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 The rapid growth of wind power generation and the need for a smarter grid with 
decentralized energy generation has increased the interest in vertical axis wind 
turbines (VAWT), especially for the urban areas. For the urban areas the VAWT 
offer several advantages over the horizontal ones, so their acceptance is rising. The 
lift-type VAWT (Darrieus wind turbines) have a natural inability to self-start 
without the help of extra components. The existing methodologies are usually 
used to optimize the wind turbine performance, but not its ability to self-start. 
Indeed, studying the aerodynamic behavior of blade profiles is a very complex and 
time-consuming task, since blades move around the rotor axis in a three-
dimensional aerodynamic environment. Hence, a new methodology is presented 
in this paper to study the self-start ability of VAWT, which offers a substantial time 
reduction in the first steps of new blade profiles development. Both symmetrical 
and asymmetrical airfoils are targeted in our study, presenting comprehensive 
results to validate our methodology.  
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Introduction 

The renewable energies share in power production has increased significantly in many 
European countries [1-6]. The wind energy systems have been considered as one of the 
most cost effective of all the currently exploited renewable energy sources, so a growing 
investment in wind energy systems has occurred in the last decade. 

The decentralized energy generation is an important solution in a smarter grid with a 
growing acceptance for the urban areas. Also, the increasing need for more 
environmentally sustainable housing and the new European norms regulating this issue, 
have contributed for the promotion of wind energy systems in buildings. 

In urban areas the wind is very turbulent and unstable with fast changes in direction and 
velocity. 
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In these environments the vertical axis wind turbines (VAWT) have several advantages 
over horizontal axis wind turbines (HAWT) [7]: insensitivity to yaw wind direction 
changes (so the turbine does not need the extra components to turn the rotor against the 
wind); smaller number of components (the reduced number of components leads to a 
more reliable product and a reduced cost in production and maintenance); very low sound 
emissions (ideal for urban areas); ability to generate energy from wind in skewed flows 
(skewed flows are very usual in urban areas, especially in the rooftop of buildings); three 
dimensional structural design, easier to integrate in urban architecture; ability to operate 
closer to the ground level. 

The modern VAWT can be divided in three basic types: Savonius [8-9], Darrieus [10-11] 
and H-rotor [12]. The Savonius VAWT is a drag-type wind turbine. This type of wind 
turbine has the ability to self-start and has high torque, but it operates at low tip speed 
ratio (TSR). The Darrieus VAWT is a lift-type wind turbine. Darrieus VAWT can be divided 
in two kinds: curved bladed turbine (or egg-shaped turbine) and straight bladed turbine. 
The H-rotor is the most common configuration of the straight bladed Darrieus VAWT. The 
“H” rotor received its name due to the arms and straight blade configuration resembling 
the “H” letter. Lift-type wind turbines can operate at high TSR, but they usually have an 
inherent problem: the inability to self-start [13]. On one hand, if VAWT need to be self-
starting capable their performance is compromised, not being able to work at high TSR. On 
the other hand, if VAWT need to exhibit superior performance at high TSR they are not 
able to self-start without extra components or external power. 

This paper is based on straight bladed Darrieus VAWT and the main goal is to present a 
new methodology to study their self-start behavior, capable of offering a fast tool for 
developing blade profiles. In this methodology, a relationship between the wind turbine 
(when it’s in a stopped position), its blade profile design, and the aerodynamic behavior of 
the wind flow, is determined. Several symmetrical and asymmetrical airfoils are tested and 
their output data analyzed in order to demonstrate the proficiency of the new 
methodology. 

This paper is organized as follows. Section 2 presents the performance prediction and 
modeling of the straight bladed Darrieus VAWT. Section 3 addresses the Darrieus VAWT 
ability to self-start. Section 4 provides the new methodology to study self-start capabilities. 
Section 5 presents the results considering several symmetrical and asymmetrical NACA 
airfoils. Finally, Section 6 outlines the conclusions. 

2. Darrieus VAWT Performance Prediction and Modeling 

The VAWT aerodynamic modeling is very complex since the turbine blades travel around 
the rotor in a 360º rotation. While some of the blades have lift forces acting on them, others 
suffer from drag forces in an opposing movement to the rotor rotation. Additionally, the 
blades that are traveling in the upstream side of the turbine induce some turbulence that 
will affect the blades performance travelling in the downstream side. These and other 
issues make VAWT performance prediction a very hard task, far more complex than for 
HAWT. 

