL process, thus delaying

data availability.

1.4 Expected / achieved results

With this project it is expected to obtain an automated release process that can be executed

several times quickly and successful with minimal human interaction, providing safer and agile

releases, unlike the current release method which is manual, meaning releases aren’t

frequent, therefore value isn’t being delivered.

Releases should occur several times a day, each one representing a new feature deployed to

live, therefore this process should be quick and feedback, after each release, frequent, in

order to understand the impacts the release have in the system. Thus releases are expected to

run within minutes, feedback should happen frequently and during the pipeline stages.

26

To measure the success of this project, stakeholders will evaluate their experience with the

product after project finalization. It’s expected that their requests are attended quickly so

their product evaluation will improve over time. Pipeline duration and number of releases will

also be measured to test project success.

27

28

2 Value analysis

In this chapter project value will be analyzed in three parts, starting by concept development

and proposition, followed by the CANVAS and finally the way a project value should be

evaluated according to Verna Allee and Porter Michael.

2.1 Value offer

2.1.1 New concept development model

NCD acts as a common language, providing a vocabulary for understanding the activities that

occur at the front end, enabling companies to discuss front end with more understand and

coordination between all (Methods et al. 1996). The goal is to clearly identify requirements,

business plans and definition of market for a new project. NCD divides the front end into

three distinct areas the engine, the inner area (wheel) and the rim. The engine provides power

to the innovation process, which consists of the company values, leadership and culture,

drives the inner part. The model has a circular shape to indicate that ideas flow, circulate and

iterate among the five elements of the inner part. This part consists of five activity elements

(Opportunity identification, Opportunity Analysis, Idea Generation & Enrichment, Idea

Selection, and Concept Definition) and has two starting points for projects. They either begin

by opportunity identification or idea generation & enrichment or leave the front end of the

process by entering new product development process or technology state gate. The third

element consists of the external environmental factors that influence the engine and activity

elements, these consist of outside world influences, competitors influence, customers and

organizational capabilities.

29

Opportunity identification

On the opportunities that might be pursued, these are usually driven by business goal and is

focused in areas where the company might want to participate in. An opportunity refers to a

business or technology gap, released by designer accident that exists between the current

situation and the envisioned future. The company, or individual, might not yet have a solution

for this gap.

There are a few methods that can be used to ease the assessing of opportunities such as:

 Road mapping, is a technique for planning technological capabilities. Because it's in

graphical form, supports strategic alignment and communication (Dictionary 2017). Its

key value is the mapping process that provides a platform for sharing wisdom

between the team's resources, capabilities and skills. It's easily understandable to

people who aren't part of the project team (Methods et al. 1996).

 Technology and customer trend analysis, is the research of trends among customers

and technology to find relevant and competitive opportunities for the project.

 Competitive intelligence analysis, is essential to developing a business strategy, that

produces actionable finding, since it collects and analyses information on competitive

trends outside one's company (Methods et al. 1996).

 Market research, is the research of the surrounding market, on which the project falls.

 Scenario planning, is an approach preparing possible future scenarios and find

decision that would otherwise be ignored (Methods et al. 1996).

Manual releases are a reality for the BI teams at the organization, it’s prone to error leading to

less frequent releases. This gap allowed to the identification of an opportunity, device a

solution of CD that fits the needs of the teams, improving frequency of delivery and of value.

To represent the opportunity correctly the best techniques are the creation of a roadmap,

technology trend analysis and scenario planning. The first will allow to map and clarify, among

stakeholders, the requirements, priorities and timing of development. Since it's a

technological project, it's important to analyze trends in development techniques,

understanding their benefits and where they are lack comparing to other. Also, if any of these

new technologies serve any purpose for the company. Finally, design possible scenarios will

bring to light questions that would only arise during testing stages, e.g. if two team members

develop over the same object how will the solution handle it?

Opportunity Analysis

To confirm if the opportunity is worth pursuing it's necessary to analyze the opportunity,

formally or iteratively, making technology and market assessments. Because this isn't an in

depth analyses, uncertainty about technology and market will remain, only business capability

30

and competency are assessed. This element happens more than once, teams will loop back to

this element for new features identified in the concept definition stage.

Some techniques used for this are the same as the previous element, but it’s possible to

identify four main ones:

 Strategic framing, finding where the opportunity fits within the company’s market and

technology strengths, gaps, and threats (Methods et al. 1996).

 Market segment assessment, evaluating detailed information of the market segment,

to show why it represents a great opportunity. It's key to determine market size,

growth rates and market share of competitors. This is impacted by economic, cultural,

demographic, technological and regulatory factors. Therefore, companies rather

evaluate big opportunities.

 Competitor analysis, finding and defining who the main competitors are, by evaluating

their capabilities, and new products needed to achieve competitive advantage.

 Customer assessment, determining major customer needs and if they are met by

current products (Methods et al. 1996).

To analyze the present opportunity, the best technique to use is the strategic framing. Seeing

the opportunity aim is to deliver value internally for the organization, it’s important to

understand how delivering value affects them business. Currently, stakeholders request new

features but due to a slow and difficult delivery process, these are developed but released

later when the feature is not as relevant. Strategic framing, will allow to identify how the

opportunity fills the gap of the company and how it will improve its feature delivery to

stakeholders. Achieving this, turns the opportunity in a strength instead of a thread, since

stakeholders tend to ask for the feature to other teams trying to find a workaround.

Idea Generation & Enrichment

Just like opportunity identification, this element is an entry point in the new concept

development model. Its objective is birth, develop and maturate ideas. These go through

change all through the process and have many iterations as changes rise. To enrich the idea,

contact with costumers and users are common. The process of idea generation can be formal

but may also emerge from non-formal processes.

The techniques adopted for this element, by teams or individuals, range from more formal

ones to more creative. The following are just some of the ones used widely.

Theory of Inventive Problem Solving (TRIZ), which enhances creativity by getting individuals to

think beyond their experience and use solution from other areas of science (Methods et al.

1996).

31

 Methods for identifying customer needs, such as ethnographic approaches and lead

user methodology. The first, a qualitative approach, to do a qualitative research with

emphasis in an entire culture. Lead user methodology is a research method built

around the concept that the richest understanding of new products needs is held by

just a few Lead Users (Herstatt & Von Hippel 1992).

 Analyzing the market and business needs/issues, and also, new technology solutions

that might fit the company’s future plans and provide technological advances. This is

possible by increasing technology flow through internal and external linkages and/or

partnering.

 Companies that promotes and encourages employees to spend time investing in new

ideas, or either by award them to stimulate the generation of new ones, tend to have

more success in idea generation since they come from the ones working directly with

the product. Besides this, the company can provide an idea-bank available with easy

access to product or service improvements.

 Having a formal role for coordinate ideas generation and handles them through the

business units. With this type of management, it's important to keep track of

successful ideas and their implementation, therefore having measurable goals

becomes crucial. This will offer inspiration to other employees and prove non-

believers that new ideas can be a major advantage for the company.

 Rotating jobs frequently helps knowledgement sharing and extensive networking, it

creates mechanisms for communication of core competencies and capabilities.

Idea generation is widely promoted among the organization where the project is to be

developed. Which opportunity emerged from the lack of continuously successful releases, in

the BI teams. Because it's a project with large number of possibilities, having frequent

brainstorming meetings is crucial for the success of project, making sure to get as many ideas

as possible for which software to use or possible architectures.

Idea Selection

 Idea selection is an everyday life activity, when selecting an idea, the company must pursue

the biggest business value, critical to future health and success. There is no correct and

perfect solution for finding the best idea, in this model, ideas have limited information so

understanding of its possible future is very little. Even though there isn't a solution for all

selection type, some techniques are generally used.

 Individual judgment is one of the most commons since its natural and its part of the

initial selection process. But it's ineffective, without some formal decision process

most ideas disappear (Methods et al. 1996).

32

 Formal idea selection begins with someone looking at an idea whose information is

limited, more information should be pursued if the idea is considered attractive. For

this, it is important to communicate with the originator of the idea, this way he feels

informed otherwise he might feel his idea was being taken away. Communication

between the decision maker and the originator is important to understand the

struggles between both, the originator might want to follow-up with the idea but he

might feel overwhelmed with work and not able to invest further in it. Therefore,

ideas picked up from collection process should always have a feedback and frequent

reviews, this will stimulate creativity and more ideas. After gathering information, the

idea is discussed with the people involved to clearly understand who own and who

rely on the processes being discussed. In this stage, the decision maker needs to

adopt a positive attitude and ask what idea will move the company forward, or what

can be changed so it can become an advantage, instead of discarding less attractive

ideas. Once again encouraging creativity.

