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Abstract

Ribose 5-phosphate isomerase is an enzyme involved in the non-oxidative branch of the pentose phosphate pathway, and
catalyzes the inter-conversion of D-ribose 5-phosphate and D-ribulose 5-phosphate. Trypanosomatids, including the agent
of African sleeping sickness namely Trypanosoma brucei, have a type B ribose-5-phosphate isomerase. This enzyme is absent
from humans, which have a structurally unrelated ribose 5-phosphate isomerase type A, and therefore has been proposed
as an attractive drug target waiting further characterization. In this study, Trypanosoma brucei ribose 5-phosphate isomerase
B showed in vitro isomerase activity. RNAi against this enzyme reduced parasites’ in vitro growth, and more importantly,
bloodstream forms infectivity. Mice infected with induced RNAi clones exhibited lower parasitaemia and a prolonged
survival compared to control mice. Phenotypic reversion was achieved by complementing induced RNAi clones with an
ectopic copy of Trypanosoma cruzi gene. Our results present the first functional characterization of Trypanosoma brucei
ribose 5-phosphate isomerase B, and show the relevance of an enzyme belonging to the non-oxidative branch of the
pentose phosphate pathway in the context of Trypanosoma brucei infection.
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Introduction

African sleeping sickness is a vector borne disease of mammals,

caused by Trypanosoma brucei (T. brucei), for which the

development of more effective, safe, and affordable chemothera-

pies remains a major goal. Vaccines are unlikely to be suitable [1–

3], and therefore disease control relies exclusively on chemother-

apy. The glucose-based metabolism is a key metabolic pathway for

bloodstream forms, the mammalian infective stages. The absence

of a fully functional mitochondrion along with a remarkable high

proliferation rate makes parasites entirely dependent on glucose

[4,5]. The glucose-based metabolism comprises two pathways: the

glycolytic pathway and the pentose phosphate pathway (PPP).

Despite using the same substrate, the pathways have different

functions. Glycolysis catabolizes glucose for ATP requirements,

while PPP includes an oxidative branch, mainly involved in the

maintenance of cell redox homeostasis, and a non-oxidative

branch in which ribose 5-phosphate is produced for nucleotide

and nucleic acid synthesis. Enzymes involved in the PPP non-

oxidative branch include ribose-5-phosphate isomerase, ribulose-

5-phosphate epimerase, transaldolase and transketolase, and in

contrast with enzymes involved in the glycolysis [6–15] or in the

oxidative PPP [16,17], have been less studied. In T. brucei,
enzymes of the non-oxidative branch downstream ribose-5-

phosphate isomerase are apparently developmentally regulated

[18]. Ribose 5-phosphate epimerase and transketolase activities

were only detected in procyclics, the parasite form present in the

insect vector. This suggests that in the mammalian host,

bloodstream forms constrain sugar metabolism to the production

of ribose-5-phosphate and NADPH via the oxidative phase of the
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PPP, most likely to meet the remarkably high proliferation rate of

these parasites [19], and/or to protect themselves against a variety

of reactive oxygen and nitrogen species [20,21] in a context of an

in vivo infection.

Ribose-5-phosphate isomerase (Rpi) catalyzes the inter-conversion

between ribulose-5-phosphate (Ru5P) and ribose 5-phosphate (R5P).

Contrary to trypanosomatids, which have a Rpi type B (RpiB), the

presence of a structurally unrelated Rpi type A (RpiA) in humans

together with the adverse phenotype observed in rpiA-/rpiB-

knockout Escherichia coli (E. coli) [22] have led to suggest RpiB as

an attractive drug target candidate that waits further characterization.

In this study, we investigate the importance of RpiB in T. brucei
bloodstream form viability and infectivity.

Materials and Methods

Ethics statement
All experiments were carried out in accordance with the

IBMC.INEB Animal Ethics Committees and the Portuguese

National Authorities for Animal Health guidelines, according to

the statements on the directive 2010/63/EU of the European

Parliament and of the Council. IL, JT and ACS have an

accreditation for animal research given from Portuguese Veteri-

nary Direction (Ministerial Directive 1005/92).

Parasite culture
Procyclic and bloodstream T. brucei Lister 427 were cultivated

in MEM-Pros and HMI-9 medium, respectively, as previously

described [23]. Bloodstream forms containing pHD1313 [24] were

maintained with 0.2 mg/ml phleomycin.

Cloning of trypanosomes RPIB genes
Ribose 5-phosphate isomerase B genes from T. brucei (TbRPIB)

and T. cruzi (TcRPIB) were obtained by performing PCR on

genomic DNA from Trypanosama brucei TREU927 and Try-
panosoma cruzi CL Brener Non-Esmeraldo-like. Fragments of the

open reading frames of TbRPIB (Tb927.11.8970; chromosome

Tb927_11_v5 from 2,462,183 to 2,463,307) and TcRPIB
(Tc00.1047053508601.119; chromosome TcChr30-P from

475,724 to 476,203) were PCR-amplified using a Taq DNA

polymerase with proofreading activity (Roche). The primers were

as follows: sense primer 59 - CAATTTCCATATGACGCG-

CAAGGTGGC - 39 and antisense primer 59 - CCCAAG-

CAAGCTTCTAACAACCATTCG - 39, sense primer 59 -

CAATTTCCATATGACGCGCCGAGTCGC - 39 and antisense

primer 59 - CCCAAGCGAATTCTCATTTTACCCCTTTG -

39, respectively. PCR conditions were as follows: initial denatur-

ation (2 min at 94uC), 35 cycles of denaturation (30 s at 94uC),

annealing (30 s at 40uC) and elongation (2 min at 68uC) followed

by a final extension step (10 min at 68uC); initial denaturation

(2 min at 94uC), 35 cycles of denaturation (30 s at 94uC),

annealing (30 s at 58uC) elongation (2 min at 68uC) and a final

extension step (10 min at 68uC), respectively. The PCR products

were isolated from a 1% agarose gel, purified by the Qiaex II

protocol (Qiagen), and cloned into a pGEM-T Easy vector

(Promega) and sent to Eurofins MWG (Germany) for sequencing.