Several VAWT performance prediction models [13] have been developed, which will be 
briefly described in this section. The flow velocities diagram of a lift-type VAWT is shown 
in Fig. 1. 
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Fig. 1 Flow velocities diagram of a lift-type VAWT 

In Fig. 1 shows the undisturbed wind velocity V  that reaches the wind turbine, the 

induced velocity aV  at the blade profile level, and the induced velocity due to the rotor 

angular speed at the wind turbine rV , i.e., due to the blade in its movement around the 

rotor, given by: 

rVr   (1) 

The blade is influenced by the contribution of aV  and rV  to a resulting chordal velocity 

cV , i.e., the velocity parallel to the chord line of the blade profile, given by: 

 coscoscos aaaarc VVVrVVV   (2) 

The induced velocity aV  has also a contribution to the normal velocity nV , i.e., the velocity 

in a radial direction in relation to the center of the rotor, given by: 

sinan VV   (3) 

The relative flow velocity W  is given by: 

222 cos21   anc VVVW  
(4) 

The blade an angle of attack   is given by: 
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(5) 

If the blade turbine is able to modify its pitch angle  , the blade angle of attack   will be 

given by: 
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 The forces diagram acting on the blade airfoil is shown in Fig. 2. 

 

Fig. 2 Forces diagram acting on the blade airfoil 

The tangential force coefficient tC  and the normal coefficient nC  are given by: 

 cossin dlt CCC   (7) 

 sincos dln CCC   (8) 

The tangential force tF  and normal force nF  are given by: 

2

2

1
WhcCF tt   

(9) 

2

2

1
WhcCF nn   

(10) 

The average tangential force taF  in function of the tangential force tF  around the rotor 

and the azimuth angle   is given by: 

 






2

0
2

1
dFF tta  

(11) 

The turbine overall torque Q  is given by: 

rFnQ ta  (12) 

The turbine overall power P  is given by: 
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QP   (13) 

The power coefficient PC  is the relation between the wind turbine power output and the 

power available in the wind, given by: 
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(14) 

Several mathematical models have been developed by different researchers to achieve a 
more accurate prediction of lift-type VAWT performance. The most common used models 
can be divided in three categories: blade element momentum (BEM) model, vortex model 
and cascade model [13]. 

2.1. BEM Model 

BEM theory is a combination of blade element theory with basic momentum theory, 
studying the flow and behavior of the air on the blades and the involved forces. The base 
models on the BEM theory experience some problems when trying to predict the 
performance for high TSR and high solidity   turbines. Based on BEM theory, several 

models have been developed: single streamtube model, multiple streamtube model and 
double-multiple streamtube model. 

2.1.1 Single Streamtube Model 

This is the simplest model and is represented by a single streamtube where the turbine is 
placed and its blades in their revolution are translated in an actuator disc. All the blades 
are translated in only one blade where its chord is the sum of all turbine blades chords. 
The wind speed in the upstream and downstream sides of the rotor is assumed to be 
constant. The effects of the wind speed outside the streamtube are assumed negligible. The 
single streamtube model is illustrated in Fig. 3. 

 

Fig. 3 Single streamtube model diagram 

 

The uniform velocity through the rotor is given by: 
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(15) 

The turbine drag force DF
 considering the rate of change of momentum, is given by: 

)( waD VVVAF  
 

(16) 

The turbine drag coefficient DC
 is given by: 
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Considering (15), DC  is given by: 
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The induced velocity ratio is given by: 
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(19) 

By using (19), and with the general mathematical expressions that were presented before, 
it is now possible to predict the torque and power coefficient of the VAWT. However, the 
single streamtube model is not good in predicting the turbine performance, since it 
neglects the wind speed variations inside and outside the rotor, usually providing much 
higher values than those obtained from experimental data. 

2.1.2 Multiple Streamtube Model 

This model is a variation of the single streamtube model, where instead of having only one 
streamtube there are several parallel and adjacent streamtubes independent from each 
other, having their own undisturbed, induced and wake velocities. The multiple 
streamtube model is shown in Fig. 4. 

The induced velocity ration equation for this model is given by: 
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Several multiple streamtube models have been presented over the years, with the addition 
of drag forces, blade profile geometry, turbine solidity, curvature flow, and so on. However, 
the performance prediction is still far from experimental values. 
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Fig. 4 Multiple streamtube model diagram 

2.1.3 Double-Multiple Streamtube Model 

The double-multiple streamtube model [14-16] is a variation of the multiple streamtube 
model, in which the actuator disc is divided into half cycles representing the upstream and 
the downstream of the rotor, as shown in Fig. 5. 

The actuator disc is then divided in two actuator discs, each of them with their own induced 

velocity. The induced velocity in the upstream is represented by auV  and the induced 

velocity in the downstream is represented by adV . 