 Portfolio methodologies based on multiple factors using numeric indicators, not just

financial. For cases where the idea is only mildly explained, traditional techniques, like

this one, have proven to be unsuitable since an idea is dismissed, by the company, if

not considered profitable. But other techniques, not focused in traditional ones, like

strategic fit and leverage can help in the decision-making process.

 Use of options theory to evaluate projects analyses market risk, which consider the

probability distribution of the cash flow stream or its independent revenue and cost

components actually enhances the option’s value (Methods et al. 1996). The power of

this techniques can only be real when critical thinking is involved around the

assumptions of what is the idea value.

Like said previously, because of all the possible scenarios for the project, a high number of

ideas exist. Selection of ideas occur base on a formal process, after choosing a possible idea

more information about it is gathered and in some cases experimental tests to prove its

success and adaptability to the solution.

Concept Definition

The final element and only exit of the new process develop model is the concept definition. In

this element, the innovator makes a compelling case for investment in the opportunity chosen,

also known as "win statement" or "gate document" (if the exit is done by the technology stage

gate (TSG)). Investors can only decide based on qualitative and quantitative information given

by the innovator. Because it's a critical decision to make, proportional to the financial

investment needed, some companies define guidelines to follow when choosing to approve

the opportunity. The criteria depend on the nature, type and what risk are the decision

makers willing to make for the opportunity. If the case is not accepted, the concept returns to

NCD or becomes dormant. Once it's on the NCD the opportunity is review and modified to

become stronger, when it becomes dormant it can be a challenge to keep it alive and relative.

33

To move a project from NCP to New Product Development or into Technology stage gate it’s

critical to develop a formal project proposal and a business plan if possible.

The process of concept definition can be done using, among others, the following techniques.

 Goal deliberation approaches, in this approach a necessary number of measurable

objectives, regarding business goals or outcomes expected. Not meeting this

objectives can result in project termination (Methods et al. 1996). It’s up to the

project owner to clear any misinformation and assumptions, this should be made

during the deliberation as a disagreement management tool.

 Setting criteria for what describes what an attractive project looks like. These will be

used to explain the concept to everyone and might be found a good tool in idea

generation and idea selection.

 Rapid evaluation of high-potential innovations, this is possible with the use of short

cycles of requesting funding, testing specific technical details, review by an

experienced innovation team, finding potential business value, the nature of the

innovation, a plan to quickly test the highest-risk element of the concept and the

identification of potential sponsors for the project are evaluated (Methods et al.

1996). This is allowing for a rapid assessment of concepts as well as their possible

value for the company.

 Rigorous use of the TSG for high-risk projects, this can be accomplished out of the

NCD process, for some cases this is essential, if the technology activities were mostly

structured and with few risks, or if there was a business decision to specifically pursue

a particular technology (Methods et al. 1996).

 Understanding and determining the performance capability limit of the technology

[2].

 Early involvement of the customer in real product tests, this type of technique

provides rapid feedback and more detailed needs from users.

 Partner outside of areas of core competence (Methods et al. 1996).

 Focus (Methods et al. 1996).

 Pursue alternative scientific approaches (Methods et al. 1996).

For this solution, the best approach is to define acceptance criteria, making it possible to have

a list of requirements that needs to be fulfilled. The criteria is defined based on the customer

needs and technology requirements.

34

2.1.2 Value, value for the customer and perceived value

Value

According to Oxford Dictionary, value stands for the importance or worth of something

(Dictionaries 2017). It might represent a monetary worth, but value is more than that. At

present type value has a different value for different theoretical contexts (NICOLA et al. 2012).

For companies, creating value is key for success, business activity is about exchange of value

between the customer and the company, being an exchange of services (intangible) or having

the customer pay the price for a product (tangible). Value isn't static but rather dynamic and

should change with the needs of the customer. This can only be achieved if the company has

its value well defined and explicit for the public and knows how to deliver this value for the

intended customers. This concept is hard to conceive and conceptualize, to get to the value

the companies must right the right questions: what does they do, who is their market

segment, and how can they describe their value for someone with no background. For the

client, this mean the value of what they are acquiring is explicit and they are aware of it. On

the other side, a badly defined value can make the customer feel disappointed and ending up

rating the company poorly.

Value for Customer

When a customer acquires a product, there is a personal perception placed on it, meaning the

value of the individual consumer can be different from the value defined by the company. This

happens when the customer associates an advance to a certain product again others on the

market, consumers tend to buy products with the highest value for customer. According to

Woodall (Woodall 2003), “captures a range of associated, existing concepts, all of which use

similar names and imply a similar idea". For customers, this attribute presents itself as a

benefit, companies try to have the best value for customer on the market, but on the other

side, if companies badly market their product, customers start to create expectation that fails

to be fulfilled.

Perceived Value

In the Cambridge Dictionary, perceived value stands for the value of a product/service based

on the needs of the customers, rather than its monetary value (Woodall 2003). This means,

the value of the product, on the customer perception, is not associated with its price but

rather the fulfilment of expectations created previously to acquis ion,

All three concepts are connected, the first, Value, is used mainly by companies and their

products/services. The processing ones, value for customer and perceived value, is focused on

the customers and how the value of the product is viewed by the public and the targeted

market.

35

For this project, value is considered the deliverance of data and features to stakeholders in

timely matter. More than guarantying releases are made accordingly, it’s crucial to keep up

with the customer perception of this. In this case, the customer values the deliverance of

features correctly, if by any means the feature is incorrect while on production, the customers

will not understand how it wasn’t identified before it got to them. Making sure errors are

detected before release is of major importance. Stakeholders don’t get concerned over the

expenses caused by the architecture created, for them, being able to decide based on

available information is more important.

2.1.3 Value Proposition

BI Development teams will have access to an automatic release process (Continuous delivery

and integration pipeline) that encapsulates automatic testing for features being released,

automatic integration tests to make sure the release didn't change the previous system status,

smoke tests and automatic deploys. To archive this, it's necessary to first create a workflow

for version control of the project (database objects and SSIS project) since it's now non-

existent.

Currently, BI teams face big problems due to manual and slow releases that are prone to error,

this results in low number of releases, meaning, value is not being delivered. Also, version

control software for BI projects aren't common, especially for SSIS objects. Teams either

communicate well or create dependencies between tasks, e.g. once an object is being

changed, it's locked for everybody else. For the database version control, most of the times

it's difficult to find a software that fulfils the needs of the team and the project.

The solution proposed, aims to beat the problems identified with the use of a pipeline of CD.

With the help of automatic tests, smoke tests, integration testing and automatic deploys and

version control over project objects. Resulting in more frequent releases with little time spent

on it and less prone to errors.

2.2 CANVAS

Proposed by Alexander Osterwalder, the business model CANVAS is “A shared language for

describing, visualizing, assessing and changing business models” (Osterwalder et al. 2010).

This model allows organizations to describe and think though the business model of the

organization, competitors and others enterprises. The following represents the business

model designed for the present solution.

36

Key Partners

 BI Teams

 Release

Engineers

Key Activities

 CD/CI Pipeline

 SSIS project

automatic

compilation and

deploy

 Database and SSIS

project version

control.

 Automatic feature

tests

 Automatic Deploys

 Smokes tests;

 Automatic and

frequent releases

 Automatic deploys

Value Proposition

 Will have access to an automatic

release process (Continuous delivery

and integration pipeline)

 Create a workflow for version

control of the project (database

objects and SSIS project).

 Use of a pipeline of Continuous

delivery

 More frequent releases with little

time spent on it and less prone to

errors.

Customer Relationships

 Support on

developing

automatic

tests

 Releases
support

Customer Segments

 Developers,

testers and

PO's that

aim for more

agile

releases.

 Other BI

teams from

other

companies.

Key Resources

 Jenkins

 Octopus

 Git

 Database

Versioning Control

Software

Channels

 Slack

 Email

Cost Structure

 Server Machines

 Licencing software

Revenue Streams

 A CD/CI pipeline will offer the team the possibility

of more frequent releases, meaning, and more

value being delivered to stakeholders.

37

Value Proposition:

BI Development teams will have access to an automatic release process (Continuous delivery

and integration pipeline) and automatic testing to guaranty the release didn't changed the

previous system status and automatic deploys. Currently, BI teams face big problems one of

which results in low number of releases, meaning, and value is not being delivered. The

solution proposed, aims to beat the problems identified with the use of a pipeline of

Continuous delivery. With the help of automatic tests, smoke tests, integration testing and

automatic deploys and version control over project objects. Resulting in more frequent

releases with little time spent on them, meaning value is delivered frequently and feedback is

quicker.

Customer Segments:

The main segment found is the BI Teams of the company, all three of them lack a workflow of

CD and have problems when releasing new features. The team is composed by engineers with

different background such as developers, testers and release engineers. But other external

members are considered also customers, these are the product owner, the link between the

team and the stakeholders responsible for making sure the right value is delivered, and finally

the stakeholders that will their requests delivered more frequently.