All fragments were checked against the T. brucei and T. cruzi
genome sequence database (http://www.genedb.org) using Blast

to ensure their specificity.

Expression and purification of poly-His-tagged
recombinant TbRpiB and TcRpiB

The TbRPIB and TcRPIB genes were excised from the pGEM-

T Easy vector (using NdeI/EcoRI restriction enzyme combina-

tion), gel purified and subcloned into pET28a(+) expression vector

(Novagen). The resulting constructs presented a poly-His tag (66
Histidine residues) at the N-terminal and were used to transform

E. coli BL21DE3 cells. Both recombinant proteins were expressed

by induction of log-phase cultures (500 ml; OD600 = 0.6) with

0.5 mM IPTG (isopropyl-b-D- thiogalactopyranoside) for 3 h at

37uC and agitation at 250 rpm/min. Bacteria were harvested by

centrifugation (4000 rpm, for 40 min, at 4uC), resuspended in

20 ml of buffer A (0.5 M NaCl, 20 mM Tris.HCl, pH 7.6). The

sample was sonicated, according to the following conditions:

output 4, duty cycle 50%, 10 cycles with 15 s each. Centrifugation

(4000 rpm, for 60 min, at 4uC) was followed to obtain the

bacterial crude extract. The recombinant enzymes were purified in

one step using Ni2+ resin (ProBond) pre-equilibrated in buffer A.

The column was washed sequentially with 2–3 ml of the buffer A,

20 ml of the bacterial crude extract, 2 ml of buffer A 25 mM

imidazole, 2 ml of buffer A 30 mM imidazole, 2 ml of buffer A

40 mM imidazole, 2 ml of buffer A 40 mM imidazole, 2 ml of

buffer A 50 mM imidazole, 10 ml of buffer A 100 mM imidazole,

5 ml of buffer A 500 mM imidazole and 8 ml of buffer B (1 M

imidazole, 0.5 M NaCl, 200 mM Tris, pH 7.6). TbRpiB and

TcRpiB were eluted in the fractions of buffer A containing

between 100 and 500 mM of imidazole. Dialysis was performed

against 100 mM Tris/HCl (pH 7.6).

To generate rat polyclonal antibody against TbRpiB, and rabbit

polyclonal antibodies against TbRpiB and TcRpiB, each animal

was first immunized with 150 mg of recombinant protein. After 2

weeks, 4 boosts with 100 mg of recombinant TbRpiB or TcRpiB

were given weekly. The collected blood samples were centrifuged

to obtain the sera.

Protein alignments and homology models
Multiple sequence alignments were performed in ClustalW [25]

and images prepared with Aline, Version 011208 [26]. Homology

models were obtained in SWISS-MODEL, using PDB accession

code 3K7S as a template [27–29]. 3D structures were rendered

with PyMOL (The PyMOL Molecular Graphics System, Version

1.3, Schrödinger, LLC).

Enzyme assays
TbRpiB activity was assessed through Km determination for

R5P and Ru5P, through 4-deoxy-4-phospho-D-erythronohy-

droxamic acid (4-PEH) (kindly provided by Dr. Laurent Salmon)

inhibitory capacity against TbRpiB, and through 4-PEH inhibition

Author Summary

Within the non-oxidative branch of the pentose phosphate
pathway, ribose 5-phosphate isomerase catalyzes the
inter-conversion of ribose 5-phosphate and ribulose 5-
phosphate. There are two types of ribose 5-phosphate
isomerase, namely A and B. The presence of type B in
Trypanosoma brucei, and its absence in humans, make this
protein a promising drug target. African sleeping sickness
is a serious parasitic disease that relies on limited
chemotherapeutic options for control. In our study, a
functional characterization of Trypanosoma brucei ribose 5-
phosphate isomerase B is reported. Biochemical studies
confirmed enzyme isomerase activity and its downregula-
tion by RNAi affected mainly parasites infectivity in vivo.
Overall this study shows that ribose 5-phosphate isomer-
ase depletion is detrimental for parasites infectivity under
host pressure.
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mechanism characterization. Firstly, to determine the Km for R5P

and to characterize 4-PEH-inhibition mechanism, a direct

spectrophotometric method at 290 nm [30] was used, to quantify

Ru5P formation. Km determination was performed at R5P

concentrations in a range between 3.1 and 50 mM in Tris/HCl

(pH 7.6). For 4-PEH inhibition mechanism characterization, the

experiment was performed in the presence of 0.5 mg of enzyme

and 0.1, 0.4, 0.7 or 1 mM of inhibitor. All inhibitors were tested

in the presence of 3.1 mM R5P. A negative control was made

using heat inactivated enzyme. The TcRpiB enzyme was used as

a positive control [31]. A calibration curve for Ru5P, using the

referred method, was established to determine enzyme activity.