 

Fig. 5 Double-multiple streamtube model diagram 

The induced velocity in the downstream is influenced by the wake velocity in the upstream 

eV , which is given by: 
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The induced velocity in the downstream adV  is given by: 

iudedad VuuVuV  )12(  (22) 

The interference factor for the downstream, which is given by: 

e

ad
d

V

V
u   

(23) 

This model has received some improvements over the years and provides a good 
performance for most predictions, but it may suffer convergence problems in some cases. 

2.2. Vortex Model 

The vortex model [17-18] predicts the performance of VAWT by calculating the vorticity 
in the wake of the blades. The blades are substituted by vortex filaments whose strengths 
will be determined by the blade profile coefficients, relative flow velocity and angle of 
attack. By Helmholtz theorems of vorticity, the strengths of the vortex filaments are equal 
to each trailing tip vortex. 

Several modifications on this model have been presented, but the main disadvantage of the 
vortex model still persists, the high computation time. 

2.3. Cascade Model 

In the cascade model [19] the VAWT blades are arranged in vanes called cascade and 
positioned in equal interspaces of the turbine perimeter divided by the number of blades. 
The aerodynamic properties of the blades are calculated independently taking in 
consideration the upwind and downwind sides of the rotor, their local Reynolds number 
and the local angle of attack.  

This model does not have convergence problems and provides good performance 
prediction in low and high TSR. However, like the vortex model, the cascade model 
requires a high computation time. 

2.4. Aerodynamic Disturbances 

Although there are several mathematical models for the VAWT performance prediction, 
still the aerodynamic behavior of the VAWT rotor is very difficult to predict. Several 
aerodynamic disturbances can be found in the VAWT operation, such as deep stall, 
dynamic stall and laminar separation bubbles. 

References [20-22] model the dynamic stall on VAWT, validating the results with particle 
image velocimetry data. In the rooftops the wind flows in a skewed movement. Reference 
[23] addresses the feasibility analysis of a Darrieus VAWT installation in the rooftop of a 
building. Also, a computational study of a rooftop size VSWT with straight blades is 
presented in [24]. Some solutions have been presented for preventing vortex shedding and 
reducing drag in flows past bluff bodies. Large vortices forming in high-speed flows past 
bluff bodies tend to be shed downstream, with new vortices forming in their stead. These 
issues result in an increased drag, unsteady loads on the body, and produce an unsteady 



Batista et al. / Research on Engineering Structures & Materials 4(3) (2018) 189-217 

 

197 

 

wake. Reference [25] presents a trapped vortex cell solution that keeps the vortex near the 
body at all times, reducing those effects. 

3. Solutions to Overcome the Natural Self-Start Inability of Darrieus VAWT 

The Darrieus VAWT has a natural inability to self-start, since the blades suffer at the same 
time with the drag forces and the lift forces. These forces usually balance each other 
leading to a lack of starting torque. Nevertheless, there are few works that study the 
starting performance of Darrieus VAWT through the development and validation of 
computational simulation, as occurs in [26]. 

Several solutions have been presented to overcome the self-start inability of Darrieus wind 
turbines, such as external electricity feed-in, guide-vanes, hybrid configuration, blade pitch 
optimization, blade form optimization, and blade profile design. 

3.1. External Electricity Feed-In 

The use of a generator with external electricity feed-in helps the rotor to start rotating. 
This is commonly used in the egg shaped Darrieus VAWT. A problem arises here when the 
wind turbines are disconnected from the grid and do not have an external electricity 
source. 

3.2. Guide-Vanes 

The use of a guide-vane [27] may prevent the drag effect on the blades moving in the 
upwind zone of the wind turbine, optimizing the wind flow in the downwind zone to 
maximize the lift forces on the blades. The guide-vanes increase the turbine solidity, 
leading to higher forces to be exerted in the pole. However, the use of guide-vanes implies 
that more material and components are required, increasing the VAWT price and reducing 
its sustainability. 

3.3. Hybrid Configuration 

A Savonius VAWT has been used in a hybrid configuration with a Darrieus VAWT [28-29]. 
This hybrid configuration gives the wind turbine the self-start capabilities (offered by the 
Savonius VAWT) and the ability to operate at TSR higher than one (offered by the Darrieus 
VAWT). However, at high TSR the Savonius VAWT increases the drag leading to a lower 
performance, which would not occur if only a Darrieus VAWT was used. 

3.4. Blade Pitch Optimization 

Reference [30] addresses the VAWT blade pitch optimization. The mechanical systems 
used to optimize the blade pitch angle are usually complex and, since they need to operate 
at high speeds when the turbine reaches high TSR, the components experience fatigue. The 
increase of turbine complexity and components number leads to higher production and 
maintenance costs. Also, the components fatigue reduces the lifetime of the turbine. Some 
tools are presented in [15] to define the optimal variation of the blade pitch angle in 
straight bladed Darrieus VAWT. 

