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PageRank: como acelerar o
calculo

Resumo

A recuperacao de informagoes na Web é extremamente desafiadora devido
ao grande nimero de paginas da web. PageRank é um método numérico que
o motor de busca Google usa para calcular a importancia de uma pagina,
atribuindo uma pontuacao a cada pagina da web. O PageRank é, portanto,
a base do sucesso do motor de busca Google e pode ser tratado matemati-
camente como um problema de valores préprios ou como a solugao de um
sistema linear homogéneo.

De um ponto de vista dos valores proprios, o vetor PageRank é o vetor
préprio dominante a esquerda de uma matriz da web que esta relacionada
com a estrutura de hiperligacoes da web, a matriz Google. O método da
Poténcia Iterada é um dos mais antigos e mais simples métodos iterativos
para encontrar o valor préprio e o vetor préprio dominante de uma matriz e foi
o método original proposto por Brin e Page para encontrar o vetor PageRank.
O calculo do vetor PageRank pelo método da Poténcia Iterada leva dias para
convergir, uma vez que as matrizes envolvidas sao grandes. O numero de
paginas da web esta a aumentar rapidamente, portanto, torna-se necessario
encontrar refinamentos ou alternativas para acelerar a computagao.

A matriz do Google é grande e esparsa, portanto, algoritmos adaptados
devem ser desenvolvidos para conseguir um menor custo computacional e
requisitos de memoria minimos. Além disso, a precis@ao do vetor PageRank
nao necessita de ser grande, pelo que sao preferidos métodos iterativos de
baixo custo.

Entre as abordagens mais bem-sucedidas para reduzir o trabalho associ-
ado ao vetor PageRank estao as técnicas de extrapolagao [78] e mais recen-
tentemente, os métodos Lumping [67, 03] que reordenam a matriz de acordo
com o tipo de nés.

A primeira parte deste trabalho apresenta uma nova abordagem para a
aceleracao do célculo do PageRank, combinando técnicas de reordenagao e ex-



trapolagao. Sao propostos dois algoritmos, denominados métodos LumpingE,
considerando a extrapolagao de Aitken dentro do método original de agregacao.
Simulac¢oes numéricas comparando os novos métodos LumpingE com o método
da Poténcia e os métodos Lumping originais sao ilustradas. Os resultados
mostram o mérito desta nova proposta.

A segunda parte deste trabalho trata o problema do célculo do vector
do PageRank através da resolucao de um sistema de equagoes linear ho-
mogéneo. O método iterativo recente denominado ”Matrix Analogue of the
Accelerated Overrelaxation (MAAOR) iterative method” [58], que contém
como casos particulares, o método ” Accelerated Overrelaxation (AOR)” [54]
e a familia de métodos ”Generalized AOR (GAOR)” [69], é usado para o
calculo do vetor PageRank. Além disso, os métodos de Lumping que foram
aplicados a formulacao do problema de valores proprios também podem ser
usados na formulagao do sistema linear [67, [03]. Portanto, é proposta uma
nova abordagem combinando os métodos Lumping e MAAOR para a solucao
do sistema linear. Sao apresentadas simulagoes numéricas que ilustram o
método MAAOR e o método MAAOR combinados com técnicas de Lum-
ping aplicadas aos calculos do PageRank.

Palavras Chave: Métodos diretos para sistemas lineares; Métodos iterativos
)

para sistemas lineares; Valores proprios, vetores proprios; Precondicionadores

para métodos iterativos; Computagao de cadeias de Markov; Matrizes es-

parsas.
MSC(2010): 65F05; 65F10; 65F10; 65F08; 65C40; 65F50.



PageRank: how to accelerate
its computation

Abstract

Web information retrieval is extremely challenging due to the huge num-
ber of web pages. PageRank is a numerical method that Google uses to com-
pute a page’s importance, by assigning a score to every web page. PageRank
is thus at the basis of Google’s search engine success and can be mathe-
matically regarded either as an eigenvalue problem or as the solution of a
homogeneous linear system.

From an eigenvalue point of view the PageRank vector is the left dominant
eigenvector of a web matrix that is related to the hyperlink structure of the
web, the Google matrix. The Power method is one of the oldest and simplest
iterative methods for finding the dominant eigenvalue and eigenvector of a
matrix and it was the original method proposed by Brin and Page for finding
the PageRank vector. The PageRank computation by the standard Power
method takes days to converge since matrices involved are large. The number
of web pages is increasing rapidly, so, it becomes necessary to find refinements
or alternatives to speed up the computation.

The Google matrix involved is large and sparse, so tuned algorithms must
be developed to tackle it with the lowest computational cost and minimum
memory requirements. Furthermore, the accuracy of the ranking vector needs
not to be very precise, so inexpensive iterative methods are preferred.

Among the most successful approaches for reducing the work associated
with the PageRank vector are the extrapolation techniques [78], and the
more recent Lumping methods [67], 93] that proceed with a matrix reordering
according to dangling and nondangling nodes.

The first part of this work presents a novel approach for the acceleration of
the PageRank computation by combining reordered and extrapolation tech-
niques. Two algorithms, called LumpingE methods, considering standard



vii

Aitken extrapolation within the original lumping method are proposed. Nu-
merical experiments comparing the new LumpingE methods with standard
Power method and original Lumping methods are illustrated. Results show
the merits from this new proposal.

The second part of this work uses the homogeneous linear system ap-
proach of the PageRank vector computation problem. The recent Matrix
Analogue of the Accelerated Overrelaxation (MAAOR) iterative method [58],
which contains as particular cases the Accelerated Overrelaxation (AOR) [54]
and the Generalized AOR (GAOR) [69] stationary family of methods is ex-
plored for the PageRank computation. Additionally, the Lumping methods
that have been applied to the eigenproblem formulation can also be used in
the linear system formulation [67,[93]. Therefore, a novel approach combining
the Lumping and MAAOR methods for the solution of the linear system is
proposed. Numerical experiments illustrating the MAAOR method and the
MAAOR method combined with Lumping techniques applied to PageRank
computations are presented.

Keywords: Direct methods for linear systems; Iterative methods for linear
systems; Eigenvalues, eigenvectors; Preconditioners for iterative methods;
Computational Markov chains; Sparse matrices.

MSC(2010): 65F05; 65F10; 65F10; 65F08; 65C40; 65F50.



PageRank: comment accélérer
son calcul

Résumé

La récupération de I'information Web est un probleme extrémement dif-
ficile en raison du grand nombre de pages Web. PageRank est une méthode
numérique utilisée par Google pour calculer I'importance d’une page, en at-
tribuant a cette derniere un numéro. PageRank est donc a la base du succes
des moteurs de recherche de Google et peut étre vu mathématiquement soit
comme un probleme de valeurs propres, soit comme la solution d’un systeme
linéaire homogene.

Du point de vue spectral, le vecteur PageRank est le vecteur propre do-
minant a gauche d'une matrice web liée a la structure de ’hyperlien du
Web, la matrice de Google. La méthode de la puissance itérée est 1'une
des méthodes itératives les plus anciennes et les plus simples pour trouver
la valeur propre dominante et un vecteur propre correspondant d’une ma-
trice. C’est la méthode originale proposée par Brin et Page pour trouver
le vecteur PageRank. Le calcul du vecteur PageRank par la méthode de la
puissance itérée standard prend des jours pour converger puisque les matrices
impliquées sont beaucoup trop grandes. Le nombre de pages web augmente
rapidement, il devient donc nécessaire de trouver des améliorations ou des
alternatives pour accélérer le calcul.

La matrice de Google dont il s’agit est grande et creuse, donc des algo-
rithmes conséquents doivent étre développ’es pour 'attaquer avec le cott de
calcul le plus bas possible et des besoins de mémoire réduits au minimum.
Comme la précision du vecteur de classement n’est pas tres importante des
méthodes itératives peu couteuses sont préférées.

Les techniques d’extrapolation [78] et les méthodes Lumping plus récentes
[67, 93] qui reordonnent la matrice selon si les noeuds sont dangling ou non-
dangling, sont parmi les approches les plus efficaces pour réduire le travail
associé au vecteur PageRank.



ix

La premiere partie de ce travail présente une nouvelle approche pour
accélérer le calcul du PageRank en combinant des techniques de réordination
et d’extrapolation. Deux algorithmes, appelés méthodes LumpingE, con-
sidérant I’extrapolation standard d’Aitken dans la méthode d’agglomération
originale sont proposés. Des expériences numériques comparant les nouvelles
méthodes de LumpingE avec la méthode Power standard et les méthodes
Lumping originales sont illustrées. Les résultats montrent les mérites de
cette nouvelle idée.

La deuxieme partie de ce travail regarde le calcul du vecteur de PageRank
comme résolution d'un systeme linéaire homogene. IL’analogue matriciel
récent de la méthode itérative accélérée (MAAOR) [58], qui contient comme
cas particuliers la méthode de relaxation stationnaire accélérée (AOR) [54]
et la famille de méthodes stationnaires généralisée AOR (GAOR) [69] sont
explorées pour le calcul du vecteur PageRank. De plus, les méthodes de
Lumping qui ont été appliquées a la formulation du probleme spectral peu-
vent également étre utilisées dans la formulation de systeme linéaire [67, [93].
Par conséquent, une nouvelle approche combinant les méthodes Lumping et
MAAOR pour la solution du systeme linéaire est proposée. Des expériences
numeériques illustrant la méthode MAAOR et la méthode MAAOR combinées
aux techniques de Lumping appliquées aux calculs PageRank sont présentées.

Mots-clés: Les méthodes directes pour les systemes linéaires; Méthodes itérati-
ves pour les systemes linéaires; valeurs propres, vecteurs propres; Précondition-
nements pour les méthodes itératives; Simulation de chaines de Markov; Ma-
trices creuses.

MSC(2010): 65F05; 65F10; 65F10; 65F08; 65C40; 65F50.
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1

Introduction

1.1 The Google’s search engine

Search engine use is one of the most popular internet activities. There
are many internet search engines, but Google and Bing receive the large
majority of all search requests. The search engine Google was founded in
1998 by Larry Page and Sergey Brin.

Google is, by far, the most popular search engine in the Internet. What
set Google apart from its competitors in the first place? The answer is
PageRank.

The importance of PageRank is emphasized in one of Google’s web pages:
"The heart of our software is PageRank™, a system for ranking web pages
developed by our founders Larry Page and Sergey Brin at Stanford University.
And while we have dozens of engineers working to improve every aspect of
Google on a daily basis, PageRank continues to provide the basis for all of
our web search tools.”

Other search engines relied entirely on web page content to rank the
results; due to that, web pages developers could easily manipulate the or-
dering of search by placing concealed information on web pages. Page and
Brin developed a ranking algorithm (the PageRank) that solved that prob-
lem. They used the link structure of the Web to determine the importance
of a web page. During the processing of a query, Google’s search algorithm
combined precomputed PageRank scores with text matching scores to obtain
an overall ranking for each web page.

PageRank is a numerical algorithm that assigns a weight (from 0 to 10)
to each element of a hyperlinked set of documents, based on a link analysis.

19



20 CHAPTER 1. INTRODUCTION

Its aim is to order the relative importance of web documents based on a web
graph (within the World Wide Web or other set). The weight of a page,
PageRank weight, is computed recursively and depends on the number and
PageRank weight of all incoming links.

The business community knows that Google is the search engine of choice,
so to maximize the PageRank score of its web page has become an important
part of company marketing strategies.

During the last two decades the scientific community was very active
in studying and presenting numerical approaches to solve the problem as
fast as possible and with the less computational cost possible. A plethora
of publications have been produced on this topic. The original paper [20],
”Anatomy of a Large-Scale Hypertextual Web Search Engine”, written by
Google founders Larry Page and Sergey Brin, was the seed that led to all
this work. In fact, the PageRank algorithm is much more complex, involving
other topics such as author rank, spammers’ control, among others. Other
link based ranking algorithms have been developed, and still are, but Google’s
PageRank is certainly, until now, the most successful and studied of them
all.

1.2 Some notes about Google’s history

Sergey Brin and Larry Page, Google founders, first met in 1995 when
Page visited the computer science department of Stanford University during
a recruitment weekend. Page has graduated from the University of Michigan
and was considering Stanford for a PhD in computer science. His tour guide
was Brin a second-year graduate student who was already pursuing his PhD
in that department. Despite their common interests, they did not immedi-
ately hit it off; in fact, they discussed many topics during their first meeting
and disagreed on nearly every issue.

Page elected to attend Stanford, and soon began working on a Web
project, called BackRub, which investigated how sites linked back to other
web pages. Brin found Page’s work on BackRub interesting, so the two
started working together on this project. They believed that they were cre-
ating a search engine that adapted to the ever-increasing size of the Web,
and that finding pages with more incoming links (particularly from credible
websites) would be a better way to search the Internet.

In 1997, Page and Brin decided to rename BackRub, so, "Google” was
born. Google is a common misspelling of the word googol, a mathematical
term for the number 10'®°. The use of this term reflects their mission to
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organize the huge amount of information on the web.

They wanted to finish their PhDs, so, they tried to sell their search in-
novations to another company. They did get offers, but they were not for
much money. Since they could not sell their technology they decided to start
their own company since they were certain that their technology was superior
to any being used. With the financial assistance of a small group of initial
investors, Brin and Page founded the Web search engine company Google,
Inc. in September 1998.

Brin and Page’s project would permanently change web search, Google
has become one of the most successful dot-com businesses in history [122].

1.3 Contributions

The PageRank model can be mathematically seen as an eigenvalue pro-
blem or as a homogeneous linear system.

In this work we intend to contribute with new alternatives for the Page-
Rank computations.

In the first part of this work, the eigenvector point of view presented in
Chapter 3, we propose new acceleration methods for PageRank computa-
tions, the LumpingE methods. These methods combine Lumping methods
with Aitken extrapolation. Several numerical experiments on some datasets
that were extracted as subsets of the Web and on tuned matrices designed,
for the purpose of exploiting certain aspects, comparing the new LumpingE
methods with standard Power iteration method and original Lumping meth-
ods are presented. Results show the benefits of our proposal.

In the second part of this work, Chapter 4, a linear system point of view
on the PageRank problem is followed.

We apply the new Matrix Analogue of the Accelerated Overrelaxation
(MAAOR) family of methods developed by Hadjidimos in [58] on the Page-
Rank problem for the first time. Several methods within the MAAOR family
are compared.

We also developed new acceleration methods analogous to the ones pre-
sented in Chapter 3, but that use the linear system formulation and the
MAAOR family of methods combined with lumping methods.

Several numerical experiments with the same matrices used in Chapter 3
show the good results obtained by these new methods.

The MATLAB codes developed for the various methods studied are available
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at request.
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2.1 The PageRank model

How does the search engine Google determine the order in which to dis-
play web pages? The major ingredient in determining this order is the Page-
Rank vector, which assigns a score to every web page. Web pages with high
scores are displayed first, and web pages with low scores are displayed later
[68].

Google uses the notion of a random Web surfer to describe the behavior
of a person that uses Google to answer a query. The internet user randomly
chooses a web page to view from the listing of available web pages. Then,
if the web page as several outlinks (links from that page to other pages),
the surfer chooses one at random, hyperlinks to a new page, and continuous
this random decision process indefinitely. The proportion of time the surfer
spends on a given page is a measure of the relative importance of that page.
Pages that the surfer revisits often must be important. Sometimes the ran-
dom surfer find himself in a page with no outlinks (e.g. pdf files, image files).
To get out of that page the surfer will hyperlink to any page at random.
Although the surfer follows the hyperlink structure of the Web, at times it
gets bored and abandons the hyperlink method of surfing by entering a new
destination in the browser’s URL line. So, the surfer "teleports” to a new
page and begins surfing again [20, [8§].

To model the activity of a random Web surfer, the PageRank algorithm
represents the link structure of the Web as a massive directed graph. The
nodes in the graph represent web pages and the directed arcs represent the
hyperlinks. Inlinks point into nodes and outlinks point out from nodes.

Figure presents an example of a tiny web with seven pages.

Google assumes that a hyperlink is a recommendation. The hyperlink
from page i to page j means that page i is recommending page j (page i
votes in page j). A page with more inlinks (votes) must be more important
than a page with a few inlinks. However the status of the recommender is
also important, a vote from a page with a higher PageRank (an important
page) is more useful than a vote from a page with low PageRank. If a page
has lots of outlinks it means that this page distributes votes indiscriminately.
Several outlinks diminish the PageRank of a page.

The PageRank’s thesis is that a web page is important if it is pointed to
by other important pages.

Comparing the PageRank scores for two pages gives an indication of the
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O inlink for node 4 O

outlink for node 2
1 2 4 7
3) D 6
Figure 2.1: Directed graph representing a web of seven pages. The seven nodes
represent seven web pages and the twelve directed arcs the hyperlinks.

relative importance of the two pages.

The PageRank of a page i, 7 (i), is defined as the probability that at some
particular time step the surfer is at page .

PageRank is query-independent, which means it produces a global rank-
ing of the importance of all pages in Google’s index.

Web information retrieval is extremely challenging due to the huge num-
ber of web pages. The success of a search engine relies on its capacity to
deploy fast, accurately and in order, a set of results satisfying a particular
query.

To determine the order of importance in which to display web pages
after a query, Google’s search engine computes the PageRank vector, the
left principal eigenvector of a web matrix that is related to the hyperlink
structure of the web, the Google matrix.

PageRank importance scores are the stationary values of an enormous
Markov chain, therefore many properties of the PageRank model are ex-
plained with Markov Theory [105].

Next it will be explained how Google translate the PageRank’s thesis into
mathematical equations [88].

Consider that n is the number of pages in Google’s index of the Web.

The process for determining PageRank begins by expressing the directed
web graph as the n x n hyperlink matrix, H. The matrix H reflects the link
structure of the web and is sparse and row normalized with h; ; = ni if there
is a link from page ¢ to page j and h; ; = 0 otherwise. The number of outlinks
of page i is denoted by n,.

The elements of matrix H are probabilities: h; ; represents the likelihood
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that a surfer follows the link from page 7 to page j. The nonzero elements of
row ¢ correspond to the outlinking pages of page ¢. The nonzero elements of
column i correspond to the inlinking pages of page .

The pages with no outlinks are called dangling nodes. These pages create
zero rows in the H matrix. All the other rows are stochastic (the sum of
elements in each row is 1). Thus, H is called substochastic.

A nondangling node is a page with, at least, one outlink.

As an example, let us consider the hyperlink matrix, H, for the tiny graph
of Figure [2.1]

P, P, P, P P P P
P70 1/2 1/2 0 0 0 07
Pl1/3 1/3 0 1/3 0 0 0
B0 0 0 0 0 0 0

H= p |0 0 1/5 1/5 1/5 1/5 1/5
Lo 0o 0o 1 0 0 0
PBlO 0 0 0 0 0 0
Lo o o o 0o 1 0]

Row 3 and row 6 are zero rows, they correspond to pages without outlinks.
So, page 3 and page 6 are dangling nodes.
Page 1 has two outlinks, one to page 2 (h12 = %) and another to page 3
(h13 =1). Page 5 only has one outlink to page 4 (hs4 = 1).

Brin and Page began the calculation of the PageRank vector 7 (the
PageRank scores for all pages of the web) considering that the PageRank
of a page i is obtained by the sum of the PageRank scores of all pages that
point to page i.

However, there is a problem, the PageRank of the pages inlinking to page
1 are unknown. To sidestep this problem it is necessary to use an iterative
process:

a0 = T gy (2.1)

The row vector 7" is the PageRank vector at the k" iteration.
The iterative process is initialized (iteration 0) considering all pages of
the web with the same PageRank (7(¥ (i) = 1). The iterative process is

applied until the PageRank scores converge to some final stable values.

For a dense square matrix of size n, each iteration of (2.1)) requires O (n?)
computation because it involves one vector-matrix multiplication. A vector-
matrix multiplication involving a sparse matrix requires less effort than the
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O (n?) for dense computation, it requires O (nnz(H)) computation being
nnz(H) the number of nonzeros in H.

Matrix H is very sparse, it has about 10n nonzeros because the average
web page has about 10 outlinks [88]. So, for matrix H, the vector-matrix

multiplication of (2.1]) reduces to O (n) effort.

The iterative process of equation ([2.1)) is the known Power method applied
to H.

In presence of an iterative process it is necessary to know if the properties
of the H matrix guarantee the convergence, if convergence occurs for just one
or multiple vectors and if the convergence depends on the starting vector.

The use of H in equation causes problems: for instance, in case of
rank sinks (pages that monopolize the scores because they accumulate more
and more PageRank at each iteration and do not share) and in case of cycles
(pages that create an infinite loop).

From the Markov theory it is known that, for any starting vector, the
Power method applied to a Markov matrix converges to a unique positive
vector, the stationary vector, as long as the matrix is stochastic, irreducible
and aperiodic.

If the H matrix could be altered and transformed into a Markov matrix,
the convergence problems caused by cycles and rank sinks would be solved.
Brin and Page did exactly that, they made adjustments to the matrix H
that solved the initial convergence problems. However, they did not use the
Markov theory as the justification for the adjustments; they used the notion
of a random surfer described early.

Nevertheless, the Markov theory supports the random surfer idea.
If node ¢ is a dangling node this means that the probability of a random
surfer move from node ¢ to any other node in the directed graph is zero.
The majority of web pages are dangling nodes (pdf files, image files, data
tables or protected pages are dangling nodes). Since H does not model the
possibility of moving from dangling node web pages to other web pages, the
long term behavior of web surfers cannot be determined from H alone.

This leads to the first adjustment on the H matrix.

To solve this problem the 07 rows of the H matrix were replaced with

1
wT:—eT,eT:(l,...,l)T
n

Vector w > 0 is known as the dangling node vector and it is a probability
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vector.
The vector d is used to identify the pages that are dangling nodes: d; = 1
if page i is a dangling node (n; = 0) and d; = 0 otherwise.

A new matrix
S =H+dw" (2.2)

with no 0 rows is formed.

Proposition 2.1.1. The stochastic adjustment (2.2)) guarantees that S is
stochastic, and thus, is the transition probability matrix for a Markov chain.

Proof. S is the sum of a stochastic matrix with a real non-negative matrix.

]

With this adjustment, the random surfer has a way of jumping to any
web page at random after entering in a dangling nodes.

As an example of this adjustments let us return to the tiny web of figure
and modify the corresponding matrix H.
The modified stochastic matrix S for this example is:

ST T & N /N & T & &
Pro0 1/2 12 0 0 0 07
P {1/3 1/3 0 1/3 0 0 0
Py |1/7 1/7 17 1/7 1)7 1/7 1)7
S=p |0 o0 1/5 1/5 1/5 1/5 1/5
PO 0 0 1 0 0 0
Ps |1/7 1)7 17 1)1 1)1 1)1 1)7
PpLO 0 0 0 0 1 0.

Row 3 and row 6 (corresponding to dangling nodes) were modified. They
are no longer 07 rows. If a random surfer is visiting page 3 and wants to
leave, he can jump to any of the seven pages of the web (each one with
probability of %)

However, the basic model is not yet complete. Even when web pages
have links to other web pages, a random web surfer might grow tired of
following links and decide to move to a different web page some other way
(entering a new URL in the address line). The matrix S does not consider
this possibility.

When this situation happens, the random surfer jumps (”teleports”) to
a new page and begins hyperlink surfing again. This behavior can be repre-
sented by introducing a new adjustment in the matrix.
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In terms of Markov theory, the use of the S matrix does not guarantees
the convergence results desired. It is not mandatory that the equation ({2.2)
will rapidly converge to a unique positive vector 7 that exists.

So, the H matrix has been modified for the second time. With this new
adjustment, called a primitivity adjustment, the matrix becomes primitive,
that is, irreducible and aperiodic. This new modified matrix, G, is called
Google matriz.

The PageRank algorithm uses the G matrix which is given by
G=aS+(1-a)E with E=ev’ (2.3)
E is a rank-1 matrix (the teleportation matriz) and e is the vector of all ones.

The vector v > 0 is a probability vector known as personalization or
teleportation vector.
It is usual to assume that v = w = %e. This way, the teleportation matriz
FE is uniform and the teleporting is random. That is, the surfer as the same
probability to jump to any page when teleporting. This stochastic matrix £
mimics the random behavior of web surfers and can be also used to combat
link spamming [53, [68].

The parameter a (« € [0, 1[), the damping factor, controls the portion of
time the random surfer follows the hyperlinks as opposed to teleporting.

It is generally assumed that Google uses o = 0.85. This means that 85%
of the time the random surfer follows the hyperlink structure of the Web and
the other 15% of the time he teleports to a random new page.

Proposition 2.1.2. G is a stochastic matriz (it is a conver combination
of two stochastic matrices E and S), it is aperiodic (g;; > 0, Vi) and it is
irreducible (every page is directly connected to every other page).

So, G is primitive which implies that the vector ©1 exists, is unique and
the Power method converges to w!. However, with these adjustments the

matriz G becomes completely dense.
Proof. See [88)]. O

The fact of G matrix being completely dense could constitute a problem
for computation.
However, matrix GG can be written as a rank-one update to the very sparse
matrix H:

G = aS+(1-a)F
a(H+2de™) + (1 —a)le
= of + (ad+ (1 — a)e) te’

GT
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As we will see in section [2.2] this strategy brings a substantial computa-
tional advantage to the computations.

As an example we use, again, the web of Figure [2.1]
Considering o = 0.85,

G =0.855 4+ 0.15F

& G =0.85540.15 [1/7 17 17 1/7 1/7 1/7 1)7 ]

—_ = = = =

1
[ 3/140 25/56 25/56 3/140 3/140 3/140 3/140 ]
32/105 32/105 3/140 32/105 3/140 3/140 3/140
7 yr oyt 1yt 1yt 1yt 17
& G=| 3/140 3/140 67/350 67/350 67/350 67/350 67/350

3/140 3/140 3/140 61/70 3/140 3/140 3/140
7 1yt oyt oyt 1yt oyt 17
| 3/140  3/140 3/140 3/140 3/140 61/70 3/140 |

The vector 77 = (n(1),--- ,m(n))" is the PageRank vector, and contains
the PageRank scores for every web page in the Google’s index. (i) is the
PageRank of page ¢ and H?TTH1 =1.

The PageRank vector is calculated with

7l =7TG. (2.4)

As mentioned before, using Markov matrix G, the PageRank algorithm
avoids convergence problems.

With the two adjustments made, the PageRank vector (stationary vector
of the Markov chain) exists, is unique, and can be found with the Power
method.

Applying the Power method ({2.4]), for the example in Figure whose
G matrix is shown above, we obtain Google’s PageRank vector 77

1 2 3 4 5 6 7
7l = (0,1025 0,1461 0,1430 0,2254 0,0995 0,1840 0,0995)
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The result 7(6) = 0, 1840 means that 18,40% of the time the random surfer
visits page 6. So, for this web, pages are ranked by their importance as
4 6 2 3 1 5 7). Page 4 is the most important one because it has
the higher PageRank and page 7 is the least important page because has the
lowest PageRank.

There are two ways of solving the PageRank problem:
(i) as an eigenvector problem

' =7TG nle=1
or (i) as a linear homogeneous system
(I -G)=0" nfe=1.

In the first approach, the eigenvector problem, the goal is to find the
normalized dominant left eigenvector, 77, of the matrix G that corresponds
to the dominant eigenvalue \;. G is a stochastic matrix, so \; = 1. Also,
A1 = 1 is not a repeated eigenvalue of G and is greater in magnitude than
any other eigenvalue. The eigensystem, 77 = 77G, has a unique solution.

In the second approach, the linear homogeneous system problem, the goal
is to find the normalized left null vector of I — G.

In both approaches, the normalization equation 77e = 1 ensures that 77
is a probability vector.

2.2 PageRank as an eigenvector problem

The PageRank of one page, 7(i), is given by the PageRank of the pages
that link to it, and so, as mentioned before, a recursive process must be used
for the evaluation,

a0t = T (2.5)

The PageRank vector is the stationary vector of a Markov chain with
transition matrix G, and much research has been done on computing the
stationary vector for a general Markov chain, see [127]. However, the specific
features of the PageRank matrix make one numerical method, the Power
method, the clear favorite.

The Power method is one of the oldest and simplest iterative methods
for finding the dominant eigenvalue and associate eigenvector of a matrix.
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Therefore, it can be used to find the stationary vector of a Markov chain.
The stationary vector is simply the dominant left-hand eigenvector of the
Markov matrix.

2.2.1 Power Method

The Power method was the original method proposed by Brin and Page
for finding the PageRank vector.
Given a starting vector

the Power method calculates successive iterates
T T
kDT — 207G where k=0,1,...
until some convergence criterion is satisfied.

The intuition behind the convergence of the Power method is as follows.
For simplicity, consider A = G7, so

B S VR ()R AU (55 Dy g ()
Assuming that matrix A has n distinct eigenvectors wu;:

Then, we can write any n-dimensional vector as a linear combination of the

eigenvectors of A,
n
7T(0) = U + ZOZZ'UZ'
i=2

Since the first eigenvalue of a Markov matrix is A\; = 1,
7T(1) = A?T(O) = u + Z Oél)\zul
i=2
and,

7 = Akg© — 4y 4 Z i\,
=2
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Proposition 2.2.1. Since 1 > [\o| > |X3] > - > |\u|, A7 approaches
uy as k grows. Therefore, the Power method converges to the principal eigen-
vector of the Markov matriz A.

Brin and Page chose the Power method to compute the PageRank vector
knowing that this iterative method converges very slowly. Why did they and
why is it still the predominant method in PageRank research?

Google uses the Power method for several reasons: it is simple to imple-
ment and program; it is storage-friendly (matrices S and G are not formed
nor stored) because it allows the use of the sparse matrix H instead of the
dense matrix G; it only stores the H matrix (and the vectors d and 7); typi-
cally for the problem at hands it only needs about 50-100 power iterations to
compute the PageRank vector before it converges [20]; it is matrix-free (no
manipulation of the matrix is needed during each step, the coefficient matrix
is only used in a vector-matrix multiplication).

The Power method applied to matrix G (equation ({2.5))) can be expressed
using the H matrix instead. The iteration

B K () B
= om(k)TS—l—l_TaW(k)TeeT (2.6)

= an®"H 4 (ar®Td+1-a) <

only execute vector-matrix multiplications on a sparse H matrix (each vector-
matrix multiplication is O (n) since H has about 10 nonzeros per row).

The theory of Markov chains justify why the Power method applied to G
requires only about 50 iterations to converge. Indeed, as will be explained in
a while, 50 iterations already provides the necessary accuracy.

The ratio of the two eigenvalues largest in magnitude (A; and \g) for a

given matrix determines how quickly the Power method converges [50]. So,
k

22 .

the asymptotic convergence rate of the Power method depends on |52

For stochastic matrices such as G, |A\2| governs the convergence because
A1 = 1. G is primitive, so |Ag| < 1.

Next is presented a theorem and proof for the second eigenvalue of the
Google matrix.

The theorem proves the relationship between the spectrum of S and the
spectrum of GG and, to maintain generality, it uses a generic personalization
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vector vT (vT > 0 is a probability vector) rather than the uniform teleporta-
tion vector Te’ [34] B8]

Theorem 2.2.2. If the spectrum of the stochastic matriz S 1is,

U(S) = {17/1’27"'7:“71}7

then the spectrum of the Google matriz G = aS+(1—a)E with E = ev’
18

o(G)={1, g, ..., \n},

where

M =aug for k=2,3,....n

and v is a probability vector.