An absorbance of 0.0381 at 290 nm was considered for 1 mM

Ru5P. To determine the Km for Ru5P and to test 4-PEH

inhibition as well, a modification of Dische’s Cysteine-Carbazole

method was used [32]. To determine Km, an incubation mixture

contained 5 ml of 0.05 mg of enzyme in buffer A [100 mM Tris/

HCl (pH 8.4), 1 mM EDTA and 0.5 mM 2-mercaptoethanol]

plus 5 ml of Ru5P, giving final concentrations between 0.625 and

10 mM Ru5P, was used. For inhibition assay, Ru5P concentra-

tion used was 1.25 mM. Incubation was done for 10 min at room

temperature. Following incubation, 15 ml of 0.5% cysteinium

chloride, 125 ml of 75% (v/v) sulfuric acid and 5 ml of a 0.1%

solution of carbazole in ethanol were added. After 30 min

standing at room temperature, the A546 was determined. A blank

without enzyme was run for each substrate or inhibitor

concentration. Reaction linearity was checked varying enzyme

concentration and time. To estimate the remaining Ru5P, a

calibration curve was generated. In this assay conditions, 1 mM

of Ru5P gave an A546 of 0.270 in a final reaction volume of

155 ml.

Immunofluorescence
For anti-TbRpiB antibodies validation, cells from log-phase

cultures of T. brucei RNAi cell lines and wt strain were centrifuged

and resuspended at 106/ml in PBS. The cells were fixed in m-

Chamber 12 well (Ibidi) for 15 min, at room temperature, in PBS

containing 4% p-formaldehyde, washed twice with PBS, and then

permeabilized in PBS containing 0.1% of Triton X-100. The

coverslips were incubated in PBS containing 10% FCS during

60 min, at room temperature, in a humidified atmosphere and

washed twice with PBS/2% FCS. Then, incubated with primary

rat or rabbit polyclonal antibodies against TbRpiB (1:100 and

1:1000 respectively, both diluted in blocking solution) overnight, at

4uC, followed by two washes with PBS/2% FCS (5 min each one).

Subsequently, cells were incubated with Alexa Fluor 647

conjugated goat anti-rat or Alexa Fluor 488 conjugated goat

anti-rabbit secondary antibodies (Molecular probes from Life

technologies) (1:500 diluted in blocking solution) for 1 h at room

temperature in an humidified atmosphere, then washed twice with

PBS. The coverslips were then stained and mounted with

Vectashield-DAPI (Vector Laboratories, Inc.). Images were

captured using fluorescence microscope AxioImager Z1 and

software Axiovision 4.7 (Carl Zeiss, Germany). Pseudo-coloring

of images were carried out using ImageJ software (version 1.43u).

In case of TbRpiB immunolocalization, bloodstream form T.
brucei wt cells were probed using primary rat anti-TbRpiB (1:100

diluted in blocking solution) and primary rabbit polyclonal

antibody against aldolase (glycosome marker, 1:5000 diluted in

blocking solution). Cells were then incubated with biotin

conjugated goat anti-rat (1:500 diluted in blocking solution) (BD

Pharmingen) for 1 h room temperature in a humidified atmo-

sphere, then washed twice with PBS/2% FCS. Subsequently, cells

were incubated with Alexa Fluor 647 conjugated goat anti-rabbit

(Molecular probes, Life technologies) and Streptavidin-FITC (BD

Pharmingen) secondary antibodies (1:1000 diluted in blocking

solution) for 1 h at room temperature in an humidified

atmosphere, then washed twice with PBS. Vertical stacks were

captured, using an confocal microscope Leica TCS SP5II and

LAS 2.6 software (Leica Microsystems, Germany). Mean fluores-

cence intensity of aldolase and RpiB was determined in each stack

for the projected co-localization areas. Quantifications were

carried out using ImageJ software (version 1.43u).

Digitonin permeabilization
For each sample condition, bloodstream cells were washed once

with cold trypanosome homogenisation buffer (THB), composed

by 25 mM Tris, 1 mM EDTA and 10% sucrose, pH = 7.8. Just

before cell lyses, leupeptin (final concentration of 2 mg/ml) and

different digitonin quantities (final concentrations of 5, 12.5, 25,

50, 100, 150 and 200 ug/ml) were added to 500 ml of cold THB,

for cell pellet resuspension. Untreated cells (0 mg/ml of digitonin)

and those completely permeabilized (total release, the result of

incubation in 0.5% Triton X-100) were used for comparison. Each

sample condition was incubated 60 min on ice, and then

centrifuged at 2000 rpm, 4uC, for 10 min. Supernatants were

taken and 500 ml of cold THB was added to each pellet. All

fractions were analysed through Western blot for Rpi (108 cells per

well; 1:1000 polyclonal rabbit anti-TbRpiB as primary antibody),

enolase (107 cells per well; 1:5000 polyclonal rabbit anti-enolase as

primary antibody) and aldolase (107 cells per well; 1:5000

polyclonal rabbit anti-aldolase as primary antibody). HRP-

conjugated goat anti-rabbit (1:5000) was used as secondary

antibody.

Generation of transgenic RNAi cell lines
TbRPIB fragment (sense oligo with a BglII – SphI linker 59 –

GAGAAGATCTGCATGCGCGCAAGGTGGCTATCGGTG -

39, and an antisense oligo with a ClaI – SalI 59 – GCTAGCTA-

CAGCTGACGGTCCTCCCCGCTGTATG – 39) was cloned

twice in opposite direction on either sides of a ‘‘stuffer’’ of the

pHD1144 vector. The resulting construct obtained through

HindIII and BglII digestion was cloned into pHD1145. The final

construct was transfect into bloodstream forms with pHD1313,

and stable individual clones were selected with 7.5 mg/ml of

hygromycin. For functional complementation, TcRPIB fragment

(sense oligo with a HindIII linker 59 - GAAGCTTAT-

GACGCGCCGAGTCGCAAT - 39, and an antisense oligo with

a BglII linker 59 - AGATCTTCATTTTACCCCTTTGTTCC -

39), was cloned in pHD1034 vector (digested with HindIII and

BamHI). After transfection [33], individual clones were selected

with 0.2 mg/ml of puromycin.