3.5. Blade Form Optimization 

The optimization of the blade form may increase the drag properties at low TSR and 
increase the lift properties at high TSR [31]. These systems have similar problems to the 
blade pitch systems presented earlier, leading to a complexity increase and higher 
production and maintenance costs. 
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3.6. Blade Profile Design 

A blade profile capable of offering self-start capabilities to the wind turbine is desirable 
[26]. By studying and developing new profiles for the VAWT blades, a self-start 
improvement of the wind turbine may be achieved. However, this is a very time consuming 
task that usually requires a significant computation time to study profile variations. Some 
of the modifications that can be made to the blade profile to enhance the self-starting 
behavior of VAWT are: high turbine solidity; blades with inclined leading edge; cambered 
blades [32-33]; thick blades [34]. However, as the VAWT self-starting behavior is 
enhanced, a compromise to the wind turbine performance at high TSR should be made. 

3.7. Motivation for a New Methodology 

This paper envisages the development of new blade profiles to overcome the natural 
inability of the VAWT to self-start, without compromising much of the performance at high 
TSR. Several models have been developed to predict the Darrieus VAWT performance 
when its blades are moving, but no model addresses the study of the turbine ability to self-
start relying only on the blades form. Hence, the new methodology presented in this paper 
offers a fast-computational tool for the development of new blade profiles for Darrieus 
VAWT, capable of being integrated with existing tools or capable of being used as a 
standalone tool. The new methodology is presented hereafter. 

4. New Methodology to Study Self-Start Capabilities 

4.1. The Problem to Solve 

To study the self-start capabilities of a VAWT blade profile, there is the need to create a 
methodology that would give a closer relation between the wind forces acting on the blade, 
and the blade profile itself. Also, the methodology should be fast in computation time, 
useful in the first steps of the studies when developing different profile designs. 

A wind turbine is able to self-start when without external help (extra components or 
external energy) it accelerates from a stopped position to a certain rotation movement able 
to produce energy. The new methodology presented studies the exact moment when the 
wind turbine starts to move by itself. 

The VAWT must take advantage of the drag forces caused by the wind on the blades when 
the turbine is in a stopped position in order to self-start relying only on the blades profile, 
without compromising the wind turbine performance at high TSR. If possible, the lift forces 
should be used in cooperation with the drag forces to induce the self-start capability of the 
wind turbine, especially when the turbine is stopped and the wind flow starts to achieve 
higher velocities. 

Since the blade may be at any given position around the rotor, there is the need to study 
the blade profile at any angular position from 0º to 360º. Accordingly, the dynamic stall 
behavior, air flow separation and any other aerodynamic disturbances must be taken in 
account [20-22]. To study these aerodynamic disturbances requires a significant 
computation time, which leads to considerable time consumption not advisable in the first 
steps of development studies. So, the new methodology that is present here is mainly 
suitable for a fast analysis, when there is the need to compare several blade profile 
solutions to start restricting and eliminating different designs. It is also important not to 
forget the analysis of different aspects of the wind flow disturbances acting on the wind 
turbine. 
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4.2. Description of the Methodology 

To study the blade profile modifications and the implications that those modifications 
bring to the wind turbine performance, a close relation between the surface of the blade 

and the wind flow must be created. In this methodology the pressure coefficient prC  is 

used, which is a dimensionless number that describes the relative pressure throughout a 
flow field. It is intimately correlated to the flow velocity, and can be calculated at any point 
of the flow field. 

The prC  is useful to study the forces acting on any given point on the blade profile surface 

and its relation with dimensional numbers [35] is given by: 

2
21 




V

pp
Cpr


 

(24) 

In a normal operation of a VAWT, the variations of pressure and wind speed have little 
influence in the wind density, so the wind flow can be treated as being incompressible. 

Hence, it is assumed that: when prC  is equal to one, that point is a stagnation point, 

meaning that the flow velocity at that point is null (relevant when optimizing the drag 

forces); when prC  is negative in the point of study, the wind is moving at a higher speed 

than in the undisturbed wind flow (relevant when optimizing the lift forces). 

To study the prC  around the blade profile surface, firstly there is the need to divide it into 

segments. The blade profile NACA0020 with surface divisions is shown in Fig. 6. Smaller 
segments can provide a more accurate analysis.  

The pressure coefficient acting on the blade profile divided surface is shown in Fig. 7. This 
figure illustrates the points i  and 1i  of the segment of length s  in the blade profile 

surface, their corresponding Cartesian coordinates and the prC  acting on the blade profile 

surface. 