Proof. To clarify the proof vectors and matrices are written in bold.
S is a stochastic matrix, so (1,e) is an eigenpair of S.

Let Q = (e X) be a nonsingular matrix in which the first column is the
eigenvector e.

Counsider the inverse matrix

Then,
T T
4~ [ Yye ¥yYX\ (10
Q Q_(YTe YTX)_(O I)’

which gives two useful identities, y7e = 1 and Y'e = 0. As a result, the
similarity transformation

T T T
1 ([ y'e ySX |\ (1 y'SX
Q SQ—(YTe YTSX> (o YTSX)’

reveals that Y/ SX contains the remaining eigenvalues of S, o, . . ., fin.

Applying the similarity transformation to G = aS+(1—a)E with E = ev’,

vl > 0 a probability vector, gives
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Q'GQ =Q! (aS +(1- a)eVT) Q
=aQ'SQ+ (1 -a)Q 'ev’Q

((1) S},{?SS})(()JF(l—a)(%’;)evT(e X)

o
T T

— ( (g z‘y(,TSS:};( ) +(1—-a) ( Sy{Tee ) (vTe vTX)

a ay’SX ylevle ylevl'X
B ( 0 aY’sx )T (1-a) YZevle YTev'X
[ a ay'sX 1-—a) (1-a)v'X
- ( 0 aYTSX ) * ( 0 0 )
(1 ay'SX+ (1 - a)v'X
= < 0 aYTSX ) |

T

Therefore, the eigenvalues of G = aS+(1—a)ev’ are {1, aps, aus, ..., au,}.

This theorem provides a more compact proof than that found in [63] by
Haveliwala and Kamvar. O

Due to the link structure of the web, |us| =1 or |us| = 1. So, [A(G)| =
a or [A(G)| = «a. So, the convex combination parameter « explains the
convergence after just 50 iterations.

Proposition 2.2.3. Considering a®® = 0,85 ~ 0,000296 then, at the 50"
iteration, one can expect roughly 2-3 decimal places of accuracy in the ap-
prozimate PageRank vector (which is sufficient for Google’s ranking needs).

For the Google matrix G, the modulus of the subdominant eigenvalue of
the Google matrix is | \2(G)| < .

In the case of [\y(S)| = 1 then |\o(G)| = a. Therefore, the asymptotic
rate of convergence of the PageRank Power method of equation is the
rate at which o — 0.

Proposition 2.2.4. To produce PageRank scores with approximately B digits

of accuracy, about —logfoa iterations must be completed.

Proof. See [88]. O

A damping factor far less than 1 allows for convergence (linear) of the
Power method. Usually av = 0.85 is the reference value and a higher value
closer to 1 makes the computation more difficult. For the former cases, more
sophisticated iterative methods, such as Implicit Arnoldi or Krylov-Schur are
the only answer to solve these (large) eigenvalue problems [49].
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An excellent overview of Google’s PageRank and other search engines can
be found in [8F].

2.2.2 Other methods

The computation of PageRank is a specific instance of the computation
of a stationary distribution vector, with two distinct features. On one hand,
the matrices involved are so large that only a small set of computational tools
can be applied. That is, algorithms based on factorization techniques cannot
be used. On the other hand, the PageRank incorporates a damping factor,
a, that defines a convex combination of the original matrix (after modifying
zero-sum rows) and a rank-1 matrix. This determines the magnitude of
the second largest eigenvalue, and consequently, the level of difficulty of the
computation of the PageRank vector.

The damping factor is a real positive number smaller than 1. It was
reported that the damping factor was originally set to 0.85 [I11].

The question of what value of « is the ”correct” value to give meaningful
rankings is subject to ongoing investigation [14]. In [84] it was argued that
the PageRank vector derived from larger «, such as 0.99, may give a ”truer”
PageRank than o = 0.85 does. Also, the computation of many PageRank
vectors, with different values of «, seems promising for the design of anti-
spam mechanisms [67, [138].

The smaller « is, the easier is to compute the PageRank vector by simple
means like the Power method. The closer the damping factor is to 1 the
closer the matrix is to the original web link graph.

If the largest eigenvalue (A\; = 1) is not well separated from other eigen-
values the power method does not work and it is necessary to employ more
efficient and sophisticated techniques.

So, some researchers dropped the restriction to the Power method and
used different methods to compute the PageRank vector. The Arnoldi method
is one of those methods.

Arnoldi’s method has been popular for computing a small number of
selected eigenvalues and the associated eigenvectors for large unsymmetric
matrices.

Imposing the Galerkin condition to Au = Au EL A n x n, a new problem
is built B,y = Ay, where B,, = VTAV, B,, m x m, V an orthogonal basis.
Each eigenvalue \; of By, is a Ritz value and Vy; a Ritz vector, where y; is

lwe are considering A = GT
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the eigenvector of B, associated with \i.

However, there is no guarantee that the Ritz vectors obtained by the
Arnoldi’s method converge, even when Ritz values (approximate eigenvalues)
do. In order to find a way around this obstacle, Jia, in [72] [73], computed re-
fined approximate eigenvectors by small sized singular value decompositions
(SVD).

This proposal key idea is that, after computing the Ritz values by Arnoldi’s
method, it is chosen a refined approximate eigenvector in the Krylov subspace
involved which minimizes the norm of the residual formed with the Ritz value.
So, rather than using the Ritz vectors Vy; as approximate eigenvectors, for
each );, we now seek a unit norm vector v; satisfying the condition

J(a-Ad)o = g, a5

and use it to approximate u;. The v; are called refined approximate eigen-
vectors corresponding to \;.

This refined approximate eigenvectors converge to the eigenvectors if
the Ritz values do. In fact, the resulting refined algorithms converge more
rapidly. The numerical experiments show that Jia’s algorithms are more ef-
ficient than their counterparts, the iterative Arnoldi and Arnoldi-Chebyshev
algorithms [72].

= min
,|Jv]|=1

Golub and Greif applied the Arnoldi method to the PageRank problem
[48, 149].

In [49] is proposed a variant of the restarted refined Arnoldi method,
based in [72], which does not involve Ritz value computations. That is, since
the largest eigenvalue of the Google matrix is known, it is used as a shift. This
strategy improves the algorithm performance and circumvents drawbacks of
complex arithmetic.

The strength of the Arnoldi-type methods lies in obtaining orthogonal
vectors. It allows for effective separation of the PageRank vector from other
approximate eigenvectors.

Golub and Greif experimented with a few web matrices and proved that
the Arnoldi-type algorithm used in [49] works well for values of the damping
factor towards the right part of the spectrum (close to 1). For high values
of a, the method yields substantial computational savings (at the price of
higher memory requirements).

The authors also comment on the sensitivity of the PageRank problem
to the choice of the damping parameter . An analysis of the sensitivity of
PageRank to the removal, addition, change of pages and a parameter, can
be found in [68], 88 [110].
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Lately, several advanced strategies to accelerate the Arnoldi-type meth-
ods emerged. Wu and Wei, in [139], presented a thick restarted Arnoldi
method for computing PageRank. They concluded that the algorithm was
not satisfactory due to its heavy cost per iteration. They dealt with this
problem by periodically knitting the cheap Power method together with the
thick restarted Arnoldi algorithm.

This idea was due to the fact that the Arnoldi method can be viewed as
an accelerated Power method. The resulting new algorithm, called Power-
Arnoldi algorithm, can be understood as a thick restarted Arnoldi algorithm
preconditioned with power iteration, or a Power method accelerated with
thick restarted Arnoldi.

The authors studied the sensitivity and stability of the PageRank vector
and they compared the convergence speed of the Power-Arnoldi method with
the convergence speed of the Power method, Quadratic-extrapolation method
and Arnoldi method for Google matrices.

The experimental results showed that the Power-Arnoldi algorithm is
often superior to its counterparts for computing the PageRank. However, the
experiments have also illustrated that the Power method and the quadratic-
extrapolation methods may be better than the Power-Arnoldi method in
many cases, especially when the damping factor is not high.

Two advantages of the Power-Arnoldi algorithm are flexibility and easy
parallelization. On the other hand, the authors noticed that in the Power-
Arnoldi process, some parameters are difficult to handle.

More recently, the same investigators, Wu and Wei, used another strategy
to accelerate the Arnoldi method. In [140], they presented an extrapolation
procedure based on Ritz values and periodically knitted this extrapolation
procedure together with the Arnoldi-type algorithm. The resulting algorithm
is called the Arnoldi-Extrapolation algorithm.

The Arnoldi-type algorithm provides better and better approximate eigen-
values to the extrapolation procedure, and the extrapolation procedure pro-
vides better and better initial guess to the Arnoldi iteration.

The extrapolation procedure is based in the work developed in [16], 19} 18|
64, [78], but with a difference, the Arnoldi-Extrapolation algorithm exploits
some approximate eigenvalues which are available from the Arnoldi-type al-
gorithm.

In the Arnoldi-type algorithm the Arnoldi process is restarted every m
steps. By altering m, one can change the number of iterations and also
the execution time. Since the size of the Google matrix is very large, it is
desirable to choose m as small as possible.

The idea is to construct an improved starting vector using the extrap-
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olation procedure and compute a new Arnoldi factorization with the new
starting vector. This leads to combine the Arnoldi-type algorithm with the
extrapolation procedure periodically (the Arnoldi-Extrapolation algorithm).

In [140] the authors compared the performance of the Power method,
the Quadratic extrapolation algorithm, the Power-Arnoldi algorithm and
the Arnoldi-Extrapolation algorithm. Numerical experiments illustrate that
the new Arnoldi-Extrapolation algorithm is often more powerful than the
Arnoldi-type algorithm and the Power method.

One advantage of this new Arnoldi-Extrapolation algorithm is that the
dimension of the Krylov subspace can be chosen very moderate, allowing the
memory costs to be reasonable. Other advantages are the potential use on
parallel architectures and its applicability for a wide range of the parameter
a which can be set close to 1.

As mentioned early, the Google matrix can be reordered according to
dangling and nondangling nodes and the PageRank problem can be applied
to a much smaller matrix, which reduces the size of the problem [67] [77, [84]
80, 93]. So, Wu and Wei suggest that the two new algorithms they developed
[139, 140] can also be used in combination with these reordering schemes.

2.2.3 Acceleration methods for the Power Method

The PageRank computation by the standard Power method takes days
to converge since matrices involved are large.

Even though Power method is slow to converge, the size and sparsity of
the web matrix made it the method of choice to compute the PageRank.

The Web is big. After looking at different sources it becomes clear that
the number of web pages indexed by Google is not consensual, different web
sites report different numbers. However, the most reliable source for this
kind of information must be the Google company itself. The first Google
index in 1998 already had 26 million pages, by year 2000, they already hit
the one billion mark. In 2008, Google claimed that the Web had 1 trillion
unique URLs (short scale - 1 trillion is 1 000 000 000 000) [2]. According to
Statistic Brain Research Institute, Google’s search engine found 30 trillion
web pages in 2014 [I5]. In April 2016, the estimated size of Google’s index
is 45 trillion of web pages [30].

Due to the fact that the number of web pages is increasing rapidly, it be-
came necessary to find methods to speed up the computation. Some of the
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most important contributions have come from researchers in Stanford Uni-
versity. They proposed several methods for accelerating the Power method.
As the computation of just one iteration of the Power method on a web-sized
matrix is so expensive, reducing the number of iterations by a handful can
save hours of computation.

There are two ways to reduce the work involved in any iterative method:
either reduce the work per iteration or reduce the total number of iterations.
The problem is that reducing the number of iterations usually comes at the
expense of a slight increase in the work per iteration, and vice-versa. As long
as the overhead is minimal, the proposed acceleration is considered beneficial
[8].

Some of the most successful approaches for reducing the work associated
with the PageRank vector are: Adaptive Power method [76], Extrapolation
techniques [16, [64] [78], 124], Aggregation [78] and Lumping methods [67, 93]
that proceed with a matrix reordering according to dangling and nondangling
nodes.

Adaptive Methods

As mentioned above, various methods to accelerate the simple Power
method iterations have been developed. Stanford researchers S. Kamvar, T.
Haveliwala and G. Golub noticed that most pages in the web converge to
their true PageRank quickly, while relatively few pages take much longer to
converge [76]. However, the standard Power method with its macroscopic
view does not notice this, and blindly makes unnecessary calculations. The
pages that converge slowly generally have high PageRank and the pages that
converge quickly generally show low PageRank. The Power method is forced
to drag on because a small proportion of pages (pages with high PageRank)
take longer to converge to their final PageRank values. As elements of the
PageRank vector converge, the idea is to "lock” them and do not recompute
leading to a reduction of effort in subsequent iterations. Two algorithms were
developed in [76], Adaptive PageRank and Modified Adaptive PageRank,
which allowed a speed up in computation of 18% and 28% respectively.

Aggregation Methods

BlockRank In [77] Kamvar et al. produced another contribution to the
acceleration of PageRank. This method, called BlockRank, works on both
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acceleration goals simultaneously, it reduces both the number of iterations
and the work per iteration.

This method is an aggregation method that lumps sections of the web by
hosts. Hosts are high-level web pages under which lots of other pages sit.

The web link graph has a nested block structure, that is, most hyperlinks
link (intralink) pages on a host to other pages on the same host. Only a few
links (interlinks) are links between hosts. So, the webgraph (nodes are web
pages) is compressed into a hostgraph (nodes are hosts).

In [77], a 3-stage algorithm, that explores this structure, is used to speed
up the computation of the PageRank vector. First, the local PageRanks of
pages for each host are computed independently using that host link struc-
ture; second, these local PageRanks are then weighted by the ”importance”
of the corresponding host; third, the standard PageRank algorithm is run
using the weighted aggregate of the local PageRanks as its starting vector.

Intralinks are ignored in the global hostgraph. When the PageRank model
is applied to a small hostgraph, the output is a HostRank vector. The relative
importance of host ¢ is given by the HostRank for host i. Although the
HostRank problem is much smaller than the original PageRank problem, it
gives the importance of individual hosts (instead of individual pages).

It is necessary to compute many local PageRank vectors (for the pages
in each individual host) in order to obtain one global PageRank vector. So,
the PageRank model is applied to each host with the interlinks being ignored
and only the intralinks being used. This computation is inexpensive because
hosts generally have less than a few thousand pages. Considering that |H|
is the number of hosts and |H;| the number of pages in host H;, there is one
global 1 x |H| HostRank vector and |H| local PageRank vectors each with
size 1 x |H;|.

The expansion step gives an approximation to the global PageRank vec-
tor, by multiplying the local PageRank vector for host H; by the probability
of being in that host, given by the i element of the HostRank vector.

In each step of the compression (aggregation step) some links are ignored
causing the loss of some valuable information. So, only an approximation
to the true PageRank vector (computed by the Power method) is obtained.
However, this approximation can be improved if the collapsing/expanding
process is repeated until convergence.

This method speeds up the computation of PageRank by a factor of 2 on
some datasets used in [77].
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A variant of this algorithm, that efficiently computes many different per-
sonalized PageRanks, was also developed.

Page and Brin suggested that by changing the random teleportation vec-
tor v to be nonuniform, the resultant PageRank vector can be biased to prefer
certain kinds of pages. However, personalized PageRank generally requires
computing a large number of PageRank vectors.

In [77] it was used the BlockRank algorithm and a simple restriction on
the jump behavior of the random surfer to obtain a significantly reduction
of the computation time for personalized PageRank. The restriction is that
instead of being able to choose a distribution over pages to which he jumps
when he is bored, the random surfer may choose hosts.

With this restriction, the local PageRank vectors are the same for different
personalizations, only the BlockRank vector changes.

It was also presented another variant of the BlockRank algorithm that
efficiently recomputes PageRank after node updates. It uses the strategy
of reusing local PageRank vectors when the goal is to recompute PageRank
after several pages have been added or removed from the web. It is only
necessary to recompute the local PageRank of those hosts to which pages
have been added or removed at each update.

IAD Method / SIAD Method The web is volatile; thousands of modi-
fications (node modifications and link modifications) are made daily. A link
modification occurs when a hyperlink is added or deleted, a node modification
occurs when a web page is added to or deleted from the web.

These modifications on the structure of the web induce changes on the
PageRank vector.

This is one of the major bottlenecks associated with web-based informa-
tion retrieval systems, the need to update importance rankings of pages to
account for the constant changes occurring in the web’s structure.

As the classical Power method applied to the PageRank problem takes
several days to converge, updating cannot be done constantly.

The PageRank vector is recomputed periodically (say, once a month) and
it is very expensive due to the size of the Google matrix.

One way to reduce the computational work of each recomputation is to
exploit the previous PageRank computation. The intuition here is that,
during, say, one month (period between recomputations of the PageRank
vector), several changes in the web may be made, but the vast majority of
the web’s structure remain unchanged.
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Chien et al. in [24] developed an algorithm that exploits the unchanged
part of the web to approximate a new PageRank vector without the compu-
tation of the full PageRank vector of the updated web.

The Tterative Aggregation/Disaggregation method (IAD method) was
first proposed by Takahashi in 1975 [128] and has been widely used to accel-
erate convergence of iterative methods for solving linear systems and mini-
mization problems.

In [82], Langville and Meyer improved Chien’s work providing three new
updating algorithms for the PageRank problem. The first two (an algorithm
for exact updating of PageRanks using the group inverse and an algorithm
based on stochastic complementation) are of theoretical value only because
they are computationally expensive. The third, an iterative aggregation/dis-
aggregation updating method (IAD PageRank updating method) proved to
be very promising and computationally practical.

The IAD method significantly reduces the number of power iterations and
only adds the minor additional expense of a stationary vector solve on a very
small Markov chain [82]. Also, the TAD algorithm handles both link updates
and nodes updates.

Extensive analysis of the properties of the algorithm in [82] has been done
by Ipsen ans Kirkland in [65]. The authors show that the Power method
applied to the Google matrix G always converges and that the convergence
rate of the IAD method applied to G is at least as good as that of the Power
method.

The TAD algorithms were further explored in [83], 85, [87] by the same
authors as [82]. The TAD algorithm uses iterative aggregation techniques to
focus on the slow-converging states of the Markov chain. This algorithm can
be used jointly with other PageRank acceleration methods such as the ones
showed in [76, [78].

In [66] Ipsen and Kirkland used the updating algorithm proposed by
Langyville and Meyer in [82] [83] 85, [87] and analyzed the convergence, in exact
arithmetic, of the method. In this paper, Ipsen refers to the method devel-
oped by Langville as SIAD for Special Iterative Aggregation/Disaggregation
method. The SIAD method is expressed as the Power method preconditioned
by partial LU factorization.

Ipsen showed that the asymptotic convergence rate of the STAD method is
at least as good as that of the Power method. Furthermore, by exploiting the
hyperlink structure of the web it was shown that the asymptotic convergence
rate of the STAD method applied to the Google matrix can be strictly better
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than of the Power method and computations can be saved.

Also, in [149] Zhu proposed a distributed PageRank computation algo-
rithm, DPC algorithm, based on Iterative Aggregation-disaggregation (IAD)
method with Block Jacobi smoothing. The basic idea is divide-and-conquer.
Each node in the distributed system computes a PageRank vector for local
pages. Unlike parallel computations, distributed algorithms require simple
mechanisms of interaction between nodes and low volume of communication
traffic.

In this distributed approach the block structure of hyperlinks is explored.
Local PageRank is computed by each node itself and then updated with a
low communication cost with a coordinator.

Experiments on three real web graphs show that this method converges
5-7 times faster than the traditional Power method.

A survey of the aggregation methods above, including algorithms, can be
seen in [7].

Extrapolation Methods

Aitken extrapolation A practical extrapolation method for accelerating
PageRank computations was first presented by Kamvar et al. in [78]. The
aim is to reduce the number of power iterations. This method is referred to
as Aitken extrapolation because it is derived from classic Aitken A? method
for accelerating linearly convergent sequences.

The size of the subdominant eigenvalue Ay governs the expected number
of power iterations. The idea of Aitken extrapolation is ”if the subdominant
eigenvalue Ay causes the Power method to sputter, cut it out and throw it
away’ .

Unfortunately, if Ap and A3 are complex conjugates, then |\ = |A\3] and
Aitken extrapolation performs poorly.
This method will be explored in Chapter 3.

Quadratic extrapolation Kamvar et al. developed an improved extrap-
olation method, called Quadratic extrapolation, based on the same idea as
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Aitken extrapolation. That is "if Ay and A3 cause you problems, cut them
both out and throw them away”.

Quadratic extrapolation assumes that the iterate can be expressed as a
linear combination of the first three eigenvectors in order to find an approx-
imation to the principal eigenvector of the Google matrix.

On the datasets tested in [78], Quadratic extrapolation reduced PageRank
computation time by 25-300% with minimal overhead .

However, Quadratic extrapolation is expensive and can only be done pe-
riodically.

Power extrapolation In Aitken extrapolation and Quadratic extrapola-
tion it was assumed that none of the nonprincipal eigenvalues of the hyperlink
matrix were known.

In [63] Haveliwala and Kamvar proved that the modulus of the second
eigenvalue of G is given by the damping factor «, |\ (G)| &= «. Furthermore,
the eigengap 1 — |Ag| for the web Markov matrix G is given exactly by the
teleport probability 1 — c. When the teleport probability is large (that is, «
is small), the Power method works reasonably well.

Increasing « slows down convergence.

A high teleport probability means that a fixed bonus rank is given to
every web page. However, when 1 — « is large the effect of link spam is
increased and web pages can achieve unfairly high rankings.

The web graph can have many eigenvalues with modulus « (i.e., one
of @, —a, ai and —ai). So, when there are more than one (two) eigenvalue
with modulus a the Aitken extrapolation (Quadratic extrapolation) performs
poorly.

By exploiting known eigenvalues of the hyperlink matrix, Haveliwala and
Kamvar derived a new extrapolation method called Power extrapolation [64].
They developed a series of algorithms, namely, Simple extrapolation, A2
extrapolation and A? extrapolation (Power extrapolation).

The Power extrapolation accelerates the convergence of the Power method
by subtracting off the first few nonprincipal eigenvectors from the current it-
erate. It uses the fact that the first eigenvalue of G is 1 and the modulus of the
second eigenvalues is « to compute estimates of the error along nonprincipal
eigenvectors using two iterates of the Power method.

In the experiments, considering o = 0.85, A? extrapolation (Power ex-
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trapolation) performed the best for d = 6.

The Quadratic extrapolation and the Power extrapolation have similar
speedup in number of iterations. However, Power extrapolation has negligible
overhead, so that its wallclock-speedup is higher. The Power extrapolation is
simpler to implement and more efficient than Quadratic extrapolation (which
is more widely applicable).

Also, Power extrapolation needs to be applied only once to achieve full
benefit whereas Quadratic extrapolation must be applied several times to
achieve maximum benefit.

Chebyshev and e-extrapolation Other researchers, such as extrapola-
tion expert Claude Brezinski, experimented with other classic extrapolation
methods, such as Chebyshev and e-extrapolation. In [I6] Brezinski general-
ize the Quadratic extrapolation and interpret it on the basis of the method
of Moments of Vorobyev and as a Krylov subspace method. He also gives
a theoretical justification to several extrapolation methods and constructs
Padé style rational approximations of the PageRank vector.

Minimal polynomial extrapolation and Reduced rank extrapola-
tion In [124], Avram Sidi proposes two polynomial-type vector extrapola-
tion methods that have proved to be very efficient convergence accelerators.
The methods were used in the computation of the PageRank vector and are
called Minimal polynomial extrapolation (MPE) and Reduced rank extrapo-
lation (RRE). In this article, Sidi also generalizes the Quadratic extrapolation
proposed by Kamvar in [78] and proves that the resulting generalization is
very closely related to MPE.

Lumping Methods

Lumping is a special permutation of the hyperlink matrix that induces
a special structure on the solution. With lumping computing the PageRank
vector involves solving a core problem on a smaller matrix.

There are two advantages in reducing the matrix dimension: faster com-
putation and smaller round-off error [137].
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Lumping Google’s PageRank via reordering the web matrix have been
investigated by several authors in [4, 34, 37, 67, [77, 86, 90 ©93].

In [4] Arasu proposed a strong component decomposition and in [34] Del
Corso et al. used permutations to make iterative computations faster.

There are web pages without links to other pages (dangling nodes). The
number of web pages that are dangling nodes may exceed the number of
nondangling (pages with outlinks).

Lee at al. [90, O1] developed a fast two-stage algorithm for computing
the PageRank vector that lumps the dangling nodes and aggregate the non-
dangling nodes.

Inspired by Lee’s strategy Langville and Meyer [86] proposed a reordered
algorithm that uses the lumping procedure recursively.

With this algorithm the 07 rows of the top left submatrix are recursively
placed in the bottom, until there is no 07 rows in the new top left submatrix.

Applying this procedure, the top left submatrix gets smaller and smaller.

The stationery vector of this submatrix is less costly to compute because
its dimension is much smaller compared to the origin matrix. After, forward
substitutions are carried on to get the full PageRank vector.

However, this algorithm may suffer from the overhead of the recursively
reordering procedure.

In [22] Bu and Huang tried to solve this problem and found a compro-
mise between getting a reduced submatrix and saving the calculation spent
on reordering. They developed an Adaptive reordered method that uses a
stopping criterion that once the criterion is reached the reordering procedure
stops.

This method gets rid of the overhead brought by the recursively reordering
procedure and keeps its fast computational speed due to the reduction of
computation.

Ipsen and Selee [67] expressed lumping as a similarity transformation
of the Google matrix and proved that the dangling nodes can be lumped
into a single node (resulting in a reduced matrix) and the PageRank of the
nondangling nodes can be computed separately from that of the dangling
nodes. The stochastic reduced matrix has the same nonzero eigenvalues as
the full Google matrix.

In [93] Lin, Shi and Wei extended the results of [67] and showed that the
reduced matrix can be further reduced by lumping a class of nondangling
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nodes, called weakly nondangling nodes, to another single node. The further
reduced matrix is also stochastic with the same nonzero eigenvalues as the
Google matrix.

In both articles [67, O3] the authors considered the PageRank problem
from the eigenvalue point of view and applied the Power method to the
smaller lumped matrices.

The efficiency of the algorithm increases as the number of dangling nodes
increases.

These two methods will be explored in Chapter

In [T46] Yu et al. introduced five type nodes for lumping the web matrix.
In this article the authors explored the effect of the unreferenced pages, i.e.,
pages without inlinks.

Compared with the lumping strategies proposed in [67, 03], the Yu’s new
lumping strategy can reduce the original PageRank matrix to a much smaller
one, while the overhead of the three reordering schemes is comparable.

In [146], instead of the eigenvector approach used in [67] and [93], the
authors used a linear system approach. They applied an mathematically
equivalent algorithm, the Jacobi method, to the smaller matrix to compute
the PageRank vector.

Also, this new strategy is much cheaper than the recursively reordering
strategy proposed by Langville and Meyer [86].

Regularization

The idea of iterative regularization begins with paper [9], where it was
proposed for solving variational inequalities, with applications to ill-posed
linear equations and optimization problems.

The traditional approach to the PageRank problem goes back to the
pioneering paper [20] of Brin and Page. The Power method applied to the
original matrix can diverge or it can converge slowly. To overcome this
difficulty the matrix was modified. The matrix of the original problem was
replaced with a modified matrix which allowed that the task of finding the
principal eigenvector could be effectively solved using the Power method. For
the modified matrix the Power method always converges linearly with ratio
a to the dominant eigenvector 7 of the modified matrix. This convergence
is fast enough but 7 can differ strongly from the eigenvector of the original
matrix.

In [114], Polyak and Timonina demonstrate that the solution of the mod-
ified problem can be far enough from the solution of the original problem
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and they propose an Iterative Regularization method which allows to find
the desired solution. It has the form

k=0

where «y, varies at each iteration.

The iterative regularization process converges to the principal eigen-
vector of S independently of 7(®.

In [IT4] two simple models are proposed which are convenient for exper-
iments with PageRank problem. For them, two different regularizations are
tested. The first regularization is able to find the principal eigenvector
in situations when the power method does not converge or converge slowly.
The second method, [!-regularization, allows to get rid of low-ranking nodes
which are considered of no interest for search engines.

In a posterior paper [I15], Polyak discusses the Power method applied in
the solution of the PageRank problem for large matrices and its modifications
based on regularization. These new methods are based on the ones presented
in [114].

Independently of the initial approximation, for o = 0.85, the convergence
of the Power method is relatively fast. For « close to one the rate of conver-
gence drops dramatically. Moreover, for & — 1, the solution of the PageRank
problem becomes numerically unstable, and a singular behavior is observed
ina=1.

So, in [IT5], the authors consider an iterative process where the regular-
ization parameter o (damping factor) varies during the power iterations

atHD — A4, 7% E=1,2,...

Two methods of varying ay, Iterative regularization and Residual regular-
ization, both relying on successive variation of the regularization parameter,
were first proposed in [114].

The first method, Iterative regularization, is based on the iterative vari-
ation of the parameter according to a given law, such as

1
=1—-——= 0<p<l
o7 (k+2)p7 p

As the number of iterations, k, grows the damping factor, oy, also grows.
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In this case, for the block irreducible original matrix, it was proved that
the vectors 7*) converge in norm to the so-called dominant eigenvector of
the original matrix.

The second method of regularization is represented by an Adaptive vari-
ation of the regularization parameter. In this case, ay approaches 1 discon-
tinuously as a certain condition for the small residual of the current matrix
is satisfied. That is, in the second method the parameter varies dynamically
depending on the current residual.

In [I15] is presented another method of solving the PageRank problem.
This method is represented by Averaging the power iterations and considers
a vector constructed from the iterations of the Power method:

This vector always converges to a real nonnegative eigenvector for an arbi-
trary matrix S, and at that there always exists an estimate of the residual

157k — el < 75

The authors presented numerical experiments with three examples of
large sparse matrices of which two matrices were constructed from the model
graphs presented in [I14] and the third one was obtained from the physical
graph of links between sites.

The numerical examples demonstrated good performance of the regular-
ization method with variation of the parameter in residual. The authors
conclude that, although there exists no theoretical substantiation of the rate
of convergence of the regularization method with variation of the parameter
in residual, this method seems attractive, especially if it is not known in
advance whether a matrix is regular or not.
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2.3 PageRank as a linear homogeneous sys-
tem

As mentioned before, there are two ways of solving the PageRank prob-
lem: as an eigenvector problem (77 = TG, n7e = 1) or as linear homoge-
neous system (77 (I — G) =07, 7Te =1).

The goal of the linear homogeneous system approach is to find the nor-
malized left-hand null vector of I — G.

In their original paper [20] Page and Brin conceived of the PageRank
problem as an eigenvector problem. So, the first approach became more
popular and most investigation was done using that approach.

The normalized eigenvector problem
G=r" & 1 (aS+(1-a)er”) =n"
can be rewritten, with some algebra, as,
T (I-G)=0" & 7' (I-aS)=(1-a)v.

This linear system is always accompanied by the normalization equation
T
me=1.

Bianchini et al [13] and Cleve Moler [26] appear to have been the first to
suggest the linear system in the form

(I —aS)=(1-a)v’. (2.8)

In this section we will discuss the linear system formulation of the Page-
Rank problem.

There are good reasons to do that. Unlike what happens with the Power
method, the value of the parameter o does not affect the computation time
of the direct method. When the Power method is used, if &« — 1, the amount
of time that the method needs to converge increases. So, increasing the value
of a (o &= 1), the weight given to the artificial teleportation matrix is smaller,
and the problem approaches the true essence of the Web.