In vitro and in vivo analysis of TbRpiB RNAi
For in vitro growth curves, cell lines were seeded at 26105

parasites/ml of complete HMI-9 medium, in the absence and

presence of 100 ng/ml of tetracycline (tet). Every 24 h, until day

10, cell growth was monitored microscopically. For in vivo
infections, after 24 h in the absence of selective drugs, and then a

further 48 h of tet induction, 104 wt and transgenic parasites were

inoculated intraperitoneally in 6–8 weeks old BALB/c mice

(n = 3–8). 48 h prior infection, the RNAi induced mice were

treated with 1 mg/ml doxycycline hyclate and 5% sucrose

containing water [34], while RNAi non-induced mice were given

standard water. Parasitaemia was measured daily from the six day

post-infection through tail blood extraction, during a period which

all mice in the group were alive.

Trypanosoma brucei Ribose 5-Phosphate Isomerase B
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Northern blot analysis
Total RNA was isolated from <26107 bloodstream forms using

Trizol reagent (Life Technologies). 10 mg RNA were directly

separated by overnight formaldehyde agarose-gel electrophoresis,

transferred onto a nylon membrane by capillarity and fixed by UV

irradiation. The membrane was prehybridized in a hybridization

bottle in 56 SSC, 0.5% SDS with salmon sperm DNA (200 mg/

ml) and 16Denhardt’s solution for 2 hours at 65uC. TbRPIB and

signal recognition particle (SRP; Tb927.8.2861_7SL) probes were

generated by PCR in the presence of [32P]-labelled dCTP using

Prime-It RmT random primer labelling kit (Stratagene) followed

by purification using QIAquick Nucleotide Removal Kit (QIA-

GEN). Denaturated radioactive probes were added to the

prehybridization solution at 65uC and incubated overnight. After

rinsing the membrane twice for 5 min. with 26SSC/0.1% SDS,

the probes were washed out with two washes of 30 minutes in

0.16 SSC/0.1% SDS at 65uC and the membrane exposed on a

Fugifilm FLA-3000 reader screen. ImageJ software (version 1.43u)

was used for RNA quantification.

Protein extracts and western blot analysis
Cell free extracts were obtained in RIPA buffer (20 mM Tris-

HCl (pH 7.5), 150 mM NaCl, 1 mM Na2EDTA, 1 mM EGTA,

1% NP-40, 1% sodium deoxycholate, 2.5 mM sodium pyrophos-

phate, 1 mM b-glycerophosphate, 1 mM Na3VO4), with freshly-

added complete protease inhibitor cocktail (Roche Applied

Science). The total protein amount was quantified using Biorad

Commercial Kit (Reagents A, B and S) and the samples were then

kept at -80uC. For analysis of parasites collected from mice,

trypanosomes were purified from mouse blood using a DE-52

(Whatman) column [35].

For Western blotting, 10 mg of recombinant TbRpiB and

TcRpiB proteins were resolved in 15% SDS/PAGE (Tris-Tricine

gel), while 30 mg of total soluble cell extract and 107 parasites were

resolved in 12% Tris-Glycine SDS/PAGE, and all were then

transferred on to a nitrocellulose Hy-bond ECL membrane

(Amersham Biosciences). The membrane was blocked in 5% (w/

v) non-fat dried skimmed milk in PBS/0.1% Tween-20 (blocking

solution), followed by incubation with an anti-His-tag rabbit

antibody (MicroMol-413) (1:1000) or a combination of an anti-

TbRpiB rabbit antibody (1:1000) with an anti-aldolase rabbit

antibody (1:5000) in blocking solution at 4uC overnight, respec-

tively. Blots were washed with PBS/0.1% Tween-20 (3 times

15 min). Horseradish peroxidase-conjugated goat anti-rabbit IgG

(Amersham) (1:5000 for 1 h, at room temperature) was used as the

secondary antibody. The membranes were developed using

SuperSignal WestPico Chemiluminescent Substrate (Pierce).

ImageJ software (version 1.43u) was used for protein bands

semi-quantification.

Statistical analysis
Student’s t-test and Graphpad Prism Software (version 5.0) were

used. p values #0.05 were considered to be statistically significant

(* p#0.05, ** p#0.01, *** p#0.001).

Results

TbRpiB biochemical properties
An open reading frame with sequence similarity to RpiB was

identified both in T. brucei (Tb927.11.8970) and in T. cruzi
(Tc00.1047053508601.119) genomes. Protein sequence alignment

using ClustalW [25] revealed 67% identity for TbRpiB versus
TcRpiB, and both proteins show no similarity with human ribose

5–phosphate isomerase A. TcRpiB and TbRpiB contain 159 and

155 amino acids residues per monomer, respectively. Protein

multiple sequence alignment of RpiB from T. cruzi CL Brener

Esmeraldo-like (Tc00.1047053509199.24; PDB accession code

3K7S [36]), T. cruzi CL Brener Non-Esmeraldo-like

(Tc00.1047053508601.119) and T. brucei (Tb927.11.8970) is

shown in S1A Fig. The scale colour, from cyan (low-similarity

residues) to red (high-similarity residues), underlines the degree of

similarity between the three protein sequences, also seen in the

TcRpiB (Esmeraldo like strain) ribbon representation (S1B Fig.).

The superposition of TcRpiB (Esmeraldo like strain) structure

(grey) (PDB code 3K7S), with the homology models generated for

TcRpiB (Non Esmeraldo like strain) (purple) and TbRpiB (blue)

show a high structural homology and strict conservation of the

residues involved in R5P binding pocket (S1A, C Fig.).