 

Fig. 6 Blade profile NACA0020 with surface divisions 
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Fig. 7 Pressure coefficient acting on the blade profile divided surface 

In order to calculate the length of each segment s  there is the need to calculate the length 

o  of the triangles opposite side and the length a  of the triangle’s adjacent side, which are 

respectively given by: 

ii xxa  1  (25) 















surfacelower

surfaceupper

1

1

ii

ii

yyo

yyo
 

(26) 

When 0o  it means that the surface segment is oriented in the direction to the wind 

turbine rotation. When 0o  the segment is oriented in the opposite direction. The 

segment length s , and the segment angle  , in relation to the chord axis, are given by: 

22 oas   
(27) 
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(28) 

The prC  contribution to the forward movement of the wind turbine (the contribution to 

the tangential force prT ), the prC  contribution to the forces exerted in a radial axis (the 

contribution to the normal force prN ) and the angle   of the prC  exerted on the blade 

surface in relation to the chord line are shown in Fig. 8. 
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Fig. 8 Pressure coefficient, chordal and normal forces acting on the blade profile surface. 

 

The angle   of the prC  exerted on the blade surface in relation to the chord line is given 

by: 

  º90º180  (29) 

The relationships between prC , prT , prN  and   are given by: 
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(31) 

The analysis of the relation between the blade profile design changes and the wind turbine 
behavior when it’s in a stopped position (at any given axial position) is now possible. 

5. Case Studies 

The new methodology to study the self-start capabilities of the blade profiles for Darrieus 
type VAWT has been applied on two case studies: one with several symmetrical NACA 
airfoils, and a second one with asymmetrical airfoils. But, before the analyses are 

presented, the computational tool used for the prC  calculation will be presented in the 

next subsection. 

5.1. Pressure Coefficient Analyses in Each Blade Airfoil Segment 

The aerodynamic behavior and performance data for different blade profiles is not always 
available, and in the majority of the cases is incomplete. This data is very hard to obtain 
and it is a very time-consuming task. Several computational fluid dynamics tools are 
commonly used to generate the aerodynamic performance data needed. The JavaFoil [36] 
is a fast processing computational tool. The JavaFoil presents several problems at high 
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angles of attack, but is used in this paper for simplification of presentation and to facilitate 
the reader data reproducibility. 

This computational tool is able to analyze different blade profiles of any configuration, 
offering all kind of different output data, for instance: velocity and pressure coefficient 
distribution along the blade chord; lift, drag and momentum coefficient; flow field with 
pressure vectors; flow stream lines and pressure distribution along the fluid flow; 
boundary layer evaluation cards; polar card evaluation with the relations between lift and 
drag coefficients and with the angle of attack variation; and other information. It is also 
able to evaluate multi-foil and ground effect configurations. One important feature of the 
JavaFoil is the ability to save all the analysis and output data to a file. Adding the last feature 
to its integrated scripting module, it is possible to automate the computational processes 
and to complement the information needs with other tools. 

In the theoretical background of the tool, it uses several methods for airfoil analysis, mainly 
divided in two main areas: 

• Potential Flow Analysis. This analysis is done by a panel method with a linear 
varying vorticity distribution based on XFOIL code. This method is used to 
calculate the velocity distribution along the surface of the airfoil; 

• Boundary Flow Analysis. This analysis is done on the upper and lower surfaces of 
the airfoil with different equations, starting with the panel method and 
performing several calculations in a called integral boundary layer method. 

Depending on the Reynolds number and other parameters, the tool gives us the ability to 
choose different analysis methods and configurations, offering more flexibility to the 
computational processing. 

To apply the JavaFoil computational tool for the prC  calculation, a division of the blade 

path around the rotor and the axial angles in relation to the flow movement is needed. 
Hence, the rotor division to study the self-start behavior of the VAWT is shown in Fig. 9. 

 

Fig. 9 Rotor division to study the self-start behavior 

5.2. Symmetrical Airfoils Analysis 

For the symmetrical airfoils data evaluation, the following NACA profiles were selected: 
NACA0012, NACA0018, NACA0020, NACA0025, and NACA0030. 

The NACA0012 and NACA0018 are classical blade profiles used in the VAWT. These 
profiles are considered to have low self-start capabilities. The thicker NACA0020 blade 



Batista et al. / Research on Engineering Structures & Materials 4(3) (2018) 189-217 

 

203 

 

profile can be commonly found in the straight-bladed Darrieus wind turbine. The thicker 
blades show a better self-start performance. The NACA0030 is closer of having self-start 
capacity nature due to a thicker blade profile. However, a thicker blade leads to an 
increased drag at high TSR, leading to a performance decrease. The five blade profiles are 
shown in Fig. 10. 