However, there are some sensitive issues to take into account. The Page-
Rank vector is sensitive as o« — 1 regardless of the problem formulation

[75).

Some research has been done using the linear system formulation: par-
ticularly related with stationary iterative methods, Jacobi and Gauss-Seidel,
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nonstationary iterative methods, such as BiCGSTAB and GMRES, along
with the use of preconditioners and reorderings [33] 43 [86].

To study the linear system formulation of the PageRank problem it is nec-
essary to refer some properties of the coefficient matrix (I — a.5) of equation
(2.8)) and some definitions [8§].

The proofs of the following properties can be consulted in Golub and Van
Loan [50] and Meyer [106].

Definition 2.3.1. If A € R™" satisfies A > 0 (> 0), i.e. all a;; are
nonnegative (positive), then A is said to be nonnegative (positive).

The hyperlink matrix H and the stochastic matrix S are nonnegative
matrices and the Google matrix G is a positive matrix.

Definition 2.3.2. A real matriz A € R™ " is called an M -matriz whenever

there exists a matriz B > 0 and a real number s > p(B), the spectral radius
of B, such that A = sl — B.

Definition 2.3.3. If s > p(B) in the above definition then A is a nonsingular
M -matrix.

M-matrices can be either nonsingular or singular.

Definition 2.3.4. A matriz A € R™" is called a H-matriz if its comparison
matric H = H(A) defined by

hij = a5 Z:]
! {_|aij’> 27&]

is an M-matriz (i.e. H1 > 0).

Proposition 2.3.5. Some properties of M-matrices:

o A is a nonsingular M-matriz if and only if a;; <0, for all i # j and
A7t >0.

o An M-matriz A has a;; <0, for all © # j and a; > 0 for all i.

o [f A is a nonsingular M -matriz, then all eigenvalues have positive real
parts.

e Principal submatrices of nonsingular M-matrices are also nonsingular
M -matrices.
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e [f A is an M-matrix, then all of its principal minors are nonnegative.lf
A is a nonsingular M-matriz , then all principal minors are positive.

o All matrices with nonpositive off-diagonal entries whose principal mi-
nors are nonnegative are M-matrices. All matrices with nonpositive
off-diagonal entries whose principal minors are positive are nonsingu-
lar M -matrices.

A nonsingular matrix A is ill-conditioned if a small relative change in A
can produce a large relative change in A~!. The condition number of A,
given by k = || A]| [|[A7!||, measures the degree of ill-conditioning.

Condition numbers can be defined for each matrix norm.

The co-matrix norm (||Al|) is the maximum absolute row sum.

Proposition 2.3.6. Matriz [ — S has the following properties:

o [ — af is nonsingular

I — a8 is an M-matriz

I —aS||,, =14+ «a, provided at least one nondangling node exists
e The row sums of (I —aS) are 1 —«

o I —asS is an M-matriz so (I — aS)™' >0

o The row sums of (I —aS)™" are (1—a)”", so, H(I—aS)_lHoo =
(1—a)”
e The condition number ko (I — aS) = 12

Proof. See [50, 106].
[

As mentioned before, I — a.S is dense. It is possible, and much better,
to operate with the very sparse H matrix. Due to this, we must analyze if
similar properties of I — .5 hold for I — aH.

As S = H + dw” and taking w? = v we have S = H + dv’.
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The linear system approach of the PageRank problem can be written in
terms of the sparse matrix H as

7l (I —aS)=(1—a)vT
& 7' (I —aH —adv”) =(1—a)v”
& 7' (I —aH)—arfdv? = (1 —a)ovl
& 7l(I—aH)=(1-a+ar’d)v”

Let 77'd = ~, then the linear system becomes
7' (I —aH)=(1—a+ay)v?

The scalar v holds the aggregate PageRank for all the dangling nodes.
Since the normalization equation 77e = 1 will be applied at the end, we can
choose a convenient value for v, like v = 1 [33], 43}, [86].

So, we can obtain the linear system 77 (I — aH) = v™.

The matrix I — aH has many of the same properties as I — 5.

Proposition 2.3.7. Matrix I — aH has the following properties:
e [ — aH is nonsingular

o [ —«aH is an M-matriz

|l —aH| =1+ a, provided H is nonzero

o The row sums of I — aH are either 1 — « for nondangling or 1 for
dangling nodes

o [ —aH is an M-matriz so (I —aH)™' >0

e The row sums of (I — ozH)_1 are equal to 1 for dangling nodes and less
than or equal to ﬁ for nondangling nodes

e The condition number kq, (I — aH) < r—g

o The row of (I — ozH)_1 corresponding to dangling node i is el where e;
is the i column of the identity matriz.

Proof. See [50, 106].
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The last property of (I —aH)™" does not apply to (I — aS)™"

The next theorem shows that a linear system formulation, related to the
eigenvector formulation, exists.

Theorem 2.3.8 (Sparse linear system for the PageRank problem). Solving
the sparse linear system
o' (I —aH) =

and letting 77 = ;TTQ produces the PageRank vector.

Proof. [88] If 77G = 77 and n7e = 1 then 7' is the PageRank vector.
Knowing that 77G =77 & 7/ (I-G)=0" & 27 (I-@G)=0",
we will prove that 27 (I — G) = 0T:

T(I-G) =

o' [I — aH — adv” — (1 — ) ev”]
2P (I —aH) — 2" [ad + (1 — a) ] T
We have 7 (ad — (1 — ) e) = 1 due to the fact that vT is a probability

vector and
1 = e
I—aH)e

(
e—arl’He and He=¢e—d
e —
e

ar? (e —d)
—azle+ arld
—a)zTe+ ax’d
T1(1—a)e+ ad]

T
T
T
T
T
1

(%
Xz
T
T
T
(

T

So, it results that

TI1I-aG) = x;(I—TaH)—a:T[ozd—l—(l—a)e]vT

= 0.

]

Therefore, PageRank is both the stationary distribution of a Markov chain
and the solution of a linear system. Although these two approaches are
inherently linked, they require different numerical methods for finding the
PageRank vector [86], which should be exploited.

Let us review the linear systems and the numerical methods for solving
them.
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Given an n x n matrix A (A € C™") and a n-vector b (b € C"), the
problem considered is: find x € C" such that

Ax =b (2.9)

Equation is a linear system, A is the coefficient matriz (nonsingular
matrix with nonvanishing diagonal elements, det(A) # 0), b is the right-hand
side vector, and x is the vector of unknowns.

The system is called homogeneous if all elements of b are zero; otherwise
is called nonhomogeneous.

The numerical methods used to solve a linear system of equations can be
divided into two categories: direct methods and iterative methods.

A direct method is one that produces the solution in a prescribed, finite
number of steps. All versions of Gaussian elimination (Crout’s, Doolittle’s,
Cholesky’s method) are direct methods.

In contrast, an iterative method is based on recurrence relations starting
from an approximation to the true solution (initial guess) and, if successful,
obtain better and better approximations for a required accuracy. As ex-
amples of iterative methods we have: Jacobi method, Gauss-Seidel method,
SOR method, GMRES method, BiCG method, and many others.

Iterative methods are ideally suited for problems involving large sparse
matrices where the use of direct methods would be very expensive.

The order n of the Google matrix is so large that we cannot afford to
spend about n® operations to solve the system by Gaussian elimination.

The use of iterative methods has the advantage that the matrix A is not
altered during the computations. Hence, though the computation may be
long, the problem of accumulation of rounding errors is less serious than
for those methods, such as most direct methods, where the matrix changes
during the computation process.

Besides, sometimes the iterative methods produce good approximations
with relatively few iterations.

An iterative method for solving (12.9)) has the form
25 = Fa2® v q, k=0,1,... (2.10)

where Hy, is the iteration matriz and dj, is a vector, and both can depend on
iteration count k.

There are two types of iterative methods: stationary methods and non-
stationary methods.
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If neither Hj, nor d; depends upon the iteration count k& then the iterative
method is said to be stationary. Otherwise it is nonstationary.

Stationary methods are older, simpler to understand and implement, but
usually not as effective. On the other hand, nonstationary methods are more
recent, are harder to understand and implement, but they can be highly
effective.

The rate at which an iterative method converges depends greatly on the
spectrum of the coefficient matrix. Hence, iterative methods usually involve
a second matrix that transforms the coefficient matrix into one with a more
favorable spectrum. The transformation matrix is called a preconditioner.
A good preconditioner can improve the convergence of the iterative method
sufficiently to overcome the extra cost of constructing and applying the pre-
conditioner 10} [1T].

For a general review of iterative methods for linear systems see [8] 10} [50].

2.3.1 Stationary methods

Web search applications require solving systems of linear equations, but
the magnitude of n is too large for direct solution methods based on Gaussian
elimination to be effective. So, iterative methods are often the choice, and,
due to the size, sparsity, and memory considerations, the preferred algorithms
are the methods based on matrix-vector products that are simpler and that
require no additional storage beyond that of the original data. The most
used and explored are the linear stationary iterative methods.

Consider, again, the linear system of algebraic equations of (2.9), Az = b,
where A is a n x n matrix, det(A) # 0, b and x are n X 1.
The first step for the construction of an iterative method usually begins
with the splitting of A.
Writing A as
A=M—-N (2.11)

with M nonsingular is called splitting of A. M is taken to be invertible and
cheap to invert, meaning that a linear system with matrix coefficient M is
much more economical to solve than ({2.9).

In this conditions the system ([2.9) can be written as

Mz=Nz+b & z=M'Ne+ M
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that suggests the iterative scheme
™) = MIN2® 4 M,
Considering the product
H=M'N=I-M"1A (2.12)
with H called the associated iteration matriz and the vector,

d= M""b. (2.13)

For an arbitrary initial vector z(?, (z(®) € C"), the sequence defined by
25 = H2® 4+ d k=0,1,2,... (2.14)

is called a linear stationary iteration. The general expression for all the linear

stationary iterative methods is (2.14)).

A sufficient and necessary condition for (2.14)) to convergence, to the
solution of (2.9), is p(H) < 1, where p(H) denotes the spectral radius of H
(i.e., the largest of the moduli of its eigenvalues). So, if p(H) < 1, then A is

nonsingular, and klirn ® =z =41 (the solution to i for every z(©).
—00

A sufficient condition for convergence is ||H|| < 1, where |[|-|| denotes
matrix norm induced by a vector norm [57, [8§].

The asymptotic convergence rate for is the number R = —logiop (H)
and is used to compare different stationary iterative algorithms because it is
an indication of the number of digits of accuracy that can be expected to be
eventually gained on each iteration of *+1) = Hz®) 4+ (.

In the next methods we will consider the matrix A divided in the sum of
three matrices

A=D-L-U, (2.15)

where D = diag(A) is the diagonal part of A (assuming each a; # 0,
det(D) # 0), —L is the strictly lower triangular part of A and —U is the
strictly upper triangular part of A.

Each different splitting (2.11]), produces a different iterative algorithm.
There are three particular splittings that are widely used and produce

three well-known stationary iterative methods: the Jacobi method, the Gauss-
Seidel method and the SOR method.
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Casting PageRank as a linear system was suggested by Arasu et al [4]
where Jacobi, Gauss-Seidel and the SOR iterative methods were considered.

In [34] Del Corso et al proved that the PageRank vector can be computed
as the solution of an sparse linear system by exploiting the effectiveness of
stationary methods such as Jacobi, Gauss-Seidel and Reverse Gauss-Seidel
methods for the solution of the system.

Many different permutation schemes were applied to the web matrix in
order to increase data-locality and reduce the time necessary for computing
the PageRank vector. The experiments performed in [34] showed that these
strategies allowed a gain of up to 90% of the computational time needed to
compute PageRank compared to the Power method.

The three different splittings mentioned are presented in Table and
Table 2.2

H=M"'N Method
M=D N=L+U Jacobi
M=D-1L N=U Gauss-Seidel
M=w!'D-wLl) [ N=(w!'-1)D+U SOR

Table 2.1: Iterative methods for specific values of M and .

Iteration scheme / in terms of components Method
2+ = DLz ® + DUs® + D=1 Jacobi
xgk-&-l) _ a%z bz - z;::él aij$§k)
jFi
2D = DL+ 4 D=1yz®) + D=1 Gauss-Seidel
(k+1) i1 (k+1) n (k)

= (bz' — D1 Gy = D (i )
g™ = (1 —w)a® + wD™ (b — La™) — Uz®) SOR

ftl k w i—1 k+1 k
xz( ) = (1—-w) 965 ) + oo <bi - ijl aij37§‘ - Z?:Hl aijx§ ))

Table 2.2: Iteration schemes and iterative methods.

The Jacobi method The Jacobi method is based on solving for every vari-
able locally with respect to the other variables. One iteration corresponds to
solving for every variable once. The resulting method is simple to understand
and implement, but has convergence [10].
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The order in which the equations are examined is irrelevant, since the Ja-
cobi method treats them independently. For this reason, the Jacobi method
is also known as the method of Simultaneous Displacements, because the
updates could in principle be done simultaneously [10].

The pseudocode for the Jacobi method is given in Algorithm [I]

Algorithm 1 Jacobi Method
Given matrix A and vector b;
Choose an initial guess z(%;
Compute M := D, where D is the diagonal of A;
Compute N := M — A;
Let k := 0;
while no convergence do
Solve Mz*+1) .= Nz*) 4 p:
Update k :=k + 1;
end while
Normalize z

k)

Y
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The Gauss-Seidel method If we proceed as with the Jacobi method,
but now assume that the equations are examined one at a time, and the
previously computed results are used as soon as they are available, we obtain
the Gauss-Seidel method.

In the Gauss-Seidel method each component of the new iterate depends
upon all previously computed components, therefore, the updates cannot be
done simultaneously as in the Jacobi method. Also, the new iterate depends
upon the order in which the equations are examined.

So, the Gauss-Seidel method is similar to the Jacobi method, except that
it uses updated values as soon as they are available.

Due to the dependence of the iterates on the ordering, the Gauss-Seidel
method is also called method of Successive Displacements. If this ordering
is changed, the components of the new iterate will also change (and not just
their order).

Generally, if the Jacobi method converges, the Gauss-Seidel method will
converge faster than the Jacobi method, although still relatively slowly.

In the case of A being a sparse matrix we can observe that the presence
of zeros may remove the influence of some of the previous components, that
is, it is not absolute the dependency of each component of the new iterate
on the previous components. A smart ordering of the equations may allow a
reduction of such dependence.

The reordering of the equations can alter the rate at which the Gauss-
Seidel method converges. A good choice of ordering can enhance the rate of
convergence, a bad choice can degrade the rate of convergence [10].

The pseudocode for the Gauss-Seidel method is given in Algorithm [2]

Algorithm 2 Gauss-Seidel Method
Given matrix A and vector b;
Choose an initial guess z(?;
Compute D, the diagonal of A;
Compute L, the strict lower triangular part of A;
Compute U, the strict upper triangular part of A;
Compute M := D + L;
Compute N := —U,
Let k := 0;
while no convergence do
Solve Mz*+1) .= Nz 4 p;
Update k :=k + 1;
end while
Normalize !

k)

Y
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The Successive Overrelaxation (SOR) method The Successive Over-
relaxation method (SOR method) seems to have appeared in the 1930s. How-
ever, formally its theory was established almost simultaneously by Frankel
[40] and Young [144].

Thus, most of the early results of the SOR method can be found in the
books by Varga [130] and Young [145]. To study the SOR method and related
methods see [57].

The SOR method can be derived from the Gauss-Seidel method by intro-
ducing an relazation (or overrelaxation) parameter w # 0 (w € C\ {0}).

This extrapolation takes the form of a weighted average between the
previous iterate and the computed Gauss-Seidel iterate successively for each

component:
(k+1)

; —wi® 4 (1—-w) xz(-k),

z i
where Z denotes de Gauss-Seidel iterate. The goal is to choose a value for
the extrapolation factor w that will accelerate the rate of convergence of the
iterates to the solution.

For the optimal choice of w, SOR may converge faster than Gauss-Seidel
by an order of magnitude.

In the development of the SOR theory one seeks values of w € C\ {0}
for which the SOR method converges, the set of which defines the region of
convergence, and, if possible, the best of w (W), for which the convergence is
asymptotically optimal, that is p (Hy) = min p(H,).

weC\{0}

In general, it is not possible to compute in advance the value of w that is
optimal with respect to the rate of convergence of SOR. Even when the com-
putation is possible the expense of such computation is usually prohibitive
[10].

To find regions of convergence is a problem generally much easier than to

define w [57].

Theorem 2.3.9 (Kahan). A necessary condition for the SOR method to
converge is |w — 1| < 1. For w € R this condition becomes w € (0,2).

Note that if 0 < w < 1, the iterative method is known as a Successive Un-
derrelaxation and can be used to obtain convergence when the Gauss-Seidel
scheme is not convergent. For choices of w > 1 the scheme is a Successive
Overrelaxation and is used to accelerate convergent Gauss-Seidel iterations.
If w =1 the SOR method is simply the Gauss-Seidel method.

However, for convenience, the term overrelaxation is used for any value
of we (0,2). [57, [145]
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It can be shown that Jacobi’s method as well as the Gauss-Seidel method
converges when A is diagonally dominant (i.e., when |a;| > >, lai;| for
eachi=1,2,...,n).

The pseudocode for the SOR method is given in Algorithm [3] The pseu-
docodes were obtained from [10].

Algorithm 3 The SOR Method

Given matrix A, vector b and parameter w;
Choose an initial guess z(?)
Compute D, the diagonal of A;
Compute L, the strict lower triangular part of A;
Compute U, the strict upper triangular part of A;
Compute M :=w™ ' (D + wlL);
Compute N := (w™!'—1)D - U;
Let k := 0;
while no convergence do

Solve Mz*+1) .= Nz*) 4 p:

Update k := k + 1;
end while
Normalize z

Y

k)

Y

2.3.2 Extrapolation principle and AOR method

The Accelerated Overrelaxation (AOR) method is another one of the
linear stationary iterative methods and was first introduced by Hadjidimos
in [54].

Since the introduction of the AOR method, many properties as well as
numerical results have been given [5, [0l 56] 62].

Several results about the AOR convergence theory in the (r,w)—plane
can be consulted in four papers of Martins [98, 99| 100, 101].

Other results about convergence of the AOR method and its variants are
in [27, (62, (112, (125, [126].

The idea of extrapolating an iterative scheme to accelerate its conver-
gence rates goes back to Richardson [I17] and has been exploited by several
researchers [1].
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The AOR method is related with the extrapolation principle, since, as
proved in [54], it is an Extrapolation of either the Jacobi method or the SOR
method, when the two parameters take on special values [61].

The Principle of Extrapolation and its relation with the AOR method are
described next.

The Principle of Extrapolation

Let w € C\ {0} be the extrapolation parameter, and based on A = M — N
(2.11]), consider the splitting

A=M,— N, (2.16)

with
M,=w'M and N,=w"'[(1-w)M +wN] (2.17)
M, is the new preconditioner matrix.

The next scheme is the extrapolated version of the original ,
x* D) = Hz®) 4 d, which is the completely consistent with the system (2.9)),
Ax =0b.

Considering that H,, = MJ'N,, and d, = M_'b, the new Extrapolated
method is given by

x(k+1) o me(k) + dw

e o) =1 —-w) I +wH]2® +wd k=0,1,2,... (2.18)
with iterative matrix
e Hy=(01-wI+wH (2.19)
and vector
& d, =wd (2.20)

which is also completely consistent with the original system ([2.9)).

Note that w # 0 (if w = 0 then Hy = I and the extrapolated method

(2.18]) has no meaning).

It is well-known that for nonsingular systems the iterative method
is convergent if and only if the spectral radius p(H) is less than 1.

The smaller spectral radius is the faster the convergence is.

Therefore, to solve the system it is necessary to find w’s for which
p(H,) < 1 and among them to choose the one (&) which minimizes p (H,,)
(p (H,) is the spectral radius of H,). [56]
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Theorem 2.3.10 (Extrapolation Theorem). If the scheme (2.14) converges
(p(H) < 1) and 0 < w < #(H), then the extrapolated scheme (2.18) con-
verges (p((1 —w) I +wH) < 1).

More specifically,

p(1—w)I+wH)<|1—w|+wp(H)<1. (2.21)

Proof. See [61].

The Accelerated Overrelaxation (AOR) Method
Next, two formulations of the AOR method are presented.

Consider the system Az = b ([2.9)), the splitting of matrix A in (2.15))
A =D — L — U and the assumptions made in section [2.3.1]

The AOR iterative scheme is given by
g® ) = 2™ d,,,  k=0,1,2,... (2.22)
with the AOR iteration matrix
Hep=(D—-rL) ' [(1-w)D+ (w—7r)L+wU] (2.23)

and vector
dypo =w(D—7L)""D, (2.24)

where w € C\ {0}, is the overrelazation parameter and r is the acceleration
parameter.
To simplify the notation we set

L=D7'L, U=D7'U, and b= D"'b.
Then, the original system 1D is equivalent to glx = b and the splitting
iQ 15))

of matrix A in is equivalent to A=1—-L —U.
With this notation, the AOR iteration matrix becomes

H,, = (z—ri)_l (G-It @ Ltul (2.95)

and the vector
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dyo = w <1 — ri) 5 (2.26)

So, the AOR iterative scheme (2.22)) is given by

1.

gkt — <I—rl~;)_1 [(1 —w) I+ (w— r)i—l—w(j} z® +w (I — rﬂ)_ b
(2.27)

For specific values of parameter r, the AOR method reduces to other
well-known methods.

If we distinguish the two cases r = 0 and r # 0 we can observe the
following.
For r = 0 the AOR iteration scheme ([2.27)) reduces to

2D — [(1 W) tw (i + U)] 2® 4 wb k=012, (2.28)
which is of the form (2.18) with H =L+ U =D"'(L+ D) and
H,=(1-w)l+wH.

Therefore, ([2.28]) constitutes the extrapolation scheme of
21 — (i + (7) M 1h k=012, ... (2.29)

with extrapolation parameter w.

Equation is the Jacobi scheme and is the Extrapolated Jacobi
scheme corresponding to the original system .

So, for r = 0, the AOR method is an Extrapolated Jacobi method with
extrapolation parameter w.

For r # 0, the iteration matrix in (2.25) can be written as

HW_([—TL>_1 :(1—w)l+(w—r)i+w[7]
o Hm:<[—ri>_1 (1-2+2-w)I-r(1-2)L+wl]
- Hrw:<[—ri)_1 (=) 1+ (2-w)I—r(1-%) L+wD]
& He=( Ta-e (1=rL)+2(=n)1+20]

¢

I N .
Hyo=(1=2)1+%(1=rL) [(1=r)1+10]
and the vector ([2.26|) is equivalent to

-1 w N
dr,w:w(I—rL> b<:>dr,w:—7’<]—rL) b

r



2.3. PAGERANK AS A LINEAR HOMOGENEOUS SYSTEM 67

So, for r # 0, the AOR scheme (2.27)) can be written as

o0 (1= 2) 12 (1= 02) " [0 1o 0] fa® 42 (1)

’
(2.30)
kE=0,1,2,...
Comparing the form of with that of the scheme , we can
conclude that is the extrapolated scheme of

-1

g+ — (I — T[N/> B [(1 —r) I+ ’I’U} z®) 4 (I — rﬂ) b (2.31)

k=0,1,2,...
with eztrapolation parameter 2, and that (2.31)) corresponds to the SOR
method with overrelazation parameter r.

Then, for r # 0, the AOR method is an extrapolated scheme (Extrap-
olated SOR method with extrapolation parameter 2) of the SOR method
(with overrelazation parameter r) [61].

Next we will show that, for r # 0, the AOR method given by ([2.23)) and
(2.24) is an Extrapolated SOR method with extrapolation parameter % and
overrelaxation parameter r.

In one hand, the SOR method with overrelaxation parameter w has iter-
ation matrix

H,=(D—wL) ' [(1—w)D +wlU]

and vector

dy =w(D—wL)™"b

On the other hand, the SOR method with overrelaxation parameter r has
iteration matrix

H,= (D —7rL)""[(1=7)D+rU]
and vector

d,=7(D—7rL)""b

Then, the Extrapolated SOR iteration matrix with eztrapolation param-
eter w and overrelaxation parameter r is given by:

H.,=U-w)I+wH,
& Hyy=I—-wI+w(D—-rL) " [(1-7)D+rU]

with vector
dry =wd, & dp,=wr(D— 7“L)71 b.
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Finally, the Extrapolated SOR iteration matrix with extrapolation param-
eter < and overrelazation parameter r is given by:

H,=01-2)I+2(D-rL)" [(1—r)D+rU]
& HW (1—2)(D —rL) “(D—rL) + (D—rL) "[(A=7) D+ U]
& H.,=(D-rL) " {(1- )( —rL 2[(1—r)D+rU]}
& Hyy=(D—rL) " [1=9)D—(r—w)L+ (£ —w) D +wl]
& H,,=(D-rL)” 1[(1—£+——w)D+(w—r)L+wU}
& Hypy=(D—-rL) ' [1—w)D+ (w—7)L+wU]
< (2.23) which is the AOR iteration matriz

and vector

dr =47 (D—7rL)""b
& dpw=w(D—-rL)""b
& l’ which is the AOR iteration vector.

By distinguishing the two cases of the AOR method (r = 0 and r # 0)
the theorem [2.3.10] leads to the following two theorems.

Theorem 2.3.11. [61]  Sufficient conditions for the extrapolated Jacobi
scheme to converge (p(Hoy) < 1) are: the Jacobi scheme con-
verges (p(Hp1) <1) and 0 <w < #}Io,l)'

Moreover we have p(Hy,,) < |1 —w|+wp(Hpy) < 1.

Theorem 2 3.12. [61)] Sufficient conditions for the extmpolated SOR
scheme to converge (p(H,.,) < 1) are: the SOR scheme con-

verges (,0( M) <1l)and 0 <w< m

+ 7"p(HM) < 1.

Moreover we have p(H, ) < ‘1 -2

It is known that an M-matrix is also an H-matrix; hence, theorems for
H-matrices are valid for M-matrices. [125]
The next theorem applies when A is an M-matrix.

Theorem 2.3.13. [61] Let A be an M-matriz. Then p(H,,) < 1 for
0<r<1and0<w<mam{1

and0<w<m

(Note: If the largest of the two quantities in the braces is not the number 1
then the second inequality as regards w must be a strict one.)

and also for 1 < r <

2
’ 1+P(H ) }’ 1+p(Ho,1)
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For more detailed information about the AOR method see section [4.1.3]

2.3.3 Nonstationary methods

Unlike nonstationary methods, the trouble with stationary schemes is
that they do not make use of information that has accumulated throughout
the iteration.

The computations of nonstationary methods involve information that
changes at each iteration. Typically, constants are computed by taking inner
products of residuals or other vectors arising from the iterative method.

Most of the nonstationary methods are based on the idea of sequences
of orthogonal vectors. Chebyshev method, which is based on orthogonal
polynomials, is an exception.

Methods based on orthogonalization were developed by a number of au-
thors in the early '50s [10].

In [43], Gleich et al. proved that PageRank can be successfully computed
using linear system iterative solvers. The iterative linear solvers used were
chosen because they worked with nonsymmetric matrices and were easily
parallelizable.

Thus, from the stationary methods, the authors used Jacobi iterations
and from the nonstationary methods they used several Krylov subspace
methods: Generalize Minimum Residual (GMRES); Biconjugate Gradient
(BiCG); Quasi-Minimal Residual (QMR); Conjugate Gradient Squared (CGS);
Biconjugate Gradient Stabilized (BiCGSTAB) and Chebyshev Iterations.
These methods are based on certain minimization procedures and only use
the matrix through matrix-vector multiplication. They also used precondi-
tioners to improve the convergence of the Krylov methods: Parallel Jacobi;
Block Jacobi and Adaptive Schwarz preconditioners.

Detailed description of this algorithms can be consulted in [10] and [119].

One main advantage of the Krylov subspace methods applied in PageRank
is that they are parallelizable [12] 43].

In [43] the methods were implemented in parallel and the numerical re-
sults showed that GMRES and BiCGSTAB were overall the best choice and,
for the majority of the matrices used, provided faster convergence than power
iterations.

The GMRES algorithm [119, [120] ranks among the most popular methods
to solve sparse, large and nonsymmetric linear systems.
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Experiments with an application of Krylov subspace methods, such as
GMRES for PageRank linear system, can also be found in Corso et al. [34]
39].

In [35] Del Corso et al also compared the effectiveness of stationary and
nonstationary methods on some portion of real web matrices for different
choices of . They concluded that stationary methods were very reliable
and more competitive for small values of o (when the problem is well con-
ditioned). However, for large values of a nonstationary methods, such as
Preconditioned BiICGSTAB or Restarted preconditioned GMRES, became
competitive with stationary methods in terms of Mflops count as well as in
number of iterations necessary to reach convergence. From this study it is
possible to see that many nonstationary methods such as CGS, BiCG and
Quasi-minimal Residual (QMR) are not reliable since statistically they have
many chances to fail.

The Arnoldi-type algorithm [49], referred in section , deals with the
PageRank problem from an eigenproblem point of view, while the GMRES
algorithm [34, B35, [43] does so from a linear system point of view. Both
approaches are Krylov subspace methods that rely on the Arnoldi process.

In [T41], Wu and Wei focus on a theoretical and numerical comparison of
the two approaches. They developed some Krylov subspace techniques, such
as preconditioned GMRES, to solve the linear system above.

Although the two approaches are not mathematically equivalent, in that
GMRES is an oblique projection method, while the Arnoldi-type algorithm
can be viewed as a classical orthogonal projection method, Wu and Wei, in
[T41], show that by choosing appropriate initial vectors, the search subspaces
of the two approaches are essentially the same. The authors present a com-
putable formula for the difference between the approximations by the two
approaches. They conclude that the better method, the Arnoldi or the GM-
RES algorithm, is problem-dependent; that the restarted GMRES is prone
to stagnate and the restarted Arnoldi-type algorithm may also stagnate.

Recently, in [147], Zhang formulates the PageRank problem as a singular
linear system. In this paper, the PageRank problem Am = 7 is formulated
as a consistent singular linear system (I — A)7 = 0 and the Full Orthogo-
nalization method (FOM) is applied to solve it.

As mentioned above, approaching the PageRank problem as linear system
in not new, but, this paper is the first in literature to solve the singular linear
system for the PageRank problem.

The coefficient matrix I — A is singular since 1 is the largest eigenvalue of
A. When some specific Krylov subspace methods are used for solving such
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a singular linear system, it is possible to encounter unexpected breakdowns
caused by rank deficiencies. Fortunately, the singular matrix I — A is char-
acterized by index one, namely index (I — A) = 1, from which unexpected
breakdowns can survive when FOM is applied. Here index denotes the size
of the largest Jordan block corresponding to zero eigenvalues of a matrix.

In [I47], the breakdown performance of the FOM on a general singular
linear system is analyzed, and the authors conclude that FOM can determine
a solution if it converges, without any unfortunate breakdowns for the target
problem used. A vector extrapolation method, based on Ritz values which
directly stems from the Arnoldi-Extrapolation algorithm in [140], referred in
section is also proposed to speed up the convergence of FOM. This
extrapolation is based on power iterations and Ritz values and it begins with
the current approximation 7(%) being a linear combination of the first three
largest eigenvectors of the Google matrix G. The resulting algorithm is called
FOM-EXT.

One advantage of this extrapolation is the exact eigenvalues can be ap-
proximated by Ritz values. That is, in spite of unknown values of Ay and Aj,
they can be estimated along with FOM.