Biochemical studies were performed using histidine-tagged

fusion TbRpiB and TcRpiB (positive control) proteins expressed

in E. coli and purified under non-denaturing conditions (Figs. 1A,

S2A). The T. brucei and T. cruzi [31] enzymes have in vitro ribose

5-phosphate isomerase activity, as these proteins can use both R5P

and Ru5P as substrates. For R5P, T. brucei protein showed a

significantly higher Km (2.8 fold increase, p,0.05), but not a lower

maximum velocity (Vmax) or catalytic constant (kcat) compared to

T. cruzi enzyme (Table 1 and S2B Fig.). For Ru5P, the Km of the

T. brucei protein was not significantly different from that of the T.
cruzi enzyme value, but the Vmax and kcat were higher (<1.5 fold,

p,0.05) (Table 1 and S2B Fig.). Both the T. brucei and the T.
cruzi enzymes exhibited significant lower Kms for Ru5P than for

R5P, (5.2 fold, p,0.05 and 3.7 fold, p,0.01, respectively),

suggesting the reaction occurs preferentially from Ru5P to R5P.

The turnover values (kcat) were found to be significantly higher for

Ru5P than for R5P, in both T. brucei (p = 0.001) and T. cruzi (p,

0.001) enzymes (Table 1 and S2B Fig.).

The reaction mechanism of ribose 5-phosphate isomerase

involves two steps: an initial opening of the furanose ring of

R5P, followed by the aldolase-ketose isomerisation, via a cis-

enediolate high energy intermediate [31]. 4-PEH has been

described to act as a competitive inhibitor which compromises

the binding of 1,2-cis-enediolate intermediate [37]. The inhibitory

capability of 4-PEH was screened in vitro, resulting in an IC50 of

0.8 mM and 0.7 mM for TbRpiB (Fig. 1B) and TcRpiB (S2C

Fig.), respectively, with Ki values of 2.2 (Fig. 1C) and 1.6 mM

(S2D Fig.). 4-PEH showed, as expected, a competitive inhibition

behaviour, once using increasing concentrations of inhibitor, a

progressive increase in the Km for R5P without Vmax alteration

was observed (Figs. 1D, S2E). The inhibitor behaviour, and also

the IC50 and the Ki values are in agreement to what was described

before for T. cruzi enzyme [31,36]. 4-PEH was also reported as a

potent inhibitor against Mycobacterium tuberculosis RpiB [37].

Undoubtedly, TbRpiB has isomerase activity and uses prefer-

entially ribulose 5-phosphate as a substrate.

TbRpiB expression and subcellular localization
Rabbit and rat polyclonal antibodies were generated against the

TbRpiB recombinant protein. Antibody specificity was validated,

as induction of RpiB RNAi resulted in a decrease in the

fluorescence intensity of bloodstreams when compared to non-

induced parasites (S3A, B, C Fig.). Similarly a significant decrease

on RpiB levels in the extracts of TbRpiB RNAi induced parasites is

shown by Western blot. Rat and rabbit antibodies specificity

against RpiB can be appreciated on the whole Western blot

membranes (S3D, E Fig.). Using rabbit polyclonal antibody

against parasite extracts, TbRpiB was found more abundant in

procyclic forms than in bloodstream forms (Fig. 2A). To

ascertain RpiB subcellular localization in bloodstream forms,

Trypanosoma brucei Ribose 5-Phosphate Isomerase B
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two complementary approaches, immunofluorescence and digito-

nin fractionation, were performed. Fluorescent confocal micros-

copy analysis suggests that TbRpiB despite being localized mainly

in the cytosol can be also found in glycosomes due to

colocalization with the glycosomal marker, aldolase [38] (Fig. 2B).

Upon digitonin fractionation, RpiB showed an intermediate

pattern between the glycosomal marker, aldolase (still partially in

the pellet after 200 mg/ml digitonin treatment) and the cytosolic

marker, enolase (almost all in supernatant with 25 mg/ml

digitonin), being practically released with 100 mg/ml digitonin

(Fig. 2C). In conclusion, RpiB localizes mainly in the cytosol of

bloodstream forms.

In vitro and in vivo analysis of TbRpiB RNAi
To assess if TbRpiB targeting affects in vitro bloodstream forms

growth, RNAi against RpiB was induced. This resulted in a lower

Fig. 1. Biochemical properties of TbRpiB expressed in E. coli. (A) 10 mg of TbRpiB recombinant protein analyzed by SDS-PAGE and Coomassie
blue staining. Mw, molecular weight marker. Western blot analysis of his-tagged recombinant protein probed with rabbit anti-histidine monoclonal
antibody (MicroMol-413) (1:1000). (B) Inhibition (%) of TbRpiB activity by 4PEH. (C) Plot of Kmapp/Vmax versus 4PEH concentrations; Ki corresponds to
the symmetric value of the X-axis intersection. (D) Plots showing the effect of different 4PEH concentrations on the inverse of the initial velocity versus
the inverse of several concentrations of R5P. (B–D) The values correspond to the means 6 standard deviation of two replicates, and data is
representative of three independent experiments.
doi:10.1371/journal.pntd.0003430.g001
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mRNA and protein levels 1 and 2 days post-induction (Fig. 3A

and B, respectively). Using ImageJ software we estimate a decrease

of approximately 93% of protein levels at 48 h RNAi post-

induction. The growth of TbRpiB RNAi tet(-) and wt tet(-) cell

lines was shown to be similar (Fig. 3C). A significant decrease of in
vitro cell proliferation of induced versus non-induced RNAi cell

lines was seen only after day 4 of the cumulative growth curve

(Fig. 3C).