 

Fig. 10 NACA0012, NACA0018, NACA0020, NACA0025 and NACA0030 blade profiles 

In order to apply the proposed methodology, the pressure coefficient needs to be 

calculated around the blade profile. For the data evaluation presented here, the prC  is 

calculated for all segments around the blade profile for any given angle between 0º and 
360º. The JavaFoil tool offers the pressure coefficient evaluation associated with the x  and 
y  coordinates. This evaluation can be automatically performed to the entire 360º at the 

same time in the velocity area. 

By applying (25) and (26) to the given x  and y  coordinates, the opposite side and the 

adjacent side are obtained. By applying (27), the length of the airfoil surface exposed to the 

wind forces can be obtained. Also, using (28) and (29), the prC  angle in relation to the 

blade chord line   is determined. 

Taking into account all the data previously calculated, it is now possible to determine the 

prC  contribution to the tangential force prT  and the prC  contribution to the normal force 

prN . These forces are related to the actual tangential and normal forces responsible for 

the blades movement, by the pressure coefficient. 

The prC  contribution to the tangential force prT  and the prC  contribution to the normal 

force prN , for the chosen NACA airfoils, are shown in Fig. 11 and Fig. 12 respectively. 
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Fig. 11 prC  contribution to the tangential force prT  

 

Fig. 12 prC  contribution to the normal force prN  

On one hand, it can be seen in Fig. 11 that a thicker blade implies a higher-pressure 
coefficient contribution to the forward movement of the wind turbine blades (contribution 
to the tangential force). Indeed, the NACA0030 presents 26% better performance than the 
NACA0012. On the other hand, it can be seen in Fig. 12 that the airfoil NACA0012 presents 
the most desirable behavior. Smaller axial forces imply lesser need of blade/arms 
connection reinforcements. 

When the wind turbine is in a stopped position the drag forces have a considerable 
contribution to the self-start of the wind turbine. Taking in consideration the divisions 
shown in Fig. 9, there is the need to increase the drag exerted on the blades when they are 
positioned in divisions 2 and 3. The pressure coefficient is also used to study the drag 
contribution to the forward movement of the wind turbines blades. In an incompressible 
flow, when the pressure coefficient reaches values between one and null, that is a 
stagnation point. The study of the values that contribute to the forward movement of the 
wind turbine blades are shown in Fig. 13. 



Batista et al. / Research on Engineering Structures & Materials 4(3) (2018) 189-217 

 

205 

 

 

Fig. 13 Drag contribution to the forward movement of the wind turbine blades prT  

In Fig. 13 it can be seen that thicker blades imply higher drag contribution to the forward 
movement of the wind turbine blades. The drag forces contributing to the tangential force 
are 150% higher in the NACA0030 than in the NACA0012. 

Hence, it was clearly shown that thicker blades are able to provide the wind turbine with 
self-start capabilities, while the thinner blade wind turbines are most likely unable to self-
start. 

5.3. Asymmetrical Airfoils Analysis 

In asymmetrical airfoils the profile curvature and form may have a direct influence in the 
wind turbine self-start performance. 

To study the influence of the camber size, the NACA0012, NACA2412, NACA4412, 
NACA6412, NACA8412 and NACA10412 blade profiles were selected, are shown in Fig. 14. 

 

Fig. 14 NACA0012, NACA2412, NACA4412, NACA6412, NACA8412 and NACA10412 blade 
profiles 
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All these profiles have 12% of thickness in relation to the chord line size and a camber 
positioned at 40% of the chord line. The camber sizes in all profiles vary in 2% of the chord 
line size. 

To study the influence of the camber position, the NACA4112, NACA4212, NACA4412, 
NACA4612, NACA4812 and NACA4912 blade profiles were selected, as shown in Fig. 15. 

 

Fig. 15 NACA4112, NACA4212, NACA4412, NACA4612, NACA4812 and NACA4912 blade 
profiles 

All these profiles have 12% of thickness in relation to the chord line size and a camber size 
of 4% of the chord line size. The profiles vary in the camber position in relation to the chord 
line at 10%, 20%, 40%, 60%, 80% and 90%, respectively. 

The NACA0012 with 12% of thickness, in relation to the blade chord size, and the 
NACA0018 with 18% of thickness are the classical blade profiles used in the VAWT. These 
profiles have been studied several times and have a large amount of real measurement 
data available in the scientific community. These data availability simplifies the prediction 
simulation, leading to an increased acceptance of these airfoils in the VAWT developments, 
influencing the acceptance of these profiles in the final turbines. However, these profiles 
are considered to have low self-start capabilities, for which thicker blades show better 
performance. 