Numerical experiments, on Google web matrices of different sizes, are
carried out to evaluate the proposed algorithms. Computational results con-
firm that the new algorithms are always effective and much better than the
refined Arnoldi-type algorithm. This approach achieves a significant saving
in computing time, especially when the damping factor is close to one. In
one example, the FOM-EXT algorithm saved more than ninety percent of
time of the refined Arnoldi-type algorithm.

When a = 0.99 and a = 0.995, the refined Arnoldi-type algorithm stag-
nates for two of the examples without determining any approximate solutions.
But FOM and FOM-EXT removed the stagnation.

2.4 Multilinear PageRank

In [47], Gleich et al. extended the PageRank problem to a higher-order
Markov chain. In the higher-order Markov chains, the stochastic process
depends on more history than just the previous state. For instance, in a
second-order chain, the choice of state at the next step depends on the last
two states.

However, this system that has attractive theoretical properties it is, in
many cases, computationally intractable. Gleich et al., motivated by the
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"spacey random surfer” model, developed a computationally tractable ap-
proximation to the higher-order PageRank vector that involves a system of
polynomial equations and called it Multilinear PageRank.

In the "spacey random surfer” model, the surfer continuously forgets
its own immediate history but remembers bits and pieces of history and is
influenced by this information. The surfer combines the current state with
this aggregate history to determine the next state.

This process is the motivation for the Multilinear PageRank.

The higher-order PageRank problem behaves much like the standard
PageRank problem in terms of guaranteed uniqueness and fast convergence.
However, the Multilinear PageRank problem only has uniqueness and fast
convergence in a narrower regime. Outside that regime, the existence of a
solution is guaranteed, but uniqueness is not.

For the Multilinear PageRank problem, outside the uniqueness regime,
the convergence of simple iterative methods is highly dependent on the data.
Five different algorithms were used to solve the multilinear system: a fixed-
point method (as Power method and Richardson method); a shifted fixed-
point method; a nonlinear inner-outer iteration; an inverse iteration (as the
Inverse Power method) and a Newton iteration.

All of these algorithms are fast in the unique regime. Outside that range,
the author used exhaustive enumeration and random sampling to build a
repository of problems that do not converge with the methods above. Among
the test cases, the Newton’s method and the inner-outer algorithm presented
the most reliable convergence properties.

Due to this result, a two-phase approach for solving the problems emerged:
first experiment with the simple shifted method and, if it does not converge,
apply either a Newton or an inner-outer iteration.

The Multilinear PageRank problem is only interesting for massive prob-
lems, the higher-order PageRank approach should be used when there is
O (n?) memory available, except if there is a modeling reason to use the
multilinear approach. This is the case for some applications, like in modern
bioinformatics and social network analysis, where the large problems involved
make the higher-order approach difficult to scale.
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2.5 Parallel PageRank Computations

Another way of accelerating the computation of the PageRank vector
is parallel processing. Obviously the computation of the PageRank is per-
formed using parallel processing. The amount of storage required as well
as the amount of calculations needed are not compatible with simple serial
computations.

Since PageRank is a popular benchmark for parallel programming models,
various versions of PageRank have been implemented in different parallel
platforms.

Kollias et al. [80] have conducted experiments that executed the Page-
Rank calculations in parallel with very little overhead communication be-
tween processors. Adaptive schemes for the asynchronous computation of
PageRank were explored.

There have been a few implementations of PageRank on CPU based in-
frastructures, including PC cluster [20] 96, 18] or P2P architectures [97].

In data mining communities PageRank has been extensively studied, and
many different approximate algorithms [3] [70], have been developed over the
years. Interesting research work that include parallel PageRank can be found
in [12].

Extensive studies have been conducted to shape PageRank suitable for
distributed computation [29, 43| [44], T34], [149].

Internet search engines use Web crawlers to download data to their central
servers to process queries. However, using crawlers bring some disadvantages,
mainly, crawlers do not scale.

In [134] Wang and DeWitt described and evaluated an distributed ap-
proach in which every Web server acts as an individual search engine on its
own pages, eliminating the need for crawlers and centralized servers. In the
paper, a series of PageRank variants, including Local PageRank, ServerRank,
Local PageRank Refinement, and Result Fusion, is proposed.

A real Web data set was used in the experiments, which showed that a
distributed approach can produce PageRank vectors that are comparable to
the results of the centralized PageRank algorithm.

Gleich et al. [43],[44], considered the PageRank linear system formulation
to investigate the convergence of iterative stationary and Krylov subspace
methods, including the convergence dependency on teleportation, using par-
allel PageRank computing and compared the methods efficiency.

The random teleportation used in PageRank strongly affects the conver-
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gence of power iterations [63]. High teleportation can help spam pages to
accumulate PageRank [53], but a redution in teleportation difficults the con-
vergence of standard Power method. In [43] the authors investigated how
the convergence of the linear system is affected by a reduction in a degree of
teleportation.

To use an iterative linear solver for PageRank problems it is necessary
that it works with nonsymmetric matrices and it must be easily parallelizable.
Thus, from the stationary methods, the authors in [43] 44] used Jacobi iter-
ations and from the non-stationary methods they chose several Krylov sub-
space methods: Generalize Minimum Residual (GMRES); Biconjugate Gra-
dient (BiCG); Quasi-Minimal Residual (QMR); Conjugate Gradient Squared
(CGS); Biconjugate Gradient Stabilized (BICGSTAB) anf Chebyshev Itera-
tions.

The Krylov methods can be improved by the use of preconditioners. So,
in [43, [44], it was used parallel Jacobi, Block Jacobi and Adaptive Schwarz
preconditioners.

Manaskasemsak et al. [06] presented a parallel PageRank computation on
a Gigabit PC cluster and achieved significant improvement. They stored a
piece of the Web graph on separate hard disks for each processor and iterated
through these files as necessary.

In [43], 44], an alternative approach was used, the entire Web graph was
kept in memory, on a distributed memory parallel computer, while computing
the PageRank vector.

The parallel PageRank codes use the Portable, Extensible Toolkit for
Scientific computation (PETSc) which contains parallel implementations of
many linear solvers, including GMRES, BiCGSTAB and BiCG.

In [43] the authors used six Web related directed graphs, being the largest
data set used the "av” graph (the Alta Vista 2003 crawl of the Web with 1.4
billion nodes). The numerical results showed that: GMRES and BiCGSTAB
were overall the best choice of solution methods for the PageRank class of
problems, and for most graphs, provided faster convergence than power it-
erations; Power and Jacobi methods have approximately the same rate and
the most stable convergence pattern; convergence of Krylov methods strongly
depends on the graph and is non-monotonic; the QMR, CGS and Chebyshev
methods did not converge. They also demonstrated that the linear system
PageRank can converge for much larger values of the teleportation coefficient
(damping factor «) than standard power iterations.

In [44] the same authors used a power law Web graph with 1.5 billion
nodes on a distributed memory 140 processor RLX cluster. The numerical
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results showed that power iterations and BiCGSTAB are overall the best
choice of solution methods. With the parallel implementation it was possible
to reduce the time to compute the PageRank vector on a full Web graph
from 10 hours to 5.5 minutes.

Zhu et al. [149] proposed a distributed PageRank computation (DPC)
algorithm based on Iterative Aggregation-disaggregation (IAD) method with
Block Jacobi smoothing. The basic idea was divide-and-conquer. They
treated each Web site as a node to explore the block structure of the Web
[77]. Each node, in the distributed system, computed a PageRank vector for
its local pages by links within sites and and then updated its local PageRank
through low volume communication with a given coordinator.

Experiments on three real Web graphs showed that this method converged
5-7 times faster than the traditional Power method and that the DPC algo-
rithm achieved better approximation than the work presented in [134].

Existing approaches to PageRank parallelization can be divided into two
classes: Exact computations and Approximations.

In case of the Exact computations the Web graph is initially partitioned
into blocks: grouped randomly [121], lexicographically sorted by page [90],
123], or balanced according to the number of links [43]. Then, standard itera-
tive methods such as Jacobi or Krylov subspace [43] are performed over these
pieces in parallel. The partitions, periodically, must exchange information.

The main idea behind PageRank Approximations approaches is that it
might be sufficient to get a rank vector which is comparable, but not equal, to
PageRank. Instead of ranking pages, higher-level formations are used. The
inner structure of these formations can then be computed in an independently
parallel manner, as in BlockRank [77], the U-Model [21], SiteRank [142],
ServerRank [134], or HostRank [37].

In [79] Kohlschutter et al. tried to take the best out of both approaches:
the exactness of a straight PageRank computation but the speed of an ap-
proximation, without any centralized re-ranking.

The two-dimensional view of the Web had the host ID as the only dis-
criminator and the Gauss-Seidel method, for solving linear systems, was used
to calculate the PageRank vector in parallel.

Partitioned PageRank was implemented in Java using a P2P network with
a central coordinator instance. This coordinator was only responsible for
arranging the iteration process at partition-level and did not know anything
about the rank scores or the link structure.

This approach produced the same ranks as the original PageRank, while
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being more scalable than other parallel PageRank algorithms.

Buehrer et al. [23] implemented PageRank algorithm on Cell BE. Cell
BE processor is a multi-core processor designed for computational intensive
algorithms. However, due to the large number of random memory writes, and
data transfer between PPE (power processing element) and SPE (synergistic
processor element) required by PageRank algorithm, implementation took
more time than on single processor Xeon.

In [R1], Kumar et al. tried to solve this problem and presented a new
approach which reduces the data transfer between PPE and SPE drastically
and lead to a better performance.

The introduction of Multi-core Processors has proved to be an alterna-
tive for solving computational intensive algorithms in efficient ways in terms
of time. Kumar et al. used two multi-core architectures, STI Cell BE and
CUDA (Computer Unified Device Architecture), to implement the paral-
lelization of PageRank algorithm and compared the two approaches for stan-
dard Web graphs. It was found that implementations on CUDA performed
much better than on Cell.

Another parallel implementation of PageRank algorithm on a CUDA plat-
form can be viewed in [30]. Linear vectors were used to store the computed
PageRank values and the nodes were stored in a special data structure, the
Binary Link Structure.

In [25] it was also proposed a parallel PageRank algorithm that uses the
architectural benefits that CUDA brings.

The MapReduce distributed programming model [31] provides a new so-
lution to large data sets parallel computing.

Recently, Liu et al. [94] developed two different algorithms. The first
algorithm was a Parallel PageRank algorithm based on Power method com-
bined with MapReduce concepts. The second algorithm, the Power Iteration
Acceleration method, was a distributed iteration acceleration model based
in vector computing.

The Parallel PageRank algorithm based on power iteration acceleration
needs more computations in every iteration compared to the Parallel PageR-
ank algorithm based on Power method, however reaches convergence faster
since the number of iterations required is smaller.

Also, Whang et al. [I36] studied general approaches for designing scal-
able data-driven graph algorithms using the PageRank algorithm as a case
study. In particular, they used three different algorithm design axes (i.e.,
work activation, data access pattern, and scheduling) to present eight dif-
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ferent formulations and in-memory parallel implementations of PageRank
algorithm.

It was shown that, by considering data-driven formulations, it is possible
to have more flexibility in processing the active nodes, which enables the
development of work-efficient algorithms.

The authors showed that data-driven push-based algorithms are able to
achieve more than 28 x the performance of standard PageRank implementa-
tions.

2.6 PageRank today

Although the Google’s PageRank method was developed to evaluate the
importance of web pages via their link structure, the mathematics of Page-
Rank are entirely general and can be applied to any graph or network in any
domain.

Today, the PageRank algorithm is regularly used in bibliometrics, social
and information network analysis, link recommendation and prediction and
system analysis of road networks. It is possible to encounter applications
of PageRank to biology, chemistry, neuroscience, ecology, physics, computer
systems and sports [45].

Two uses underlie the majority of PageRank applications. In the first,
PageRank is used as a network centrality measure. A network centrality
score determines the importance of each node in terms of the entire graph
structure. These applications usually use global and near-uniform telepor-
tation behaviors. In the second, PageRank is used as a localized measure.
That is, it is used to illuminate a region of a large graph around a target
set of interest. In this case, personalized teleportation behaviors allow the
random surfer to teleport only to pages that are interesting to him.

In the centrality case, the input is a graph that represents relationships or
flows among a set of things (such as documents, genes, proteins, roads) and
the goal is to determine the expected importance of each member in light of
the full set of relationships and the teleporting behavior.

In the localized case, the input is also the same type of graph, but the
goal is to determine the expected importance relative to a small subset of
the objects.

In both cases it is necessary to build a stochastic or substochastic matrix
from a graph.

Gleich, in [45], presents a review of some of the common constructions
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that produce a PageRank or pseudo-PageRank system, such as standard
random walk; strongly preferential PageRank; weakly preferential PageRank;
sink preferential PageRank; reverse PageRank; Dirichlet PageRank; weighted
PageRank and PageRank on an undirected graph.

When PageRank is used within applications, it tends to acquire a new
name, such as TrustRank, BookRank, CiteRank, VisualRank, etc.

Some of the most interesting applications of PageRank can be seen in
Biology and Bioinformatics (GeneRank, ProteinRank, IsoRank). Microar-
ray experiments measure whether or not a gene’s expression is repressed or
promoted in an experimental condition. Although microarrays estimate the
outcomes for thousands of genes simultaneously under a few experimental
conditions, the results are extremely noisy. GeneRank [136] helps to de-
noise them. The GeneRank algorithm uses a graph of known relationships
between genes to find genes that are highly related to those promoted or
repressed in the experiment, but were not themselves promoted or repressed.
The microarray expression results are used as the teleportation distribution
vector for a PageRank problem on a network of known relationships between
genes, that is, undirected and unweighted with a few thousand nodes. The
GeneRank uses a localized teleportation behaviour.

Another example is the ProteinRank [79]. Its goal is to find proteins that
may share a functional annotation given an undirected network of protein-
protein interactions and human-curated functional annotations about what
these proteins do. This problem is also a localized use.

Another use of PageRank is for road and urban space networks, where it
helps to predict both traffic flow and human movements. In [33], Jiang et
al. show that PageRank is the best network measure in terms of predicting
traffic on the individual roads.

The PageRank approach is also used in Sports [11]. The winner network
is one of the natural network constructions for sports. In the winner network,
each team is a node and node 7 points to node j if 7 won the match between
1 and j. These networks are often weighted by the score by which team
J beat team i. Govan et al. [I08] used the centrality sense of PageRank
with uniform teleportation to rank football teams. Also, Radicchi [41] used
PageRank on a network of tennis players. It used a uniform teleportation in
a weighted network.

The BookRank is another example of a PageRank application, in this
case, to Literature. Traditional library catalogues use a carefully curated set
of terms to indicate the contents of books. Social cataloguing sites, such as
Librarything and Shelfari, indicate the users which are the topics of books
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using as data books and tags. BookRank, a localized PageRank on the bi-
partite book-tag graph [74], produces accurate suggestions for what books to
read next.

The field of bibliometrics also uses ranking methods. Generally, Page-
Rank is used as a centrality measure to reveal the most important journals,
papers and authors. An example is the citation network among individual
papers in which each node is an individual article and the edges are directed
based on the citation.

TimedPageRank is an algorithm that weights the edges of the stochastic
matrix in PageRank such that more recent citations are considered more im-
portant. CiteRank is a subsequent idea that uses teleportation to increase
the rank of recent articles [89]. The goal of both methods is to obtain tem-
porally relevant orderings that remove the bias of older articles in acquiring
citations.

The coauthorship graph is another type of bibliographic network. For
each paper, insert edges among all coauthors, so that each paper becomes a
clique in the coauthorship network. This undirected network gives a practical
ranking of the most important authors [52]. In [I16] and [104], examples of
combination of citation analysis and coauthorship analysis are presented.

The ItemRank is an example of the use of PageRank in recommender
systems. A recommender system attempts to predict what its users will
do based on their past behavior. Amazon and Netflix have some of the
most famous recommendation systems that predict products and movies,
respectively, that their users will enjoy [131].

PageRank can be even used in a social network. In this kind of network
the nodes are people and the edges are some type of social relationship. The
PageRank helps to solve link prediction problems to find individuals who will
become friends soon. It also serves a classic role in evaluating the centrality
of the people involved to estimate their social status and power. Finally, it
can help to evaluate the potential influence of a node on the opinions on the
network.

One of the important questions in social network analysis is finding influ-
ential individuals, that is, nodes that can spread their influence widely. To
understand the origins of influence the correct model is Reverse PageRank
instead of traditional PageRank. These ideas also extend to finding topical
authorities in social networks by using the teleportation vector and topic-
specific transition probabilities to localize the PageRank vector in Twitter-
Rank [95].

PageRank and Reverse PageRank also provide information on the ”spami-
ness” of particular pages through metrics such as TrustRank and BadRank.
As the commercial value of websites grew, it became highly profitable to cre-
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ate spam sites that do not contain new information content but attempt to
capture Google search results by appearing to contain information. BadRank
[135] and TrustRank [92] are link analysis tools to combat this problem.

Considering all that was said, an important question remains. Does
Google still use PageRank?

Google reportedly uses over 200 types of ranking metrics, or signals, to
determine the final order in which results are returned [39]. These evolve
continuously and vary depending on when and where the search is being
made. The exact role that PageRank plays in Google’s search ordering is
a closely guarded secret. However, based on statements from Google, the
PageRank is still believed to play a kernel role in Google’s search engine. For
instance, in [71], Mat Cutts, a Google engineer, wrote about how Google uses
PageRank to determine crawling behavior. He later wrote about how Google
moved to a full substochastic matrix in terms of their PageRank vector [51].
Thus, Google’s PageRank computation is a pseudo-PageRank problem now.

2.7 Conclusions

In the beginning of this chapter the PageRank model and the mathematics
behind the model is explained.

There are two ways of solving the PageRank problem: as an eigenvector
problem or as a linear homogeneous system.

On one hand, for the eigenvector approach, the Power method is the clear
favorite. However, several authors explored different methods to compute the
PageRank vector and, also, several methods to accelerate the Power method
were analyzed.

On the other hand, the PageRank as a linear homogeneous system and
three stationary iterative methods (Jacobi, Gauss-Seidel and SOR) to solve
it were studied.

The extrapolation principle and the AOR method were also explored.

A review on nonstationary methods used for PageRank computations, on
multilinear PageRank and on parallel PageRank computations is presented.

Nowadays, the PageRank problem developed by Page and Brin in [20]
has evolved and new applications of the PageRank model abound. Several
of these applications are discussed at the end of this chapter.



3

Acceleration of PageRank as an
eigenvector problem

Contents

3.1 The Power Method . .. ... ........... 82]
3.2 The Power method with Aitken Extrapolation . [85

3.3 The Lumpingl Method . . . . ... ... ..... B8]
3.4 The Lumping2 Method . . . ... ... ...... 93]
3.5 The New LumpingE Methods . . .. .......
3.5.1 The LumpingE 1 method . . .. ... .. ... ..
3.5.2 The LumpingE 2 Method . . . . . ... ... ... 105
3.6 Numerical Experiments . . . . ... ........ 109
3.6.1 Example 1l - Toy model . .. ... ... ...... 109
3.6.2 Example 2 - testl matrix . . ... ......... 114
3.6.3 Example 3 - EPA matrix . . ... ......... 116
3.6.4 Example 4 - test2 matrix . . ... ... ...... 211
3.7 Conclusions . . . ... ... e 123

81



82 CHAPTER 3. ACCELERATION OF PAGERANK AS AN EIGENVECTOR PROBLEM

3.1 The Power Method

In this chapter we explore the eigenvector point of view of the PageRank
problem. We propose new acceleration methods for the Power method, the
LumpingE methods. These methods combine Lumping methods with Aitken
extrapolation.

Several numerical experiments on datasets that were extracted as subsets
of the Web and on tuned matrices are presented. In these experiments the
performance of the new LumpingE methods with standard Power method
and original Lumping methods are compared. Results show the advantages
obtained with our new hybrid proposal.

The Power method is the oldest method for computing the principal
eigenvector of a matrix and it is at the heart of both the motivation and
implementation of the original PageRank algorithm [78].

As mentioned in section the Power method algorithm for computing

the PageRank vector begins with the uniform distribution 707 = o7 = Lel

. T T )
and computes successive iterates a7 = 7" G where k = 0,1,..., until
some convergence criterion is satisfied.

The Power method for computing the PageRank vector is presented in
Algorithm [l The relative rate of convergence of the algorithm is measured

) _ Jot-—s]
* Y

w(k)H or RN ECS

using the norm of the residual vector, Hx(

tol represents the convergence tolerance and matrix A = G7.

Algorithm 4 Power Method
Given matrix A, vector v and tolerance tol;
Choose an initial guess () := v;
Let k :=1;
repeat
Compute z* 1) = Az®),
Compute 0 := Hx(k’“) — x(k)H;
Update k := k + 1;
until ¢ < tol;

Proposition 3.1.1. Let G be an n X n matriz with eigenvalues i, ..., A\,
satisfying |Ai| > |Ao| > |As] = -+ > | Al

The convergence rate of the Power method is k = 32

nant eigenvalue of the Google matriz and Ao the subdominant eigenvalue.

ﬁ’ with A\ the domi-
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Proof. Let uy,us, ..., u, the eigenvectors that form a basis of R", with cor-
responding eigenvalues \q, ..., \, respectively, Au; = \ju;, for A = G7.

Expressing the initial vector as a linear combination of the eigenvectors,
as 70 = oquy + apus + -+ + ayu, for some coefficients «;, and applying
power iterations yields

204D g (®)

_ AkJrlﬂ.(O)

n

_ Z OéiAkJrlui
=1
n

= Z ozi)\fﬂui
=1

n \ k+1
aquq + a; - Ui | - (31)
=2 M

Since |[Ai| > |Az], as the number of iterations &k — oo, the first terms
on the right-hand-side will dominate. Since )\; is dominant, the fractions

_ \k+1
>‘1

:\\—f, e ’/\\—Y, all have absolute values that are strictly less than 1, and hence
N k+1 k+1
<ﬁ> . (’/\\—T> will tend to zero as k increases.

Furthermore, equation (3.1)) reveals that the rate of convergence of the

Power method will depend on the ratio of the two largest eigenvalues, i—"l’
That is, the convergence rate is k < i—f and exactly k& = ’\—’;’ as long as

oz2790.

If the ratio :\\—f is small, the convergence rate is fast. If Ay is almost as
large as Ay, )‘—f is only a little smaller than 1 and then convergence will be
much slower. O

Since Ay = 1, if Ay is close to 1, then the Power method is slow to converge.

Also |\| = a (damping factor) and the eigengap 1 — |A\y| for the Web
Markov matrix G is given exactly by the teleport probability 1 — « [63].

Thus, when the teleport probability is large and the personalization vec-
tor v is uniform over all pages, the Power method works reasonably well.
However, this increases the effect of link spam and pages can achieve un-
fairly high rankings. Indeed, a high teleport probability (i.e., small values of
«) means that every page is given a fixed "bonus” rank (equal to all pages
when v is uniform).
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On the other hand, for small values of 1 — « (i.e., values of « close to 1)
the convergence of PageRank slows down dramatically.

As an example we show the tiny web of seven pages presented in Section

21

Figure [3.1| compares the convergence rate of the Power Method for differ-
ent values of o, o € {0.80,0.85,0.90,0.95,0.99} using a uniform v.

alpha=0.80
alpha=0.85
alpha=0.90
alpha=0.95 |4
alpha=0.99

Residual

0 5 10 15 20 25
# of iterations

Figure 3.1: Comparison of convergence rate for the Power method on a web of
seven pages for a € {0.80,0.85,0.90,0.95,0.99}.

Note that increasing the damping factor « slows down convergence. For

a = 0.80 18 iterations are necessary for convergence, while for a = 0.99 22
are required.
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3.2 The Power method with Aitken Extra-
polation

Aitken’s process is a well-known sequence transformation to accelerate of
the rate of convergence of a slowly converging sequence [17].

Smce 1> |Xe| > |A3] > -+ > |A\], it is known that the Power method,

G converges to the principal eigenvector of the Markov matrix G. As-
suming that the starting vector lies in the subspace spanned by the eigen-
vectors of GG, the Power method can be expanded has

T — k0T
= W(O)TGk
= W“’)T (en” + 30y Maiy])
= 7T + a2)\2y2 + 22;3 O{z)\fsz

where x; and y;, 1 = 1,...,n, are, respectively, the right-hand and left-hand
eigenvectors corresponding to A;, and «o; = W(O)T.%'i, t = 2,...,n. The size of
the subdominant eigenvalue Ay governs the number of power iterations. Note
that 77 is hidden until A} — 0, which takes a while when |)\,| is large. The

extrapolation technique removes the spoiler.

Proposition 3.2.1. To improve the convergence, if |\a| > |As|, then

ORI oSyl will be a better approzimation to T, and )iyl can be

estimated by Aitken’s delta square process based on three steps [78]:

(Aw(k)T>2

iyl ~
2 292 A2 (k)T
Ar®T — )T T

AT pe2T o k)T T
where (¥)? indicates component-wise squaring of the vector elements.

So, by subtracting as N5yl to 7®" we can accelerate the convergence of
the Power method.

Next, as in section consider A = GT, 7®" = 7¢:-DTG o 7k =

An* =1 and that matrix A has n distinct eigenvectors u;: Aw; = ;.

T
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We will assume that the starting vector 7(¥) lies in the subspace spanned
by the eigenvectors of A, 7® = u; + 377, ayu; and will use agAsu, instead
of ap syl

Proposition 3.2.2. The quantity as\suy can be estimated by Aitken’s delta

square process by using the two subsequent iterates of the Power method
(W(kﬂ)7 7T(k+2))

(k)2
ko (Aﬂ' )
azdgtiz ¥ g

with  Ar®) = g+ _ 7k gnd  A27*) = g(k+2) _ op(ktl) 4 (k) [7g)

Proof. Beginning by assuming that 7*) can be expressed as a linear combi-
nation of the first two eigenvectors.

7T(k) = U1 + QU2 (32)

We will calculate an estimate of the principal eigenvector u; in closed
form using the successive iterates. This approximation becomes increasingly
accurate as k becomes larger.

Applying the Power method and knowing that (A1, u;) and (Ag,ug) are
eigenpairs of A:
7T(k+1) = Aﬂ'(k) = >\1U1 + ()62)\211,2

Since A\ = 1,
(k1)

= U + &2)\2“2. (33)
Applying another iteration of the Power method,
42 = AgHD) — ) 4 ap\2uy (3.4)

Let us define,
2 2
g = (Awgk)> _ <7Ti(k:+l) _ 7r§m> ’

hy = A2 ®) — 762 _ (k) | o

where 7; represents the component ¢ of vector .

Using simple algebra and equations (3.3]) and (3.4)),

gi=0a3 N — 1% (u2)!,  hi=0as(Aa—1)"(ua),.
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Considering f; as the quotient ¥

fi= (Uz)z .
Therefore, f = asus.
Hence, from equation (3.2]), we have a closed-form solution for u:
U = a — Qolly = ) — f.
O

The pseudocode for the Aitken Extrapolation method is given in Algo-
rithm [5]and for the Power method with Aitken Extrapolation in Algorithm [6]
The pseudocodes were obtained from [78].

Algorithm 5 Aitken Extrapolation
Given vectors w#+2) gk+1) 7 (k).
for1:=1:ndo

2

Compute g; := (ﬂ_i(kJrl NS
Compute h; == 7 z(’fH) Z(k+ ng);
Compute T = Tr’L(k) _ %’

end for

Algorithm 6 Power method with Aitken Extrapolation
Given matrix A, vector v and tolerance tol;
Choose an initial guess 79 := v;
Let k := 0;
repeat
Compute 7+ .= Ax®*)
Compute § := ||x*+D) — ﬂ(k)Hl;
periodically, 7+ := AITKEN (gD 7 7(k=1));
Update k :=k + 1;
until § < tol;
Set 7 := (k+1)
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3.3 The Lumpingl Method

The basic idea of the Lumping methods is to perform the PageRank
computation for the nondangling nodes separately.

In [67] Ipsen and Selee developed an algorithm for computing PageRank
that lumps all dangling nodes into a single node. This algorithm should
become more competitive as the web expands and the number of dangling
nodes increases.

The algorithms in [86, OT] are special cases of the Ipsen algorithm [67]
because they allow the personalization vector v and dangling node vector w
to be different which facilitates the implementation of TrustRank [53].

This algorithm can also be extended to a general Google matrix that
contains several different dangling node vectors.

Let n be the number of web pages and k£ the number of nondangling
nodes among the web pages, 1 < k < n. If the rows and columns of the
hyperlink matrix H are permuted (i.e., the indices reordered) so that the
rows corresponding to dangling nodes are at the bottom of the hyperlink
matrix H, then H is of the following form:

| Hu Hyp
a= [

where the matrix Hyy, k X k, represents the links among the nondangling
nodes (ND), and His, k x (n — k), represents the links from nondangling
nodes to dangling nodes (D). The (n — k) zero rows in H are associated with
the (n — k) dangling nodes, see Figure [3.2]

H
H,,C/ND 2 D

Figure 3.2: A simple model of the link structure of the Web divided in D and
ND nodes. ND represents the set of nondangling nodes, and D represents the set
of dangling nodes. The submatrix Hy; represents all the links from nondangling
nodes to nondangling nodes and Hi, represents all the links from nondangling
nodes to dangling nodes.

The elements in the nonzero rows of H (k first rows) are nonnegative and
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sums one,
H,>0, H>0, Hpe+ Hpe=e, where e=| 1 |,

and the inequalities are to be interpreted element wise. To obtain a stochastic
matrix, it is necessary to add artificial links to the dangling nodes. That is,
each zero row in H is replaced by the same dangling node vector

w:{wl}, w>0, |w|,=w"e=1.
W2

Here wy is k x 1, wy is (n — k) x 1, ||-||; denotes the ¢;-norm.

The resulting matrix S = H +dw’ = [ Hl% Hl% }, where d = [ 0 ]7
ewy ew, e

is stochastic, that is, S > 0 and Se = e.

With the personalization vector, v, the matrix has a unique stationary
distribution

v = [Ul], v>0, |vfl,=vTe=1
(]

where vy is k X 1, vy is (n — k) x 1.

As mentioned before, the Google matrix is defined as the convex combi-
nation
G=aS+(1—-a)ew’, 0<a<l,

and G has a unique stationary distribution,
G=x", 7>0, |n|,=1

The element i of the stationary distribution 7, represents the PageRank for
web page 1.

If we partition the PageRank conformally with G,

then m; represents the PageRank associated with the nondangling nodes and
7y represents the PageRank of the dangling nodes.
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Thus, the Google matrix has the following block structure:

G:[Gll G(12:|7

eul  eud
where

Gli:CYHh'—i-(l—Ck)e'UiT, ui:CYWi+(1—Oé)Ui, 1=1,2.

u=ow+ (1l —a)v= {Zl}, Gniskxk,and Giais k x (n—k).
2

Note that u; = v; and uy = vy if the dangling vector equals the person-
alization vector.

Ipsen and Selee [67] have shown that all of the dangling nodes can be
lumped into a single node and the PageRank of the nondangling nodes can
be computed separately from that of the dangling nodes. They presented
a simple algorithm, which applies the Power method to the smaller lumped
matrix and has the same convergence rate as that of the Power method
applied to the full matrix GG, for computing the PageRank vector 7.