Customer Relationships:

The type of relationship that will be stablished with the customers are of support both in

releases and in developing new automatic tests for each feature developed.

Channels:

The channels of communication used internally are Slack and Email, these are stablished by

the company.

Key Partners:

The development of this solution isn't possible without the help of expertise in the field of

releases (release engineer) and without the feedback of the BI teams, making sure the

solution found suits their needs. The influence of these partners will leverage the solution to a

greater level.

Key Activities:

The activities we aim at do well is a CD pipeline, producing software in short cycles, ensuring

that the software can be reliably release at any time. Because CI is a part of CD, version

control for every project object and automatic tests are considered activities.

38

Key Resources:

For this solution, the resources necessary are an automation server (Jenkins), that will serve as

an orchestrator, a deploy server (Octopus), SSIS version control software (Git) and another for

the data base, not yet chosen. This infrastructure will allow value to be created and delivered

successfully, these assets are indispensable to guaranty these and are currently used by other

teams in the company for their CD pipeline.

Revenue Streams:

Capturing value in this solution is about delivering features quickly, which will enable

stakeholders to give feedback promptly, proving the team with the ability to correct errors of

develop new features. A CD pipeline provides a frequent and less stressful delivery of value,

which in a BI project means information is made available to stakeholders for them to make

decisions based on that information.

Cost Structure:

For a solution of this kind, the main costs are due to software licensing and the need for

servers, so it's possible to have different environments.

2.3 Analysing value

Per Verna Allee, "a value network is a web of relationships that generates economic value and

other benefits through complex dynamic exchanges between two or more individuals, groups

or organizations." (Allee 2002) Any organization that engages in exchanges can be viewed as a

value network. It's important to understand how value is created, traditionally it's through the

value chain, however, it's a linear model based in the industrial age. But this model doesn't

take in count the role of knowledge and value exchange, which for networked enterprise is

emerging. A value network generates economic success or other benefits for the participants

(Allee 2002). This is possible by having participants converting their expertise and knowledge

into deliverables that present value for other members of the network (Allee 2002). Every

participant should contribute and receive value, this allows for the success of the value

network. Concluding, to build and analyze value, a company should adopt a value network

and encourage communication among the participants.

Porter Michael created the concept of value chain, every business has a value chain and it

explains how functional the company is and how they manage and communicate with the

business units (Porter 1985). If the value chain of a company is too broad, because it ignores

important sources of competitive advantages. Being value the subject of the value chain, the

previous consists of value activates (distinct activities performed) and margin (the different

the total value and the cost of performing value activities), allowing the value chain to display

the total value.

39

Both analyses allow companies to evaluate their value, in a value network, the analysis focus

on the communication between participants of the network. This exchange is the definition of

value, since individual value will be exchanged. While on the second more formal factors are

taken in count when analyzing value, since the object of analysis is the value produced after

the effort to produce it was made. For the present solution, the best method to use is the one

created by Verna Allee, the concept of value network. The status of the BI teams and their

members allow for knowledge and expertise to be exchange between them, leading to a

detailed and complete.

To analyze the value of the present solution both approaches have been considered, because

this project needs the knowledge and cooperation of different profiles such as release

engineers, BI developers and database administrator, the exchange of information creates

value, just like described by Verna Allee. But proving it's worth investing in this solution, more

formal methods are necessary, understand the effort needed. Above all, any value analysis

needs both approaches, one will promote communication and knowledge exchange while the

second will prove the effort taken was worth.

40

3 State of the art

In this chapter state of the art regarding CD on BI projects and this technique reliability is

analyzed. It starts with a presentation of the methods and technologies currently used, then,

the specific BI projects characteristic, are detailed it by category (database, ETL and general

tools). It ends with an approaches which best fit the project and how options were evaluated

among themselves.

3.1 State of the art in existing solutions / approaches

As referred on chapter 1, applying CD concepts do a BI Project isn’t an easy task, because of

that it’s necessary to outline components with different behaviors and treat them separately.

To start a CD pipeline, code must be in a version repository, meaning, every object,

configuration, data and code most be under the control of a version control software. A

typical DW is made of database objects and their data and ETL project. Because there isn’t a

great amount of information available about solutions that include the two stages, the

following section presents the state of the art of CD pipelines for each individual element of a

DW.

3.1.1 Continuous Delivery: Database

Unlike code, database version control and deployments are complicated because it isn’t a

collection a file but a collection of business data (Yaniv Yehuda 2014). Agile techniques have

better performance than traditional ones, giving the development approaches available now

(Ambler & Sadalage 2006). The goals, when implementing a CD to databases is to have

reliability (safe deployments and prevention over hot fixing), visibility (coordination) and

agility (automation and teams working together) (Yates 2015). A database isn’t just a

collection of tables, views and procedures. It is necessary to address other objects such as SQL

Server Agents, jobs and others used by the ETL processes (Factor 2014).

41

Two popular development approaches, for databases, are state driven and migration driven.

The first, initially introduced by Redgate (presently used by Microsoft), states that it is

necessary to maintain a snapshot of the current of the database structure. To upgrade it to a

new version it is necessary to use a tool that will compare the new structure to the current

and auto-generate the scripts required (Khorikov 2015). This approach frees the developers

from finding the delta of differences and from saving every script used. Migration driven

delivery depends on existing scripts, created when developing new features (Khorikov 2015).

This scripts should execute successfully at any moment in the database. Table 1 shows the

main differences between both approaches considering the main evaluation points.

Table 1 - State driven vs Migration Driven

 State Driven Migration Driven

Merge

Conflicts

Straight forward,

database is a SQL script

Careful script revision,

merging conflicting

changes. Error-Prone.

Data

Migration

Schemas are objective,

but the data is context-

dependent, the tool is not

capable of generating

scripts to handle data

Migration scripts already

contain the required code

to handle data easily

Workflow Agile and quick Manual and slower

Team size/

changes to DB

Big teams with frequent

upgrades

Small teams with

infrequent upgrades

Control/

Responsibility

Application used Developers

None of the approaches are infallible, if the approach chosen is for migration, it is necessary

to review all the scripts and make a manual merge off all changes, so they don't overlap

incorrectly, resulting in unnecessary time consumption. The state approach seems to be the

most appropriate, the tool compares the schemas to find the differences with ease, but in

table/columns rename cases it is possible that the application eliminates something that

should not.

3.1.1.1 Tools

Red gate Database Lifecycle Management (DLM) is an application for database management

through every stage from design, architecture, development, delivery and version control in

42

order to achieve a CD pipeline (Fritchey & Skelton 2015). To accomplish a successful reliable

and repeatable release process, DLM has five key activities:

 Versioning, states that every project object should be under version control either it’s

database objects of others such as ETL packages and data;

 Branching, allows team members to collaborate and develop at the same time;

 Testing, releasing new features requires tests, making sure the previous features

aren’t affected by the new release (regression tests), if the new features work in the

expected way (integration tests) and other tests to check the critical and most

important parts of the application;

 Using installation packages, eases the deployment of new features because it creates

individual packages that can be used in any environment;

 Automation is key, any task that doesn’t need human intervention should be

automated from building, testing and deployment of the application.

Red gate follows a state driven approach when deploying databases, focusing on comparing

the source and target databases through dynamic scripts bringing both databases to the same

state (Fritchey & Skelton 2015). Once the changes are committed by the developer and

chosen to be released, DLM creates a diff report between the two databases before they are

applied. This guaranties the version control of the object and the creation of deployment

scripts.

Flyway is an open-source tool for database version control that uses the migration driven

approach, focusing in making migrations easy. (Anon 2017) Unlike other solutions, it has a

command line client and plugins add-ons for integrating other applications available on

market. Being migration the centerpiece of Flyway workflow, it will scan the filesystem and

compare them to migrations that have been applied to the database (Anon 2010).

Another popular tool to have CD in a database is DBMaestro. Unlike DLM or Flyway,

DBMaestro uses a hybrid solution known as database enforced change management solution,

which combines the version control processes on database objects with the generation of

deployment scripts on demand, based on version control repository (Anon 2014). By doing so,

DBMaestro ensures database code is covered, the version control repository acts as the

source of truth, the deployment scripts are adapted to the targets environment status and

handles merges and conflicts with ease (Anon 2014). Figure 3 demonstrates what DBMaestro

proposes versus what simple compare and sync offers.

43

Figure 3 – Comparison between Compare & Sync and DBMaestro 1

3.1.2 Continuous Delivery: ETL

Feedback should be triggered at every release, it is difficult to archive this after a release on

the ETL, as it can be a long process that takes hours to complete. This happens because ETL is

associated with data movement between databases (Windows et al. 2014), meaning that

some time is needed to deal with this information. At current times, ETL represents more than

the traditional purpose, to integrate data into de DW (Hurwitz et al. 2013). Now, ETL

processes data in different ways like cleansing, profiling, auditing and provide big data

extraction. This new technology aims to beat the major problem in a traditional ETL, latency

because of the data volume. Big data enables organization to manipulate vast amounts of

data at the right speed and time (Hurwitz et al. 2013).