To test the importance of RpiB for parasite infectivity in a

disease model, two groups of BALB/c mice were inoculated with

the wt parental cell line and other two groups with the RNAi cell

line. Some mice were fed with water containing doxycycline (Dox)

to induce downregulation of TbRpiB, whilst the remaining mice

were kept as non-induced controls. A Western blot confirmed the

reduction of the protein level in 48 h RNAi induced parasites used

for mice infections (Fig. 4A). Blood samples were taken from all

mice at daily intervals to chart parasitaemia (Fig. 4B). Animals

achieving a parasitaemia greater than 108 trypanosomes per

millilitre were euthanized. In vivo growth of the TbRpiB RNAi

Dox(-) trypanosomes was not significantly different from that of wt

Dox(-) parasites. However a significant decrease in the parasitae-

mia of induced versus non-induced RNAi cell lines was seen.

Within 6 days of inoculation, contrary to mice infected with

induced RNAi cell line (in which overall parasitaemias remained

below the detection limit, 56104 trypanosomes/ml), mice infected

with control parasites developed high levels of parasitaemia. As a

consequence, and in contrast to mice infected with wt and TbRpiB

RNAi Dox(-) parasites, which were culled sooner (between eighth

to thirteenth day post-infection), TbRpiB RNAi Dox(+) were

euthanized from the eighteenth day post-infection (Fig. 4C).

Eventually parasitaemia also increased in the TbRpiB RNAi

Dox(+) mice, due to the emergence of ‘‘RNAi revertants’’ (Fig. 4D)

[39–42]. In this way, ribose 5-phosphate isomerase B despite being

dispensable in vitro, confers optimal in vitro growth and is highly

relevant for mice infections.

Complementation of TbRpiB RNAi phenotype
Functional complementation of T. brucei RNAi cell lines with

the T. cruzi homologue was performed, since TcRpiB has in vitro
isomerase activity and TcRPIB nucleotide sequence is sufficiently

different to avoid TbRpiB RNAi. Western blot analysis confirmed

TbRpiB downregulation only in induced RNAi parasites, and

TcRpiB expression exclusively in complemented parasites

(Fig. 5A). Cells with RNAi and complemented with TcRpiB grew

equally in vitro (Fig. 5B), and were almost as virulent in vivo
(Fig. 5C, D), as the wild-type. RNAi revertants appeared during

the course of infection in induced TbRpiB RNAi infected mice,

but not in induced complemented TbRpiB RNAi infected mice

(Fig. 5E). As a result, complementation restored in vitro and in
vivo phenotypes.

Discussion

In this study we demonstrated that TbRpiB, like the related

TcRpiB and Leishmania donovani RpiB (LdRpiB) enzymes, has in
vitro ribose 5-phosphate isomerase activity [31,43]. Based on the

theoretical homology model, TbRpiB is predicted to be dimeric.

Although the dimer comprises a complete functional unit,

tetramers are observed in all available RpiB structures except

that of Mycobacterium tuberculosis RpiB [36]. Similarly to T.
cruzi, Clostridium thermocellum and Pisum sativum Rpi enzymes,

TbRpiB has the ability of using both R5P or Ru5P as substrates,

but with remarkable preference for Ru5P [31,44,45]. However,

the differences in affinity are more pronounced in trypanosomes

enzymes. Indeed, these differences were higher for TbRpiB

compared to TcRpiB. Analysis of the three enzymes from

trypanosomatids (TcRpiB, LdRpiB and TbRpiB) shows that

TbRpiB and LdRpiB have the highest Km and kcat value for

R5P substrate, respectively [31,43]. Nevertheless, we can speculate

that such differences may result in part by the fact that parasite

enzymes were expressed and purified as recombinant proteins in

bacteria and not purified directly from trypanosomes extracts.

Consequently, differences in protein post-transcriptional process-

ing and/or changes in protein conformation cannot be excluded.

RpiB is expressed on T. brucei procyclic and bloodstream

forms, and our data indicate its higher expression in procyclics.

Interestingly, a previous study has shown higher levels of TbRPIB
mRNA (Tb927.11.8970) in logarithmic phase procyclic forms

compared to bloodstream forms [46]. However, its biological

meaning, if any, remains to be elucidated.

Regarding RpiB subcellular localization in bloodstream forms,

the protein despite found mainly in the cytosol is also present in

glycosomes. This might explain why a previous proteomic analysis

failed to find TbRpiB enzyme in purified glycosomes [47]. The

glycosomal localization observed within the dual-localization can

be justified by the presence of a peroxisomal targeting signal,

PTS2 (-KVAIGADHI-), at the N-terminus [48]. Moreover, other

enzymes of the hexose-monophosphate pathway, although present

in glycosomes, were also found mainly within the cytosol (e.g.

glucose-6-phosphate dehydrogenase, 6-phosphogluconolactonase

and transketolase) [49,50].

TbRpiB is clearly needed for optimal in vitro parasite growth,

although we do not know whether it is essential for survival since

some protein remained after RNAi. Nevertheless, our results show

that TbRpiB is important for parasites infectivity in vivo, through

the appearance of RNAi revertants and reversion of the phenotype

in complemented parasites. Infectivity defects of bloodstreams with

reduced levels of TbRpiB were shown on a monomorphic T.
brucei strain. This strain is abnormally virulent and typically mice

do not survive longer than <10 days. In the future, it would be

interesting to test the role of RpiB in a more chronic infection, as

the one caused by pleomorphic strains. Interfering with the PPP

Table 1. TbRpiB kinetic parameters.