Theorem [3.3.1| shows a similarity transformation that reduces the matrix
G to block upper triangular form and illustrates how the PageRank 77 can
be given in terms of the stationary distribution o of the small matrix G,

I, 0O

Theorem 3.3.1. Let X = 0 I

], with L =1, — ﬁéeT,

é=e—e =10,1,1,..., 1}T the first canonical basis vector, and
I, =le1---ey| the identity matriz of order n.

GO
1 _
Then, XGX _{ 0 0

The matriz GV is stochastic of order k + 1 with the same nonzero eigen-
values as G.

Furthermore, let cTGWY = o7, o7 > 0, ||o|| = 1, with partition o7 =
[Ui’?k UHJ, where oy 1S a Scalar.

]; where G = [ G%l G%ﬁe }

uyp  upe

Then the PageRank vector m* equals 77 = {a{k ol ( leTQ )1 .
2

Proof. See [102] based on [67] O
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In [67] it was presented an algorithm, based on Theorem for com-
puting the PageRank m from the stationary distribution o of the lumped
matrix G,

The input to the Algorithm [7] is the personalization vector v, the dan-
gling node vector w, the damping factor o and the nonzero elements of the
hyperlink matrix H. The output is an approximation 7 to the PageRank 7,
which is computed from an approximation & of o.

Algorithm 7 Lumping 1 method

Given H117 H127 vy, U2, W1, W2, &, tOl,
Choose an initial vector 67 := [67, 6y11] with 6 > 0 and [|6]| = 1;
while no convergence do

Compute 61, := adi, Hiy + (1 — a) vl + adpw];
Compute 64,1 := 1 — 671 ¢

end while
Compute 77 := [6], a6, Hiz + (1 — a) v + adpwi | ;

The following comments are in order.

1.

This algorithm has all advantages of the power method, that is, it
is simple to implement and requires minimal storage. Unlike Krylov
subspace methods, this algorithm is insensitive to changes in the matrix
and exhibits predictable convergence behavior [43].

Each iteration of the Power method applied to GV involves a sparse
matrix vector multiply with the matrix Hy; and several vector opera-
tions.

The dangling nodes are not included in the Power method computation.

The convergence rate applied to G is « [68]. This algorithm has the
same convergence rate, because G() has the same nonzero eigenvalues
as G. However, algorithm [7] is much faster because it operates on a
smaller matrix whose dimension does not depend on the number of
dangling nodes.

In the final step of the algorithm, 7 is recovered via a single sparse ma-
trix vector multiply with the matrix His and several vector operations.

Algorithm 4 can be extended to the situation when the Google matrix
has several different dangling node vectors [67].
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7. The Power method in Algorithm [7] corresponds to stage 1 of the algo-
rithm in [91].

8. The methods [86], OI] are special cases of Algorithm [7| In those meth-
ods the personalization vector can be different from the dangling node
vector. The interest of using a different personalization vector v, for
instance, one that contains zero elements, may be to diminish the harm
done by link spamming. Using v; = 0 it allows to diminish the Page-
Rank of a spam page 1.

Algorithm [7] and Theorem show that the PageRank of the nondan-
gling nodes, my, are computed separately from the PageRank of the dangling
nodes, 7y, and that my depends directly on 7.

The next theorem shows exactly that.

Theorem 3.3.2. With the previous notation,
A = [ =0y + pud] (T — aH) ™,

m =am Hy+ (1 —a)vd +a (1 —||x)ws,

where )
1-— (1 — Oé) U,{ (I — ()éHll)_ (&

14+ aw? (I — aHy) e

p=ca

Proof. See [67] O

With the theorem [3.3.2| we can see how the PageRank of the dangling and
nondangling nodes influence each other and how the dangling node vector
affects the PageRank.

Because the PageRank of the nondangling nodes, 7, are computed sepa-
rately, without knowledge of 7, it does not depend on the PageRank of the
dangling nodes, 7.

Vector m; does not depend on the personalization vector for the dangling
nodes (elements of vy), on the connectivity among dangling nodes (elements
of wsy) or links from nondangling nodes to dangling nodes (elements of Hys).
Instead, the dependence is on the norms, that is, ||wa] = 1 — |Jwy]|, ||ve]| =
1 — ||v1|| and Hize = e — Hyze.

The PageRank m; of the nondangling nodes is obtained from v; and w;
distributed through the links Hy;.
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On the other hand, the PageRank 7, of the dangling nodes is obtained
from vy, we and the PageRank 7, of the nondangling nodes filtered through
the connecting links His.

The amount of PageRank that flows from nondangling to dangling nodes
is determined by the links Hi,.

In conclusion, the PageRank of the dangling nodes depends strongly on
that of the nondangling nodes but not vice-versa.

Figure [3.3] illustrates these conclusions.

H12

HuCl o U2 | D w2

w1

Figure 3.3: Sources of PageRank: nondangling nodes (left circle) receive their
PageRank from v; and wi, distributed through the links Hy;. The PageRank of
the dangling nodes (right circle) comes from vo and wy and the PageRank of the
nondangling nodes through the links His.

3.4 The Lumping2 Method

The nodes are usually classified into two classes, nondangling nodes and
dangling nodes. In [67] it was shown that the dangling nodes can be lumped
into a single node and the PageRank of the nondangling nodes can be com-
puted separately from that of the dangling nodes, reducing the number of
operations necessary to compute the PageRank.

Lin, Shi and Wei divided the nondangling nodes into two classes. In [93]
they show that one of the two classes of nondangling nodes can be also lumped
into a single node and the PageRank of the other class of nondangling nodes
can be computed separately. They proved that the small matrix obtained
by lumping the dangling nodes can be further reduced by lumping a class of
nondangling nodes and the further reduced matrix is stochastic with the same
nonzero eigenvalues as the Google matrix GG. Moreover, the full PageRank
vector 7 can be easily recovered from the stationary distribution of the further
reduced matrix.
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This alternative more complex approach considers a refined division of the
nondangling nodes (ND) in weakly nondangling nodes (WND) and strongly
nondangling nodes (SND). The weakly nondangling nodes are pages that are
not dangling but point to only dangling nodes (D). Pages with links to pages
that are not dangling nodes are called strongly nondangling nodes. Thus, a
node is either dangling, weakly nondangling, or strongly nondangling.

Let k1 be the number of strongly nondangling nodes and k5 the number
of weakly nondangling nodes. Then, k = ky + k».

The rows and columns of [Hy; Hpp| are permuted so that the rows cor-
responding to weakly nondangling nodes are at the bottom of [Hy1 Hial,
then this division leads to a matrix H of the following form:

Hyy Hip Hi
H:{}gl }g?}: 0 0 H
0 0 0

where the k; x k; matrix H{l represents the links among SND, the k1 X ks
matrix H{? represents the links from SND to WND), the k; x (n — k) matrix
H{, represents the links from SND to D, and the ky X (n — k) matrix H%
represents the links from WND to D, see Figure . Note that HZe = e,
which will be used in the following analysis of the PageRank.

1

H
HH( SND 2 D

12 2
Hll H12

WND

Figure 3.4: A simple model of the link structure of the Web divided in SND,
WND and D nodes. SND represents the set of strongly nondangling nodes, WND
represents the set of weakly nondangling nodes and D represents the set of dangling
nodes. The submatrix Hi{ represents the links among strongly nondangling nodes,
Hi{2 represents the links from strongly nondangling nodes to weakly nondangling
nodes, Hi, represents the links from strongly nondangling nodes to dangling nodes
and H?, represents the links from weakly nondangling nodes to dangling nodes.
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T T T
e 2) 2) y

T
Partitioning w! = , Wy } and v] = [vg) , Uy with wg ,

vil) being k; x 1 and w?), vf) being ko x 1, the Google matrix has the

following 3 x 3 block structure:

G Gl Gh
G = <1—a>eTv§” <1—a>eTv£2> G2,
eugl) eu?) euQT

where .

Gl = aHll + (1 —a)evf,

T

G =aH}+(1-a)ev?
GiQ = aH112 +(1—-a) 6037

G%z = aH122 + (1 - a) €U2Ta

ugl) &w&l) +(1—a) vgl)
u=aw+(l-—a)v= u§2) = ozwf) +(1—«) vf)
Uo aws + (1 — a) vy

At this moment, u{ = [u(ll)T , u§2)T] , and the matrices GG1; and G5 are
given by
Gii Gii G!
G — T T R G = 12 :| .
H (1—a) ev%l) (1—a) ev%z) = [ Gl

Theorem 3.4.1. Using the notation above and defining G by

Gﬂ[ Gi,e GﬁTe
G = ulV ule u? e ,

(1—a) U%I)T a+(l—a)vle (1-a) v%Q)Te

then G is a stochastic matriz of order ky + 2 with the same nonzero eigen-
values as the full Google matriz G.

Furthermore, let 67 = 67G®, 6 >0, 6| =1, partitioned by
ol = [6{,61 Oy +1 6k1+2} , where 0,41 and Op,4o are two scalars, then
the PageRank vector m s given by
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rl = [aik ol ( i;ﬁ )] (3.5)

where the vector o is

Ghi
T
O'T = U?kl &T U?) &k1+1 . (36)
(1—a) e
Proof. See [102] based on [93] O

Theorem [3.4.1] shows that to compute the PageRank vector 7r we can
compute the statlonary distribution & of the stochastlc matrix G and then
recover the PageRank vector 7 according to and (3.6)).

To compute the stationary distribution & of the stochastic lumped matrix
G® with order ki +2 we can use a simple algorithm which applies the Power
method. This algorithm and the algorithm that applies the Power method
to the full matrix G have the same convergence rate. This is due to the fact
that G® and G have the same nonzero eigenvalues. The new algorithm,
Algorithm [§] can save a large amount of operations.

Algorithm 8 Lumping 2 method
Given H{{, H{?, H],, H, v( ) vf), Vg, w§ ), w§2), we, a, tol;
Choose an initial vector 67 := [01;k1 O+l Onpyye) With 6 >0, ||6]| == 1;
while no convergence do

Compute wy,, = adiy, Hif + (1 — )v%l)T + a&k1+1w§1)T;
Compute wy, 41 = a [67, Hize + O 41w5 € + 6, 12] + (1 — a)vie;
Compute Wi, 42 = b1y, Hite + (1 —a)v; D% oz&kﬁleZ)Te;
Set 67 = [wml Wiy +1 wkﬁz},

end while .

Compute m = oot Hif + (1 —«) v?) + Oéa‘kl+1'lU§2) ;

Compute y! := « [alzlellQ + xTH}) + 64, 1wd | + (1 — a) o3

Compute 7TT (61, =7 yT];

In Algorithm [§, the remainder of the PageRank vector can be computed
directly by means of two matrix-vector multiplications.

The explicit expression for the PageRank vector 7 can be given as follows.
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T T

Theorem 3.4.2. Partitioning w1 = [ﬂ{,wﬂ = [7?%1) ,7T§2) ,w’{} with

7T§1) being ki x 1, 7r§2) being ke x1 and my being (n—k)x1

and wusing the notation given above, we have

)T

A= 0= a) 4 ] (1 -t

T T T T
7 = an HE 4 (1= o+ puf®”

7T2T = omelg + (1 —a) UQT +a(1—|ml) wQT,

where

1—(1—a) [UPT (I—aH e+ av§1)T (I — aHY) ™ H2e + U§2)T6}

p=a W7 T g ) @7
1+a [wl (I —aHY) e+ aw® (I — aH) ™ HiZe + ! e]

Proof. See [93] O

The Theorem shows that the PageRank vector 7 can be obtained by
computing v%l)T (I —aH!)™" and wgl)T (I —aHM) ™. Therefore, we need
to solve two systems of linear equations with the same coefficient matrix
(I — aH)™" and different right-hand sides.

In [86] has been considered computing the PageRank vector, via solving
a system of linear equations with the similar coefficient matrix, in the case
where the dangling vector equals the personalization vector (w = v). In

contrast, Theorem |3.4.2] shows that it still holds for only v%l) = w§1).
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3.5 The New LumpingE Methods

In this section we intend to contribute for the acceleration of the PageR-
ank computation by combining reordered techniques with extrapolation. We
propose two novel algorithms (LumpingE methods) by considering standard
Aitken extrapolation within the lumping method.

To illustrate these new methods, the next section (Section provides
some numerical experiments that compare the new LumpingEl methods with
standard Power method, Lumping 1 method and Lumping 2 method. The
results obtained show the benefits from our proposal.

3.5.1 The LumpingE 1 method

As mentioned before, the dangling nodes can be lumped into a single node
to obtain a stochastic reduced matrix with the same eigenvalues as the full
matrix. The PageRank computation for the nondangling nodes is performed
separately.

The H matrix can be partitioned into

Hy Hip
0 0

where the (n — k) zero rows represent the dangling nodes (D), Hy; > 0, kxk
links among nondangling nodes (ND) and Hys > 0, k x (n — k), links from
ND to D.

Theorem 3.5.1 (LumpingE 1 method).  Let X = [ % 2 ], with
L=1I,——zée’, é=e—e =[0,1,1,..., 1" the first canonical basis
vector, and I, = [ en] the identity matrixz of order n.
G() * Gu Ghiee
o 1) _ 1 G
Then, XGX { 0 0 ], where G [ T ule }

The matriz G s stochastic of order k + 1 with the same nonzero
eigenvalues as G.
Let oTGW =0T, o7 >0, |o||=1.
Then the PageRank vector w1 equals w7 = {a{k ol ( i? )]
2
with partition

T )2 2
T _ (adf,) _ (Aok41) : : o
o7 — Otk = “a%T. Oktl = Aigr, | for iterations s,l X s, 1 eN

lof) ows1],  for other iterations
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where oy 1S a scalar and s defines the step by which the extrapolation is

applied.
Proof. 1) Similarity transformation:
From
I, 0
-1 _ | Lk
X = { 0 L! ] ’
it follows that

e {]k 2} {Gn G12} ol {[an Ika} -1

0 eul eul Leul  Leul

| Gu Gu|[L 0 |_[Gu Gl
Leul Leul|| 0 L7 Leul LeulL™!

99

Considering L' =1, ,+eéeel, ele=n—k, éele=(n—k)é and
simplifying [, , =1, let
_ 1 s TN, 1 T, L AW
Le= (I,y— éeT)e=e—LéeTe=e—Lé(n—k)=e—é=¢
so Leul =eul
Tr-1 _ 1 2. TY oo TT—1 Tr-1_ _1 T7-1
Leus L = (In k— —kee ) euy L™ =1, _peuy L™ — —kee euy L™
_ 1_ 1_ 1 1 5
= euj L' — L (n —k)eul L™ eu2 Tl —eul L7 = (e—é)

= eui L™ = el (Li—y, + ée”) = equl (I + éel)
and
GioL™ —G12( n—k + €e ) G2 (1+é6T).
Then

XGX—l — |: Gll C7Y12L_1 :| _ |:G11 G12 (I+ ée )

Leul LeulL™! erul eyul (I+ee )

has the same eigenvalues as G.

We choose a different partitioning and separate the leading k + 1 rows

and columns, in order to reveal the eigenvalues, and observe that
Lk +eée")er = (I+ee") ey =e,
G2 (I + éeT) e1 = Gae,
T (I + éeT) el =use

and
G11 Giae o
_ Gu G (I + éeT) oL GWo
1_ | Gu 12 |, T —
XGX = el eyl (] +ee ) = |ur uwpe eef =7,

0 0 0

Tr-1
uy L
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So, we obtain the block triangular matrix

G« G Gree
-1 _ @ _ |G G
XGX { 0 O} where G [ulT uge}’

with at least n — k — 1 zero eigenvalues.

2) Expression for PageRank:

Q

Considering
[elty G@)}

_ G =
#=G [u 0 0

The vector [o7 ¢7G®@] is an eigenvector for XGX ! associated with

the eigenvalue A\ = 1.
That is [O'T O'TG(Z)] XGX 1= [O'T O'TG(Z)] because

7 } (I+ée")les -+ eng] then XGX = [
2

[UT O_TG(Q)} {G(;l) G(;Q)] _ [O‘T O_TG(Q)} PN [O_TG(l) O_TG(Q)} _ [O_T UTG(Q)}

and 0TGW = o7 is true.
So, multiplying [O'T O'TG(2)] XGX1 = [O'T O'TG(2)] by X on the right

[O'T O'TG(2)} XGX'X = [O’T UTG@)} X & [O’T O'TG(Z)} XG = [O'T O'TG(2)] X

So T =[oT o"GP] X is an eigenvector of G associated with A = 1 and
a multiple of the stationary distribution 7 of G.

The dominant eigenvalue 1 of G is distinct [38, 63, [76] 78] and G has
the same nonzero eigenvalues as G. So, the stationary distribution o of GV
is unique.

Using the original partitioning which separates the £ leading elements we
will express 7 in terms of quantities in the matrix G.

Let

. I, 0
= ot (e a4 9]

Multiplying out
71 = o]y (oks UTG(Q)) L]

shows that 77 has the same leading elements as o = [o],, ox41].

Now, we must examine the trailing n — k components of #7. To do this

we partition the matrix L =1, — ﬁéeT and distinguish the first row

and column,

1 0
L= —ﬁe I—ﬁeeT :
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Then the eigenvector part associated with the dangling nodes is

1

= o "GP L= |op —

kaTG(Q)e oG (I— ! keeT)}

n —_—
To remove the terms containing G in z, we simplify
(I+ée")fes -+ enple=(I+ee")e=(n—k)e.

Hence

oGP = (n—Fk) [ G } : (3.7)
Uy
and
1 G . G G G
p— kO'TG(Z)G =gl { u;T2 1 e=ol { u;TQ ] e—ol { uépQ } e1 = Ops1—0" [ u;TQ } €1,

where we used é = e—e;, and the fact that o is the stationary distribution
of GW, so

Therefore the leading element of z equals

G G
kUTG@)e = Opi1— <ak+1 — " [ %,,2 } el) =t [ %pz } e.

Uy 5

1

21 = Ok+1—

For the remaining elements of z, we use (3.7) to simplify

G <] - keeT) = G? - ! GPeel = @ — [ G%ﬁ ] eel.

n — n—k

Replacing

(I+eée")[ex -+ eni] =[ea -+ enp] +é€"
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in G? yields

ZT = [2’1 Zgnfk}
G G
-l e [ Jie e
:gT |: G%? :| [61 €y - - en—kz]
2

and

. G
o-fr ()]

Since 7 is unique, as discussed in section [2.1, we conclude that 7 = 7 if

ile = 1.
This follows, again, from the fact that o is the stationary distribution of
GM and
o7 Gia c—o
uéﬁ k+1-

3) Aitken Extrapolation applied every s-step:

For simplicity, we use A = GOT g0 00T = g0-DT G & o0 = Ag(-D
and consider that matrix A has k + 1 distinct eigenvectors u;: Au; = \ju;.

Assuming that the iterate oV can be expressed as a linear combination
of the first two eigenvectors:

oW = uy + asus, (3.8)
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we can calculate an estimate of the principal eigenvector u; in closed form
using two subsequent iterates of the Power method o1, o(+2),

As seen in section [3.2] this approximation becomes increasingly accurate
as | becomes larger.

Considering that (A, u;) and (A9, us) are eigenpairs of A, the first eigen-
value \; of a Markov matrix is 1 and applying two iterations of the Power
method, we obtain

O'(l+1) = AO'(l) =A [Ul -+ 0421,62] = AUl +OézAU2 = )\1”1 +062)\2U2 = Uz +O{2)\2u2
(3.9)

and
O'(H_Q) = AO'(l+1) =A [Ul -+ &2)\2’&2] = Au1 + CYQ)\QAUQ = u + O[Q)\%UQ (310)

Defining,
0\ -+ 0)°
gi = (Aai ) = <ai —0; ) (3.11)

hi = A2a§l) = al-(lﬁ) - 201([“) + a,fl) (3.12)

where o, represents the component ¢ of vector o.

Using (3.8) and (3.9) in (3.11)),
i = [(w1), + a2s (u2); — (w1); — o (ua),)]” = a3 (Aa — 1)% (ua)7 .
Using (3.8)), (3.9) and (3.10]) in (3.12)),

hi = (u1); + 03 (u2); — 2 [(ur); + a2 (ua),] + aa (ua); = a (A2 — 1)° (), -

and

Considering

PR OV
hi [6%) ()\2 — 1)2 (UQ)Z

Therefore, f = 1 = ayu,.
Hence, from equation (3.8]), we have a closed-form solution for wu:

(Ag0’

A2gl) -
This u; is an approximation of the principal eigenvector of A since it’s
based on the assumption that o can be expressed as a linear combination

of uy and us.
So, to accelerate convergence of the power method, every s-step, we apply

= (ug); -

u = o® — aguy < u; = oV — feu = o) —

Aitken Extrapolation and instead of having o7 = [0}, o0j41]  we have
v _ |pr _ (AL) (Aops)? 0
T T |0k T TR%T, T kLT AT |
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Next we present the pseudocode for the LumpingE 1 method.

Algorithm 9 LumpingE 1 method

Given Hyy, Hyo, v1, o, w1y, we, «, tol;
Choose an initial vector 67 := [6],, 6341 with 6 >0, ||| = 1;
while no convergence do

Set 7T¥L,3T =61, W,(er)l = Okt1;

Compute 67, := ad{, Hi + (1 — a) vl + adpw];

Compute 641 := 1 — 67,€;

n+1)T ~ n ~
Set 7T§:k+ "= OLk; W,ﬁﬂl) = Ot1;
periodically apply Aitken extrapolation
T T
Compute 7" = ar "+ [1T711 +(1—a) ol + an" DT
Compute 71'](::2) =1- 7T¥Lk+2) €;

2
Compute (pointwise) g := (ﬂ(“H)T — w(”)T> :
Compute h ;= 742" — 2. p(n+D" 4 2"
T T
Compute (pointwise) 7("+2)" .= (" — g /h;

ST . (AT s (n42),
Set 01, =Ty, 5 Oksl = Tpyq s

end while
Compute 77 := [6], 6], Hiz+ (1 — a)v] + adp1w]];
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3.5.2 The LumpingE 2 Method

As mentioned before, an alternative more complex to this approach con-
siders a refined division of the ND nodes in strongly nondangling nodes
(SND), pages with links to pages that are not dangling nodes, and weakly
nondangling nodes (WND), pages that are not dangling but that point to
only dangling nodes.

This division leads to a matrix H of the form
Hif H{{ Hi,
0 0 HE
0 0 0
where H{}, ki x ki links among SND, H{Z, k; X ko, links from SND to WND,

Hiy, ki x (n — k), links from SND to D, and H%, ks x (n — k), links from
WND to D.

Theorem 3.5.2 (LumpingE 2 method).  Using the notation above and
defining G by
GHT Gi,e GﬁTe
G? = ulV ule u? e
T T

1—a)o! at+(l-—a)vle (1-« @ e
( ) vy 2 1

then G is a stochastic matriz of order ky + 2 with the same nonzero eigen-

values as the full Google matriz G.
Let 67 =6TG®, 6 >0, 6| =1, partitioned by

~ 2 ~ 2 5 2
6T (A"Eh) & _ M & — M for iterations
1:k1 Aza{kl k141 A25k1+1 k142 A26k1+2 )

s, I xs,---, €N
/\T A~ A . .
[alzkl Oky+1 Jk1+2} ,  for other iterations

where 0,41 and Ok,4+2 are two scalars and s defines the step by which the
extrapolation is applied.

Then the PageRank vector m is given by

G
(%)

where b
T | AT AT (2) N
g =%k 9 Uy Ok1+1

(1-a)vl®"
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Proof. Let
Li 0 0
X1'=10 L, 0|,
0O 0 L
where L =1, ——ée’ and é=ec—e; =[0,1,1,..., 11", Tt follows from
theorem [3.5.1] that
G«
-1 __
XGX! = { .ol
where
i Gl Gii Glae
G = G%} G}QG = | 1-0w e (1-a) ew® 2.
Wl ule e 1 e 1 12
- uy Uy ule
[ Gh Git Gige
=| (1-a) evil)T (1—a) evPT (a+(1—a)vie)e |,
L L@ e
L 1 1 2

where we used HZe = e.
The matrix G is stochastic of order k + 1 with the same nonzero eigen-
values as G.
Let
oTGW =¢T, 0>0, |o||=1.

and partition o = [o{k akﬂ}, where o0y is a scalar.

As seen in theorem that the PageRank vector 7 satisfies

G
el (%)

Defining the permutation matrix z by

I, 0 0
7 = 0 0 1
0 Iy, O
We have
ail Glye G
GW = zGW zT = ugl) uge u§2)

(1—a) ev%l)T (a+(1—a)vie)e (1-a) evf)T
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Let
Ly, 00
X=|0 10/,
0 0 L
where L = I}, — i ée’. From theorem [3.5.1) we obtain
Ay A )
(1) v-1 _ G *
N PO
where
GHT Giye GﬁTe
G? = ul! ule u? e

(1—a) U%I)T a+(1-a)vle (1-a) U£2)T€
The matrix AG(Q) is stochastic of order k; + 2 and has the same nonzero
eigenvalues as G,
So, G® has the same nonzero eigenvalues as G.

Let
sTG? =6T >0, |6 =1,
and partition 67 = [&f;kl 41 akﬁg} (for all iterations except for every s-step),
where oy, 12 is a scalar.

Following the theorem [3.5.1] to accelerate convergence of power method,
every s-step, Aitken Extrapolation is applied to vector 67 and matrix G,

As seen in theorem m the stationary distribution vector 7 of GO
satisfies

12
~T _ | AT AT (2)
™ = |01g+1 O Uy
(2)
(1—a)y

We have 77 = #7GW = 772G 27 ie., (Z277)" = (Z7%)" GO,
So, the stationary distribution o of G() satisfies

12
GHT
T _ T _ | AT AT (2) .
ol =1 Z= |01y, O Uy Oky+1

(1-a)ol?"

This completes the proof of the theorem.
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Next we present the pseudocode for the LumpingF 2 method.

Algorithm 10 LumpingE 2 method
Given Hi{, H{?, H],, H, v%l), vf), Vg, w%l), w§2), we, a, tol;

Choose an initial vector 67 := [T, Gr41  Orye2] with 6 >0, ||6]| = 1;
while no convergence do

Set nglk)l = 6{1@13 W,i?il = Ok, 41, W,(CTZ’_Q = Op,+2;
Compute wi, = adi, Hil + (1 — ) v§ "4 a&k1+1w§1)T;
Compute wy, 41 = a 67, Hize + O 41w3 € + 63, 12] + (1 — a)vie;
Compute wy, 42 := ad,, Hite + (1 — o) vy @7 4 (wkﬁlwf)Te;
Set 7T1n+1) = wf:kl; ﬂ,(gfﬁ) = Wy 415 W,(CIE) = Wk, 42;
periodically apply Aitken extrapolation

Compute 7r§",:r2) = a7r¥:1rl)TH1111 +(1-a) U§1)T + aw,ﬁ?j[?w% "

Compute W,irfﬁ) =a [ (nH)THl + Wli"ﬁ)wQ e+ Wlinié)}

+(1- 04) vy e

Compute WIETI? = 5 b’ H11126 + (1 — ) vy " e+ aﬁl(cnﬂ)w§ " €;
( ()T _ 7T(M)Z;

Compute (pointwise) g
Compute h := 72" _ 2. 7r("+1) _|_ "
)

Compute (pointwise) 7("+2)" .= 7" _ h;
p p W g
AT . _(n2)" A e ( 2). (n+2),
Set Ol = Mgy 3 Okitl 2= Mgyt 5 Okit2 7= T 1o;

end while - -
Compute z” := a7, H{f + (1 — ) vf) + a6k1+1w§2) ;

Compute y! = « [(AfilellQ +aTHZ, + 6k1+1w2T} + (1 —a)vl;
Compute 77 := [6, 2T y'];

I
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3.6 Numerical Experiments

This section gives an indication of the computing time in typical uses
(average of 10 runs). The examples have been run on an Intel Core i7-3770
CPU at 3.40 GHz with 4 cores and it was used MATLAB R2015a.

Examples 1 and 2 present small matrices (of 12 and 100 nodes, respec-
tively) to illustrate all the methods involved. Example 4 also uses a build-in
matrix to highlight the method’s ability to rank well sets of pages with the
same PageRank. The matrix of example 3 is available at the SuiteSparse
Matrix Collection - a widely used set of sparse matrix benchmarks; it has
been used to assess performance of web pages ranking algorithms.

3.6.1 Example 1 - Toy model

We begin this section by illustrating the mechanism of the new LumpingE
methods with a toy model.

The toy model has twelve nodes. Five of them are dangling nodes (nodes
2,4,7,8 and 11), two are weakly nondangling nodes (nodes 1 and 6) and the
remaining five are strongly nondangling nodes. The model is represented by
the directed graph in Figure |3.5

The twelve nodes in the graph represent twelve web pages. A node labeled
with D is a dangling node, WND is a weakly nondangling node and SND is
a strongly nondangling node. The directed arcs represent the hyperlinks.
Outlinks point out from nodes and inlinks point into nodes. For instance,
the weakly nondangling node 6 points to the dangling nodes 7 and 8.

The hyperlink matrix H schematically presented by the associated graph

in Figure [3.5]is

000000000010
000000DO0O0O0O0O0O
0030000000 3
0000000O0O0O0O0GO0O
0000%+000400 3
F_ 0000003550000
000000O0O0O0O0O0O
00000O0DO0O0O0O0O0O
00000O0O0O0TS4Z12LIo00
0+000 4007 100
000000DO0O0O0O0O0O
(00 30035 00000 3|

The dangling nodes (pages without outlinks) correspond to zero rows of
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D dangling node
SND strongly nondangling node

WDN weakly nondangling node

Figure 3.5: Graph of the toy model for the hyperlink matrix H without reordering

the matrix H. The nodes 1 and 6, weakly nondangling nodes, only link to
dangling nodes. A strongly nondangling node can link to a dangling node
but, it must have, at least, one link to a page that is not a dangling node (a
WND or a SND node).

The rows and columns of H can be permuted to allow the application of
the Lumping methods.

For the Lumpingl and the LumpingE 1 methods, the rows corresponding
to the dangling nodes are at the bottom of the H matrix and the rows
corresponding to the nondangling nodes are on top. The H matrix permuted



3.6. NUMERICAL EXPERIMENTS 111

to apply the Lumping 1 scheme is presented next.

initial final 1 2 3 4 5 6 7 8 9 10 11 12
1 — 10 0000 0O0[0O0 0 0 1
3 — 2|5 00 00 0 /0 35 0 0 0
5 — 30 0 5 0 3 0 300 0 0 0
6 — 4140 00000 O00O0 & 4 0
9 — 510 0 0 0 5 3 000 0 0 0
10 — 60 0 3 1+ 3 0 /3 0 0 0 0
12 — 7140 5 0 z 0 0 4|0 0 0 0 0
2 — 8]0 0 0 0 0O0O0O0O0OTO0O 0O 0
4 — 9]0 0 0 00O0O0O0O0O0 0 0
7 — 10{0 0 0 00O O OO0 0 0 0
8 — 11{0 0 0 0 0 0 0 0 0 0 0 O
11— 1200 0 0 0 00000 0 0 O]

To apply the Lumping 2 scheme, the H matrix needs to be altered again
and its associated graph can be seen in Figure 3.6; H graph matrix resulting
after reordering the nondangling, weak and strong, and the dangling nodes.
The new position of the nodes is indicated inside the circles.

For the Lumping2 and the LumpingE 2 methods, the first rows of the H
matrix correspond to the strongly nondangling nodes, in the middle there
are the weakly nondangling nodes and at the bottom the dangling nodes.