3.1.2.1 Tools

IBM Information Server is a market-leading data integration platform from IBM that provides

massive parallel processing, delivering highly scalable and flexible integration to handle a

variety of data volumes (IBM 2016). It’s architecture provides a repository where information

about data sources, integration jobs, data warehouse and reports are located (Ballard 2010a).

The repository acts as a version control tool because the metadata is saved and uploaded to

the repository server, accessible to every user. This approach provides advantages to the

organization, promoting collaboration across developers and business users. In thought throw

releases, work is structured by folder distinguishing major releases from incremental fixes

(Ballard 2010b). Deployment packages are created from the repository server, where the

completed features are included. Each release candidate has a dedicated project, it can

include single releases, incremental fixes or other objects. Each of them is deployed to the

server, everything is achieved with the use of Information Server.

Talend, is an open source data integration software that runs natively in Hadoop and it is the

first data integration platform to give users great performance (Anon 2016b) It is especially

useful for big data projects. Just like the IBM solution, Talend offers its users with version

1 Source: The Definitive Guide to Database Version Control (Alex Papadimoulis 2012)

44

control, enabling collaboration between team members in a shared repository (Anon 2015).

Deploy is made through graphical console, activity monitoring and service locator capabilities.

Regarding the tool currently used by the organization, SQL Server Integration Services (SSIS) is

another platform for data integration by Microsoft. Easy to use and intuitive because of the

components available and options available on them. The ETL process is difficult to version,

comparing to traditional code versioning. The project is nearly impossible to version since it

can’t be merged using, e.g., Git and SSIS doesn’t offer this option natively. This happens

because the files are XML and have different identification tags, when opened with another

computer the identification tags can change. Merging situations like these, is time consuming

and ultimately of high costs to the organization, most of them adopt the method of one

developer per file (Costa 2015). But this goes against the CD principals, unfortunately most

tools that try to merge ETL projects fail, so this is the easiest and less costly choice.

Communication is key, to guaranty no developer works in the same object as another.

Deployment is eased by the tool that offers possibility to deploy projects via command line.

Proving the developers with the ability to create custom deployment scripts.

These are just three examples of leading tools for data integration, both IBM and Talend offer

the ability to version control ETL projects and, on IBM case, to use a third party together with

IBM deployment service. Talend has great features for ETL processes especially for big data,

currently a big trend on BI projects. Finally, SSIS is the old and trust worthy tool that offers a

big quantity of tasks with easy configuration. Right now, SSIS lacks the appeal of the other two

feature wise (Anon 2016a).

3.1.3 Continuous Delivery: Database / ETL General Tools

Apart from the previous described tools, others, of more general use, are considered since

respect both Database and ETL needs when versioning objects, build and deployment.

Starting with Git, which is an open-source version control tool whose focus is on performance

and integrity. In Git, data is store as a stream of snapshots instead of a list of file-based,

making it a mini filesystem. In addition, operations are local, making most operations almost

instantaneous since the entire history of the project is on the local disk, once changes are

ready to commit they are pushed into the online repository. The two previous facts justify the

performance point, integrity is guaranteed using unique tokens given to each commit, only

adding information to Git database making sure previous information isn’t lost and finally, on

Git files go through three stages committed (data is stored in a local database), modified

(changes were made but not committed on local database) and staged (files marked to be

committed next). Finally, Git promotes branching, a non-linear development method. This

feature is fast and easy to manage in the long run. (Chacon 2009)

Team Foundation Server (TFS) is a Microsoft application for version control, agile

development and data collection and reporting. Unlike Git, TFS uses a centralized version

control system, where teams checks in all their work into team foundation server. (Minium

45

2006). Also unlike Git, TFS presents others features such as project management, work item

tracking (used to track bugs, requirements, scenarios and tasks), team build (producing public

builds using MSBuild) and data collection and reporting (allowing analysis about bug tends,

test coverage among others). This tool too is an automation server for automatic build and

deployment.

Concerning other automatic build and deploy, two of the most popular tools are Jenkins and

TeamCity. Jenkins is an open-source CI application used to automate a range a task such as

building, testing and deployment. Its versatility and use of external components is aim at

archiving different goals. Jenkins has four major features that distinguish it from others

(Kphsuke Kawaguchi 2017):

 Easy installation, with just on command it is possible to install Jenkins;

 Easy configuration thanks to its friendly interface;

 Plugin ecosystem, Jenkins integrates with build and supply chain management tools,

proving teams with the possibility of fulfilling their needs with little problem;

 Distributed builds, Jenkins can distribute stages to multiple computers, having

compatibility between operations systems.

Jenkins is an example of success, big companies use Jenkins as their CD tool, the plugins,

community behind it and pipeline structure make Jenkins a go to application to satisfy

different needs.

TeamCity is a java-based CI application, just like Jenkins, it uses plugins to improve team

collaboration. Its key features are, different from Jenkins are:

 Efficient build management, for maximum efficiency TeamCity used a build grid to run

different build configurations;

 Code quality maintenance with the use of server-side code analysis features,

searching for code duplicates and performing code coverage, freeing up developer’s

local computers resources;

Table 2 summarize the differences between Jenkins and TeamCity considering import factors

and features common to both.

Table 2 – Difference between Jenkins and TeamCity

 Jenkins TeamCity

Ease of Use Simple, requires some

knowledge

Intuitive, easy to learn

46

Community

Support

Has bigger community,

since it has been around

for longer

Recent tool, lacks a large

community with different

profiles

Pricing Open-source, free Enterprise licences can be

bought, free version only

allows 20 builds and 3

build agents API Greater extensibility Less information available

External

Integrations

Great number of free

plugins

Reduced number of

plugins

3.1.4 Continuous Delivery: Deployment

Octopus Deploy is an automated deployment server. It makes it easy to automate deployment

into development, test and production environments. (Octopus 2017). Octopus uses NuGet

packages as storage mechanism, which is a package manager designed for the Microsoft

development platform. The packages are generated after developers commit their code into

the existing source control system. This code is later compiled by the CI server and then

packaged, ready to deploy. Because Octopus deploys packages to environments using various

steps and custom Powershell scripts (Octopus 2017), it gives teams a great advantage and

adaptability when deploying any project regardless of the type. Using Nuget packages isolates

releases so, it is impossible to tamper with files inside the release package.

Because the company has a series of different projects, which use different technologies,

Octopus has proven to be the best choice because of its versatility and ease of use when

deploying software into various environments and servers.

3.2 Solutions/approaches identified

Although TFS is currently used, migration to Git is the path being followed by the organization.

This decision affects every technological team but there is a possibility of using another of the

investigated tools, after stabilization of Git usage with every team.

Regarding the orchestrator/build software, the organization uses Jenkins. To maintain

homogeneity this is the best choice for the present project.

3.3 Evaluation of existing solutions/approaches

The applications chosen have to fulfil the needs of both BI teams and the organization. To

evaluate the solutions, it’s necessary to consult other tech teams on the organization, to keep

47

processes dependency free and outline the needs of BI teams to understand what software

will respond to these.

3.4 Conclusion

After the state of the art study, the adoption of CD was proven to be a success factor in any

used release process due to the use of pipelines, which provide several staging areas to test

the releases, making sure that the final deploy into production will be successful and cause no

damage to the current version.

Applied to BI, it will improve the release quality as well as the release frequency, since

developers are uncomfortable releasing new features manually and directly in production.

Currently the organization uses CD in several projects and to keep homogeneity through all of

them, the goal is to use the same tools for CD used in the other projects, Jenkins for

orchestrating the pipeline, Octopus Deploy for deploying software into the environments and

finally GIT for version control.

48

49

4 Solution design

The solution chapter aims to expose the solution design as well as explaining the decisions

made. It starts by listing, functional and non-functional requirements. Then, there is a detailed

architecture design, describing the different business processes, using several UML diagrams.

The chapter ends with the presentation of the alternatives discovered during the design

process which are considered relevant for the future.

Concerning the most common problems in a BI project, the solution should take into

consideration the following issues:

 Data handling, most database releases imply data manipulation/change that can be

easily scripted but hard to keep under version control, since updates affect data and

not objects. Consequently this scripts need to be re-runnable (able to run at any time

and produce the same effect without putting other data at risk) and saved in the

repository in an explicit folder.