The influence of the camber curvature size and the influence of the camber position are 

evaluated. The prC  contribution to the tangential force prT  and the prC  contribution to 

the normal force prN  were calculated, as occurred with the symmetrical airfoils. 

The pressure coefficient prC  contribution to the tangential force prT  by varying the blade 

profile camber curvature size is shown in Fig. 16. 
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Fig. 16 Pressure coeficiente prC  contribution to the tangential force prT  by varying the 

blade profile camber curvature size 

The pressure coefficient prC  contribution to the tangential force prN  by varying the 

blade profile camber curvature size is shown in Fig. 17. 

 

Fig. 17 Pressure coeficiente prC  contribution to the normal force prN  by varying the 

blade profile camber curvature size 
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The drag contribution to the forward movement of the wind turbine blades by varying the 
blade profile camber curvature size is shown in Fig. 18. 

 

Fig. 18 Drag contribution to the forward movement of the wind turbine blades by varying 
the blade profile camber curvature size 

Fig. 16, Fig. 17 and Fig. 18 presented the airfoil performance evaluation data by applying 
the new methodology to the variation of the camber curvature size. 

The pressure coefficient prC  contribution to the tangential force prT  by varying the blade 

profile camber position is shown in Fig. 19. 

 

Fig. 19 Pressure coefficient prC  contribution to the tangential force prT  by varying the 

blade profile camber position 

The pressure coefficient prC  contribution to the normal force prN  by varying the blade 

profile camber curvature size is shown in Fig. 20. 
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Fig. 20 Pressure coefficient prC  contribution to the normal force prN  by varying the 

blade profile camber position 

The drag contribution to the forward movement of the wind turbine blades by varying the 
blade profile camber curvature size is shown in Fig. 21. 

 

Fig. 21 Drag contribution to the forward movement of the wind turbine blades by varying 
the blade profile camber position 

Fig. 19, Fig. 20 and Fig. 21 presented the airfoil performance evaluation data by applying 
the new methodology to the variation of the camber position in relation to the airfoil chord. 

5.3.1 Camber Curvature Size Variation 

In Fig. 16 it can be seen that curvature size doesn’t influence the pressure coefficient 
contribution to the forward movement of the wind turbine blades until it reaches values 
higher than 6% of the blade chord size. The blade profiles with 8% and 10% sized cambers 
suffer a performance decrease of 40%. 

In Fig. 17 it can be seen that the airfoil NACA0012 presents the most desirable behavior. 
Smaller axial forces imply lesser need of blade/arms connection reinforcements. Also, 
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higher camber curvature sizes imply higher displacement of the exerted forces to the 
outside of the wind turbine and lower to the inside of the rotor. 

When the wind turbine is in a stopped position the drag forces have a considerable 
contribution to the self-start of the wind turbine, especially when the blades are positioned 
in the downwind side of the rotor. 

The pressure coefficient is also used to study the drag contribution to the forward 
movement of the wind turbine blades. In an incompressible flow, when the pressure 
coefficient reaches values between one and null, that is a stagnation point. The study of the 
values that contribute to the forward movement of the wind turbine blades are shown in 
Fig. 18. It can be seen that higher blade profile camber curvature sizes imply higher drag 
forces contributing to the forward movement of the wind turbine blades. The airfoil 
NACA0012 has a symmetrical behavior between the 90º to 180º and 180º to 270º due to 
its symmetrical shape in the upper and lower airfoil surfaces. 

5.3.2 Camber Position Variation 

In Fig. 19 it can be seen that when the camber curve is positioned in the first 40% of the 
blade chord line, a 50% performance decrease occurs compared with the cambers 
positioned in the last 60% of the blade chord line. 

It can be seen in Fig. 20 that the blade chord position does not have a significant influence 
to the axial exerted forces, except when it is positioned at 10% of the airfoil chord line. 

It can be seen in Fig. 21 that the better behaviors are presented by the airfoils that have 
the cambers positioned in the middle of the chord line.  

5.4. Self-start Simulation 

In Fig. 22 it can be seen a simulation of a straight blade Darrieus VAWT with 1 m blade and 
0.5 m radius. Two wind turbines are compared, one with the symmetrical blade profile 
NACA0012 and other with the asymmetrical blade profile NACA4412. The simulation is 
done by the qBlade software [37]. For the of the VAWT start simulation the wind velocity 

was set to 3 sm  and the wind turbines TSR set to 1. 

 

Fig. 22 Symmetrical blade profile NACA0012 and asymmetrical blade profile NACA4412 
Darrieus VAWT start simulation 
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5.5. Blade Development by Applying the New Methodology 

A new blade profile for Darrieus VAWT named EN0005 was created by applying the new 
methodology presented in this paper. The new profile offers self-start to a Darrieus VAWT 
and good performance at high TSR [32,38-40]. The blade profile EN0005 is presented in 
Fig. 23.  