This new H matrix permuted to apply the Lumping 2 scheme is

initial final 1 2 3 4 5 6 7 8 9 10 11 12
3 — 1]0 00 0 %[5 0[[o £ 0 0 0]
5 — 2|0 £ &£ 0 3[/0 0|0 O 0 0 O
9 — 3|0 0 5 2 00 00 O O 0 O
10 — 40 0 5 7 00 1|3 0 0 0 0
12 — 5|2 0 0 0 %0 4|0 0 0 0 0
1 — 60 0 0O0O0O0O0[00 0 0 1
6 — 7]/0 0 0000 O0[00 I L 0
2 — 8]0 0 0 0 00O0O0O0O0 0 O
4 — 910 00 0 0 0O0O0O0 0 0 O
7 — 100 00O O O0OOO0OO0 0 0 0
§ — 110 0 0 0 0 0 0O O 0 0 O
11 — 120 0 0 000000 0 0 0]

Table reports on the number of iterations for the above example using
the standard Power method, the Lumpingl method, the Lumping2 method
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4 9
0
12 <— 6 1 5

11 1 3 12\
11
TN 5
7
/6 N\

10 Cl4 ~— 3 D

7 10\ 9
8

2
D dangling node

SND strongly nondangling node

WDN weakly nondangling node

Figure 3.6: Graph for H matrix reordered with D and ND (SND and WND)

nodes.

and the new LumpingE methods with Aitken extrapolation (LumpingE 1
and LumpingE 2).

The achieved PageRank is: 9,10,12,6,11,7,8,3,2,1,4,5.

Figure [3.7] presents the convergence history. The one in the upper part
illustrates the Power method, the Lumpingl method and the LumpingE 1
method. The other in the lower part depicts the Power, Lumping2 and
LumpingE 2 methods. Aitken extrapolation in LumpingE 1 and 2 was taken
every 10 iterations.

For this small size example, results show a great reduction in the number
of iterations when comparing the basic solution procedure with the Lumping
methods and the extrapolated Lumping methods.
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method iterations
Power 30
Lumpingl 28
Lumping?2 27
LumpingE 1 21
Lumping ) 2 21

113

Table 3.1: Toy model: Number of iterations for Power, Lumping and LumpingE

methods.

log of the residual

log of the residual

100 T T T T T
o power method
= = = Lumping 1
LumpingE 1
10—2 -
10-4 -
10-6 -
.
N.\.
~ \\'s.
~ ~,
~ ~.
108 ~ US4
10-10 L L L L L
0 5 10 15 20 25 30
number of iterations
10° T T T T T
- power method
= = = Lumping 2
LumpingE 2
1072 .~ i
~.
N.N.N
.N.\
~
~.
107 e S i
~ ~e,
~ S
~ -,
~ S
Se ~.
10® ~ S i
~.
~ S
~,
.\.\
~ ~~.
10-8 S s Seod
10-10 L L L L L
o 5 10 15 20 25 30

number of iterations

Figure 3.7: Toy model: Convergence history for Power, Lumping and LumpingF

methods.
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3.6.2 Example 2 - testl matrix

In the second example we consider a web with 100 pages. In this case a
Google matrix of dimension 100 x 100 (testl matrix) with 65% of dangling
nodes (D), 13% of weakly nondangling nodes (WND) and 22% of strongly
nondangling nodes (SND) is considered.

Figure depicts the structures of the original as well as the reordered
adjacency matrices. The 100 x 100 matrix has 141 nonzero elements that are
represented as dots.

100x100 matrix 100x100 matrix - Lumping 1
+

Post Fead
10758 %, w0, .
© L R NN
2 - 20 - . e .
. -
I o ., tuee - L.
30 — . . . 30 T S e
40 = 40
50 50
[
60 o 60
70 - 70
80 o, 80
* w®
90 . 90
100 = oo 100
0 20 40 60 80 100 0 20 40 60 80 100
nz =141 nz =141
(a) Original matrix (b) Lumpingl matrix
100x100 matrix - Lumping 2
0 ] -
(o, 2% "o~
10 S % e
% - ._‘.'\—__ -
20 - ;u. -~ -” . .
>
30 M 7

0 20 40 60 80 100
nz =141

(¢) Lumping2 matrix

Figure 3.8: 100 x 100 matrix: structures of the original and the two reordered
matrices, where the dots represent nonzero elements and white stands for zero
elements.

Table reports the number of iterations and time obtained with the
five methods: Power, Lumpingl, LumpingE 1, Lumping2 and LumpingFk 2
methods considering a = 0.85. The elapsed time, reported in milliseconds
(ms), is measured as an average of the time required to execute 10 times the
solution procedure.
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method iterations | time (ms)
Power 44 2.012
Lumpingl 39 1.150
Lumping?2 41 2.523
LumpingE’ 1 26 1.044
Lumping ) 2 25 1.615

Table 3.2: 100 x 100 matrix: Timings (ms) and number of iterations for Power,
Lumping and LumpingFE methods.

In terms of number of iterations the lumping approach allows for a conver-
gence in a lower number of steps, representing the new proposal a reduction of
about 40%. The elapsed time is reduced with LumpingE methods represent-
ing a reduction of about 2 times with respect to the classical Power method.
The non-accelerated version, for this matrix, is not always favorable when
compared with the Power method. Althought the Lumpingl method is able
to achieve a reduction in time, the costs of nodes classification, reordering the
matrix and recover the PageRank vector, in case of the Lumping2 method,
supersedes the benefits of reducing the size of the matrix. Furthermore, the
proposed extrapolated versions produce better results with respect to the
non-extrapolated ones, both in number of iterations and in computing time.

The convergence history for these five methods is depicted in Figure 3.9
(Aitken extrapolation was taken every 10 iterations).
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10° T
----- power method
= = = Lumping 1
2 LumpingE 1
107
El
=} -4 - —
5 10
<l
5}
=
ks} 6
o 10°F .
o
~
.~
~.
s ~o . S
108 | - .
10710 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45
number of iterations
10° T T T T T T T T
S\ ———— power method
O
AN = = = Lumping 2
h LumpingE 2
2 ~.
10 e,
.......
~ea.
= N~ LT
3 -4 TR -
S 10 ~ T
5} S~ ~.
= ~ - "N.
@ ~ - ~.~.
= ST
5 6 ST
o> 10°F S s Tl .
k=] el
-~ S~
S ~.N.
~ - - el
~ .~
108 S TS A
10-10 1 1 1 1 1 1 1 1
(o] 5 10 15 20 25 30 35 40 45

number of iterations

Figure 3.9: 100 x 100 matrix: Convergence history for Power, Lumping and
LumpingE methods.

3.6.3 Example 3 - EPA matrix

In this example we consider the EPA matrix — Kleinberg: Pajek network,
pages linking to www.epa.gov. It is a 4772 x 4772 matrix with 8965 nonzeros,
4711 strongly connected components, 70.18% dangling nodes (D), 19.72%
strongly nondangling nodes (SND) and 10.10% weakly nondangling nodes
(WND). That is, a linear system of size 4772 x 4772 for the original MAAOR
iteration, of size 3626 x 3626 for Lumpingl-MAAOR, and 1363 x 1363 for
Lumping2-MAAOR.

Figure depicts the structures of the original EPA matrix (Figure
3.10(a))), the EPA matrix reordered considering two type of nodes (dangling
and nondangling, Figure [3.10(b)|) and considering three type of nodes (D,
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SND and WND, Figure|3.10(c))). The EPA matrix has 8965 nonzero elements
that are represented as dots.

EPA matrix EPA matrix - Lumping 1

500 500

1000 1000 f

1500 1500

2000 f 2000
2500 [ 2500
3000 3000
: 3500

4000 4000

4500

4500 T

0 1000 2000 3000 4000 0 1000 2000 3000 4000
nz = 8965 nz = 8965

(a) Original matrix (b) Lumpingl matrix

EPA matrix - Lumping2

1000 -

1500

2000

2500

3000

3500

4000

4500

0 1000 2000 3000 4000
nz = 8965

(¢) Lumping2 matrix

Figure 3.10: EPA matrix: structures of the original and the two reordered matri-
ces, where the dots represent nonzero elements and white stands for zero elements.

Table [3.3] reports the number of iterations and time obtained with the
Power method, Lumping methods and LumpingEl methods for a = 0.85.
The elapsed time, in seconds (s), is measured as an average of the time
required to execute 10 times the solution procedure.

In terms of the number of iterations the partition on dangling and nondan-
gling nodes has no advantage compared to the Power method, and, at least
for the EPA matrix, extrapolation with lumpingl worsens the results. On
the contrary, the partition of the nondangling nodes in strongly and weakly
with extrapolation (LumpingE 2 method) causes a significant reduction in
the number of iterations necessary to obtain convergence.
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method iterations | time (s)
Power 86 0.1344
Lumpingl 94 0.1304
Lumping?2 96 0.1396
LumpingE 1 130 0.1508
LumpingEl 2 71 0.1211

Table 3.3: EPA matrix: Timings (s) and number of iterations for Power, Lumping
and LumpingE methods.

The convergence history for the referred methods in case of the EPA
matrix is depicted in Figure (Aitken extrapolation was taken every 10
iterations).
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Figure 3.11: EPA matrix: Convergence history for Power, Lumping and

LumpingE methods.
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In order to understand the poor results obtained with LumpingEl, we
investigated the eigenvalues of the original EPA matrix and also of the re-
duced matrices, resulting from the application of the lumpings, on which the
Aitken extrapolation method was performed. As stated in Section the
reduced matrix GV used in the Lumpingl method has the same nonzero
eigenvalues as the full Google matrix G. From Section [3.4] we conclude that
the further reduced matrix G® used for Lumping2 has also the same nonzero
eigenvalues as G.

Figure depicts the eigenvalues of the original EPA matrix. They
are the same as the ones of the two reduced matrices for Lumpingl and
Lumping?2.

051
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Figure 3.12: Eigenvalues of the EPA matrix, where the blue circles represent the
eigenvalues. The dominant eigenvalue (A1) is represented with a green plus, the
subdominant eigenvalue (\2) is represented with a red plus and A3 is a black plus.

The value of the first five eigenvalues of the EPA matrix is reported by
Table 3.4

The EPA matrix (matrix G) is a Google matrix (G = aS+(1—«a)F with
E=ev?T and S = H+dw?), that is primitive (stochastic, irreducible and
aperiodic). Then, G is a Markov matrix and, as such, for any starting vector,
the Power method converges to a unique positive vector (7). G is a stochastic
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Eigenvalues of EPA matrix
0.7531
0.8427
0.8500
-0.8500
1.0000

Table 3.4: First five eigenvalues of the EPA matrix.

matrix so Ay = 1 and [A| =1 > [\ > |A3] > -+ > |A\,|. Also, it was proved
that |As| & o (see Section [2.2.1]).

As stated in Section Aitken extrapolation is able to accelerate the
convergence of the Power method if |A\o| > |A3]. However, when || = |A3]
Aitken extrapolation performs poorly.

As we can observe in Figure and Table [3.4] the dominant eigenvalue
is Ay = 1 and the absolute value of second and the third eigenvalues are
equal, |A\a] = |A\3] = @ = 0.85 which explains the behavior of the LumpingE1
method. Although, for the LumpingE2 method the extrapolation was able
to achieved good results.
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3.6.4 Example 4 - test2 matrix

In this section we use a test matrix build-in by the authors. This matrix
is proposed to deliver large sets of pages with equal PageRank. The matrix
is a 10° x 105 matrix with 141000 nonzeros, 65% dangling nodes, 22% strong
nondangling nodes and 13% weakly nondangling nodes.

The spy of test2 matrix is presented in Figure [3.13] along with the two
reordered matrices for Lumpingl and Lumping2. This matrix is the very
sparse.

«10% 10°x10° matrix «10% 10°x10° matrix - Lumping 1

Q

© ©® ~ o o » w N B O

© ® ~ o o » w N B O

0 2 4 6 8 10 0 2 4 6 8 10
nz = 141000 «10% nz = 141000 «10*

(a) Original matrix (b) Lumpingl matrix

107 10°x10° matriz - Lumping 2

© ©®© ~ o o »~ W N B O

0 2 4 6 8 10
nz = 141000 «10%

(¢) Lumping2 matrix

Figure 3.13: test2 matrix: structures of the original and the two reordered
matrices, where the dots represent nonzero elements and white stands for zero
elements.

The number of iterations and time, in seconds (s), obtained with the
Power method, Lumping methods and LumpingE methods for a = 0.85 are
reported in Table [3.5] Times reported at columns timel and time2 are the
average of 10 runs.



122 CHAPTER 3. ACCELERATION OF PAGERANK AS AN EIGENVECTOR PROBLEM

In Table time2 refers to the time needed to compute the methods
and recover the PageRank vector in case of the lumpings, while timel also
includes the time necessary to classify the nodes and reorder the matrices
(0.126s for Lumpingl and LumpingE 1, 0.088s for Lumping2 and LumpingE
2).

method iterations | timel (s) | time2 (s)
Power 44 0.175 0.175
Lumpingl 38 0.213 0.087
Lumping?2 42 0.152 0.064
LumpingE’ 1 27 0.172 0.046
Lumping ) 2 25 0.131 0.043

Table 3.5: test2 matrix: Timings and number of iterations for Power, Lumping
and LumpingE methods with a = 0.85.

The convergence history is depicted in figures [3.14(a)| and [3.14(b)| For
a clear understanding, one should mention that Aitken extrapolation in
LumpingE 1 and 2 was taken every 10 iterations.

The number of iterations for the Lumping approaches is smaller than the
original Power method. The reduction is particularly impressive for the new
extrapolated versions. The reduction in the number of iterations with the
LumpingE 2 method compared with the original Lumping2 is significant.
This is relevant for real problems, usually of high dimension, since one might
be interested in obtaining an approximate solution after a few number of
iterations. A computation with just a few iterations can be already enough
to provide useful information.

Generally, the elapsed time is reduced with the use of Lumping techniques
even considering timel. The benefits are greater if the overall time is taken
into account (time2). Once the matrix nodes are sorted and reordered, we
may consider that it is not necessary to repeat these operations whenever the
PageRank vector is calculated. Thus, it may make sense not to consider these
calculations when comparing the methods. With this perspective, extrapo-
lation presents good results when compared to the Power method. Indeed, a
partition on dangling and nondangling nodes gives rise to a reduction of 2x
without extrapolation and a reduction of almost 4 x with extrapolation with
respect to the time required by the classical Power method. The partition of
the nondangling nodes in strongly and weakly reduces the computation time
in approximately 3x and 4x considering, respectively, without and with ex-
trapolation. Our combined versions, LumpingE, perform always better than
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Figure 3.14: test2 matrix:
LumpingE methods.

Convergence history for Power, Lumping and

the original Lumping versions. It should be mentioned that, if we consider
time2, the cost to prepare data is not compensated by the gains in aggre-
gating the nodes in dangling and nondangling, at least for the test matrix

used.

3.7 Conclusions

In this chapter we proposed new acceleration methods for the PageRank
computations, LumpingEl methods, based on a combination of Lumping
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methods with Extrapolation. Numerical results illustrated the dynamics of
the iterative process as well as provided some insight on the achieved success
based on a significant reduction in the number of iterations and elapsed time
required for convergence.
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4.1 The MAAOR framework

The well-known Accelerated Overrelaxation (AOR) method for the solu-
tion of linear systems of algebraic equations has been around for about four
decades and several variations of this method have been proposed [32] 61,
113, 133, 143)].

We begin this section describing a very recent method, the Matrix Ana-
logue of the AOR (MAAOR) iterative method, developed by Hadjidimos in
[58]. Tt follows the description of the Generalized AOR (GAOR) method and
the AOR method. The MAAOR method generalizes both the AOR and the
GAOR methods.

In this chapter the MAAOR family of methods is explored for the first
time in the context of PageRank computations. Several methods within the
MAAOR family are compared.

Additionally, the Lumping methods that have been applied to the eigen-
problem formulation can also be used in the linear system formulation. There-
fore, we propose a novel approach combining the Lumping and MAAOR
methods for the solution of the linear system.

Numerical experiments illustrating the MAAOR method and the MAAOR
method combined with Lumping techniques applied to PageRank computa-
tions show the merits of our new proposal.

4.1.1 The Matrix analogue of the AOR method (MAAOR
method)

Consider the system Ax = b and the splitting of matrix Ain A = D—L-U
, where matrix A € C"*" (A is a nonsingular matrix with nonvanishing
diagonal elements, det(A) # 0), vectors b,z € C", x(® € C" arbitrary,
and where D = diag(A) is the diagonal part of A, —L is the strictly lower
triangular part of A and —U is the strictly upper triangular part of A.

To simplify the notation we set
L=D7'L, U=D"'U, b=D"'%, A=D'A=1—-L-U (41)
The MAAOR iterative method can be written as
e® ) = e wa®™ +dpw  k=0,1,2,... (4.2)
with

Hyw = (I RL) - (1= W)+ (W~ R) L+ WD (4.3)
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and .
dpaw = (1 - RE) wh (4.4)

where R € R™*" is any diagonal matrix and W € R"*" is a diagonal matrix
with det (diag(W)) # 0.

The MAAOR method solves the linear system Az = b and, in view of
(4.1]), it also solves the system Az = b.

However, the iteration matrix Hprw of the MAAOR method does not
possess the "extrapolation” property that is shared by both iteration matrices
H, , of AOR method and H,q,q of the GAOR method.

If it did then either
Hpw =I1-R'W+R 'WHgpr or Hrw =I1—R'W+HgpR'W (4.5)

would hold true.
Note that for R = rW both equality of (4.5) are valid but for R # rW
neither of them holds [5§].

By using the M-matrix theory, the regular splitting theory and the Perron-
Frobenius theory for nonnegative matrices, it is possible to conclude that the
elements of the two diagonal matrix-parameters W and R cannot be found to
belong to intervals that are determined via the spectral radius of the modulus
of the Jacobi iteration matrix of A except in the case of the AOR method
and in special cases of the GAOR method.

Hadjidimos found a relation between the moduli of the two successive
vectors of the MAAOR method and determined sufficient convergence con-
ditions for the MAAOR method when A is a nonsingular H-matrix.

Also, if A is an H-matrix and O < R < W < I, det(W) # 0, the best
MAAOR method is the one that corresponds to the Generalized Gauss-Seidel
iterative method, that is, when R = W = I [5§)].

Considering that R = 78y (acceleration matriz parameter), W = wy
(overrelazation matriz parameter), r and w are two scalars (w # 0), Qp,Q5 €
R™ " are diagonal matrices with det (diag(£22)) # 0, I is the identity matrix,
O is the null matrix and choosing special parameters in the MAAOR method
we obtain other well-known iterative methods [60], see Table [4.1]

The pseudocode for the MAAOR method is given in Algorithm [T}
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rlw| Q| Q| R=r W = wy | Method
0|11 |1 @) 1 Jacobi
1111 |1 1 I Gauss-Seidel
wlw| I |1 wl wl SOR
0 w I I O wI OEJ (1)1" tJQR (Extrapolated Jacobi or Jacobi
1| w I I I wl EGS (Extrapolated Gauss-Seidel)
riwl| I |1 rl wl AOR
1 1 QQ QQ QQ QQ GSOR (Generalized SOR)
r 1 QQ QQ T'QQ QQ GAOR
1119 | Q2 2 Qs MAAOR
R =diag (r1ln,,r2@n,) , W = diag (w11, ,waln,)

for block two-cycle matrices with MAOR (vodified A0R)

r1,79 # 0 and ny 4+ no = n, where ny, ny
are the orders of the two diagonal blocks

R =W =diag (wi1ln,,w2lp,),
for block two-cycle matrices with MSOR, (modifiea sor)
n1 + ny = n, where ny, ng

are the orders of the two diagonal blocks

Table 4.1: Iterative methods for specific values of the parameters R and W.

Algorithm 11 The MAAOR Method

Given matrix A, vector b and diagonal matrices R, W
Choose an initial guess 2(?;
Compute D, the diagonal of A;
Compute L, the strict lower triangular part of A;
Compute U, the strict upper triangular part of A;
Compute L := D'L;
Compute U := D'U;
Compute b := D~ 1b;
Compute e := Wb;
Compute M :=I + RL;
Compute N := (I — W) — (W — R)L — WU;
Let k := 0;
while no convergence do
Solve Mz#+1) .= Nz(*) 1 e
Update k :=k + 1;
end while

Normalize z*)

Y
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4.1.2 The Generalized accelerated overrelaxation method
(GAOR method)

For R = r§) (a scalar multiple of Q), W = Q € R™" a diagonal matrix
with det (diag(2)) # 0 and r a scalar then the MAAOR method reduces to
the GAOR method.

The GAOR method (Generalized AOR method) is a generalization of the
AOR method (Accelerated overrelaxation method), i.e., it is a scalar-matrix-
parameter analog of the scalar-parameter AOR method, with R = r{) being
the acceleration and W = ) the overrelaxation matriz-parameters.

The GAOR iterative method in [69] is a matrix-scalar analogue of the
AOR method in [54].

The first articles on GAOR are due to James [69] and Song [125].

In [125], Song considered the GAOR method presented by James and
gave some convergence theorems for various kinds of matrices, namely when
the matrix A is positive definite, an H-, L-, or M-matrix, or strictly or
irreducibly diagonally dominant, in case of nonsingular systems.

As mentioned in Section 2.3 our matrix is an M-matrix and it is known
that an M-matrix is also a H-matrix. So, the convergence theorems presented
in [125] apply to our study.

Later, in [126], Song studied the convergence of the extrapolated iterative
methods for solving singular linear systems.

Also, in [55], Hadjidimos presented some first results about the GAOR
method when matrix A has certain properties and later, in [59], proposed
new theoretical results concerning the convergence theory of the method.

Recently, in [60], the same author determined intervals of convergence for
the various parameters involved in the GAOR method for the solution of the
linear complementary problem (LCP).

In [28] Darvishi and Hessari studied the convergence of the GAOR method
for diagonally dominant coefficient matrices and gave regions of convergence.
These results were later improved by several authors: Tian et al. [129] that
worked with strictly diagonally dominant coefficient matrices; Whang et al.
[132] assumed that the matrices were strictly a diagonally dominant; Gao
and Li [42] that used strictly doubly diagonally dominant matrices and Zhang
et al. [148] that proposed three new types of preconditioners to improve the
convergence rate of the GAOR method.

Also, Nasabzadeh and Toutounian [109] presented a new GAOR method,
based on a block splitting of the coefficient matrix, that is well-defined even
when some elements of the diagonal of A are zero. The method converges
when A is an H-matrix.
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Considering the assumptions in the previous section, the GAOR iterative
method can be written as

o0 = Hig 0™ +dygq k=012, (4.6)
-\ -1 > -
Hyo0 = (1 _ rQL) [(I — )+ (1-r)QL+QU (4.7)
~\—1 .
doo = (I—1OL) b (4.8)

where 7 is a real scalar and 2 € R"*" a diagonal matrix with det (diag(2)) #
0.

For r = 0 the GAOR method is a Modified Extrapolated Jacobi iterative
method with extrapolation matriz-parameter Q [57]. That is, dpo = Qb and

HO,Q:(I—QHQ(EH?).

For r # 0, from (4.7, and with some algebra, we can write

-1

Hyqq = <I—TQE) (1 —
TQQ_( —rQL) (1—ML)—Q+QE+QIY}
:<I ) )(I—rQi)—Q+Q£+QU]
(1 ) )<I—rQl~L)+%(I—rQE)—Q+QE+QU]
I+
I+

Q) + (1—T)QE+QU}

!

3 =

( —rQL) 1[§J—Q£—9+QZ+QU]
( — erL) B [%I —IrQ+ %T‘QU]

@ﬁﬁ@@
I

(1-
(1-
& Haa= (- DI+ (1-0L) [0-r) 0] @9

Forming H,q ,q using (4.3) with acceleration matrix-parameter R = r(2
and overrelaxation matrix-parameter W = r{) we obtain

N\ —1
Hyoro = (1 _ rQL)

= (1-roL)

[(1 )T+ (r QY —rQ) L+ mﬂ
[(I —rQ) + TQU}

-1

and (4.9) can be written as

1 1
Hyqo = (1 . ;> I+ “Hos (4.10)
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So, for r # 0 the GAOR method is an Extrapolated Modified SOR itera-
tive method with extrapolation scalar-parameter % of a Modified SOR with
overrelaxation matriz-parameter rl.

From (4.7) the GAOR method is a scalar-matrix-parameter analog of the
scalar-parameter AOR method [54], where R = r( is the acceleration and
W = Q the overrelazation matriz-parameters, respectively.

From (4.10) the GAOR method is an extrapolation, with ezxtrapolation
parameter % of a Modified SOR, with overrelazation matriz R = r).

The pseudocode for the GAOR method is given in Algorithm [I2]

Algorithm 12 The GAOR Method
Given matrix A, vector b, parameter r and diagonal matrices W, R = rW;
Choose an initial guess z(%;
Compute D, the diagonal of A;
Compute L, the strict lower triangular part of A;
Compute U, the strict upper triangular part of A;
Compute L := D'L;
Compute U := DU;
Compute b := D~ 1b;
Compute e := Wb;
Compute M := I + RL;
Compute N :== (I — W) — (W — R)L — WU,
Let k := 0;
while no convergence do
Solve Mz*+1) .= Nz 4 e
Update k :=k + 1;
end while
Normalize !

k)

I
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4.1.3 The Accelerated overrelaxation method (AOR
method)

The Accelerated Overrelaxation Method (AOR method) was first pur-
posed by Hadjidimos in [54] and it is a two-parameter generalization of the
SOR method, such that when the two parameters involved are equal it coin-
cides with the SOR method.

Also, the well-known methods of Jacobi, of Gauss-Seidel, of Simultaneous
Overrelaxation are special cases of the AOR method.

Let the system Ax = b and the splitting of matrix Ain A=D —L—-U
(2.15)), be given satisfying all the assumptions made in Section and
det (D) # 0.

The AOR method is the result of splitting A = M — N where

M=w'D-7rL) and N=w'[(1-w)D+ (w—7r)L+wU]. (4.11)
The AOR method consists of the following scheme:
g* ) = [, 2™ 4 d,, =0,1,2,... (4.12)
with the iteration matrix H, , being given by
H,=M'NeH.,=(D-rL) ' [1-w) D+ (w-r)L+wlU] (413)

and
dpyy =Mb o d.y, =w(D—7rL) ", (4.14)

where r and w € C\ {0} are two constants, r is the acceleration parameter
and w is the overrelaxzation parameter of the scheme.
With some algebra,

Hyo=(D=rL) " [(1=w) D+ (w—7)L+wl]
& Hy=(D—rL) " [M9D 4 (w—r) L+ wU]
& Hy,=(D—rL)"' [=etemtep o=ty 4 U]
& Hy=(D=rL)™ 52D+ 200D - el 4 2]
& Hy=D-rL)" [(1-2)(D—-rL)+<((1—7)D+rU)]

& Hou=01-2)1+2(D-7rL) " [(1—7r)D+rU] (4.15)

and using (4.13)) to form H, ,:
H,p=(D—=rL)" [(1-7)D+rU]
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we conclude that the iteration matrix (4.13) can be written as:

H,. —<1—?>I—|— “H,, (4.16)

and the vector (4.14]) is given by

dy. = —r(D—rL)"'0. (4.17)

r

As in (4.1)), to simplify the notation we set
L=D'L,U=D"'U b=D", A=D'A.

Hence, the original system Az = b is equivalent to D™'Az = D7 &
Az = b and the splitting of matrix A in A = D — L — U is equivalent to

D'A=D'D-D'L-DWUWeA=I-L-T.

Also, A= M —N & D'A=D"']M—-D'N < A= M- N where
M =DM and N = D'N.

Then, from (4.11)), we have M = w™! (I - rﬂ) and

N=uw! [(1—w)[+(w—r)f/+w0]

With this notation, the iteration matrix (4.16)) will become

-1

H,=M'N&H, = (1 - ri) [(1 —w) [+ (w—1)L+ wU] (4.18)

and the vector (4.17)

-1

Qo = M b dry = w (1= 7L) b, (4.19)
Therefore, the AOR iterative method is given by

2R+ — Hr,wx(k) +d,, k=0,1,2,...

—1 .

& k) = (I — ri>_1 [(1 —w)+ (w— r)fA—wU} z® +w <[—7“ZNL> b
(4.20)

It is possible to observe that for specific values of the parameters r» and
w, the AOR method reduces to other well-known methods.

For r = 0 the AOR method is an Extrapolated Jacobi method with
extrapolation parameter w.
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In this case, by (4.13]) and (4.14]), the iteration matrix is )
Ho., =D [(1—w)D+w(L+U))] and the vector do, = wD™1b.

Also, by (4.18) and (4.19), Ho, = (1 — w) I +w (i n U) and do,,, = wh.

For r # 0 the AOR method is an Extrapolated SOR method with extrap-
olation parameter © and overrelaxation parameter r (ESOR method [107]).

Considering the splitting A = D—L—U < A = M — N and the iteration
matrix H,, given by (4.13]) we can observe that, for different values of r and
w, the AOR method reduces to the methods referred in Table [4.2]

r|w H.,=M"'N Method
0|1 M=D N=L+U Jacobi

0| w M=w"lD N=w1[1-w)D+w(L+U)] EJ or JOR
1]1 M=D-1L N=U Gauss-Seidel
llw| M=w(D-L) | N=w!'[1-w)D+ (w—1)L+wU] EGS
w|w| M=wYD-wL) N =w"1[(1-w)D+wU] SOR
riw| M=wl(D-rL) | N=w[1-w)D+ (w—r)L+wU] AOR

Table 4.2: Iterative methods for specific values of the parameters r and w con-
sidering A=D —-L-U.

On the other hand, considering the splitting A = I—L—U < A = M —N
and the iteration matrix H,, given by (4.18)) the AOR method reduces to
the methods referred in Table [4.3] [56].

r|w H.,=M"'N Method
011 M=1 N=L+U Jacobi

0| w M=w1] N=wt|1-wl+wlL+0) EJ or JOR
1)1 M=I-1L N=U Gauss-Seidel
l|lw| M=w'U-L) |[N=w'|1-wI+(w-1)L+wl EGS
wlw| M= w (T —wi) N=w1|(1 —w)I—i—wﬁ SOR
rlw| M=w'I—-rL) | N=w'|1—-w)I+(w-r)L+wl AOR

Table 4.3: Iterative methods for specific values of the parameters » and w con-
sidering A=1—-L-U.

The Jacobi Overrelaxation (JOR) method is also called Extrapolated Ja-
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cobi (EJ) method or Simultaneous Overrelaxation method and the AOR
method is called Extrapolated SOR (ESOR) method (for r # 0) [107]. Fur-
thermore, for 7 = 1 the AOR method is called the Extrapolated Gauss-Seidel
(EGS) method [126].

Next, we relate the AOR method with the GAOR method.

Proposition 4.1.1. The GAOR method results from the AOR method con-
sidering r = r§), w = Q and Q a diagonal matriz.

Proof. Considering equations (4.18)) and (4.19)), then substituting r = r{2
and w = 2 = wl we obtain

Hyqq = (1 - mi>_1 [(1 Q)+ (1-r) QL+ QU} = qp

dyoq = O (1 - rQE>_113: (I - mz)_l b <

and

]

For more information about the AOR method, its properties and numer-
ical results see [54] [58] 61].