 Operational data is becoming harder to access, to keep the source database isolated

from ETL changes, every necessary operational data is replicated onto database. Until

now this was the stipulated process, however, to keep data isolated and not

replicated (due to security issues) and because of architectural changes (with the goal

of designing the application as a service) data streaming is now event based. Meaning

instead of transferring data in batch, data is transferred by messages (Event-Driven

Messaging). Event-Driven Messaging is a SOAP design pattern that aims to address the

inefficiencies related to the traditional pooling based model (Frank & Zeng 2013). This

allows the application to communicate with other application via services, this

changes lead to the necessary of rethinking the current process.

 Infrastructure needs, data growth and performance are issues that impact and

influence the behavior of the DW, reporting, analysis and the ETL process. Larges

amount of data conditions DW access as so neglected features development that

don’t regard infrastructure needs and don’t follow state-of-the-art

50

technologies/techniques. DW volume is expected to grow quickly, with the integration

of offline data and clickstream, even though physical changes can be made to gain

advantages these shouldn’t be the first option. Team members should investigate

new technologies and techniques to resolve the problems faced. After migrating

everything to a cloud service, big data is now a reality in the organization, the current

project needs to adapt to this and improve its architecture. Data Lake is “a storage

repository that holds a vast amount of raw data in its native format”, in which, “data

structures and business requirements do not have to be defined until the data is

needed” (Harris 2016). At the organization, the data lake will be an ecosystem of all

the technologies where users can access data; this was one of the results of an

ongoing investigation (which aims to remove data synchronization of data in between

servers and have it available in one single infrastructure), of what was most fitting for

organization user's necessities.

 General Data Protection Regulation (GDPR) is a regulation for personal data, recently

released by European Union, for all European individuals. Because this regulation

affects every organization, either processor or controllers and regardless of the local it

takes place, the organization needs to conform to this rules. Being a data driven

organization, a few important measures need to be taken into account regarding

subject data:

o Organizations should clearly and easily make available the terms and

conditions, so users can provide consent or withdraw;

o Any data breach must be made public within 72 hours;

o Users have the right to access data concerning them, even requesting for

personal use or to be transferred over other organization;

o Users have the right to be forgotten, meaning the organization must erase

his/her personal data, cease further dissemination of the data and potentially

have third parties halt processing of the data.;

o Organizations should implement privacy by design, regarding data protection.

Appropriate technical and organizational measures should be used in order to

meet the requirements of this regulation, protecting the rights of the users;

o Lastly, every organization needs a Data Protection Officer (DPO), someone

with understand of the regulation, a clear and capable communicator and

able to effectively she his knowledge.

51

4.1 Proposed Architecture

4.1.1 Architecture

The architecture is the central artefact, it should illustrate the system so that it can meet the

requirements raised during the analysis, both functional and non-functional requirements.

Non-functional requirements represent aspects relevant to the quality and reliability of the

solution, while functional requirements represent the necessities to be developed and use

cases for those. In a CD project the functional requirements follow the principles of

repeatability, reliability, automation, versioning, frequency, communication and quality.

Releasing software should be as simple as pressing a button (Humble et al. 2010). Non-

functional requirements are performance, security and usability.

According to Martin Fowler, David Farley and Jez Humble, there are seven principles for

software delivery (Humble et al. 2010):

 Repeatable and reliable releases: the release process should be easy because every

part of it is tested several times before, to achieve this, everything possible should be

automated from building to releasing. If well done, version control can provide the

ability to fully automate the deployment process;

 Automating almost everything: automation isn’t the solution for everything, user

acceptance tests rely on user experience and therefore can’t be automated, such as

requirements that need human approval. But this is just a small part of the release

process that shouldn’t block the release, but take advantage from the automation of

everything else. The first things to be automated should be the bottlenecks identified

to being with: build, deploy, test and release. Gradually, everything should be

automated;

 Version Control: everything that is a part of the software should be kept under version

control. Apart from keeping a history of changes, version control allows software to

be installed at any workstation and to see the build version of difference

environments;

 Frequency is key: releasing big chunks of code can be hard, so integrating and

delivering value frequently, e.g. per feature, is an agile and easy way to deliver value

quickly and with less problems than before;

 Building quality software: delivering value is important but making sure features have

quality, tests results shouldn’t be ignored and fixed later after released;

 Discipline and communication are indispensable, CD process give power and

independency to teams, giving them the ownership of the release process. This means

52

teams must be responsible when establishing what a finished feature means and what

their mission is as a team;

 Continuous improvement, the release process developed initially will not serve the

teams needs in the future, just like development techniques, the release process

should evolve. Teams should discuss what needs to be improved and find ideas to

improve things.

The design pipeline architecture (Figure 3) should represent these values while making sure

performance, security and usability isn’t a setback. When dealing with corporate information

security is essential and can’t be overlooked.

Figure 4 - Concept Architecture

Considering the requirements raised, the following architecture concept as illustrated on

Figure 4 is intended to simplify the explanation of the pipeline architecture. Figure 5 presents a

more complex business model to represent the pipeline workflow.

53

Figure 5 – Release pipeline workflow

54

As presented on Figure 5, the pipeline workflow starts with the creation of a feature branch

from the integration branch, unlike a master branch, where the code of the application is

located, the integration branch is where every feature branch is integrated before going to

the main branch. To merge to the integration branch, the developed code must be reviewed

by other developer, this is known by merge request. If the feature is accepted, the CI server

will be triggered to create and build call the deployment server to install the feature in the

development environment. In here, the feature goes through the stages of feature testing and

owner approval. Once it is approved, the developer proceeds with the merge to the testing

branch, a replica of master but where new developments were first merged. This will trigger

the CI server once again to proceed with the installation of the feature in the QA (Quality

Assurance) environment, where automatic feature tests, regression tests and user acceptance

tests will run. QA environment is synchronized with production environment, meaning tests

will run in a similar setting as production. Only if tests are well succeeded in QA, the package

will be finally installed in production and then merged to master.

4.1.2 Detailed Architecture

4.1.2.1 Components

A component diagram doesn’t describe the functionality of the system but it describes the

components used to make those functionalities work. Figure 6 shows the seven components

identified, the development server, version control tool, build server, deployment server,

development machine, QA live and production. The developer machine communicates with

the version control to commit and push changes. The build server accesses the repository to

get build the code that communicates with the deployment server, which installs the

packages onto development, QA and production environments.

Figure 6 – UML Component Diagram

55

The main issue with this approach is the refresh of data on every environment. This happens

because DW systems have a heavy volume of data, having access to the hard drivers, is easier

for the organization to manage it, but since the organization uses cloud services, backing up or

copying a database is a complex and time consuming task.

4.1.2.2 Data Flow

During the process, the feature will go through two major processes committing/pushing and

installation in other environments. If a bug is found on production, a new branch,

denominated as hot fix, that instead of branching from the development repository, branches

from master since it needs to be an exact copy of code running in production. Figure 7 shows

the flow of information through the pipeline, depicting the system requirements graphically.

Figure 7 – Data Flow Diagram

4.1.2.3 Sequence and Activities

A feature lifecycle has 11 stages: branching, development, reviewing, testing, owner approval,

merging to integration branch and master, build on CI server, deploy on server, automatic

tests on QA server and finally, if everything is successful, release. Figure 8 illustrates the

previous, only a success scenario happens at every stage.

56

Figure 8 – UML Sequence diagram of feature lifecycle

A feature enters the pipeline of CI when the developer creates a branch base on the

integration branch and develops the feature on it. When the feature is ready, the developer

requests to merge the feature code into the integration branch, the request is reviewed by

another developer, making sure development guidelines are being followed. If approved, the

feature is merged into the integration branch and the CI server is trigged to build the project

and start the deployment on the development server. The following stage is testing, where

the tester accesses the new feature knowing the acceptance criteria. The feedback will trigger

the next stage, which is owner approval, or return to development. Subsequently, in case of

positive feedback, the feature is ready to be release, but first needs to pass automatic

acceptance tests, regression tests, user acceptance that will run on the QA server. After all of

them test positive the feature is released. Automatic acceptance tests and the acceptance

criteria should be defined by the developer. Regression tests make sure the system as kept its

stability and other features wasn’t altered. Finally, user acceptance tests validate the user’s

requests are correctly executed.

Figure 9 displays the possible scenarios and workflows for each decision point.

57

Figure 9 – UML activity Diagram of pipeline workflow

As for the repository branches activity sequence, Figure 10 illustrates how the branches

interact with the integration branch and master. The first work as a security measure so that

master is a representation of the current state of the application.

Figure 10 - Repository workflow

58

4.1.3 Alternatives

During research an alternative architecture was found, one that takes into account the

organization infrastructure and the requirements. The major arguments that lead to this

alternative are the costs associated with more application servers, needed in the first solution,

and ease of use of Git by the teams, presently teams don’t use Git or any other version control

software.