 

Fig. 23 Blade profile EN0005 

The ANSYS FLUENT computational tool is used to generate the aerodynamic performance 
data presented in the following analysis and comparison instead of the JavaFoil, since it 
presents a more accurate and validated good accuracy although more difficult to use. 

In Fig. 24 and Fig. 25 the blade profile EN0005 prC  contribution to the prT  and prN  

respectively is compared with the symmetrical profiles NACA0018 and NACA0020 and 
asymmetrical profiles NACA4418 and NACA4420 same data. 

 

Fig. 24 prC  contribution to the tangential force prT  

Fig. 24 shows a better capability for the blade profile EN0005 to offer self-start capability 
to the Darrieus VAWT. From angle 0º to 80º and 180º to 310º The EN0005 blade profile 
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presents a better contribution to the lift force. Also, the EN0005 presents a drag force 
contributing for the forward movement of the Darrieus VAWT between the angles 100º 
and 150º and presents a lower variation in the normal force between the 70º and 180º. 
Although with inversed orientation for the remaining angles, the normal force is very 
similar to the other blade profiles. The self-start ability that blade profile EN0005 offers is 
validated in the independent work [32]. 

 

 

Fig. 25 prC  contribution to the normal force prN  

6. Conclusion 

 This paper focused on the study and development of new blade profiles for Darrieus 
type VAWT capable to self-start without the use of extra components or external 
energy input. A new methodology for fast development and its associated equations 
have been presented, in order to study the influences of the wind on the turbine in 
its stopped position. This new methodology gives a close relation between the blade 
profile design and the wind forces acting on the blades.  

 Two caste studies were provided: one with symmetrical NACA airfoils and other 
with asymmetrical airfoils. In the asymmetrical airfoils, a closer study to the camber 
curvature size and position has also been presented. The comprehensive results 
obtained from the two case studies are in very good agreement with other works in 
the scientific community, validating the proficiency and usefulness of the proposed 
methodology. 

 A real case of a new blade profile developed with the methodology presented in this 
paper is shown. The new blade profile called EN0005 presents the ability to offers 
self-start capabilities to a Darrieus VAWT. 
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Nomenclature 

A
 

Area swept by the wind turbine Q
 

Turbine overall torque 

a
 

Blade profile surface segment 
adjacent 

r
 

Turbine rotor radius 

c
 

Blade profile chord 
eR

 
Reynolds number 

dC
 

Blade drag coefficient s
 

Blade profile surface segment 

DC
 

Turbine drag coefficient 
prT

 
Pressure coefficient contribution 
to the tangential force 

lC
 

Blade lift coefficient 
V

 
Undisturbed wind velocity 

mC
 

Blade momentum coefficient 
aV

 
Induced velocity 

PC
 

Power coefficient 
rV

 
Induced velocity due to the rotor 
angular speed at the wind turbine 

prC
 

Pressure coefficient 
cV

 
Chordal velocity component 

prlC
 

Pressure coefficient in the lower 
surface 

nV
 

Normal velocity component 

pruC
 

Pressure coefficient in the upper 
surface 

auV
 

Induced velocity in the upstream 

QC
 

Turbine overall torque coefficient 
adV

 
Induced velocity in the 
downstream 

tC
 

Tangential force coefficient 
eV

 
Wake velocity in the upstream 

nC
 

Normal force coefficient 
wV

 
Wake velocity in the downstream 

D
 

Blade drag force 
du

 
Interference factor for the 
downstream 

DF
 

Turbine drag force 
uu

 
Interference factor for the 
upstream 

tF
 

Tangential force W
 

Relative flow velocity 

nF
 

Normal force 
 

Blade angle of attack 

taF
 

Average tangential force 
 

Blade profile surface segment 
angle in relation to the chord line 

h  Turbine height 
 

Blade pitch angle 

k
 

Factor found by iteration 
 

Blade azimuth angle around the 
rotor 

L
 

Blade lift force 
 

Fluid density 

n
 

Number of blades 
 

Tip speed ratio 

prN
 

Pressure coefficient contribution 
to the normal force 


 

Dynamic viscosity of the fluid 

o
 

Blade profile surface segment 
opposite 


 

Turbine solidity 

P
 

Turbine overall power v
 

Kinematic viscosity of the fluid 

p
 

Pressure of the point where the 
evaluation of the pressure 
coefficient is made 


 

Pressure coefficient angle in 
relation to the chord line 

p
 

Pressure of the undisturbed wind 
 

Rotor angular speed at the wind 
turbine 
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