The pseudocode for the AOR method is given in Algorithm [13]

Algorithm 13 The AOR Method
Given matrix A, vector b and parameters r, w;
Choose an initial guess z(%;
Compute D, the diagonal of A;
Compute L, the strict lower triangular part of A;
Compute U, the strict upper triangular part of A;
Compute e := wb;
Compute M :=rL + D;
Compute N := (1 —w)D — (w — 1)L — wU;
Let k := 0;
while no convergence do
Solve Mz*+1) .= Nz®) 4 e
Update k := k + 1;
end while
Normalize z

k)

9
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4.2 Lumping on a Linear System

In Chapter |3|the Lumping method was applied to calculate the PageRank
vector as an eigenvector problem, that is, Lumping with Power method. Two
algorithms were presented in sections[3.3/and [3.4]and also in paper [102] based
on the work developed by Ipsen and Selee [67] and Lin et al. [93].

Later Yu et al. [146] developed two algorithms analogous to the ones by
Ipsen and Lin but they used a linear system formulation for the PageRank
calculations, that is, lumping with Jacobi iterations.

Next we propose a novel approach where the Lumping method will also be
used from a sparse linear system point of view but, in this case, a combination
of Lumping methods with MAAOR method.

4.2.1 Lumping 1 with MAAOR method

In Section the Lumping 1 method, developed by Ipsen and Selee
[67], was used considering that the PageRank calculation is an eigenvector
problem. Next we will combine the MAAOR method with the Lumping 1
method.

As seen before, the eigenvector formulation of the PageRank problem is
7'G = 77 and nfe = 1 which is equivalent to the sparse linear system
formulation of the problem 7% (I — aH) = v™.

That is, the classical system Ax = b < 27 AT = b7 can be solved by the
MAAOR method considering that 27 = 77, AT = (I —aH) and b7 =oT.

We know how to exclude the dangling nodes (D) with their artificial links
from the computations, by lumping all the dangling nodes into a single node
to obtain a smaller matrix [I146]. The PageRank of the nondangling nodes
(ND) can be computed separately from that of the dangling nodes using the
MAAOR method.

Let us permute the rows and columns of matrix H so that the rows
corresponding to dangling nodes are at the bottom of the hyperlink matrix,
ie.,

ND D
p=xgxT= ND |[Hu Hp (4.21)
Do O

where X is a permutation matrix and each row and column has exactly one
1 and all other entries are 0.

The Hj; submatrix represents the links among nondangling nodes (ND),
the His submatrix represents the links from nondangling nodes (ND) to
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dangling nodes (D) and the zero rows of P are associated with the dangling
nodes.

It follows from 7% (I — aH) = vT and (4.21)) that

7l (I —aH) =vT

& 7l (I —aH)XT =0TXT
& ' XTX (I —aH)XT =0T XT
& 7'XT(XIXT —aXHXT) =oTXT
and so,
# (I —aP)=d" (4.22)

where a7 = 77 X7 and o7 = 0T XT.
Finally, multiplying 77 = 77 X7 by X on the right we obtain the PageR-
ank vector

al =#TX, (4.23)

Partition consistently with (4.21)) that is # = [#], ﬁQT}T and 0 = [0], @ﬂT,
we have

#T (I — aP) = o7
T I O Hy, H o
o [#,#] H e ] _a{ fu s ] — o7, o]
= [A{(I —aHy), —ar] Hyp +7AT§FI} = f)f,ﬁﬂ )
Then,
T (I —aHy) =0T & a7 =o' (I —aHy) ™! (4.24)
and
—aflHyy + 721 = 0F < 7 = arl Hyp + 03 (4.25)

Therefore, with the division of the nodes into nondangling nodes and
dangling nodes, it is sufficient to apply the MAAOR algorithm on a smaller
matrix Hi; (of the nondangling nodes) to compute the PageRank vector.

A new algorithm that combines Lumping 1 with the MAAOR method,
Lumpingl-MAAOR method, is presented in Algorithm



138 CHAPTER 4. ACCELERATION OF PAGERANK AS A LINEAR SYSTEM

Algorithm 14 Lumpingl-MAAOR Method
Reorder the hyperlink matrix and vector v to get ;
Given H117 ng, {)1, QA)Q, «, tOl;
Solve 7T (I — aHyy) = 97, with the MAAOR method:;
Compute 71 = aal Hyy + 01;
Set & = [#7,77]";
Compute the PagePTLank vector 71 = 7T X;
T ™

Normalize " = —Z=;
71l

4.2.2 Lumping 2 with MAAOR method

Next we combine the MAAOR method with the Lumping 2 method. As
mentioned in Section dividing the nondangling nodes (ND) in two types,
weakly nondangling nodes (WND, nodes that are not dangling but point only
to dangling nodes) and strongly nondangling nodes (SND), we obtain three
types of nodes.

All the dangling nodes (D) are lumped into a single node and the same
is done with the weakly nondangling nodes. The PageRank of the strongly
nondangling nodes is computed separately [93].

For the Lumping 2 method the rows and columns of H are permuted,
so that the rows corresponding to dangling nodes are at the bottom of the
hyperlink matrix and the rows corresponding to strongly nondangling nodes
are at the top of the matrix. So, we obtain a new matrix P = XH X7,

SND WND D

SND 1 Hi] H?  H,
P=XHX"= wND | O 0O HZ (4.26)
D O O O

where submatrix H{] represents the links among SND, H{? the links from
SND to WND, H{, the links from SND to D, and H%, the links from WND
to D and X is a permutation matrix.

T T T
Partition consistently with (4.26)) we have 7 = [ﬁlT, ﬁg}T = [ﬁil) 7 AT]

T
s rar AT1T _ [T @7 o7
andv—[vl,%} —[Ul L0705 |
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From (4.22)) and (4.26)) we obtain
#T (I —aP) = o7

o I O O H{} H{? H], .
s |70 7@ wg’} 01 O|l-al 0 o0 HE||= [@9’ 0@ Gr
- o o1 0O 0 0
[ T — ozHlll1 —ozHlll2 —aHll2
M T T T T
& [H A A 0 1 —al | = [0 0" if]
' 0 0 I
M T - T T T T
o |H (- aml) —arV HE + 7D —adl) HY - of® B + 4] =
L
= [U§) ,vp 01
Then,
A (T —aHl) =0 e 20T =6 (T —aHl) (4.27)
T T T
#? =ar{V HZ 40, (4.28)
i = ar() Hiy+ an® H, + 1], (4.29)

With this in mind we will present the following Lumping algorithm,
Lumping2-MAAOR method (Algorithm , with respect to three type of
nodes for computing PageRank. The MAAOR method will be applied on a
even smaller matrix H{; (of the strongly nondangling nodes) to compute the

T
first part, 7r§1) , of the PageRank vector.
In Algorithm [15] the remainder of the PageRank vector can be computed
directly by means of matrix-vector multiplications.

Algorithm 15 Lumping2-MAAOR Method
Reorder the hyperlink matrix and vector v to get (4.26]);
Given HY, H2, HY,, H%, oV, 0, by, «, tol;
Solve #" (I — aH1) = 0" with the MAAOR method;

T T T T T
Compute #2 = a#l H2 40P and 77 = a7l HL, +an'® HZ + 0T,
T

T T
Set # = |#) 4" AT|
Compute the PageRank vector 77 = #7 X;

. T
Normalize 7 = ||:T|| ;
1
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4.3 Numerical Experiments

To complement the description, this section gives an indication of the
computing time (seconds) in typical uses (average of 3 runs). The first three
examples and the fifth example have been run on an Intel Core i7-3770 CPU
at 3.40 GHz with 4 cores and it was used MATLAB R2015a. The fourth example
have been run on an Intel(R) Xeon(R) CPU E3-1535M v6 @ 3.10 GHz and
32 GB RAM of memory with MATLAB R2015a.

Examples 1 and 2 present small matrices (of 12 and 100 nodes, respec-
tively) to illustrate all the methods involved. Example 5 also uses a build-in
matrix to highlight the method’s ability to rank well sets of pages with the
same PageRank. The matrices of examples 3 and 4 are available at the
SuiteSparse Matrix Collection - a widely used set of sparse matrix bench-
marks; both have been used to assess performance of web pages ranking
algorithms.

4.3.1 Example 1 - Toy model

The toy example of twelve nodes described in Section was used to
illustrate the following iterative methods: Jacobi, Gauss-Seidel, SOR (with
w = 0.5 and w = 1.5) and AOR (with w = 0.5,7 = 2 and w = 1.5,7 = 0.5)
applied to the full matrix A. The model has five dangling nodes (nodes 2, 4,
7, 8 and 11), two weakly nondangling nodes (nodes 1 and 6) and the other
five are strongly nondangling nodes.

Table reports the number of iterations obtained with the methods
above.

method iterations
Jacobi 23
Gauss — Seidel 12
SOR with w = 0.5 48
SOR with w=1.5 34
AOR with w =0.5. r =2 39
AOR with w=1.5.r=10.5 152

Table 4.4: Toy model: Number of iterations for Jacobi, Gauss-Seidel, SOR and
AOR methods.

All methods achieved the same PageRank vector:

m=1(9,10,12,6,11,7,8,3,2,1,4,5).
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Comparing with the results obtained in Section |3.6.1] we observed that the
PageRank scores obtained by the linear system approach and by the eigen-
vector approach were equal.

The best method, in terms of number of iterations, is the Gauss-Seidel
method.

Table reports the number of iterations obtained with the MAAOR
method for different values of matrices R and W, considering o« = 0.85 and
||7|| < 1078|b||, 7 the residual and b the right hand side of the linear system.
These different values leads to other iterative methods as the GAOR method,
the GSOR method, the AOR method and the other methods described in
Table [4.1] of Section [4.1.1l The number of iterations is listed for the MAAOR
method applied to the full 12 x 12 matrix and also for the reduced matrix
obtained with Lumpingl-MAAOR method (as described in Section
and the further reduced matrix resulting from Lumping2-MAAOR method
(as described in Section [4.2.2)).

In Table Q) is the diagonal of A, O the null matrix and I the identity
matrix.

Method R W | MAAOR (it) | Lumpingl-MAAOR (it) | Lumping2-MAAOR (it)
Jacobi o I 23 22 23
Gauss — Seidel I I 12 12 11
SOR (w = 0.5) 0.57 | 0.5 48 47 44
SOR (w=1.5) 1.51 | 1.51 34 28 26
Eaxtrapolated Jacobi (w = 0.5) O | 051 56 54 51
Extrapolated Gauss — Seidel (w=1.5) | [ | 1.5 32 31 27
Extrapolated Gauss — Seidel (w=0.5) | [ | 0.5] 37 36 34
AOR (w=15, r =0.5) 0.5 | 1.51 152 168 174
AOR (w=10.5, r=15) 1.5I | 0.51 35 35 34
AOR (w=0.5, r=2) 21 | 0.51 39 39 39
AOR (w=10.5, r=15) 51 | 0.5 102 103 99
GSOR Q Q 32 31 30
GAOR (r =0.5) 050 Q 36 35 34
GAOR (r = 1.5) 50| Q 27 26 26
GAOR (r =0) o Q 40 39 37
GAOR (r=1) Q Q 32 31 30
GAOR (r =3) 3Q Q 29 29 29
MAAOR (w=15, r=0.5) 0.5 | 1.5Q 42 42 41
MAAOR (w = 0.5, r=1.5) 1.5Q | 0.5 63 63 62
MAAOR (w=0.8, r=3) 30 | 0.8 36 36 36

Table 4.5: Toy model: Number of iterations for MAAOR method applied to the
full matrix A, Lumpingl-MAAOR method and Lumping2-MAAOR method for
tol < 1078 and o = 0.85. It includes GAOR, GSOR, AOR and other methods.

All methods achieved the same PageRank vector referred above.

As reported in Table [4.4] the best MAAOR method, applied to the full
matrix A, in terms of number of iterations (12), is the Gauss-Seidel method.
That is, the best parameters for the MAAOR method are R =W = I. The
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Lumpingl-MAAOR method mimics the results obtained with the MAAOR
method applied to the full matrix, the best result is obtained with the Gauss-
Seidel method (12 iterations). For the Lumping2-MAAOR method the best
case is also the Gauss-Seidel method but it only needs 11 iterations to achieve
convergence.

The table above does not include time needed to converge because, as the
example is very small, convergence is very fast. Consequently, convergence
time is similar for several methods and the best method in terms of time
varies.

Also, in terms of convergence time, the lumping approaches are not good
choices for this toy example. This is easily explained by the small size of the
matrix. The time required to construct the reduced matrices and to clas-
sify their nodes is very significant when compared to the execution time of
the methods. In addition, lumping also requires extra time to recover the
Pagerank vector. This time (although small) depends on each method and
is added to the convergence time. Consequently, for a very small matrix, the
lumping strategy does not pay off in terms of convergence time. So, for this
toy model, we only focus on the number of iterations.

We will verify if lumping is a faster strategy observing the next examples
where the matrices are bigger.

Compared to the results achieved in Section [3.6.1, where the Lumping
methods are used in an eigenvector point of view (Lumping with Power
method and Aitken extrapolation), the linear system approach is better.
The best results with the eigenvector approach are obtained using LumpingE1
and LumpingE2 methods. These two methods need 21 iterations to converge.
Therefore, the linear system approach using Lumping2-MAAOR method
(with R = W = I corresponding to the Gauss-Seidel method) is the best
with only 11 iterations.

Next we will investigate the effect of using different damping factors in
the PageRank problem. Table [4.6| reports the number of iterations obtained
with the full MAAOR method for the same values of matrices R and W
presented in Table and several a. In addition to o = 0.85, the cases
a=0.80, a =0.90, a = 0.95 and a = 0.99 were analyzed.

Different the damping factors « leads to different PageRank vectors.
Increasing « slows down the convergence rate. Observing the Table [4.6] we
conclude that a higher « leads to an increase in the number of iterations.
The order of magnitude of this increase varies, it may be a small increase
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Method a=080|a=08|a=090 | a=095|a=0.99
it. it. it. it. it.
Jacobi 20 23 26 29 32
Gauss — Seidel 11 12 13 15 17
SOR (w=0.5) 44 48 52 57 62
SOR (w = 1.5) 33 34 34 34 34
Extrapolated Jacobi (w = 0.5) 52 56 61 68 75
Extrapolated Gauss — Seidel (w = 1.5) 31 32 32 32 32
Extrapolated Gauss — Seidel (w = 0.5) 35 37 39 42 45
AOR (w=1.5; 1 =0.5) 114 152 229 460 2308
AOR (w=0.5; r = 1.5) 34 35 36 39 42
AOR (w=0.5; 7 = 2) 37 39 44 47 53
AOR (w=0.5; r =5) 80 102 152 295 1461
GSOR 28 32 36 42 47
GAOR (r =0.5) 32 36 41 47 54
GAOR (r =1.5) 23 27 30 35 40
GAOR (r =0) 35 40 45 53 60
GAOR (r = 1) 28 32 36 42 47
GAOR (r =3) 26 29 31 34 37
MAAOR (w=1.5; r=0.5) 41 42 43 45 46
MAAOR (w=0.5; r = 1.5) 57 63 71 80 90
MAAOR (w=10.8; r=3) 33 36 39 44 48

Table 4.6: Toy model: Number of iterations for MAAOR considering several «
(tol < 1079).

like the one verified in the MAAOR method with w = 1.5 and » = 0.5 or a
substantial increase, like that of the AOR method with w = 0.5 and r = 5.
In fact, the latter method required 14x more to converge with a = 0.99 than
with the conventional o = 0.85, and the greater « is the greater the effort
(v = 0.99 required 5x to converge than a = 0.95). These results are in
accordance with what was stated in Section 3.1l

4.3.2 Example 2 - testl matrix

For this second example it was used the matrix with 100 nodes described
in Section[3.6.2] Following the same procedure as in the previous example, we
began to analyze the Jacobi, Gauss-Seidel, SOR (with w = 0.5 and w = 1.5)
and AOR (with w = 0.5,7 = 2 and w = 1.5,7 = 0.5) iterative methods
applied to the full matrix A.

Table |4.7 reports the number of iterations and time (in milliseconds, ms)
obtained with the methods above.
The best method, applied to the full matrix A, in terms of number of
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method iterations | time (ms)
Jacobi 31 3.284
Gauss — Seidel 17 1.290
SOR with w = 0.5 59 2.846
SOR with w = 1.5 37 2.507
AOR with w =0.5. r =2 48 2.942
AOR with w =1.5.r=0.5 608 21.68

Table 4.7: Testl matrix (with 100 nodes): Number of iterations and convergence
time for Jacobi, Gauss-Seidel, SOR and AOR methods.

iterations and time is, by far, the Gauss-Seidel method with 17 iterations
and 1.290 ms.

All methods achieved the same PageRank vector and they all agree with
the solution provided by the eigenvalue approach (see Section [3.6.2). The
node with higher PageRank is node 82 which is a strongly dangling node.

The first 10 nodes with higher PageRank and their type are given in Table
4.8

Type: SND | SND | SND [ WND | SND | SND | SND D D | D

Node: | 82 | 81 | 10 | 6 9 [ 12 | 83|69 | 7|8

Table 4.8: 100 x 100 matrix: first 10 nodes and their type.

Table reports the number of iterations and time until convergence

obtained with the MAAOR method for different values of matrices R and
W. It includes other iterative methods as the GAOR, GSOR, AOR applied
to the testl matrix (100 x 100 matrix). The choice of parameters for the
matrices R and W is the same as in Table [L.5]
The number of iterations and time until convergence (||r|| < 1078||b|[, r the
residual and b the right hand side of the linear system) are listed for the
MAAOR method applied to the full 100 x 100 matrix, for the reduced ma-
trix obtained with Lumpingl-MAAOR method and for the further reduced
matrix resulting from Lumping2-MAAOR method.

All MAAOR methods achieved the same PageRank vector. The first 10
nodes with higher PageRank are in Table |4.8]



4.3. NUMERICAL EXPERIMENTS 145

method MAAOR Lumpingl-MAAOR | Lumping2-MAAOR
it. time it. time it. time
Jacobi 31 3.284 28 1.188 31 1.768
Gauss-Seidel 17 1.290 16 0.883 17 1.513
SOR (w = 0.5) 59 2.846 53 1.366 59 1.872
SOR (w = 1.5) 37 2.507 48 1.189 38 1.675
Extrapolated Jacobi (w = 0.5) 70 3.775 64 1.052 71 1.925
Extrapolated Gauss-Seidel (w = 1.5) 33 1.997 36 0.798 33 1.969
Extrapolated Gauss-Seidel (w = 0.5) 44 2.483 41 0.838 45 1.751
AOR (w = 1.5; 7 =0.5) 608 21.68 687 7471
AOR (w=0.5; 7 =1.5) 38 2.239 37 0.833 40 1.669
AOR (w=10.5; r=2) 48 2.942 46 0.882 46 1.692
AOR (w=0.5; r=5) 1400 49.60 357 4.618 1405 14.08
GSOR 40 2.138 38 0.814 38 1.653
GAOR (r = 0.5) 46 2122 44 0.869 45 1.776
GAOR (r =1.5) 32 1.532 31 0.753 31 1.613
GAOR (r =0) 51 2.376 49 0.902 50 1.721
GAOR (r=1) 40 1.788 38 0.803 38 1.629
GAOR (r =3) 36 1.659 33 0.769 33 1.592
MAAOR (w = 1.5; r=0.5) 41 1.760 46 0.882 46 1.688
MAAOR (w = 0.5; r = 1.5) 73 2.585 71 1.492 71 1.868
MAAOR (w=0.8; r=3) 44 1.747 43 1.231 42 1.657

Table 4.9: Testl matrix (with 100 nodes): Number of iterations and conver-
gence time in milliseconds (ms) for MAAOR, Lumpingl-MAAOR and Lumping?2-
MAAOR methods for tol < 1078 and o = 0.85. Symbol — appears whenever the
maximum number of iterations (2000) was exceeded.

As in case of Table [4.7] the best of all MAAOR methods applied to the
full matrix A, both in number of iterations and time, is the Gauss-Seidel
method.

For the MAAOR method applied to the reduced matrix obtained with Lump-
ingl method we conclude that the best result, in terms of number of itera-
tions, is also obtained by the Gauss-Seidel method. Comparing with the full
MAAOR the Lumpingl-MAAOR method took 1 less iteration to converge
and it was faster. However, in terms of time it needs to converge, the best
results does not necessarily correspond to the Gauss-Seidel method. From
Table 4.9, regarding time, we observe that, for the lumpingl approach, the
best choice of parameters is the one corresponding to the GAOR method
with r = 1.5 followed by the GAOR method with r» = 3.

Considering the MAAOR method applied to the further reduced matrix re-
sulting from Lumping2 method, the best MAAOR method, in terms of num-
ber of iterations, is, again, the Gauss-Seidel method with the same number
if iterations than the full MAAOR.

Analyzing Table [£.9 we conclude that, in general, Lumping]l presents the
best times of the three approaches. Also, in most cases, Lumping2 is faster
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than full MAAOR but slower than Lumping].

However, although the matrix used in this example is larger than that of
the previous example, it is still very small, so the time required to achieve
convergence is also very small and varies from simulation to simulation.

Compared with the results reported in Section [3.6.2] where the lump-
ing methods are used in an eigenvector point of view (lumping with power
method and Aitken extrapolation), the linear system approach achieves bet-
ter results. In terms of number of iterations, the best result with the eigen-
vector approach is obtained using the LumpingE2 method with 25 itera-
tions. The linear system approach using Lumpingl-MAAOR method (with
R =W = I corresponding to the Gauss-Seidel method) only took 16 itera-
tions and the Lumping2-MAAOR method (Gauss-Seidel method) converged
in 17 iterations.

Overall, and in line with the literature, Gauss-Seidel method seems to
be the best approach to solve the PageRank problem (for this test case).
Indeed, the performance of Gauss-Seidel applied to the PageRank linear sys-
tem is considered excellent, given its modest memory requirements. It often
converges in roughly half the number of Power method iterations [46].

In Tables 4.7 and 4.9/ w = 0.5 and w = 1.5 were the parameters selected
for the SOR method. However, they may not be the best parameters for the
SOR method. So, next we will investigate which are the most convenient
parameters for this method and this matrix.

Figure [4.1| shows the results obtained applying the SOR method for different
values of the parameter w (from 0.1 to 1.9, step 0.1) to the full 100 x 100
matrix. It considers o = 0.85 and tolerance tol < 1078.

Observing Figure we conclude that if we chose w € [0.8,1.4] we will
have an adequate choice of parameters. The best result for the SOR method
in terms of number of iterations (11) and time is obtained using w = 1.1.
The second best is w = 1.2 with 14 iterations and w = 1 (corresponding to
the Gauss-Seidel method) only appears in third place with 17 iterations. So,
contrary to what was stated above, the SOR method is not the best method
if we operate on the full 100 x 100 matrix.

In Table w = 0.5 and w = 1.5 were also the parameters selected for
the Extrapolated Gauss-Seidel method, that is, the AOR method with r =1
fixed and varying w (from 0.1 to 1.9, step 0.1). To investigate the best w
parameters for this method the following figure was created (Figure .

The smaller number of iterations for the Extrapolated Gauss-Seidel method
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SOR method (several w)

0.08 2000

time
— — — iterations
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Figure 4.1: 100 x 100 matrix: Number of iterations and time of the SOR method
for different values of w.

AOR method (r = 1, several w)

0.01 400

time
— — — iterations

0.005 [ 1200

time
iterations

Figure 4.2: 100 x 100 matrix: Number of iterations and time of the AOR method
with r = 1 for different values of w (Extrapolated Gauss-Seidel method).

is obtained within the interval w € [0.9,1.3]. The best cases are w = 1.1 and
w = 1.2 with 14 iterations (which is also an improvement over the Gauss-

Seidel method).

Finally, in Figure [4.3] we present two simulations for the AOR method
applied to the full 100 x 100 matrix (testl matrix). In Figure 4.3(a)| we have
a fixed r = 1.5 and w varies from 0.1 to 1.9 with step 0.1. In Figure [4.3(b)|
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we have a fixed w = 0.5 and r varies from -5 to 5 with step 0.5.

AOR method (r = 1.5, several w) AOR method (w=0.5, several r)

0.1

o
£ 005

N

0 L P e e ! L o o L L L L P L L o
0 02 04 06 08 1 12 14 16 18 2 5 -4 -3 2 -1 0 1 2 3 4 5
w

(a) r = 1.5, several w (b) w = 0.5, several r

Figure 4.3: 100 x 100 matrix: AOR method fixing w or r.

The best results for the AOR method with r = 1.5 (Figure 4.3(a)]) both
in iterations (19) and time are obtained using w = 1.0, w = 1.1 and w = 1.2.
The best result for the AOR method with w = 0.5 (Figure 4.3(b))) in terms
of number of iterations (38) and time is obtained using r = 1.5.

4.3.3 Example 3 - EPA matrix

We consider now the EPA matrix — Kleinberg: Pajek network, pages link-
ing to www.epa.gov. It is a 4772 x 4772 matrix with 8965 nonzeros, 4711
strongly connected components, 70.18% dangling nodes, 19.72% strongly
nondangling nodes and 10.10% weakly nondangling nodes.

That is, a linear system of size 4772 x 4772 for the original MAAOR
iteration, of size 3626 x 3626 for Lumpingl-MAAOR, and 1363 x 1363 for
Lumping2-MAAOR.

As a first approach we begin to study the EPA matrix obtained with
MAAOR, Lumpingl-MAAOR and Lumping2-MAAOR methods, for some
MAAOR parameters, considering the standard o = 0.85. These results are
presented in Table , which reports the number of iterations and time (in
seconds, s) until convergence (||r|| < 1078||b||, r the residual and b the right
hand side of the linear system) for the EPA matrix.

The best result, for the three methods, is obtained with GAOR with
r = 1.5. The overall speed of convergence is high due to the tuned sparse
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method MAAOR Lumpingl-MAAOR | Lumping2-MAAOR
it. time it. time it. time
Jacobi 110 0.030 119 0.013 123 0.010
Gauss-Seidel 60 0.019 61 0.011 60 0.009
SOR (w = 0.5) 176 0.046 176 0.017 170 0.012
SOR (w = 1.5) 2767 0.686 2761 0.223 2760 0.152
Extrapolated Jacobi (w = 0.5) 227 0.044 228 0.015 221 0.014
Extrapolated Gauss-Seidel (w = 1.5) - - - - - -
Extrapolated Gauss-Seidel (w = 0.5) 128 0.036 130 0.016 129 0.010
AOR (w = 1.5; 7 =0.5) 4553 1.214 4541 0.362 4538 0.241
AOR (w=0.5; 7 =1.5) 73 0.023 78 0.009 79 0.007
AOR (w=0.5; r=2) 157 0.045 156 0.014 165 0.013
AOR (w=0.5; r=5) 1332 0.361 1331 0.100 1331 0.078
GSOR 60 0.015 61 0.009 60 0.007
GAOR (r =0.5) 84 0.025 84 0.011 81 0.010
GAOR (r =1.5) 35 0.013 38 0.007 37 0.006
GAOR (r =0) 110 0.025 119 0.013 123 0.010
GAOR (r=1) 60 0.017 61 0.010 60 0.007
GAOR (r =3) 3873 1.030 3873 0.331 3872 0.225
MAAOR (w = 1.5; r=0.5) 4553 1.185 4541 0.347 4538 0.236
MAAOR (w = 0.5; r = 1.5) 73 0.019 78 0.011 79 0.007
MAAOR (w =0.8; r =3) - - - - - -

Table 4.10: EPA matrix: Number of iterations and convergence time in seconds
for MAAOR, Lumping1l-MAAOR and Lumping2-MAAOR methods for tol < 1078
and a = 0.85. Symbol — appears whenever the maximum number of iterations
(5000) was exceeded.

matrix operations used; compressed sparse row (CSR) format is used and all
operations are done on this sparse data structure scheme.

The hybrid Lumping2-MAAOR is the one that requires less computation
time while all three provide similar number of iterations to reach convergence.
These findings can also be seen in [103].

In a second approach, we tried to seek the best combination of param-
eters for each method within the MAAOR family of methods. So, several
experiments were carried out.

Beginning with the simple SOR method, the choice of parameter w was
made within the interval stated in Theorem 2.3.9 Table L.I1] shows the
results obtained applying the SOR method for different values of w (from 0.1
to 1.9, step 0.1) to the full EPA matrix. Figure illustrates these results.
Both, in Figure and in Table [£.11], we present the number of iterations
and time (in seconds) to obtain convergence for the SOR method with a
tolerance tol < 107® and o = 0.85. The symbol — appears whenever the
maximum number of iterations (2000) is exceeded.
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method iterations | time (s)

SOR (w = 0.1) 1118 0.276

SOR (w = 0.2) 530 0.124

SOR (w = 0.3) 334 0.077

SOR (w = 0.4) 235 0.059

SOR (w = 0.5) 176 0.047

SOR method (several w) SOR (w = 06) 137 0.035

0s 2000 SOR (w=10.7) 109 0.028

SOR (w = 0.8) 88 0.024

SOR (w = 0.9) 72 0.019

SOR (w = 1.0) 60 0.017

SOR (w = 1.1) 50 0.013

o £ SOR (w = 1.2) 59 0.016

= SOR (w = 1.3) 266 0.067
SOR (w = 1.4) - -
SOR (w = 1.5) - -

SOR (w = 1.6) 1855 0.466

SOR (w = 1.7) 1435 0.368

% oz o4 06 08 1 12z 14 16 18 2 SOR (w=1.8) 1192 0.320

SOR (w = 1.9) 1033 0.281

Figure 4.4: EPA matrix: SOR Table 4.11: EPA matrix: SOR
method (several w). method (several w).

Looking at Figure [£.4] we conclude that, both in time and iterations, if
we choose w within the interval [0.8,1.2] we will have good results. From
Table [4.11] we observe that the best result for the SOR method in terms of
number of iterations (50) and time (0.013 s) was obtained using w = 1.1.
The second best was the SOR method for w = 1.2 with 59 iterations and
0.016 s. Consequently, these were the two new parameters chosen for the
SOR method.

Next, searching for the best parameters w and r for the AOR method,
we developed a MATLAB code in which the parameter w varies from 0.1 to
1.9 (step 0.1) and the parameter r varies from —5 to 5 (step 0.5). Three
dimensional graphs were created to illustrate the results obtained. Figure
shows the convergence time (in seconds) with the different values of
w and r for the full EPA matrix, and Figure 4.5(b)| presents the number of
iterations necessary to converge.

The best result for the AOR method applied to the full EPA matrix was
obtained with w = 1 and r = 1.5 both in terms of number of iterations (35)
and time (0.010 s).

Taking into account the EPA matrix as well as the other the matrices
studied, we may concluded that the best parameters for the AOR method
sumuptow =1, w =11, w=12and r = 1.5, r = 1. With this results in
mind we made two simulations fixing r (r = 1.5, r = 1) and varying w and
also four simulations fixing w (w =1, w = 1.1, w = 1.2, w = 0.5) and varying
r. The last case, AOR method with w = 0.5 and several r, was selected for
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AOR for different w and r (time): AOR for different w and r (iterations):
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Figure 4.5: EPA matrix: AOR method for different w and r (time and iterations).

comparison because it was widely used in the first approach (Table |4.10 .
The graphs that illustrate these six simulations are given in Figure [4.6|

In all cases it was used the full EPA matrix.

AOR method (r = 1, several w) AOR method (w = 1, several 1)
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(d) w=1.1, several r (e) w=1.2, several r (f) w = 0.5, several r

Figure 4.6: EPA matrix: AOR method fixing w or r.