The first argument was raised due to the number of application server’s necessary for testing

releases. In this case, as illustrated on Figure 11, in this architecture, only one testing

environment would be used for automatic tests, feature testing would occur on the developer

machine instead of a dedicated server. But this approach requires more licenses for database

instances since every computer would be considered an isolated database. This method also

presents itself with security issues since the databases can’t have organization information

such as sales, this is due to regulations regarding user data exposure.

Figure 11 - Alternative architecture components

59

Figure 12 – Alternative repository workflow

Regarding the repository workflow, things would also change, as showed on Figure 12. For this

architecture, only one master repository is considered eliminating the use of an integration

branch. Although this removes the safe keeping, the integration branch provides it, it is easy

the use of feature branching for the developers and removes one process during the pipeline,

the merging of the feature installed in the master branch.

4.2 Final Architecture

After thoughtful consideration over the proposed solutions, it was concluded that the first

one presents more added value in comparison with the alternative. All the features will be

developed in a branch that later will be installed on development, QA and production

environments.

Figure 13 - Final Architecture

As stated on subchapter 3.1.3 Continuous Delivery: Database / ETL General Tools, the tool

chosen for orchestration CD tasks is Jenkins. It will be responsible for building the solution and

60

triggering Octopus when installing the release package into other environments. At this point

in time, Jenkins is used for the majority of projects in the organization but the plan is to start

using TeamCity and thrust aside Jenkins over time. For the time being, while the engineering

team is performing tests to TeamCity, new projects are developed using Jenkins.

As for the deployment software used, Octopus is used throughout the company and therefore

is to be used in any new projects, to keep consistency through the organization and ease the

maintenance.

4.2.1 Setting up git repositories

The first stage of this project is to setup Git repositories for each team project. The easiest and

most everyday way to version software is to do it in small, less complex parts instead of one

big project. The current ETL project consists on an intrinsic set of processes responsible for

different products, the first step into versioning it is to separate it in several distinct projects

that represent each process/product. Most features are developed only for one product, but

not rarely one feature might change more than one project. Regarding the first scenario,

having projects separated by product will help teams remove dependencies from the main

project and other processes, therefore, releases can happen freely without harming other

developments or products. In the latter scenario, even though multiple projects will be

affected, a number of release packages will be created for each changed project and then

installed.

61

Figure 14 - Some of the CI repositories created

4.2.2 Setting up pipeline on Jenkins

The Jenkins pipeline has four stages, starting off with the release build, making sure the

release package has no build errors. Before this stage the feature is developed in a

devlopment environment, when the development is comple the developer creates a release

package which will be installed again making sure the release package was created

62

successuflly. At this stage, feature testing starts, where another team member will test the

previous development. After the development is tested and approved by the product owner,

the next stage is triggered, the release package is installed in a quality secure environment.

This environment is a replica of production, where releases are fully tested to make sure it

encounters no errors when releasing the feature to production. In this stage, automatic tests

will also run. Finally, the release package is installed in production.

Figure 15 - Defined pipeline on Jenkins

The last stage is manually triggered, as shown on Figure 16, after the success of all previous

stages, the pipeline stops and waits for the confirmation to complete the last step.

Figure 16 - Pipeline after sucess of the first three stages

Finally, when every stage has run successfully the pipeline execution is complete and the

release package deployed to production, as presented in Figure 17. In the last three stages,

Octopus is called, executing its pipeline.

Figure 17 - Pipeline after every stage is successful

63

4.2.3 Setting up pipeline on Octopus

Figure 18 - Octupus pipeline

The Octopus pipeline has three stages, CI, SSIS deploy and database scripts execution. Into the

CI stage, each deploy is performed in an CI server where automatic tests will run, by the end,

depending on the tests run successfully or not, the server is rolled back to its previous state

and a response is sent to the pipeline triggering the next stage (in case of success) or not (if

tests aren’t successful). Currently, BI doesn’t have any CI tests running, but the goal is to use

the existing automatic tests and the feature tests developed during testing. Next, the ETL

packages for release are deployed into the server, for which the current pipeline is running.

Finally, in this final stage, database scripts are run against the server database.

4.3 Conclusion

With the all requirements defined, the solution design phase started with the designing of a

possible server architecture and the flow of states for each software development. Both were

designed with the teams help to make sure the solution was adequate to their needs and

therefore, make sure it will be used. This solution is modelled by other ongoing projects at the

organization, its goal is to use an orchestrator (Jenkins) as the pipeline stages manager and

the use of Octopus Deploy for the new software deployment.

The solution implementation was divided by stages and projects. The main ETL project was

divided in several small projects, independent from each other, i.e., each project has its own

repository, reducing dependency between projects. The development in stages will allow each

stage to be developed separately in the respective timings not compromising team

commitments.

64

5 Evaluation

This chapter purpose is to assess project evaluation, addressing objectives measures taken

into account, indicator, evaluation and support of hypotheses as well as their tests.

5.1 Solution Evaluation

5.1.1 Assessment Variables

The experimentation lifecycle consists of exploration, hypothesis construction, experiments,

data analysis and conclusions. There are several challenges associated with evaluating a

production system because of limitations on directly gathering important information about it

(Stricker et al. 2017). Carefully selected key performance indicators (KPI) identify precisely

where to take actions to improve performance. (Weber & Thomas 2005) KPIs focus on critical

aspects for the organization, which will possibly lead to success in the future (Weber &

Thomas 2005). These indicators should be monitored constantly, depending on the necessity

and relevancy of its results.

In CD projects, the indicators evaluate mainly time, number of successful releases and

satisfaction. The success of a pipeline is difficult to measure; a successful installation doesn’t

mean the feature release is effective. In this case, performance is of major importance so time

indicators will be measure and it needs to be measured correctly. Also, because the

development of this pipeline is meant to facilitate the release process to developers and

improve release frequency, satisfaction inquiries will be distributed among developers and

stakeholders. Finally, it’s important to understand the number of features released, bugs

detected among others, so quantity indicators will be also considered when assessing

variables.

When releasing new features on a DW there are several tasks that need to be taken into

consideration. The database changes made during development should be reflected in

65

production, this is archived by running the scripts previously before and executing them in

production, and next, if necessary for the installation, the ETL should be updated and

deployed, directly to production. The ETL project packages can’t be merged using a specific

tool but rather a complete replacement of the previous version with a new one. The greatest

impact of using CD in this environment is the control over each release version, making

possible to easily integrate new features and to develop several features at the same time

without merging problems when releasing them, with the use of CI. Even though ETL packages

can’t be correctly merged using a tool, CI will warn developers that new changes occurred in

the package they are currently working on, making it easier to merge changes manually and

keeping up with them.

Another reason CD will improve the release process is the installation in several environments

along with feature testing, before releasing it into production. This offers stability to both, the

software and the team, as new releases are tested before installation in production. With the

current release process, errors due to releases can only be detected in the next ETL run, so, if

the release breaks the ETL, the nightly process will be delayed, and therefore, the databases

will only be available to users later than usual. With CD it will be possible to test each release

before deploying it to production, preventing the ETL from breaking and provide users with

data at the expected time.

5.1.2 Supporting Hypothesis

A CD solution will improve the release process as well as the quality of software delivered,

because each release is tested several times before the final release. Because the release

process has several factors to be considered, measuring the success of this hypothesis can be

challenging. To start off the major problems with the current solution need to be gathered,

these will be the first to be tested in the new solution, the next step is to create key

performance indicators that prove the hypothesis.

In the current procedure for a release, after the feature it’s ready for release, the developer

runs every database script on production and replaces and deploys the new package in the

ETL project. This solution faces several challenges, being the most interesting the time to

production, manual releases and errors due to releases. The latter problems can be reduced

by using CD, since the release is automated and new features are tested in appropriated

environments before going to production. Regarding the first one, time to production

depends on the ability to quickly test the new feature on other environments and this variable

depends on the existing software and possibility of having a reduced set of data to test new

features.

As expressed before, the new solution will address the problems described above and its

results for the following key performance indicators (KPI) will show an improvement from the

current solution. The KPI’s were defined with the help of the BI teams within the organization,

according to their needs, are the following:

66

 Time to production – It starts when the feature is ready for development and ends

when it is in production through CD pipeline. Time to install a feature into production

is one of the main problems with the current solution, releases can take from minutes

to hours, possibly leading to a large downtime. To the company, teams and

stakeholders this is a key indicator of success for the new release process because it

will lead to more frequent releases. Because time to release is such an important

performance indicator, measuring it can be a challenge. According to agile

development a story/task includes the development, code review, tests and release,

so, the release starts after the product owner approves the story and ends at the

moment the feature is installed in production. With the help of the pipeline and issue

tracking software used by the organization, it’s possible to determine the time each

release takes.

 Number of bugs that escaped the stages of CD – The goal of the pipeline is to

minimize bugs on production this is possible thanks to the multiple stages of testing.

