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Preface

Tree-shaped flow networks (dendritic flow patterns) are essential in the design and
functioning of natural and engineered systems. These networks are able to connect,
through a fluid flow, one point (source or sink) to a finite-size volume or a
finite-size area. A distinctive feature of these networks for fluid distribution is their
hierarchical structure and the successive generation of vessel divisions, which
become progressively smaller. Tree networks present a close relationship between
design and function, because they are not purposeless: Currents are guided in a
certain way to achieve a maximized performance. In fact, space and resources are
not unlimited, and performance and compactness are achieved through the design
that minimizes the “operation cost.” This works for vascular networks, respiratory
trees, and river basins, but also for oil and gas transportation, microfluidic manifold,
and microchannel cooling systems.

This book is an attempt to present a comprehensive overview of the funda-
mentals in the area of tree flow networks. Emphasis is placed on the understanding
of the design features of these networks and on their significance to the transport
phenomena associated with these systems. It is intended to bring into perspective
the relevant research that has been performed, mainly that which provides the
reader with a comprehensive overview of the topic.

With these aims in mind, the book begins with a brief overview of a general
framework within which tree-shaped networks take place (Chap. 1). Chapter 2
starts with the Hess–Murray law, starting from its original form, and extending it to
turbulent flow, non-Newtonian flows, etc. Flows in asymmetric branched systems,
occlusion in tree flow networks, and the fractal description of optimized tree flow
architectures are also included. Scaling relations have been observed to exist in
geophysics and physiology. This chapter also contains a review of the studies that
use optimized tree networks to provide a theoretical foundation for the existence of
Kleiber’s law for metabolic rates and the scaling laws of river basins, but also for
the number of bifurcations of the respiratory tree. Chapter 3 deals with particle
transport through the respiratory tree. It starts with quantification and a size char-
acterization of aerosol particles and their deposition mechanism within the airways.
Then, equations that describe the motion of air and dilute particles are presented.
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This chapter also contains a brief review of some of the pertinent numerical and
experimental investigations regarding inhaled particles. Chapter 4 studies several
shapes of extended surfaces, i.e., fins and an assembly of fins. The goal is to
discover the best configuration for T-, Y-, T–Y-shaped and a complex assembly of
fins. The constructal design method is introduced and will be used in this chapter
and the subsequent chapters, associated with the exhaustive search method and/or
genetic algorithm, to optimize the studied architectures. Chapter 5 shows that it is
important to analyze not only the fins but also the shape of the body to which the
fins are attached. Configurations with trapezoidal and circular bodies are optimized
for several thermal conductivities and other parameters of interest. Inverted or
negative fins, also known as cavities, are investigated in Chap. 6. Isothermal and
convective elemental cavities are optimized. Later, additional configurations such
as T-, Y-, X-, and H-shaped cavities are studied, and the performance evolution
from elemental to H-shaped configuration (second construct) is shown. Chapter 7
gives a brief idea as to how to cool a heat generation body using high thermal
conductivity material. The best configurations of the Y-shaped pathways are
determined, through a procedure that can be extended to other configurations of
pathways, or pathways with different thermal conductivities. Finally, additional
topics are suggested for the continuation of this study, for example configurations in
which the thermal contact resistance can be taken into account.

We would also like to thank the students in our courses for the feedback on
lecture notes that support parts of the material in this book. We thank our friends
Profs Adrian Bejan and Sylvie Lorente; their own excellent books have inspired us
and provided a goal to aim for. We gratefully acknowledge Ana Paula da Silva
Rocha (Aninha) for her assistance. We are also indebted to the team at Springer
Publishing Company for their continuous support in the preparation of this book.
Last but not least, a special thanks to our families for their support.

António F. Miguel
Luiz A. O. Rocha

Evora, Portugal
São Leopoldo, Rio Grande do Sul, Brazil 
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