On the one hand, from Figure 4.6(a)| and 4.6(b)| were r was fixed, we
can see that if w remains within [0.8,1.2] we have an adequate choice of
parameters. The best result for AOR method with fixed » = 1.5 was obtained
with w =1 (35 iterations and 0.011 s). Also, for the AOR method with fixed
r = 1 the best parameter was w = 1.2 (48 iterations and 0.014 s). This case
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(AOR with r = 1) corresponds to the Extrapolated Gauss-Seidel method.

On the other hand, Figures|4.6(c)|to [4.6(f)|illustrates the results obtained
fixing w and varying r € [—5,5]. For all cases it is safe to say that with
r € 0.5, 2] we have acceptable results. The best result for AOR method with
fixed w = 1 was obtained with r = 1.5 (35 iterations and 0.012 s), for AOR
method with fixed w = 1.1 was r = 1.5 (42 iterations and 0.012 s), for AOR
method with fixed w = 1.2 was r = 1 (48 iterations and 0.014 s) and, finally,
for AOR method with fixed w = 0.5 the best result was achieved with » = 1.5
(73 iterations and 0.021 s). This last case was not selected to incorporate
the final selection of parameters.

Now, we analyze the choice of parameters for the MAAOR method vary-
ing both w and r considering the full MAAOR method, the Lumpingl-
MAAOR method and the Lumping2-MAAOR method.

New MATLAB codes were developed to create three dimensional graphs that
allow a more immediate recognition of the appropriate choice of parameters.
Starting with the MAAOR method for several w and r applied to the full
EPA matrix, it is possible to observe the convergence time (in seconds) in
Figure and the number of iterations necessary to converge in Figure

H~
=
&

MAAOR MAAOR

time (sec)
iterations

(a) Time (b) Iterations

Figure 4.7: EPA matrix: full MAAOR, several w and r (time and iterations).

The red circle in Figure 4.7(a){ and [4.7(b)| corresponds to the results ob-
tained by the Jacobi method and the green circle corresponds to the Gauss-
Seidel method. The deep blue in the graphs illustrates the best results, it
implies, usually, a lower number of iterations and a lower convergence time.
In yellow we have the worst results.

From Figure[4.7(a) and [4.7(b)| we can observe that there are a wide range
of combinations of values for w and r that presents good results.
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For the full MAAOR method applied to the EPA matrix the best re-
sults were obtained considering MAAOR with w = 1 and » = 1.5, which
corresponds to the GAOR method with » = 1.5. In this case the GAOR
method needed 35 iterations and 0.010 s to converge. In some simulations
the MAAOR method with w = 0.9 and r = 1.5 was faster, despite needing
more iterations (40).

Figure shows the convergence time (in seconds) with the different
values of w and r for the reduced EPA matrix obtained with the Lumpingl-
MAAOR method, Figure illustrates the number of iterations necessary
to converge considering the same method.

Lumping 1 + MAAOR Lumping 1 + MAAOR

time (sec)
iterations

(b) Iterations

Figure 4.8: EPA matrix: Lumpingl-MAAOR, several w and r (time and itera-
tions).

In Figure 4.8(a)| and |4.8(b)| the red circle corresponds to the results of
the Jacobi method and the green circle to the Gauss-Seidel method. As in
the case of the full MAAOR method, the best choice of parameters corre-
sponds to MAAOR with w = 1 and r» = 1.5, that is, the GAOR method
with » = 1.5. Comparing with the full MAAOR, although the Lumpingl-
MAAOR method took more iterations (38), the time needed to converge
was significantly smaller (0.006 s). In other simulations it was possible to
obtain another combination of parameters that was faster, even with more
iterations, for instance, MAAOR with w = 0.8 and r = 1.5.

Taking into account the further reduced EPA matrix obtained with the
Lumping2-MAAOR method we can observe the correspondent results in time
and iterations in Figures [4.9(a)| and 4.9(b), respectively.

Mimicking the full MAAOR and the Lumpingl-MAAOR methods, the
best result obtained with the Lumping2-MAAOR method corresponds to
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Lumping 2 + MAAOR Lumping 2 + MAAOR
03 5000

4500
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time (sec)
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Figure 4.9: EPA matrix: Lumping2-MAAOR, several w and r (time and itera-
tions).

the GAOR method with r = 1.5 (i.e., MAAOR with w =1 and r = 1.5). It
was the fastest (0.004 s) of the three approaches and it took 37 iterations to
converge. There are other combination of parameters that, sometimes, were
faster, such as MAAOR with w = 0.9 and r = 1.5.

Finally, analyzing all the situations described above, it was possible to
conclude about the most promising parameters for all the methods. So,
the best parameters known for each method, within the MAAOR family of
methods, were used in a new simulation with results illustrated in Table [£.12]

Analyzing Table [1.12] as was expected considering the previous results,
we observe that the best combination of parameters, in terms of number
of iterations, for the three approaches, is the MAAOR with w = 1 and
r = 1.5 (i.e., GAOR method with » = 1.5). In this case, full MAAOR
took 35 iterations and 0.011 s to converge, Lumpingl-MAAOR needed more
iterations (38) but it was faster (0.007 s) and, finally, Lumping2-MAAOR
took 37 iterations but was the fastest of the three strategies (0.006 s).

For the full MAAOR, the fastest choice of parameters was MAAOR with
w = 1 and r = 1.5 with 0.011 s. However, for the Lumpingl-MAAOR
approach, we had several combination of parameters that took around 0.007 s
and the same happened with the Lumping2-MAAOR approach where 0.006 s
was the minimum time achieved. In reality, for the Lumpingl option the
fastest method (0.006543 s) was MAAOR with w = 0.9 and r = 1.5, the
second best (0.006640 s) was MAAOR with w = 0.8 and r = 1.5, the third
(0.006741 s) was GAOR with » = 1.5, and the AOR method with w = 1.1
and r = 1.5 took the fourth position with 0.006770 s. Due the proximity of
these results, different simulations change this ranking.
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method MAAOR Lumpingl-MAAOR | Lumping2-MAAOR
it. time it. time it. time
Jacobi 110 0.030 119 0.013 123 0.011
Gauss-Seidel 60 0.018 61 0.010 60 0.009
SOR (w =1.2) 59 0.020 66 0.011 68 0.008
SOR (w=1.1) 50 0.013 51 0.010 51 0.006
Extrapolated Jacobi (w = 1.2)
Extrapolated Gauss-Seidel (w = 1.2) 48 0.012 50 0.007 50 0.006
Extrapolated Gauss-Seidel (w = 1.1) 54 0.013 54 0.009 54 0.006
AOR (w=1.2; r=1.5) 89 0.021 101 0.011 104 0.009
AOR (w=1.1; r=1.5) 42 0.012 47 0.007 49 0.006
. 35 0.014 38 0.008 37 0.006
AOR (w=10.9; r=1.5) 40 0.014 42 0.007 43 0.006
AOR (w=1.2; r=0.5) 68 0.018 68 0.009 66 0.007
GSOR 60 0.016 61 0.011 60 0.007
GAOR (r =0.5) 84 0.023 84 0.011 81 0.010
GAOR (r=3) 3873 1.046 3873 0.351 3872 0.259
GAOR (r =0) 110 0.027 119 0.011 123 0.009
GAOR (r =1.5) 35 0.011 38 0.007 37 0.006
GAOR (r=2) 112 0.034 116 0.013 116 0.010
MAAOR (w = 1.6; r = 1.5) 1934 0.535 1930 0.143 1929 0.106
MAAOR (w = 1.5; r = 1.5) 2767 0.699 2761 0.234 2760 0.170
MAAOR (w=14; r=1.5) - - - - - -
MAAOR (w=0.9; r =1.5) 40 0.011 42 0.007 43 0.006
MAAOR (w=0.8; r =1.5) 47 0.012 45 0.007 49 0.006
MAAOR (w=1.5; r =2) 2204 0.562 2200 0.169 2198 0.117
MAAOR (w=14; r=2) 3526 0.921 3518 0.266 3516 0.179
MAAOR (w=13; r=2) - - - - - -
MAAOR (w=1.2; r=2) 167 0.041 189 0.018 195 0.013
MAAOR (w=1.1; r =2) 112 0.036 115 0.013 115 0.012

Table 4.12: EPA matrix: Number of iterations and convergence time in seconds
for MAAOR, Lumpingl-MAAOR and Lumping2-MAAOR methods for tol < 1078
and a = 0.85. Symbol — appears whenever the maximum number of iterations
(5000) was exceeded.

For the Lumping2-MAAOR option the situation was analogous, the fastest
combination of parameters was MAAOR with w = 0.9 and r = 1.5, the sec-
ond best was GAOR with » = 1.5, the third was Extrapolated Gauss-Seidel
with w = 1.2, and the fourth was AOR method with w = 1.1 and r = 1.5.

Therefore, for most choice of parameters, the lumping strategy took more
iterations to converge than the full MAAOR, however, in all cases, the lump-
ing strategy took less time to converge. Also, a further reduction on the
matrix is worth the effort to move to Lumping2-MAAOR.

In some situations the advantage can be impressive. For instance, in case
of MAAOR with w = 1.4 and r = 2, the no lumping approach required 3.5x
to converge than the Lumpingl and more than 5x than the Lumping2.

For this example, and contrary to most results in the literature, the Gauss-
Seidel is superseded by recent MAAOR family of methods in the PageRank
problem. Also, both lumping strategies bring better results to the PageRank
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problem.
This EPA model is relatively small, so larger models were tested.

4.3.4 Example 4 - wikipedia-20070206 matrix

Next we explore the wikipedia-20070206 matrix — Gleich: Wikipedia
pages at Feb 6, 2007. A 3566907 x 3566907 matrix with 45030389 nonze-
ros, 1203340 strongly conneted components, 2.84% dangling nodes, 88.07%
strong nondangling nodes and 9.09% weakly nondangling nodes. In contrast
with the previous example, this one concerns a dense matrix.

In order to understand if the computation has acceptable costs, we present
in Table results with the much larger matrix wikipedia-20070206. Fol-
lowing the strategy used in Section [4.3.3] as a first approach we used the
same choice of parameters as in Table [1.10] This procedure was set out in
[103].

method MAAOR Lumpingl-MAAOR | Lumping2-MAAOR
it. time it. time it. time
Jacobi 138 86.02 138 89.05 143 60.83
Gauss-Seidel 3 16.71 5 20.70 4 13.88
SOR (w = 0.5) 6 18.43 8 22.36 7 15.00
SOR (w = 1.5) 2 16.28 4 20.20 3 13.35
Extrapolated Jacobi (w = 0.5) 159 98.09 159 101.1 165 68.75
Extrapolated Gauss-Seidel (w = 1.5) 3 18.96 5 24.73 4 15.36
Extrapolated Gauss-Seidel (w = 0.5) 3 18.98 5 24.86 4 15.30
AOR (w = 1.5; r =0.5) 6 20.87 8 32.27 7 16.52
AOR (w=0.5; r = 1.5) 2 18.37 4 24.03 3 14.84
AOR (w=10.5; r=2) 1 17.75 3 23.49 2 14.40
AOR (w=10.5; r=5) 1 17.71 2 22.82 1 13.99
GSOR 3 16.70 6 21.09 5 14.14
GAOR (r =0.5) 8 22.03 11 28.58 11 18.13
GAOR (r =1.5) 2 18.21 4 23.94 3 14.72
GAOR (r=0) 140 86.92 140 89.96 146 62.34
GAOR (r = 1) 3 16.70 6 21.09 5 14.43
GAOR (r =3) 1 17.61 3 23.32 2 14.61
MAAOR (w = 1.5; r =0.5) 8 22.08 11 28.75 11 18.83
MAAOR (w = 0.5; r = 1.5) 2 18.31 4 24.00 3 15.34
MAAOR (w=0.8; r=3) 1 17.65 3 23.34 2 14.64

Table 4.13: wikipedia matrix: convergence time (in seconds, s) for MAAOR,
Lumpingl-MAAOR and Lumping2-MAAOR methods for tol < 1078 and o = 0.85.

This problem is particularly interesting since the percentage of dangling
nodes is extremely reduced. The effort in solving the reduced system is thus
comparable to the original. Even though, lumping showed that it is a crucial
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strategy to gain performance, in particular Lumping2-MAAOR outperforms
all others. The correct choice of the linear solver is however dependent of the
approach followed. The choice SOR with w = 1.5, Gauss-Seidel and AOR
with w = 0.5 and r = 5 are the best for Lumping2-MAAOR.

In a second approach, a new table (Table [4.14)) with the same choice of
parameters used in the EPA matrix example (Table[4.12]) was then presented
so that the results could be compared.

method MAAOR Lumpingl-MAAOR | Lumping2-MAAOR
it. time it. time it. time
Jacobi 138 86.37 138 87.57 143 73.72
Gauss-Seidel 3 16.78 5 20.25 4 16.19
SOR (w = 1.2) 2 16.23 4 19.79 3 15.62
SOR (w=1.1) 2 16.28 5 20.32 3 15.59
Extrapolated Jacobi (w = 1.2) 133 84.66 133 84.87 138 72.04
Extrapolated Gauss-Seidel (w = 1.2) 3 19.07 5 24.05 4 18.52
Extrapolated Gauss-Seidel (w = 1.1) 3 19.08 5 23.98 4 18.33
AOR (w=1.2; r=1.5) 2 18.38 4 23.57 3 17.97
AOR (w=1.1; r=1.5) 2 18.34 4 23.47 3 18.12
AOR (w=1; r=1.5) 2 18.22 4 23.99 3 17.51
AOR (w = 0.9; r = 1.5) 2 18.26 4 24.30 3 17.74
AOR (w=1.2; r=0.5) 6 20.86 8 27.85 7 19.48
GSOR 3 16.76 6 21.87 5 16.81
GAOR (r =0.5) 8 21.95 11 29.09 11 22.04
GAOR (r = 3) 1 1761 3 23.77 2 17.33
GAOR (r=0) 140 88.48 140 94.43 146 76.70
GAOR (r =1.5) 2 20.98 4 25.77 3 18.03
GAOR (r = 2) 1 2032 3 24.98 2 17.14
MAAOR (w =1.6; r = 1.5) 2 20.67 4 25.85 3 17.22
MAAOR (w = 1.5; r = 1.5) 2 19.63 4 21.17 3 16.04
MAAOR (w = 1.4; r=1.5) 2 21.37 4 25.50 3 17.70
MAAOR (w = 0.9; r = 1.5) 2 2167 4 25.61 3 17.69
MAAOR (w=0.8; r=1.5) 2 20.91 4 26.00 3 17.86
MAAOR (w=1.5; r=2) 1 19.38 3 26.17 2 17.11
MAAOR (w=1.4; r=2) 1 19.63 3 25.96 2 16.76
MAAOR (w = 1.3; r = 2) 1 1971 3 24.75 2 16.07
MAAOR (w=1.2; r=2) 1 19.83 3 23.73 2 18.87
MAAOR (w=1.1; r=2) 1 19.86 3 22.88 2 18.10

Table 4.14: wikipedia matrix: Number of iterations and convergence time (in
seconds, s) for MAAOR, Lumpingl-MAAOR and Lumping2-MAAOR methods for
tol <107® and o = 0.85.

The best results are obtained with SOR (w = 1.1) and SOR (w = 1.2),

followed by MAAOR (w = 1.5, r = 1.5) and MAAOR (w = 1.3, r = 2) for
the Lumping2-MAAOR approach.
As in Table[4.13|we conclude that the most efficient approach is the Lumping2-
MAAOR method. Whatever the choice of parameters the Lumping2-MAAOR
method is always the fastest and, generally, the Lumpingl-MAAOR method
is worse than the full MAAOR method.

These results are in line with the ones obtained with the EPA matrix (Ex-
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ample 3).

Next, we will investigate if the best choices for the parameter w in case
of the SOR method applied to the wikipedia matrix are the same as for the
EPA matrix.

50 T T T T T T T T T 50

time
iterations

Figure 4.10: wikipedia matrix: Number of iterations and time of the SOR
method for different values of w.

In fact, the appropriate parameters for the SOR method depends on the
matrix used. For the EPA matrix w € [0.8,1.2] is a good choice, however, for
the wikipedia matrix, higher values of w are preferable, that is w € [1.1, 1.9].
The fastest SOR methods are the ones with w = 1.8 and w = 1.9, that are
able to converge in approximately 7.6 s.

Now, searching for the best parameters w and r for the AOR method
applied to the full wikipedia matrix we present Figure [4.11]

From Figure [4.11] we conclude that there are a wide range of values for
the parameters that present good performance. However, the fastest AOR
method is the one with w = 0.6 and r = —2.5 that converged in 7.798 s (1
iteration). Similar convergence time is obtained with several other combina-
tion of parameters.

Finally, in an attempt to select the most appropriate MAAOR parameter
combinations for the three strategies in the case of wikipedia matrix, we
construct the following three-dimensional plots. Figure illustrates
the time (in seconds) required to achieve convergence for different values of
w (from 0.1 to 1.9, step 0.2) and for r (from -5 to 5, step 0.5) and Figure
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AOR for different w and r (time): AOR for different w and r (iterations):
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Figure 4.11: wikipedia matrix: Number of iterations and time of the AOR
method for different values of w and r.

4.12(b)| the number of iterations required in the case of the full MAAOR
method.
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Figure 4.12: wikipedia matrix: full MAAOR, several w and r (time and itera-
tions).

In Figure4.13|we did the same but using the Lumpingl-MAAOR method.
Again, in Figure the procedure was analogous for the Lumping2-MAAOR
method.

Observing the three MAAOR figures above we conclude that all the plots
have, approximately, the same shape. Also, the shape of the plots for the
AOR method (Figure is analogous. That is, the combination of the ad-
equate w and r parameters is similar for all methods applied to the wikipedia
matrix and is different from the one appropriate for the EPA matrix.
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Figure 4.13: wikipedia matrix: Lumpingl-MAAOR, several w and r (time and
iterations).
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Figure 4.14: wikipedia matrix: Lumping2-MAAOR, several w and r (time and
iterations).

Based on the information obtained with the plots above we sum up some
of the best combination of MAAOR parameters in Table 4.15

The best choice of MAAOR parameters for the three approaches is w =
1.5 and r = 1.5. Lumping2-MAAOR method is always faster than Lumping1-
MAAOR and full MAAOR. Lumpingl-MAAOR is slower than full MAAOR
and takes more iterations. So, in case of the wikipedia matrix, the Lumping1-
MAAOR approach is not a good alternative to full MAAOR. However, the
Lumping2-MAAOR is, even though it needs more iterations than the no
lumping version.
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method MAAOR Lumpingl-MAAOR | Lumping2-MAAOR
it. time it. time it. time
MAAOR (w =0.1; r = —4.5) 1 17.49 2 21.12 2 14.25
MAAOR (w =0.1; r = —4.0) 1 17.52 2 20.94 2 14.22
MAAOR (w=0.1; r = =3.5) 1 17.54 3 21.55 2 14.26
MAAOR (w=0.1; r = =2.5) 1 17.50 4 22.17 3 14.64
MAAOR (w =0.1; r =5.0) 1 17.69 2 20.95 1 13.79
MAAOR (w = 0.5; r = —4.5) 1 17.74 2 20.89 2 14.20
MAAOR (w = 0.5; r = 2.5) 1 17.68 3 21.51 2 14.23
MAAOR (w = 0.5; r = 4.5) 1 17.70 2 20.88 1 13.81
MAAOR (w =0.9; r = —4.0) 1 17.84 2 20.89 2 14.25
MAAOR (w = 1.3; 7 = 3.5) 1 18.43 2 20.90 2 14.20
MAAOR (w = 1.3; r =5.0) 1 17.81 2 20.89 1 13.82
MAAOR (w = 1.5; r = 1.5) 2 17.14 4 18.63 3 13.35
MAAOR (w = 1.7; r = 3.5) 1 17.81 2 20.90 2 14.21
MAAOR (w = 1.7; 7 = 4.5) 1 19.24 2 20.88 1 13.78
MAAOR (w =1.9; r = —5.0) 1 17.84 2 20.89 2 14.17
MAAOR (w =1.9; r = —4.5) 1 17.81 2 20.90 2 14.22
MAAOR (w =1.9; r =4.0) 1 18.47 2 20.88 2 14.22
MAAOR (w =1.9; r = 4.5) 1 17.80 2 20.90 1 13.78

Table 4.15: wikipedia matrix: some of the best choice of parameters for MAAOR,
Lumpingl-MAAOR and Lumping2-MAAOR methods (tol < 1078 and o = 0.85).

4.3.5 Example 5 - test2 matrix

In this section we use a test matrix build-in by the authors. This matrix
is proposed to deliver large sets of pages with equal PageRank. The matrix
is a 10° x 10° matrix with 141000 nonzeros, 65% dangling nodes, 22% strong
nondangling nodes and 13% weakly nondangling nodes.

It is also important to understand if these methods deal well with a web
with large sets of pages with equal PageRank. Also, it is known that for
increasing values of the damping factor o the computation of the PageRank
computations brings additional difficulties to convergence. For that purpose
we use a large generated matrix to mimic this behavior. Table shows
the number of iterations and time in seconds for the three approaches for

a = 0.85 and Table [4.17] for av = 0.95.

Comparing tables and it can be seen that higher damping fac-
tor makes the problem more difficult to solve, but nonetheless, only two of
the several variants tested for the three methods failed to converge (for the
maximum number of iterations fixed). For this matrix, since it is sparser
than the others, the number of floating-point operations is greatly reduced,
in spite of the large dimension. The gains achieved with lumping versions
are outstanding. Lumping2-MAAOR continues to offer interesting reduction
in computation time with respect to Lumpingl-MAAOR specially for large
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method MAAOR Lumpingl-MAAOR | Lumping2-MAAOR
it. time it. time it. time
Jacobi 31 0.127 28 0.059 31 0.059
Gauss-Seidel 17 0.092 16 0.041 17 0.050
SOR (w = 0.5) 59 0.196 53 0.079 59 0.075
SOR (w = 1.5) 37 0.144 48 0.074 38 0.062
Extrapolated Jacobi (w = 0.5) 70 0.243 64 0.091 71 0.082
Extrapolated Gauss-Seidel (w = 1.5) 33 0.143 36 0.057 33 0.064
Extrapolated Gauss-Seidel (w = 0.5) 44 0.174 41 0.067 45 0.070
AOR (w = 1.5; 7 =0.5) 608 1.765 687 0.513
AOR (w =0.5; 7 =1.5) 38 0.156 37 0.066 40 0.063
AOR (w=0.5; r=2) 43 0.190 46 0.072 46 0.071
AOR (w=0.5; r=15) 1400 3.973 357 0.384 1405 0.990
GSOR 40 0.152 38 0.069 38 0.063
GAOR (r =0.5) 46 0.176 44 0.066 45 0.066
GAOR (r =1.5) 32 0.136 31 0.058 31 0.060
GAOR (r =0) 51 0.181 49 0.077 50 0.071
GAOR (r=1) 40 0.150 38 0.056 38 0.061
GAOR (r = 3) 36 0.152 33 0.054 33 0.060
MAAOR (w = 1.5; r =0.5) 41 0.171 46 0.072 46 0.071
MAAOR (w = 0.5; r = 1.5) 73 0.263 71 0.100 71 0.087
MAAOR (w =0.8; r =3) 44 0.171 43 0.070 42 0.069

Table 4.16: test2 matrix: Number of iterations and convergence time for
MAAOR, Lumpingl-MAAOR and Lumping2-MAAOR methods for tol < 1078
and a = 0.85. Symbol — appears whenever the maximum number of iterations
(5000) was exceeded.

values of the damping factor.
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method MAAOR Lumpingl-MAAOR | Lumping2-MAAOR
it. time it. time it. time
Jacobi 45 0.169 44 0.070 39 0.063
Gauss-Seidel 24 0.111 25 0.050 22 0.051
SOR (w = 0.5) 80 0.277 79 0.106 65 0.081
SOR (w = 1.5) 39 0.154 54 0.080 39 0.063
Extrapolated Jacobi (w = 0.5) 98 0.328 97 0.120 7 0.089
Extrapolated Gauss-Seidel (w = 1.5) 34 0.156 39 0.070 33 0.060
Extrapolated Gauss-Seidel (w = 0.5) 57 0.222 59 0.089 52 0.075
AOR (w=1.5; r=0.5)
AOR (w=0.5; 7 =1.5) 49 0.206 46 0.076 48 0.074
AOR (w=0.5; r=2) 67 0.258 61 0.095 67 0.086
AOR (w=0.5; r=5) - - - - - -
GSOR 60 0.211 60 0.090 57 0.078
GAOR (r =0.5) 69 0.267 69 0.101 65 0.087
GAOR (r =1.5) 49 0.198 50 0.087 47 0.072
GAOR (r =0) 78 0.253 78 0.104 73 0.088
GAOR (r=1) 60 0.202 60 0.092 57 0.077
GAOR (r =3) 47 0.179 47 0.078 47 0.071
MAAOR (w = 1.5; r=0.5) 45 0.182 50 0.081 50 0.079
MAAOR (w = 0.5; r =1.5) 107 0.368 109 0.151 103 0.120
MAAOR (w =0.8; r =3) 59 0.250 57 0.087 60 0.088

Table 4.17: test2 matrix: Number of iterations and convergence time for
MAAOR, Lumpingl-MAAOR and Lumping2-MAAOR methods for tol < 1078
and a = 0.95. Symbol — appears whenever the maximum number of iterations
(5000) was exceeded.

4.4 Conclusions

We have reviewed the MAAOR algorithm, which encloses the most well-
known stationary iterative methods, as well as the Lumping methods to
segregate dangling and nondangling nodes within the PageRank computa-
tions. Hybrid methods combining both were proposed: Lumpingl-MAAOR
and Lumping2-MAAOR. Numerical experiments illustrate the effectiveness
of the two proposed methods. While the Lumping part allows for a clever
computation on a smaller portion of the coefficients matrix, MAAOR pro-
vides a plethora of non-expensive numerical iterative linear solvers. This
combination has reveled to be well adapted to the problem at hands as well
as requiring low computational costs. Quite large problems were solved fast.

Before summing up, it is worth to mention that for large values of the
damping factor « nonstationary iterative method, such as GMRES and
BiCGstab, together with appropriate preconditioners, are a viable approach,
since the greater computational cost to incur may be compensated by their
effectiveness. Yet, these methods may converge slowly (or stagnate) for low
dimensional search subspaces [138]. On the contrary, stationary iterative
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methods are inexpensive but may show convergence problems for values of
a closer to 1, which are not the case for PageRank. Nevertheless, results on
Table [.17]illustrate that these hybrid methods can cope with large values of
the damping factor.

Moreover, other nonstationary methods can perform better than the
Gauss-Seidel, assumed in the literature to be the best approach. With the
results in this thesis, we explored for the first time the MAAOR family of
methods, which proved to be superior both in number of iterations and com-
puting time for more demanding problems.
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Conclusions

The work of this thesis was focused on the study of numerical approaches
to improve the convergence of the PageRank algorithm in its academic for-
mulation. As PageRank is a numerical method for ordering web pages and
it is the basis of the most used search engine success, it has been the target
of scientific study over the past decade and a half.

In Chapter 2 we introduced the PageRank model and the mathematical
issues regarding the PageRank problem. It was also presented the state
of the art on the various acceleration methods of the Pagerank problem
available in the literature. Additionally, a review of linear stationary iterative
methods, on nonstationary methods used for PageRank computations, on
multilinear PageRank and on parallel PageRank computations was included
in this chapter. Nowadays, the problem of PageRank is more complex than
its initial formulation, some of the new applications of the PageRank problem
have been addressed.

The work was divided into two parts: the spectral path, which consists in
the calculation of the PageRank vector by solving a problem of eigenvalues
and eigenvectors, and the calculation of the PageRank vector through the
solution of sparse linear systems of equations of large dimension.

In Chapter 3 we proposed a hybrid method that results from the combina-
tion of a classical acceleration numerical technique with a recent aggregation
algorithm of page without outlinks. That is, a family of LumpingE methods,
combining partitioning, matrix reduction and extrapolation, was proposed
to accelerate PageRank computations. Numerical results illustrating the dy-
namics of the iterative process, number of iterations and CPU time were
provided. We concluded that, despite the additional costs caused by the

165
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preparation of the matrix, final retrieval of the PageRank vector and extrap-
olation, the new proposed family allows for a significant reduction both in
number of iterations and CPU time required for convergence.

In Chapter 4 it was implemented a family of stationary methods that
was recently developed and is quite comprehensive (Matrix Analogue of the
Accelerated Overrelaxation (MAAOR) family of methods) with the aim of
monitoring specifications of this family able to accelerate the calculation of
PageRank. The MAAOR algorithm encloses the most well-known stationary
iterative methods. In addition, a new method was developed combining the
previously mentioned page aggregation algorithm (the Lumping methods to
segregate dangling and nondangling nodes) with this new family of meth-
ods. Effectively, hybrid methods combining both were proposed: Lumpingl-
MAAOR and Lumping2-MAAOR. Numerical experiments illustrate the ef-
fectiveness of the two proposed methods. While the Lumping part allows for
a clever computation on a smaller portion of the coefficients matrix, MAAOR
provides a plethora of non-expensive numerical iterative linear solvers. This
combination has reveled to be well adapted to the problem at hands as well
as requiring low computational costs. Quite large problems were solved fast.
Also we explored a huge number of possible combinations of the MAAOR
parameters, delivering different iterative approaches, in order to select the
(possibly) best MAAOR parametrization. We concluded that, contrary to
most results in the literature, the Gauss-Seidel method can be superseded by
the recent MAAOR family of methods in the PageRank problem.

The results indicate that there are advantages in the use of both proposed
hybrid formulations.

Together with the presented developments, the contents of this thesis
have been published in scientific journals and presented in international con-
ferences.

Publications In particular, Chapters 3 and 4 gave rise to the following
articles and proceedings:

e Mendes, I. R. and Vasconcelos, P. B., PageRank computations with
MAAOR and Lumping Methods, Mathematics in Computer Science,
June 2018, Volume 12, Issue 2, pp 129-141.

e Mendes, Isabel R. and Vasconcelos, Paulo B., PageRank computations
using Lumping and extrapolation techniques, proceedings in 2nd Inter-
national Conference on Numerical and Symbolic Computation: Devel-
opments and Applications, pp 225-244, 2015, ISBN 978-989-96264-7-8.
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e Mendes, I. and Vasconcelos, P., Lumping method with acceleration for
the PageRank computation, 14th International Conference on Compu-
tational Science and Its Applications (ICCSA 2014), pp 221-224, IEEE
2014.

Comunications

e International Conference on Numerical and Symbolic Computation De-
velopments and Applications (SYMCOMP 2017), Guimaraes, Univer-
sidade do Minho, 6 — 7 April 2017, ”PageRank computations with
MAAOR and Lumping methods”.

e 2nd International Conference on Numerical and Symbolic Computa-
tion Developments and Applications (SYMCOMP 2015), Faro, 26 — 27
March 2015, "PageRank computations using Lumping and extrapola-
tion techniques”.

e 14th International Conference on Computational Science and Its Ap-
plications (ICCSA 2014), Guimaraes, Portugal, 30 June to 3 July 2014,
”Lumping with acceleration for PageRank computation”.

e Congreso de Metodos Numericos en Ingenieria, Bilbao, 25 — 28 June
2013, ” Extrapolation for the PR computation on reordered matrices”.
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