This indicator shows the number of bugs undetected during the pipeline, which are on

production. Currently, post-release can lead to errors because of the lack of

environments for testing, features propagate from development to production

therefore it is possible that new releases break the software in production. With CD,

bugs will be detected in earlier stages, preventing post-release errors. But the process

is not infallible, it is necessary to identify the number of bugs that are not detected in

the various phases of CD and how they can be detectable.

 Total regression test time – Track the total time it takes to do a full regression test.

Regression tests checks if the system respects the previous requirements by running a

set of automatic feature tests. This is mandatory, because it is important to do a full

regression test prior to any production deploy. Not doing so, it introduces risk to the

deployment. The purpose of CD is to provide the results of each phase as quickly as

possible, giving the team the ability to correct faulty builds more quickly to deploy the

release forward, once again, as soon as possible.

 Time to fix broken build – if the pipeline fails during build, it’s important to fix it

quickly to not block other releases. It’s important the pipeline is always free and faulty

builds are corrected in the least amount of time possible so the pipeline is free for

other releases to go forward. If the correction takes a long time, it is recommended to

roll back the software to its previous version, freeing the pipeline for further releases.

 Bug resolution time - teams should fix bugs as fast as they appear, this stands side by

side with code quality. A successful CD pipeline requires quality code, this mean

commitment of the team. Code quality together with multiple stages of testing will

allow the number bugs to be low but once they are found teams should be able to fix

it quickly. This allows the organization to understand if the pipeline is quick easy to

use.

67

 Production downtime during deployment – There is a cost to production downtime,

either in satisfaction from stakeholders or financial infrastructure costs. Because the

BI platform is a decision support system, its availability is crucial for the users. Data

should be accessible whenever the users need it. During releases the system can be

unavailable but with CD, downtime should be minimal and always checked for

improvements.

5.1.3 Evaluation Methodology

Other major issue with pipeline evaluation is how is measured. Like previously mentioned, the

goal of the pipeline is to provide easier and quicker releases for developers, while, at the same

time, delivering features, to stakeholders, quickly. Thus, satisfaction inquiries will be used for

both stakeholders and BI teams, allowing users to express themselves. This will provide the

team with possible improvements and other problems that otherwise wouldn’t be considered.

Because of the sparse location of stakeholders and the nature of a decision support system,

where consultation is the primary task, the inquiries show themselves as most appropriate

form of evaluation, since it will allow evaluating the opinion of the stakeholders on the effects

of CD in their daily tasks before and after its implementation. This will allow confirming the

influence that a CD pipeline will have on the stakeholders, their experience with the software

and their satisfaction with it. The inquiries need to consider time to request fulfillment,

software performance, number of bugs detected and downtime experienced during and after

release. Besides the previous points, the inquiries also need to measure success for more

specific points such as release time, ease of use and success on dealing with conflicts. Each of

this issues should be evaluated in a scale from -2 to 2, where -2 means worsened

exponentially, 0 means nothing changed and 2 means improved significantly.

The satisfaction inquiries will have seven evaluation points divided in two sections; the first

four apply to stakeholders and reflect the user experience of stakeholders with the software

instead of indicators. The last three apply only to the BI teams since they are related to

technical factors and the impact of CD on development:

 Time to request fulfillment, the main setback for stakeholders when requesting new

features is the time it takes to be release, this is due to the current complexity of the

process release;

 Software performance, user experience is an important issue in decision support

systems, information needs to be extracted quickly and major reports need to be fast

to export. Therefore, it is intended that users evaluate the performance of the

software. The goal of having CD is to improve releases and promote, not only new

features but also technical tasks such as improving procedures performance;

 Number of bugs detected, using CD allows each feature to be tested several times

before the last installation in production, which means errors and bugs are detected

earlier but some might escape thought the test battery. Stakeholders suffer the most

68

with bugs in data, it is important to make sure users see an improvement regarding

bugs detected after release in production when everything is release using CD;

 Downtime experienced during and after release, with the current release process

releases may lead to big downtimes, either because a rollback was necessary or

because releases cause critical errors. This is crucial for stakeholders, decision support

systems need to be available at all moments. So, reducing downtime is important and

with the use of CD the goal is to reduce the time and improve the user experience;

 Release time, currently release times are irregular and don’t provide its users with an

accurate time for availability after releases. With a release pipeline, it will be possible

to correctly predict the time necessary to software availability. With this, it will be

possible to prove the success of the pipeline and the improvement in the release

process after the use of it;

 Ease of use, manual releases require developers to modify several objects, run a

sequence of scripts, test and deploy the release by themselves. It is assumed that all

changes made during development are registered, making it possible for developers

to follow the release step by step, in the long run this process is not easy to follow and

makes it hard for other developers to do the release if the details weren’t specified.

This indicator, can only be evaluated by developers since they are the ones

proceeding with the releases;

 Success on dealing with conflicts, with the use of CD, each feature development is

encapsulated in a developing branch (common practice in CI). This branch is an image

of production for the time development started. While the feature is developed new

ones are releases, therefore, the previous branch will be outdated comparing to

production. CI has the ability to easily resolve this issues,

In order to compile the results of the surveys quickly, they will be performed using google

forms since it’s a commonly used tool in the company and provides data analysis in the end.

The questions to be asked are set out in Annex 1 (REFERENCIA A ANEXO).

5.1.4 Hypothesis Testing

In the future, after the completion of the current project, it will be possible to test if the

pipeline has improved the release process by analyzing the results from the surveys as all as t-

test will be used to confirm the improvement of KPI’s.

T-Tests are showed to be the best approach for testing this solution because each person will

evaluate the “before” and “after” scenarios and rate each question from -2 to 2 for both of

them. As there is one person two scenarios, this makes them paired (Fritz et al. 2015). This

method allows the evaluation of any two scenarios, in this work two solutions for the same

problem will be compared by the stakeholders and engineers of the project. Each question

69

will have an aggregate table of all answers collected, as it can be observed on Table 3, the set

of numbers was generated randomly. Each table will be analyzed to reach a conclusion about

the quality improvement comparing both solutions, featuring 10 pairs of observations.

Table 3 - Representation of answers collected for one question

Question 1

 Current

release

process

New

release

process

User 1 0 1

User 2 2 -1

User 3 -1 0

User 4 -2 1

User 5 1 -1

User 6 2 -2

User 7 -2 2

User 8 0 1

User 9 2 -1

User 10 1 2

With this table it is possible to get the t distribution, which plays an important role in

hypothesis testing. For this case, the distribution shows the average users opinion and how it

is distributed, making it possible to test the development success.

Graph 1 – Example of normal distribution for one trial

0

0.05

0.1

0.15

0.2

0.25

0.3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

70

71

6 Conclusion

This work addresses one BI projects gap, which is the lack of automatisms for releases. As a

case study, Farfetch’s BI projects were used.

CD concepts provide teams with a faster and easier method of releasing software, starting

with the use of automatic tests and version control. But setting up a CD pipeline can be

challenging depending on the team’s current development methodology. For BI projects,

version control tends to be non-existent so the first steps to use CD are for setting up version

control and improve development methodologies.

The challenges for BI projects is finding the right tools and methods that fit each team

necessities and requirements, because of the diversity of BI components it is difficult to find

one universal tool, so manage each part of a BI project is an option, using one tool for

database versioning, another one for ETL versioning and then, another for orchestrating the

pipeline. At the same time, the organization aims at keeping software homogeneous through

all platforms, so, it was necessary to find a balance between these.

The use of CD will improve software release frequency, since releases are manual and are

liability, and software quality will improve because fewer bugs should be released into

production thanks to the test stages before the final deploy to production.

Has it was previously referred, in the introduction chapter, the main goal is to reach WARP

releases, teams are fully responsible for their release process and there is no external

dependency with Tech-Ops. For reaching this stage of releases, teams need to be fully

adapted to the current process of CD.

Implementing CD to BI projects has proven to be a challenge regarding version control of the

ETL project because of its specific behavior in face of changes. The chosen solution, for this

part is to completely replace the package with the new one, conflicts need to manually handle

because of the lack of tools to merge changes. For the moment, no database versioning will

be used. Because of the current law changes regarding data, new solutions are being

researched, that both protect data and object changes. After choosing one of the proposed

72

solutions, the implementation was divided in stages to facilitate development and to

successfully test each stage. This was proven successful for the pilot project which goal was to

prove this hypothesis success.

Regarding future work, testing this new solution is the main goal, proving its success.

Measuring the improvement in release frequency and the pipeline success is crucial. The

architecture implemented should be visited and improved whenever necessary, further

reading into existing tools is essential to make sure the solution evolves and with each

breaking change, a new set of tests should be executed, proving the teams with the

improvements through time.

73

References

Alex Papadimoulis, 2012. DATABASE CHANGES DONE RIGHT. Available at:
http://thedailywtf.com/articles/Database-Changes-Done-Right.