R5P to Ru5P Ru5P to R5P

Km (mM) 12.5064.43 2.3960.94

Vmax 61023(mM.s21) 1.1760.16 5.8460.79

kcat (s21) 12.0061.58 39.4465.32

kcat/Km (M21.s21) 9.606102 1.646104

The values are the means 6 standard deviation obtained from 3 independent experiments.
doi:10.1371/journal.pntd.0003430.t001
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Fig. 2. TbRpiB expression within life cycle stages and localization in bloodstream forms. (A) RpiB expression in T. brucei life-cycle stages;
30 mg of protein from bloodstream (BS) and procyclic (PC) total lysates was analysed by Western blot probed with rabbit anti-TbRpiB (1:1000) and
anti-aldolase (loading control; 1:5000) polyclonal antibodies. Data is representative of three independent experiments. (B) Immunofluorescence
analysis by confocal microscopy of bloodstream forms TbRpiB. Nuclear and kinetoplast DNA labelled by DAPI staining (blue). RpiB (green) and
aldolase (red) were labelled respectively with rat anti-TbRpiB (1:100) and rabbit anti-aldolase (1:5000) antibodies. White arrowheads indicate RpiB and
aldolase co-localization areas that are magnified in the right panels. Mean fluorescence intensity (MFI) of aldolase (red) and RpiB (green) in these co-
localization areas (white dotted circle) were determine for each stack. Images are maximal Z-projections of 50 and 33 contiguous stacks separated by
0.1 mm. Scale Bars: 2.5 (top left panel), 5 (below left panel), 0.5 (top right panel) and 1 mm (below right panel). (C) Supernatant (S) and pellet (P)
fractions obtained with different concentrations of digitonin were subjected to Western blot analysis and probed with rabbit antibodies against
TbRpiB (1:1000), enolase (cytoplasmic marker; 1:5000), and aldolase (glycosome marker; 1:5000). Data is representative of two independent
experiments. Untreated cells and those completely permeabilized by incubation with 0.5% Triton X-100 [total release (TR)] were used as controls.
doi:10.1371/journal.pntd.0003430.g002
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Fig. 3. In vitro effect of RNAi-mediated RpiB downregulation on T. brucei bloodstream forms. (A) Northern and (B) Western blot analysis of
mRNA and protein levels, respectively, upon RpiB RNAi. SRP and aldolase used as loading controls, respectively. Rabbit anti-TbRpiB (1:1000) and anti-
aldolase (1:5000) polyclonal antibodies were used as primary antibodies. (C) Growth curve of a wt versus a representative RpiB RNAi cell line. Black
squares and blue diamonds represent wt growth in the absence or presence of tetracycline (tet) while green triangles and red circles represent RpiB
RNAi clone growth in the absence or presence of tet, respectively. Cumulative cell numbers (product of cell number and total dilution) are plotted.
Values represent averages from three independent experiments using one representative RpiB RNAi clone and error bars indicate standard deviation.
Statistical differences between non-induced and induced TbRpiB RNAi clone are depicted (* p#0.05, ** p#0.01).
doi:10.1371/journal.pntd.0003430.g003

Fig. 4. In vivo effect of RNAi-mediated RpiB downregulation on T. brucei bloodstream forms. (A) Western blot analysis of Rpi protein levels
in bloodstream forms 48 h after tet induction, which were used for mice infections. (B) Groups of mice (n = 3–7) were infected intraperitoneally with
104 control wt (black squares and blue diamonds) or a representative RNAi clone (green triangles and red circles). The mice were either untreated
(black squares and green triangles) or treated with 1 mg/ml Dox (blue diamonds and red circles) in the water supply. Parasitaemias of each group are
shown for the period of time in which there is no mice death. Values are means and errors bars indicate + standard deviation. 56104 trypanosomes/
ml of blood is the detection limit. Mice were culled when parasitaemia reached 108 cells/ml. (C) Kaplan–Meier survival analysis of mice infected with
non-induced and induced wt cell line (black and blue line, respectively) versus a non-induced and induced representative RNAi clone (green and red
line, respectively). Parasitaemias and survival curve are representative of two independent experiments using two different RNAi clones. (D) Western
blot analysis of RpiB levels in a representative non-induced and Dox-induced RNAi clone collected from mice before being euthanized confirmed the
appearance of RNAi revertants. Statistical differences between non-induced and induced TbRpiB RNAi clone are depicted (** p#0.01).
doi:10.1371/journal.pntd.0003430.g004
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Fig. 5. Rescue of RpiB RNAi mediated defect by expression of TcRpiB. (A) Western blot analysis of TbRpiB and TcRpiB levels in bloodstream
forms 48 h after tetracycline (tet) induction reveal a decrease of RpiB in non-complemented and complemented TbRpiB RNAi cells, contrary to wt
controls. Parasite extracts were probed sequentially, with rabbit anti-TbRpiB (1:1000) and anti-aldolase (loading control; 1:5000), and with anti-TcRpiB
(1:1000) primary antibodies. (B) In vitro cumulative growth of induced non-complemented and complemented wt bloodstream forms (blue diamond
and grey down triangle, respectively) versus an induced non-complemented and complemented representative TbRpiB RNAi clone (red circle and
orange cross, respectively). Values represent an average of parasite numbers 6 standard deviation of two independent experiments from a
representative RNAi clone. (C) Groups of mice (n = 6–8) were infected intraperitoneally with 16104 RNAi induced non-complemented and
complemented wt parental cell line (blue diamond and grey down triangle, respectively) versus non-complemented and complemented
representative TbRpiB RNAi clone (red circle and orange cross, respectively). Mice were treated with 1 mg/ml Dox in the water supply. Mice were
culled when parasitaemia reached 108 cells/ml. The mean value of the parasitaemias for each group of mice + standard deviation is shown. (D)
Kaplan–Meier survival analysis of mice infected with Dox induced non-complemented and complemented wt cell line (blue and grey lines,
respectively) versus induced non-complemented and complemented representative TbRpiB RNAi clone (red and orange lines, respectively). Data are
representative of two independent experiments of two different RNAi clones. (E) Western blot analysis of RpiB levels in a representative non-
complemented and complemented TbRpiB RNAi clone isolated from mice blood before being euthanized, showing the emergence of RNAi
revertants only in induced non-complemented RNAi clones. Statistical differences between non-complemented and complemented induced TbRpiB
RNAi clone are depicted (* p#0.05, ** p#0.01).
doi:10.1371/journal.pntd.0003430.g005
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non-oxidative branch showed to be detrimental under host

pressure, in these highly proliferative parasitic forms, which can

be due to a defective production of ribose 5-phosphate towards

nucleotide and nucleic acid synthesis. Moreover, another enzyme

capable of producing ribose 5-phosphate, ribokinase, is essential

for parasites survival since attempts to remove the two alleles were

unsuccessful [51].