Allee, V., 2002. Understanding Value Networks.

Ambler, S.W. & Sadalage, P.J., 2006. Refactoring databases : evolutionary database design,
Addison Wesley.

Anon, 2017. About Flyway - Flyway by Boxfuse • Database Migrations Made Easy. Available at:
https://flywaydb.org/about/ [Accessed February 15, 2017].

Anon, 2016a. ETL Tools Comparison | Best ETL Tools in market | Adeptia. Available at:
https://adeptia.com/products/etl_vendor_comparison.html [Accessed February 15,
2017].

Anon, 2010. Flyway User Guide. Available at:
https://flywaydb.org/documentation/command/migrate [Accessed February 15, 2017].

Anon, 2015. Talend MDM Platform Studio 6.0.1 - User Guide (EN) - Talend Online
Documentation & Knowledge Base. Available at:
https://help.talend.com/display/TalendMDMPlatformStudioUserGuide60EN/1.3+Teamw
ork+and+development+consolidation [Accessed February 15, 2017].

Anon, 2014. The Definitive Guide to Database Version Control. Available at:
https://www.infoq.com/articles/Database-Version-Control [Accessed February 15, 2017].

Anon, 2016b. What Is Talend: Talend Software Overview & About Talend. Available at:
https://www.talend.com/about-us/ [Accessed February 15, 2017].

Ballard, C., 2010a. IBM InfoSphere Streams. , (May). Available at:
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:IBM+InfoSphere+Stre
ams#3.

Ballard, C., 2010b. IBM InfoSphere Streams. , (May).

Beck, K. et al., 2001. Principles behind the Agile Manifesto. Available at:
http://agilemanifesto.org/principles.html [Accessed February 9, 2017].

Chacon, S., 2009. Pro Git. Control, pp.1–210. Available at:
http://www.springerlink.com/index/10.1007/978-1-4302-1834-
0$%5C$nhttp://books.google.com/books?hl=en%257B%257B%257D%257B&%257D%25
7B%257D%257Damp;lr=%257B%257B%257D%257B&%257D%257B%257D%257Damp;id
=qJsXefpx1AUC%257B%257B%257D%257B&%257D%257B%257D%257Damp;oi=fnd%25
7B%257B%257D%257B&%257D%257B%257D%257Damp;pg=PR14%257B%257B%257.

Costa, J., 2015. BI - Continuous Deliver Using SSDT, SSIS and Git.

74

DANIEL PERIANEZ, 2014. Continuous integration in data warehouse development |
CONCENTRA. Available at: https://www.concentra.co.uk/blog/continuous-integration-
data-warehouse-development [Accessed February 9, 2017].

Dictionaries, O., 2017. Definition of value. Available at:
https://en.oxforddictionaries.com/definition/value.

Dictionary, C., 2017. Perceived Value. Available at:
http://dictionary.cambridge.org/dictionary/english/perceived-value.

Duvall, P., Matyas, S. & Glover, a, 2007. Continuous integration: improving software quality
and reducing risk, Available at:
http://medcontent.metapress.com/index/A65RM03P4874243N.pdf%5Cnhttp://books.g
oogle.com/books?hl=en&lr=&id=PV9qfEdv9L0C&oi=fnd&pg=PP5&dq=Continuous+Integr
ation.+Improving+Software+Quality+and+Reducing+Risk&ots=mThO_bQgyx&sig=LwhiiR
ZnlXNPkbX3dZHUB8lFsjI%5Cnh.

Factor, P., 2014. Continuous Delivery and the Database. Available at: https://www.simple-
talk.com/sql/database-administration/continuous-delivery-and-the-database/ [Accessed
February 13, 2017].

Fowler, M., 2013. Continuous Delivery. Available at:
https://martinfowler.com/bliki/ContinuousDelivery.html [Accessed February 9, 2017].

Frank, J.H. & Zeng, L., 2013. On event-driven business integration. Proceedings - 2013 IEEE
10th International Conference on e-Business Engineering, ICEBE 2013, pp.82–89.

Fritchey, G. & Skelton, M., 2015. Database Lifecycle Management Achieving Continuous
Delivery for Databases.

Fritz, M. et al., 2015. Chapter 3 – Comparing two designs (or anything else!) using paired
sample T-tests. Improving the User Experience Through Practical Data Analytics, (1993),
pp.71–89.

Harris, J., 2016. The growing importance of big data quality. Available at:
http://blogs.sas.com/content/datamanagement/2016/11/21/growing-import-big-data-
quality/.

Herstatt, C. & Von Hippel, E., 1992. Developing New Product Concepts Via the Lead User
Method: A Case Study in a “Low Tech” Field", Lead User Workshops for New Product
Concept Development: A Case Study. Journal of Product Innovation Management, 9,
pp.213–221.

Humble, J., Farley, D. & Fowler, M., 2010. Continuous Delivery Reliable Software Releases
Through Build, Test and Deployment Automation,

Hurwitz, J. et al., 2013. Big Data for Dummies,

IBM, 2016. IBM - InfoSphere Information Server - Data Integration, Information Integration -
Overview. Available at: https://www-
01.ibm.com/software/data/integration/info_server/ [Accessed February 14, 2017].

75

Khorikov, V., 2015. State vs migration-driven database delivery - Enterprise Craftsmanship.
Available at: http://enterprisecraftsmanship.com/2015/08/18/state-vs-migration-driven-
database-delivery/ [Accessed February 13, 2017].

Kimball, R., The Data Warehouse Toolkit. The Complete Guide to Dimensional Modelling-Third
Edition,

Kimball, R. & Caserta, J., 2015. The Data Warehouse ETL Toolkit,

Kphsuke Kawaguchi, 2017. Jenkins Wiki. Available at: https://wiki.jenkins-
ci.org/display/JENKINS/Meet+Jenkins.

Luhn, H.P., 1958. A Business Intelligence System. IBM Journal of Research and Development,
2(4), pp.314–319. Available at: http://altaplana.com/ibmrd0204H.pdf.

Methods, E. et al., 1996. Fuzzy Front End : and Techniques. Industrial Research.

Minium, D., 2006. Team Foundation Server Fundamentals: A Look at the Capabilities and
Architecture. Available at: https://msdn.microsoft.com/en-
us/library/ms364062(v=vs.80).aspx.

NICOLA, S., FERREIRA, E.P. & FERREIRA, J.J.P., 2012. A NOVEL FRAMEWORK FOR MODELING
VALUE FOR THE CUSTOMER, AN ESSAY ON NEGOTIATION. International Journal of
Information Technology & Decision Making, 11(3), pp.661–703. Available at:
http://www.worldscientific.com/doi/abs/10.1142/S0219622012500162 [Accessed
February 9, 2017].

Noone, S., Agile Mindset. Available at: https://www.linkedin.com/pulse/agile-mindset-simon-
noone.

Octopus, 2017. Octopus Documentation. Available at: https://octopus.com/docs/getting-
started#Gettingstarted-Octopusinyourdeliveryprocess.

Osterwalder, A. et al., 2010. Business Model Generation, Available at:
http://www.amazon.com/Business-Model-Generation-Visionaries-
Challengers/dp/0470876417.

Porter, M.E., 1985. Competitive Advantage - Creating and Sustaining Superior Performance.
New York: FreePress, p.580.

Stricker, N. et al., 2017. Considering Interdependencies of KPIs – Possible Resource Efficiency
and Effectiveness Improvements. , 8(October 2016), pp.300–307.

Swoyer, S., 2016. DevOps and BI: Software Development in Transition -- Upside. Available at:
https://upside.tdwi.org/articles/2016/02/24/devops-and-bi.aspx [Accessed February 10,
2017].

Weber, A. & Thomas, R., 2005. Key Performance Indicators - Measuring and Managing the
Maintenance. IAVARA Work Smart, (November), pp.1–16.

Windows, M. et al., 2014. Data Warehousing in the Age of Big Data, Available at:

76

http://www.americanbanker.com/issues/179_124/which-city-is-the-next-big-fintech-
hub-new-york-stakes-its-claim-1068345-
1.html%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/15003161%5Cnhttp://cid.oxfordjour
nals.org/lookup/doi/10.1093/cid/cir991%5Cnhttp://www.scielo.

Woodall, T., 2003. Conceptualising “Value for the Customer”: An Attributional, Structural and
Dispositional Analysis. Academy of Marketing Science Review, 12(5), pp.1–42.

Yaniv Yehuda, 2014. Database Continuous Delivery. Available at:
https://www.infoq.com/articles/Database-Continuous-Delivery.

Yates, A., 2015. Critiquing two different approaches to delivering databases: Migrations vs
state | working with devs... Available at: http://workingwithdevs.com/delivering-
databases-migrations-vs-state/ [Accessed February 13, 2017].

77

Attachments

Annex 1