TbRpiB is not the first protein reported as dispensable under

standard laboratory culture conditions but crucial for parasites

growth in the animal host [52,53]. In rich culture conditions,

parasites may uptake essential nutrients from the extracellular

medium, which may not be as available in blood. Moreover, in
vivo, parasites need to deal with pressure from the host immune

response.

As for other proteins [54,55], our in vitro results differ from the

ones achieved in RNA interference target sequencing (RITseq)

screen [56]. Indeed, proteins described to be significantly

important for parasites fitness by Alsford and colleagues [56]

were not in others studies [54,55]. Despite large-scale RNAi

screens have already proved useful, caution should be taken due to

some level of false negatives and positives, inherent to high-

throughput approaches and more importantly due to off-target

effects [57]. Furthermore, variations between different large-scale

RNAi screenings were already been reported and explained by the

use of different T. brucei strains, RNAi constructs and methods for

assessing cell growth highlighting the importance of using

complementary approaches in such studies [58]. Despite all, both

studies are in agreement and show a role for TbRpiB on parasites

growth.

To further investigate if bloodstream forms deleted of RpiB are

completely cleared in mice, studies with gene knockout parasites

should be done.

Overall our results clearly show a role of RpiB for bloodstream

in vitro optimal growth and more importantly in vivo infectivity,

but also suggest a conserved role among different Trypanosoma
species. In conclusion TbRpiB emerges as a new potential

therapeutic target against African sleeping sickness.

Supporting Information

S1 Fig. Sequence alignment and ribbon representation
of RpiB protein from trypanosomes. (A) ClustalW align-

ment of RpiB from T. cruzi CL Brener Esmeraldo-like

(Tc00.1047053509199.24; PDB accession code 3K7S), T. cruzi
CL Brener Non-Esmeraldo-like (Tc00.1047053508601.119) and

T. brucei (Tb927.11.8970). The residues are colored according to

ALSCRIPT Calcons (Aline version 011208) using a predefined

colour scheme (red: identical residues; orange to blue: scale of

conservation of amino acid properties; white: dissimilar residues).

Secondary structure of TcRpiB crystallographic model (PDB code

3K7S) (grey) and the theoretical homology models TcRpiB

(Tc00.1047053508601.119) (purple) and TbRpiB (Tb927.

11.8970) (blue) are depicted above the alignment. Black circles

indicate R5P binding residues. (B) Ribbon representation of

TcRpiB Esmeraldo-like (PDB code 3K7S) colored according to the

sequence similarity with TcRpiB Non-Esmeraldo-like and TbRpiB

as shown in (A). (C) Superposition of TcRpiB structure (PDB code

3K7S) (grey) with TcRpiB (Tc00.1047053508601.119) (purple)

and TbRpiB (Tb927.11.8970) (blue) homology models. Ligand

color scheme: R5P is shown in yellow (oxygen, pink; phosphorous

orange).

(TIF)

S2 Fig. Biochemical properties of TcRpiB (Tc00.
1047053508601.119) expressed in E. coli. (A) 10 mg of

TcRpiB recombinant protein analyzed by SDS-PAGE and

Coomassie blue staining. Mw, molecular weight marker. Western

blot analysis of his-tagged recombinant protein probed with rabbit

anti-histidine monoclonal antibody (MicroMol-413) (1:1000). (B)

Kinetic parameters of direct (R5P to Ru5P) and inverse (Ru5P to

R5P) reaction. The values are the means 6 standard deviation

obtained from 3 independent experiments. (C) Inhibition (%) of

TcRpiB activity by 4PEH. (D) Plot of Kmapp/Vmax versus 4PEH

concentrations; Ki corresponds to the symmetric value of the X-

axis intersection. (E) Plot showing the effect of different 4PEH

concentrations on the inverse of the initial velocity versus the

inverse of several concentrations of R5P. (C–E) The values

correspond to the means 6 standard deviation of two replicates,

and data is representative of three independent experiments.

(TIF)

S3 Fig. Validation of antibodies against TbRpiB. Immu-

nofluorescence analysis of T. brucei wt or a representative Rpi

RNAi clone in the presence or absence of tetracycline (tet). RNAi

induced and uninduced cells were grown for 48 h, then fixed and

probed with rat polyclonal anti-TbRpiB (A) or rabbit polyclonal

anti-TbRpiB (B) antibody and co-stained with DAPI. Bars, 5 mm.

(C) Quantification of TbRpiB fluorescence levels in induced cells

[Rpi RNAi tet(+), n = 30] and uninduced cells [Rpi RNAi tet(2),

n = 30], using the rat and the rabbit polyclonal anti-TbRpiB

antibodies. Data representative of two independent experiments

using two different clones. ImageJ software (version 1.43u) was

used for fluorescence quantification. p value was calculated by

Student’s t test (*** p#0.001, for both p,0.001). (D, E) Whole

membrane resulting from Western blot analysis of RpiB levels, in

T. brucei wt or a representative Rpi RNAi clone, in the presence

or absence of tet. The membrane was probed with rat anti-

TbRpiB (1:100) (D) or rabbit anti-TbRpiB (1:1000) (E), and after

membrane stripping, with rabbit anti-aldolase (1:5000) for loading

control.

(TIF)
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